17 research outputs found

    A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation

    Get PDF
    Abstract-Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles

    Design Optimization Algorithms for Concentric Tube Robots

    Get PDF
    Concentric tube robots are tentacle-like surgical robots that can bend around anatomical obstacles to access hard-to-reach surgical targets. These robots have potential to enable minimally invasive surgical procedures by allowing physicians to access clinical regions that were previously unreachable using traditional instruments. Concentric tube robots are composed of nested, customizable tubes which undergo complicated mechanical interactions that generate tentacle-like motion. As a consequence of this intricate kinematic mechanism, the physical specifications of each of the robots tubes, i.e. the robot’s design, significantly affect the shapes that the robot can undertake and the regions it can reach. Customizing the design of these robots can potentially facilitate successful surgical procedures on a variety of patients. In this thesis, we present design optimization algorithms to generate appropriate design parameters on an application- and patient-specific basis. We consider three design optimization problems. First, we present a design optimization algorithm that generates a concentric tube robot design under which the robot can maximize the reachable volume of a given goal region in the human body. We provide analysis establishing that our design optimization algorithm for generating a single design is asymptotically optimal. Second, we present an algorithm that computes sets of concentric tube robot designs that can collectively maximize the reachable volume of a given goal region in the human body. Third, we introduce an algorithm that generates the set of designs of minimal size such that the designs in the set can collectively reach a physician-specified percentage of the goal region. Each of our algorithms combines a search in the design space of a concentric tube robot using Adaptive Simulated Annealing with a sampling-based motion planner in the robot’s configuration space in order to find a single or sets of designs that enable paths to the goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of each of our algorithms in a simulated scenario based on lung anatomy and compare our algorithms’ performance with that of current state-of-the-art design optimization algorithms.Bachelor of Scienc

    The mechanics of continuum robots: model-based sensing and control

    Get PDF

    DEVELOPMENT OF A KINETIC MODEL FOR STEERABLE CATHETERS FOR MINIMALLY INVASIVE SURGERY

    Get PDF
    The steerable catheters have demonstrated many advantages to overcome the limitations of the conventional catheters in the minimally invasive surgery. The motion and force transmission from the proximal end to distal tip of the catheter have significant effects to the efficiency and safety of surgery. While the force information between the catheter and the body (e.g., vessel) can be obtained by mounting sensors on the distal tip of the catheter, this would be more intrusive and less reliable than the one without the sensors, which is described in this disseration. In addition, the small diameters of the catheters may also restrict the idea of mounting sensors on the distal tip. The other approach to obtain the force information is to infer it from the information outside the body. This will demand an accurate mathematical model that describes the force and motion relation called kinetic model, and unfortunately, such a kinetic model is not available in the literature. In this dissertation, a kinetic model for steerable catheters is presented wich captures the following characteristics of the steerable catheter, namely (1) the geometrical non-linear behavior of the catheter in motion, (2) the deformable pathway, (3) the friction between the catheter and the pathyway, and (4) the contact between the catheter and pathway. A non-linear finite element system (SPACAR) was employed to capture these characteristics. A test-bed was built and an experiment was carried out to verify the developed kinetic model. The following conclusions can be drawn from this dissertation: (1) the developed kinetic model is accurte in comparison with those in literature; (2) the Dahl friction model, the LuGre friction model and the simplified LuGre friction model are able to capture the friction behavior between the catheter and the pathway but the Coulomb friction model fails (as it cannot capture the hysteresis property which has a significant influence on the behavior of the catheter); (3) the developed kinetic model has the potential of being used to optimize the design and operation of steerable catheters with several salient findings that (3a) the maximal contact force between the catheter and the pathway occurs on the tip of the distal part or the connecting part between the distal part and catheter body of the catheter and (3b) the rigidity and length of the distal part are crucial structural parameters that affect the motion and force transmission significantly. There are several contributions made by this dissertation. In the field of the steerable catheter, biomechanics and bio-instrumentation, the contributions are summarized in the following: (1) the approach to develop the kinetic model of the steerable catheter in a complex work environment is useful to model other similar compliant medical devices, such as endoscope; (2) the kinetic model of the steerable catheter can provide the force information to improve the efficiency and safety of MIS (minimally invastive surgery) and to realize the “doctor-assisted” catheter-based MIS procedure; (3) the kinetic model can provide accurate data for developing other simplified models for the steerable catheters in their corresponding work environments for realizing the robotic-based fully automated MIS procedure. (4) The kinetic model of the steerable catheter and the test-bed with the corresponding instruments and methods for the kinetic and kinematic measurements are a useful design validation in the steerable catheter technology as well as for the training of physicians to perform the catheter-based interventional procedure by adding more complex anatomic phantoms. In the field of continuum manipulator and continuum robots, the approach to develop the kinetic model is useful to model other manipulators and robots, such as snake-like robots

    Ein Beitrag zur BerĂŒcksichtigung von pseudoelastischem Werkstoffverhalten in der Modellierung tubulĂ€rer Kontinuumsroboter

    Get PDF
    Die Arbeit widmet sich der elastokinematischen Modellierung tubulĂ€rer Kontinuumsroboter aus Nickel-Titan-Röhrchen. Besonderes Augenmerk liegt dabei auf der BerĂŒcksichtigung des nichtlinearen und hysteresebehafteten Werkstoffverhaltens der Nickel-Titan-Legierung und dessen Einfluss auf das mechanische Verhalten tubulĂ€rer Kontinuumsmechanismen. Einleitend erfolgt eine Motivation zur potentiellen Anwendung tubulĂ€rer Kontinuumsroboter in der Medizin, eine GegenĂŒberstellung unterschiedlicher KanĂŒlen zur aktiven Trajektorienverfolgung sowie die Darlegung des Standes der Forschung von tubulĂ€ren Kontinuumsrobotern. Die Modellierung wird dann in mehreren Stufen, aus zum Teil verschachtelten, Teilmodellen aufgebaut. ZunĂ€chst wird die Werkstoffcharakteristik der Nickel-Titan-Legierung durch ein nichtlineares Werkstoffmodell mit HystereseberĂŒcksichtigung abgebildet und mit Messungen verglichen. Darauf aufbauend wird ein Bauteilmodell hergeleitet, welches einzelne Nickel-Titan-Röhrchen unter reiner Biegung abbilden kann. Anschließend erfolgt die Betrachtung der Auswirkung der Werkstoffhysterese auf die Gleichgewichtslage tubulĂ€rer Kontinuumsmechanismen sowie die Bestimmung von GleichgewichtskrĂŒmmungen und Übergangswinkeln. Diese Teilmodelle werden aus einer numerischen Kontaktsimulation einer einfachen Röhrchenkombination mit linearelastischem Werkstoffverhalten abgeleitet. Eine Gesamtkinematik fĂŒhrt die, aus den Teilmodellen gewonnenen, kinematischen ZustĂ€nde zu einer Beschreibung des Bewegungsverhaltens des gesamten Kontinuumsmechanismus zusammen. Zur Beurteilung der ModellqualitĂ€t erfolgen Messungen der Trajektorie der Röhrchenenden eines tubulĂ€ren Kontinuumsmechanismus aus zwei Röhrchen. Es wird gezeigt, dass es mit der Modellierungsweise möglich ist, die gesamte Trajektorie fĂŒr eine maximale KanĂŒlenlĂ€nge von 70 mm mit einer maximalen euklidischen Abweichung von etwa 2 mm abzubilden. Die Kalibrierung der kinematischen ZustĂ€nde reduziert die maximale euklidische Abweichung deutlich unter 1 mm. Basierend auf dem nichtlinearen Bauteilmodell und der berechneten Gleichgewichtslage erfolgt eine modellbasierte Bestimmung der erforderlichen AntriebskrĂ€fte zum Verschieben der Röhrchen und der Vergleich dieser mit Messungen. Die Arbeit schließt mit der Beschreibung aller verwendeten Experimentalaufbauten ab. Dazu gehören die Antriebseinheit zur Verschiebung der Röhrchen, eine schwenkbare Austrittsbuchse zur Erhöhung der Bewegungsfreiheit tubulĂ€rer Kontinuumsmechanismen, ein Stereokamera-Messsystem zur Trajektorienmessung und ein Kraftmesssystem zur Bestimmung der erforderlichen AntriebskrĂ€fte.This thesis addresses the elastokinematic modeling of tubular continuum robots comprised of nickel-titanium tubes. Particular attention is paid to the nonlinear and hysteretic material behaviour of nickel-titanium and its influence on the mechanical behaviour of tubular continuum mechanisms. Initially, a potential application of tubular continuum robots in medicine is motivated. It is followed by a comparison of different cannulas for active following of trajectories and a statement of the state of the research on tubular continuum robots. The modelling is then built up in several stages of partially nested submodels. First, the material characteristic of the nickel-titanium alloy is represented by a nonlinear material constitutive law with hysteresis. Based on this, a structural element constitutive law is derived, which represents single nickel-titanium tubes under pure bending. Subsequently, the effect of the material hysteresis on the equilibrium conformation of tubular continuum mechanisms and the determination of equilibrium curvatures and transition angles is considered. These submodels are derived from a numerical contact simulation of a simple tube combination with linear elastic material behaviour. The kinematic states, obtained from the submodels, are then combined into an overall kinematic formulation of the entire continuum mechanisms motion behaviour. Trajectory measurements of the tube ends of a tubular continuum mechanism made of two tubes are conducted to assess the model quality. The measurements show that the modelling method is able to map the entire trajectory for a maximum cannula length of 70 mm, with a maximum euclidean deviation of approximately 2 mm. The calibration of the kinematic states reduces the maximum euclidean deviation to well below 1 mm. Finally, based on the non-linear structural element constitutive law and the calculated equilibrium conformation, a model-based determination of the required driving forces for moving the tubes is presented and compared to measurements. The work concludes with a description of all employed experimental setups. These include the drive unit for displacing the tubes, a pivotable outlet bushing to increase the freedom of movement of tubular continuum mechanisms, a stereo camera measurement system for trajectory measurement and a force measurement system for determining the required driving forces

    Robotic control of deformable continua and objects therein

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 400)

    Get PDF
    This bibliography lists 397 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    On the performance and programming of reversible molecular computers

    Get PDF
    If the 20th century was known for the computational revolution, what will the 21st be known for? Perhaps the recent strides in the nascent fields of molecular programming and biological computation will help bring about the ‘Coming Era of Nanotechnology’ promised in Drexler’s ‘Engines of Creation’. Though there is still far to go, there is much reason for optimism. This thesis examines the underlying principles needed to realise the computational aspects of such ‘engines’ in a performant way. Its main body focusses on the ways in which thermodynamics constrains the operation and design of such systems, and it ends with the proposal of a model of computation appropriate for exploiting these constraints. These thermodynamic constraints are approached from three different directions. The first considers the maximum possible aggregate performance of a system of computers of given volume, V, with a given supply of free energy. From this perspective, reversible computing is imperative in order to circumvent the Landauer limit. A result of Frank is refined and strengthened, showing that the adiabatic regime reversible computer performance is the best possible for any computer—quantum or classical. This therefore shows a universal scaling law governing the performance of compact computers of ~V^(5/6), compared to ~V^(2/3) for conventional computers. For the case of molecular computers, it is shown how to attain this bound. The second direction extends this performance analysis to the case where individual computational particles or sub-units can interact with one another. The third extends it to interactions with shared, non-computational parts of the system. It is found that accommodating these interactions in molecular computers imposes a performance penalty that undermines the earlier scaling result. Nonetheless, scaling superior to that of irreversible computers can be preserved, and appropriate mitigations and considerations are discussed. These analyses are framed in a context of molecular computation, but where possible more general computational systems are considered. The proposed model, the Ś-calculus, is appropriate for programming reversible molecular computers taking into account these constraints. A variety of examples and mathematical analyses accompany it. Moreover, abstract sketches of potential molecular implementations are provided. Developing these into viable schemes suitable for experimental validation will be a focus of future work

    Proceedings of ICMMB2014

    Get PDF

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore