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Abstract

This dissertation addresses modeling, control, and sensing with continuum robots.

In particular, two continuum robot architectures are studied: (1) concentric-tube de-

signs, and (2) designs actuated by embedded wires, cables, or tendons. The modeling

approaches and sensing and control methods developed are also applicable to many

other varieties of continuum robot designs.

Concentric-tube continuum robot designs are also termed “active cannulas” be-

cause of their potential use as dexterous, needle sized manipulators for minimally

invasive medical applications. These robots are composed of multiple pre-shaped

tubes arranged concentrically, and their shape and pose are the result of elastic de-

formations, caused by interaction among the component tubes as well as external

loads on the device. We derive two predictive models which describe this behav-

ior using the principle of minimum potential energy and Cosserat-rod theory. The

proposed models are each validated experimentally.

Tendon-driven continuum manipulators are also being developed for a variety of

applications. The kinematics of these robots are also governed by elastic deformations

resulting from tendon interactions with the backbone structure as well as external

loading. We show that this behavior may be modeled by coupling the Cosserat-rod

model with Cosserat-string models. This approach can be used to analyze designs in

which the tendons are routed in general three-dimensional curves, as well as designs

with precurved backbone structures, thus providing tools for the analysis and control

of a large set of possible designs.
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Model-based control of tendon-driven and concentric-tube robots is challenging

because solving the kinematic and static models is often computationally burdensome.

To address this, a we derive a method for obtaining Jacobians and compliance matrices

for flexible robots which is computationally efficient enough to be used for real-time

simulation and control. We then describe a Jacobian-based control algorithm and

a deflection-based method for estimating applied forces on a flexible robot. The

feasibility of these approaches is demonstrated in simulation and on robot hardware.
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Chapter 1

Introduction

1.1 Motivation and Related Work

Continuum robots are an increasingly popular class of manipulators characterized

by their ability to assume continuous curved shapes via a continuously bending,

infinite-degree-of-freedom structure. They produce motion similar to the biologi-

cal entities that are their inspiration, namely tentacles, trunks, tongues, snakes, and

worms [40, 60, 85, 90]. Because of their compliant and dexterous structures, contin-

uum robots offer a number of potential advantages over traditional rigid-link robots

in certain applications, particularly those involving reaching through complex tra-

jectories in cluttered environments, or where the robot must compliantly contact

the environment along its length. As outlined in [90] and illustrated in Figure 1.1,

continuum and hyper-redundant robots are being developed for many applications,

including undersea manipulation [2], car painting, nuclear decontamination and reac-

tor repair [14,42], liquid transport [22], inspection of unstructured environments and

pipes [56, 57,80,81,87], and search and rescue [5, 86,98].

A reviewed in [90], continuum robots can function as conventional medical tools,

such as forceps [54], flexible needles [91], laparoscopic tools [57], endoscopes [41],

arthroscopes [23], colonoscopes [59], laser manipulators [39], catheters [16, 55]. Con-
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Figure 1.1: Many different biologically inspired continuum robot designs are being
developed for medical applications, search and rescue, industrial inspection, nuclear
decontamination, underwater, and outer space applications.

tinuum robots are also being developed as novel, multi-purpose, teleoperated devices

for medical interventions. Examples of this approach include the multi-backbone

robot of Simaan et al. [100] for applications in throat surgery, the hyperredundant car-

diac manipulator of Choset et al. [26] for cardiac surgery, the tendon-driven catheter

system of Salisbury et al. [15, 16], and the concentric-tube active cannula robot of

Webster et al. [62, 65,70,92,94] and Dupont et al. [27, 28,72,73].

Historically, the development of the first continuum robot designs arose from the

study of hyperredundant, or serpentine designs which use a large number of discrete

rigid links to approximate continuously curved shapes. Early designs include the

Orm [83], and the tensor arm [2]. Pioneering work in this field was done by Hirose,

and summarized in his book [40]. To plan configurations for hyperredundant, snake-

like robot designs and control their motion, a “top down” approach was developed

by Chirikjian and Burdick [19, 20] and subsequently adapted by several others using

a variety of formulations for various purposes (see e.g. [35,36,43,52]). This approach

involves choosing an appropriate theoretical curve and then matching the (usually

high-degree-of-freedom) physical robot to it. The properties of the curves themselves

have often been based upon principles in continuum mechanics (such as minimum
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energy).

In contrast to hyper-redundant robots, many continuum robots have a relatively

low number of actuatable degrees of freedom despite having a flexible structure capable

of assuming a variety of continuous curves. In this case, a “bottom up” approach

is often more appropriate. The goal here is to directly model the mechanics of a

particular continuum robot structure in order to arrive at an accurate description of

its forward kinematics and static deformation behavior. Examples of this approach

include the work of Gravagne and Walker [33, 34, 37], Jones, Rahn, Trivedi, et al.

[45, 49, 85], Camarillo, Salisbury et al. [15, 16], and Simaan et al. [75, 99, 102] The

useful “top-down” versus “bottom up” categorization was suggested and defined in

the book [74].

In this dissertation, we take the bottom-up approach, formulating models based on

elastic energy and classical rod mechanics for two popular types of extrinsically actu-

ated continuum manipulators, namely concentric-tube “active cannulas” and robots

with flexible backbones actuated by embedded tendons. We review the background

and related work for modeling these two particular classes in the following subsections.

1.1.1 Concentric-Tube Continuum Robots

Concentric-tube continuum robots, also called active cannulas due to their promise

in interventional medicine, use the geometry and elastic interaction of precurved

concentric tubes to achieve a wide variety shaft curves and end effector poses. As

shown in Figure 1.2, the shape of the cannula’s telescoping backbone can be changed
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Figure 1.2: A prototype concentric-tube robot (active cannula) made of precurved
superelastic Nitinol tubes. The telescoping tubes can be independently rotated and
translated to achieve motion.

by axially rotating and translating each individual tube at its base. This thin, flexible,

continuum robot design is mechanically simple, and has the potential ability to reach

into confined or winding environments [94]. Using precurved component tubes may

potentially enable a larger variety of shapes at smaller diameters than is possible with

continuum robots actuated by support disks with tendon wires [23,38], elastic sleeves

with embedded tendons [16], flexible push rods [76], or pneumatic actuators [18,46].

These characteristics have led to many proposed medical applications at the

“meso-scale” (≈ 0.1-100 mm) that require thin, dexterous manipulators, including

minimally invasive surgical procedures. Specific applications for which active cannu-

las have been proposed include accessing the lung via the throat [93,94], transgastric

surgery [92], fetal procedures [31], steering needles embedded in tissue [29, 51, 72],

cardiac procedures [72], and transnasal skull base access [92]. An overview of several

specific ways active cannulas might be used in medicine is given in [89]. It is also

possible in principle to construct very small active cannulas which may be useful in
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cell manipulation [30,48,79] and other micro-surgical applications.

The idea of making a robot from counter-rotated, pre-curved concentric tubes was

introduced relatively recently. Loser et al. [51] developed a steerable needle composed

of two fully overlapping precurved cannulas whose bases rotate (but do not translate)

relative to one another to change needle curvature. Daum [24] patented a deflectable

needle assembly in which a curved “catheter” is deployed through a rigid outer can-

nula.

Related Kinematic Modeling Work

Despite its mechanical simplicity, finding a sufficiently accurate representation of

the forward kinematic mapping (robot shape as a function of axial rotations and

translations of the component tubes) for active cannulas has been a challenge, due to

the complexity of the elastic interactions between the component tubes. Solving this

problem is a necessary first step towards the practical implementation of concentric-

tube robots and the subject of the first half of Chapter 3 of this dissertation.

The modeling frameworks that exist today have been developed in parallel by

several groups. The simplest possible model of an active cannula, called a “Curved

Multi Tube” (CMT) by Furusho et al. [31, 82], makes the assumption that the out-

ermost tube in any given section of the robot has infinite stiffness compared to all

tubes within it. Webster et al. [92] and Sears and Dupont [72] provided initial beam

mechanics models that accounted for bending interaction between the tubes and

thereby achieved better accuracy. The importance of torsional deformation was also

recognized and initially modeled in straight sections of the device [93, 94]. Assum-
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ing piecewise-constant precurvature and torsional rigidity in curved sections, these

models describe the robot’s backbone shape by balancing moments between compo-

nent tubes. Under these assumptions, the resulting robot shape becomes a series of

mutually tangent circular arcs.

The recent modeling work by Webster et al. [92–94] also demonstrates the critical

role of torsion in the stored elastic energy landscape, as well as in accurately pre-

dicting tip position. For the specific experimental setup reported in [94], this model

predicts the location of the cannula end point with an average accuracy of 3.0 mm.

However, the difference between predicted and experimental cannula tip positions

was not uniform over the workspace, and was generally worse (up to 8.76 mm) in

configurations where the torsional strain is highest. This suggests that, although ne-

glected by this “lumped-parameter” model, additional torsional deformation in the

curved sections may be a significant phenomenon that should be modeled. This is one

motivation for the generalized forward kinematics model we present in the first half

of Chapter 3 which accounts for both bending and torsion throughout a multi-tube

active cannula. This model has the added benefit of being able to describe robots

which use of tubes with general precurved shapes.

Related Static Modeling Work

While some of the applications listed above, such as manipulating a fiber optic

laser in the lung [61], may be approachable with the free-space kinematic model

developed in the first half of Chapter 3 that does not include external loading, in

many more foreseeable applications it will be useful for the cannula to intentionally
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manipulate tissue by retracting it, cutting it, dissecting it, traveling through it like a

needle, etc. Furthermore, as the cannula approaches the area in which it is to work,

it is likely that tissue will contact it at one or more points along its shaft. Gravity

can also cause some (albeit typically small) deflection in an active cannula. To enable

accurate control of cannula position and applied forces under these conditions, it is

essential to have a model that describes cannula shape under externally applied point

and distributed forces and moments.

The value of modeling external loading has recently been demonstrated in larger-

scale pneumatically actuated continuum robots where the robot sags significantly

under the self-weight of the arm. Trivedi et al. used geometrically exact Cosserat

rod theory to describe the shape of the OctArm under load, reducing model errors

from 50% to 5% [84]. With respect to small-scale continuum robots for medical

applications, Xu and Simaan modeled multi-backbone robot statics and accounted

for strategies for shape restoration after the application of a tip load [101]. They

have also have recently demonstrated intrinsic force sensing with this robot, and

applied it to palpation tasks [102].

Our purpose in the last half of Chapter 4 is to extend the free-space forward kine-

matic model of the first half of Chapter 3 to describe the shape of an concentric-tube

robots under external loading. While this work draws upon similar geometrically ex-

act rod theory as has been used in the work cited earlier in this section, the concentric

precurved tube design presents a fundamentally different problem because there are

many interacting elastica to consider, rather than just one. While concentric tubes

do share a common backbone shape, each can undergo torsion independent of the
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others, which precludes the use of any of existing robot models.

The extended model we develop is a necessary prerequisite to future development

in areas such as design based on compliance, manipulation of objects, and intrinsic

force sensing and control of the robot when it is interacting with tissue.

1.1.2 Tendon-Actuated Continuum Robots

The shape of most continuum robots is not only affected by actuation, but also exter-

nally applied forces and moments. A recent area of research has focused on developing

kinematic models which consider both actuation and external loading. Such models

have been derived for continuum robots with pneumatic actuation [84, 97], multi-

backbone continuum robots [101, 102], and concentric-tube robots (see Chapter 3,

and [62]).

In Chapter 4, we derive and validate such a model for the broad class of con-

tinuum robots actuated by tendons. This widely employed class of continuum robot

utilizes an elastic structure (which we will often refer to as a “backbone”) actuated by

tendons which pass through hollow channels in the elastic structure. Example elastic

structures include a flexible tube with tendons embedded in its walls [16], and an

elastic rod with discs affixed along its length containing holes through which tendons

pass (see e.g. [14, 33] among many others). The ends of the tendons are attached to

the robot at various points, enabling base-mounted actuators to bend the backbone

by pulling on the tendons.

Describing robot shape using mechanics-based models has been the subject of
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much prior research. Early work by Chirikjian and Burdick [17, 19, 20], used con-

tinuum models to describe and control hyperredundant robots. Recent continuum

robot modeling has focused on continuously flexible structures acted on by a variety

of actuators or force/torque transmission mechanisms. For tendon-actuated robots,

the consensus result is that when the tendons are tensioned, the backbone assumes

a piecewise constant-curvature shape. This yields analytically simple kinematics and

has been experimentally demonstrated on several different robots (e.g. [16]. Li and

Rahn [49] investigated this issue explicitly, using nonlinear elastica theory to deter-

mine bounds on the tendon support height and spacing such that a constant curvature

approximation is valid for robots in the absence of external loading.

In addition to free space kinematic modeling, some results exist for describing the

shape of tendon-actuated continuum robots under external loads. Early theoretical

work toward elastica dynamics with embedded tendons is that of Davis and Hirschorn

[25]. Gravagne et al. provide a comprehensive energy-based model in [32, 33, 37] for

the statics and dynamics of a planar continuum robot with in-plane loads. Cosserat

rod theory has also recently shown promise as a general tool for describing the spatial

deformations of other (non-tendon-based) continuum designs [62,84]. Jones et al. [44]

applied Cosserat theory to achieve real-time kinematics computations for tendon-

actuated robots under external loads, based on modeling tendon actuation as a single

point moment applied to the backbone where each tendon is attached.

In this chapter, we extend previous work on the Cosserat-rod approach by taking

into account not only the attachment point moment, but also the attachment point

force and the distributed wrench that the tendon applies along the length of the
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Figure 1.3: Simulations of a continuum robot with a single, straight, tensioned ten-
don with in-plane and out-of-plane forces applied at the tip. These plots illustrate
the difference between the model proposed in Chapter 4, which includes distributed
tendon wrenches, and the commonly used point moment approximation. For planar
deformations and loads, the two models differ only by axial compression (which is
small in most cases). However, for out of plane loads, the results differ significantly,
and including distributed wrenches enhances model accuracy.

backbone. Our approach couples the classical Cosserat string and rod models to

express tendon loads in terms of the rod’s kinematic variables. We illustrate the

difference between the predictions of this new coupled model and the point moment

model for an example case with out of plane loads in Figure 1.3, and provide an

experimental comparison of the two approaches in the experimental section of Chapter

4.
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Figure 1.4: An example of robot shape/workspace modification using curved tendons.
(Left) A robot with four straight tendons spaced at equal angles around its periphery.
(Right) A similar robot with four helical tendons that each make one full revolution
around the shaft. The two designs differ significantly in tip orientation capability,
and the helical design may be better suited to e.g. a planar industrial pick and place
task.

A further advantage of the coupled model is that it enables use of tendon routing

paths that are general curves in space (prior designs have routed tendons in straight

paths along the robot, parallel to the backbone axis). This expands the design space

and the set of shapes achievable for tendon-actuated robots. Figure 1.4 illustrates how

this can be useful for reshaping the workspace of a single-section robot, reorienting

the tip. This illustrative example could conceivably be valuable in industrial pick

and place tasks where objects to be manipulated lie in a plane. Another example of

the usefulness of general tendon routing is the cochlear implant of Simaan et al. [77],

which uses a single curved tendon to control the shape of the implant during insertion,
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with the aim of reducing insertion forces and thereby trauma to the cochlea.

The ability to have a single section of the robot bend into variable curvature shapes

is an important extension in the capabilities of continuum robots and is enabled by

generally routed tendons. The model we derive in Chapter 4 provides the theoretical

framework for design and control of robots actuated in this way.

1.1.3 Kinematic Control of Continuum Robots

In the absence of external loading, many continuum robot architectures will assume

an approximately piecewise-constant curvature shape [90], as indicated by modeling

results in [16, 49]. In these cases, the robot’s forward kinematic model and Jacobian

can often be written in closed form (see for example [8, 38, 45,94,102]).

However, when external loading is considered, and/or the robot design is such

that the piecewise-constant curvature result does not hold, the forward kinematics

problem requires the numerical solution of a set of nonlinear differential equations

subject to multi-point boundary conditions. When this is the case (e.g. for the robot

models presented in Chapters 3 and 4 of this dissertation), computing the robot’s

Jacobian becomes significantly more challenging.

The model equations themselves are often solved using a shooting method [28,

44, 62, 70, 84], and it is possible to approximate the Jacobian via finite differences

by solving the boundary value problem multiple times. However, the computational

intensiveness of this approach is often too high for real-time control.

Another approach that has previously been applied to concentric-tube robot con-
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trol is to pre-computing a large number of forward kinematic solutions spanning the

configuration space of a particular robot. Then, it is possible to construct a func-

tion which approximates the forward kinematic mapping dataset and which can be

rapidly solved to obtain inverse kinematics. This approach has been successfully

demonstrated in [28], but is limited to the specific robot for which the workspace was

sampled, requires a priori specification of any points of interest along the robot one

may wish to consider, and does not account for external loading, or multiple forward

kinematics solutions.

The limitations of the two approaches outlined above highlight the need for the

work that we undertake in Chapter 5. We present a method for obtaining the Jaco-

bian and compliance matrix directly from the model equations of a general contin-

uum robot with minimal computational burden. Our approach yields an arc length

parametrized Jacobian useful for controlling any point (or many of them simultane-

ously) along the robot, and also explicitly takes into account external loading. As

further demonstrated in Chapter 5, this approach enables teleoperation in a real-time

setting without pre-computation.

Previous work related to the method we present in Chapter 5 includes Gravagne

and Walker’s formulation for the Jacobian and compliance matrix of a planar con-

tinuum robot where the actuators provide a set of discrete or continuous torques

along the length [37]. Jones et al. [44] also suggested a method for obtaining the

manipulator Jacobian for a tendon-actuated robot under external loading, by using a

Cosserat-rod-based model and applying finite differences to an associated initial value

problem, to approximate the Jacobian.
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In Chapter 5, we extend both of these approaches to include non-planar continuum

robots of various architectures and actuation strategies, and provide exact equations

to calculate the Jacobian, requiring no finite difference approximations. We then

demonstrate use of this Jacobian to implement real-time inverse kinematics solutions

for concentric-tube robots via a damped-least-squares algorithm.

The latter half of Chapter 5 addresses force sensing using the robot’s compliance

matrix. This work supports the findings of recent research that has shown that flexible

continuum robots can also be used as force senors. In [100, 102], Xu and Simaan

introduced the concept of intrinsic force sensing for continuum robots, demonstrating

that by sensing the axial actuation loads on their multi-backbone continuum robot,

certain components of an end-effector wrench could be determined. Additionally,

work by Bajo and Simaan used the relative position of points on the robot shape to

determine the contact location [9].

Here we extend the current body of research on intrinsic force sensing by consid-

ering the problem of shape-based load estimation from a probabilistic perspective.

That is, given noisy measurements of the robot’s shape and/or end effector pose, we

aim to estimate the most likely set of loads on the robot and quantify the uncertainty

in that estimation. Our approach is based on applying the popular Extended Kalman

Filter (EKF) algorithm to the problem of estimating the applied forces and the pose

of the end-effector simultaneously. Simulation results indicate that this approach is

feasible if both the sensor accuracy and model accuracy are high, even though the

compliance matrix of a typical continuum robot is ill-conditioned.
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1.2 Dissertation Contributions

Free-Space Kinematic Modeling Concentric-Tube Robots:

In the first half of Chapter 3, we obtain a new model for the forward kinematics

of concentric-tube robots, by deriving a general coordinate-free energy formulation,

leading to a set of differential equations that describes the shape of an an active can-

nula. The model accounts for bending and torsional strain throughout the robot, and

non-constant precurvature and stiffness of the component tubes. We derive an ana-

lytical solution for the 2-tube, constant-precurvature case, and demonstrate that the

resulting cannula shape is non-circular. The experimental contribution of this chapter

is a demonstration that the new modeling framework can reduce model prediction er-

ror by 82% over the prior bending-only model, and 17% over the prior transmissional

torsion model in a simple set of experiments with a prototype active cannula.

The first half of Chapter 3 contains results which were published at the IEEE

RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics

(BioRob) in 2008 [64], and at the IEEE International Conference on Robotics and

Automation (ICRA) in 2009 [71], as well as in IEEE Transactions on Biomedical

Engineering [65] and the International Journal of Robotics Research [70]. Some of

the results in this chapter were independently and concurrently developed by Dupont

et al. [27, 28].

Static Modeling of Concentric-Tube Robots under External Loads:

The contributions of the latter half of Chapter 3 are (1) an extension of the
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classical, geometrically exact Kirchoff rod theory from one rod to many precurved

concentric tubes under arbitrary external point and distributed wrench loading, and

(2) experimental validation of the accuracy of the model for a specific prototype robot

under point and distributed loading. This work generalizes the free-space kinematic

model by additionally accounting for the effect of external loading on a general robot.

The latter half of Chapter 3 contains results which were published at the IEEE

International Conference on Robotics and Automation in 2010 [63], and in IEEE

Transactions on Robotics [62].

Static and Dynamic Modeling of Tendon-Actuated Continuum Robots:

In Chapter 4 we provide a new Cosserat-rod-based model for the deformation

of tendon-actuated continuum robots under general external point and distributed

wrench loads. This model describes both point and distributed tendon loads in a

geometrically exact manner for large 3D deflections. Other specific contributions

include the ability to accommodate general tendon routing, and an additional model

describing the distributed dynamics of tendon actuated robots. Our experimental

contribution in this chapter is a validation of accuracy of the static model on a

physical prototype with straight, helical, and polynomial tendon paths, subject to

both distributed and point loads.

Chapter 4 contains results presented at the International Symposium on Experi-

mental Robotics in 2010 [66], and in IEEE Transactions on Robotics [69].

Kinematic Control and Force Sensing with Continuum Robots:

Chapter 5 demonstrates two of the many practical uses of the models developed

in Chapters 3 and 4. Specific contributions of this work include (1) an efficient
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method for obtaining an arc length parametrized Jacobian and compliance matrix for

general continuum robots under applied loads, (2) demonstration of Jacobian-based

kinematic control of a concentric-tube robot in simulation, and (3) demonstration of

probabilistic, shape-based force sensing for a continuum robot in simulation. Chapter

5 contains results published at the IEEE International Conference on Robotics and

Automation in 2011 [67], and at the IEEE Conference on Intelligent Robots and

Systems in 2011 [68].
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Chapter 2

Mathematical Framework and Notation

Chapters 3, 4, and 5 all rely on a common geometric framework to describe the shape

of the elastic structures that comprise continuum robots. These chapters also draw

heavily on classical solid mechanics principles and Cosserat-rod theory, using many

methods and nomenclature from chapters 4 and 8 of Antman’s work on nonlinear

elasticity [3], while making use of some concise kinematic notation familiar to roboti-

cists (see [53]). In this chapter, we give a concise overview of the frameworks used

throughout this dissertation. The symbols used are summarized in a nomenclature

section at the end of the chapter.

2.1 The Kinematics of Rods

2.1.1 Geometric Representation of Rods

We define the shape of a rod or tube as a parametric Cartesian curve in space

p(s) ∈ R3 paired with an orthonormal rotation matrix expressing the material ori-

entation, R(s) ∈ SO(3) (SO(3) is the special orthogonal group in three dimensions,

SO(3) =
{
R ∈ R3x3 | RTR = I, and det(A) = 1

}
). Both position and orientation

are functions of a scalar reference length parameter s over some finite interval, say

s ∈ [0 `]. Thus, a mapping from s to a homogeneous rigid-body transformation,
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g(s) ∈ SE(3), describes the entire rod:

g(s) =

R(s) p(s)

0T 1

 , (2.1)

where SE(3) is the special Euclidean group in three dimensions. We will often refer

to g(s) as a “frame” hereafter.

In the following chapters, we are primarily concerned with how the shape of a rod

g(s) changes from some initial reference state to a final deformed shape as the result

of external forces or constraints as shown in Figure 2.1. Thus, we begin by defining

the initial reference shape,

g∗(s) =

R∗(s) p∗(s)

0T 1

 .
Note that we will use the ∗ symbol to denote variables associated with the reference

state. It will often be convenient for the parameter s to represent the arc length along

the reference curve p∗(s), but this is not required.

While the curve of the rod in its undeformed reference state defines p∗(s), the

reference orientation R∗(s) can be assigned somewhat arbitrarily. However, one can

establish conventions governing the assignment of reference orientations such that the

mapping from R∗(s) to R(s) has an easily interpretable meaning in terms of material

strains. In this work we choose to adopt such a convention for this purpose. We

assign reference orientations such that

R∗(s)e3 =
ṗ∗(s)

‖ṗ∗(s)‖
, (2.2)

where ṗ∗(s) = dp∗(s)
ds

. (Note that we use the ˙ symbol to denote differentiation with

respect to s throughout this dissertation, with the exception of Chapter 5, where we
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Figure 2.1: The shape of a rod structure in its reference state is defined by a param-
eterized frame along the rod’s length. The rod then deforms to a new shape defined
by a new set of frames as the result of external forces.

use ′). Also e1, e2, and e3 are used for the standard basis vectors [1 0 0]T , [0 1 0]T ,

and [1 0 0]T , respectively) The physical interpretation of this constraint is that the

local z axis of the reference frame points along the tangent of the reference curve.

The convention above, defines the only the z axis of the reference orientation. If

the rod or tube has a cross section which is not radially symmetric, it is sometimes

convenient to make the x and y axes of each reference frame align with the princi-

pal axes of the cross section (note that principal axes are orthogonal by definition).

Otherwise, one could use the Frenet-Serret convention which provides closed form

equations that can be used to generate frames as long as p∗(s) is twice differentiable
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and nonzero. In this convention, one axis is aligned with the plane of geometric

curvature at s. Perhaps more intuitive, but less analytically simple are Rotation

Minimizing, or Bishop frames [11], which propagate along s without undergoing any

instantaneous rotation about the tangent axis, as reviewed in [21].

2.1.2 Differential Geometry

Following the notation in [53], we recognize that, in general, R(s)T Ṙ(s) ∈ so(3) is a

3× 3 skew symmetric matrix (so(3) is the Lie algebra of Lie group SO(3)). Since the

set of skew-symmetric matrices is isomorphic to R3, we define a bijective mapping

from R3 to so(3) using the ̂ symbol as follows. For u = [ux uy uz]
T ∈ R3,

û =


0 −uz uy

uz 0 −ux

−uy ux 0

 (2.3)

The inverse operation, denoted by ∨ , maps so(3) to R3, so that û∨ = u.

Similarly, g(s)−1ġ(s) ∈ se(3) (the Lie algebra of Lie group SE(3)) can be param-

eterized by an element of R6. Following the convention of [53], we overload the ̂
and ∨ notation to also represent the isomorphic mapping from R6 to se(3) and its

inverse, respectively. Thus, for ξ = [vx vy vz ux uy uz]
T ∈ R6,

ξ̂ =



0 −uz uy vx

uz 0 −ux vy

−uy ux 0 vz

0 0 0 0


, (2.4)
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and the inverse operation, denoted by ∨ , maps se(3) to R6, so that ξ̂
∨

= ξ.

Thus, if one has a parameterized frame, g(s), a twist vector can be obtained

representing the rates of change of g(s) with respect to s expressed in coordinates of

g(s) (body frame coordinates),

ξ(s) = [vx vy vz ux uy uz]
T =

(
g−1(s)ġ(s)

)∨
,

The first three components of ξ, form a vector of linear rates of change, v = [vx vy vz]
T .

The last three components of ξ, form a vector of the angular rates of change u =

[ux uy uz]
T =

(
RT Ṙ

)∨
.

Similarly, if one knows the “body frame” twist vector ξ(s), and an initial frame

g(0) then the remaining frames can be obtained by integrating the differential equa-

tion

ġ(s) =g(s)ξ̂(s), (2.5)

or equivalently, by integrating the pair of equations

p(s) = R(s)v, Ṙ(s) =R(s)û(s). (2.6)

Obtaining g(s) from ξ(s) via (2.5) or (2.6) is not trivial. If ξ(s) happens to be constant

with respect to s, then a closed form solution exists via the matrix exponential,

g(s) = g(0)eξ̂s,

which can be computed using Rodrigues’ formula. However, in the general case one

usually has to resort to numerical integration to obtain g(s) from ξ(s). We discuss

this issue and others in Section 2.2.5
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2.1.3 Reference Frames and Reference Twists

As a consequence of our framing convention which assigns the reference frame z axis

tangent to the reference curve, the associated reference twist ξ∗(s) will always have

a certain form. Combining (2.2) and (2.6), we see that v∗ = [0 0 ‖ṗ∗(s)‖]T . Thus,

if we choose to use the arc length of the reference curve as our parameter s, then

v∗ = [0 0 1]T .

As an example, in the simple case where the reference curve of a cylindrical rod

is a straight line given by p∗(s) = [0 0 s]T , we could set the reference orientation

to identity, R∗(s) = I. Then the reference twist would have v∗(s) = [0 0 1]T , and

u∗(s) = [0 0 0]T .

If the reference curve is a circular arc of radius r, given by

p∗(s) = [0 r(cos(s) − 1) r sin(s)]T , then we could assign the reference orientations

as

R∗(s) =


1 0 0

0 cos(s) − sin(s)

0 sin(s) cos(s)

 .

Then, we find that the reference twist is composed of v∗(s) = [0 0 r]T , and u∗(s) =

[1 0 0]T .

Alternatively, we could re-parameterize p∗(s) such that s represents the arc length,
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p∗(s) = [0 r(cos(s/r)− 1) r sin(s/r)]T . Then the orientation could be

R∗(s) =


1 0 0

0 cos(s/r) − sin(s/r)

0 sin(s/r) cos(s/r)

 ,

and the resulting reference twist would have v∗(s) = [0 0 1]T , and u∗(s) = [1
r

0 0]T .

2.1.4 The Kinetic Analogy

We note that in the kinematic formulation above, one can make the following analogy

to rigid body motion: as a “body frame” angular velocity ω describes how a rotation

matrix R(t) changes with respect time [53], so a local curvature vector u describes

how a rotation R(s) changes with respect to the arc length of the rod. Thus, the

expressions for the elastic energy stored in a deformed rod are of the same form as

those for the kinetic energy of a tumbling rigid body. This is termed Kirchoff’s kinetic

analogue, as discussed in [47]. This analogy may be helpful for those with experience

in robot dynamics to gain intuition about the models developed in this dissertation.

2.2 The Mechanics of Rods

2.2.1 Equilibrium Laws

Following [3], we give the derivation of the classic equilibrium equations for a Cosserat

rod as follows. Consider an arbitrary section from c to s as shown in Figure 2.2. The

internal forces and moments that the material of (s, `] exerts on [c, s] are denoted by

24



the vectors n(s) andm(s) respectively. Similarly, the material of [c, s] exerts n(c) and

m(c) on the material of [0, c). Summing the forces on [c, s] and the moments on [c, s]

about the origin of the global frame, we obtain the conditions of static equilibrium.

n(s)− n(c) +

∫ s

c

f(σ)dσ = 0, (2.7)

m(s) + p(s)× n(s)−m(c)− p(c)× n(c)

+

∫ s

c

(p(σ)× f(σ) + l(σ)) dσ = 0,

(2.8)

where f is the applied force distribution per unit of s, and l is the applied moment

distribution per unit of s. For clarity, we will take all vectors in (2.7) and (2.8) to

be expressed coordinates of a fixed global frame throughout this dissertation. Taking

the derivative of the static equilibrium conditions with respect to s, one arrives at

the classic forms of the equilibrium differential equations for a special Cosserat rod,

ṅ(s) + f(s) = 0, (2.9)

ṁ(s) + ṗ(s)× n(s) + l(s) = 0. (2.10)

These equations describe the evolution of m and n along s.

2.2.2 Strains

The deformation of a rod structure from its reference state g∗(s) to a new state

g(s) implies a corresponding change from ξ∗(s) to ξ(s), which we denote ∆ξ(s) =

ξ(s)−ξ∗(s) =
[
∆v(s)T ∆u(s)T

]T
. A consequence of the reference frame assignment

convention is that each of the components of ∆ξ(s) has a direct physical meaning in

terms of the mechanical strains of the rod in its deformed state.
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Figure 2.2: Arbitrary section of rod from c to s subject to distributed forces and
moments. The internal forces n and moments m are also shown.

x

y

Figure 2.3: Cross section of the rod taken at the x − y plane of the deformed frame
g(s). Strain quantities on this face of a small volume element are shown. These
quantities are directly related to the vectors ∆v(s) and ∆u(s) in Equation 2.11.

First, the transverse shear strains experienced by the rod in the x and y directions

of the deformed frame correspond to ∆vx and ∆vy. Similarly, the elongation strain

in the z direction corresponds directly to ∆vz. Thus, ∆v(s) is dimensionless.

The components of ∆ux and ∆uy similarly correspond to bending about the x

and y axes of the deformed frame, and ∆uz corresponds to torsion about the z axis.

Since u(s) represents the angular rate of change of g(s) with respect to s, the units

of ∆u(s) are length−1 (if s represents arc length).

With respect to the conventional strain quantities commonly used in beam me-

chanics, εz, γzx, and γzy (the normal and shear strains on the x-y face of a small
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volume as shown in Figure 2.3) can be recovered using ∆v(s) and ∆u(s).

[γzx γzy εz]
T = ∆v − r ×∆u, (2.11)

where r = [x y 0]T is the position of the element within the cross section. This

formulation assumes a linear strain profile across the section. The remaining two nor-

mal strains, εx, εy, and the remaining shear strain γxy are related to the deformation

of the cross section itself, and the classical rod-mechanics theory that we employ in

this dissertation assumes that cross sections always remain rigid. This is implicit in

our original definition of a “rod” as a space curve paired with with an orthonormal

rotation matrix for material orientation, which provides no mechanism for describing

cross section deformation. This simplification provides a significant computational

advantage over a full 3D continuum mechanics model, and is a widely accepted ap-

proximation for long slender rods whose cross sections are small compared to their

length.

2.2.3 Constitutive Laws and Elastic Energy

Constitutive stress-strain laws provide the link between the kinematic variables u

and v and the internal loads m and n. As discussed above, the difference between

the kinematic variables in the rod’s reference state and those in the deformed state

can be directly related to the mechanical strains in the rod. The internal loads in

a rod are then related to the strains by a stress-strain constitutive law that takes

the elastic material properties into account. Throughout this work, we employ the

following linear constitutive relationships. Assuming that the x and y axes of g∗ are
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aligned with the principal axes of the cross section, we have

n(s) =R(s)KSE(s) (v(s)− v∗(s)) ,

m(s) =R(s)KBT (s) (u(s)− u∗(s)) ,
(2.12)

where

KSE(s) =


GA(s) 0 0

0 GA(s) 0

0 0 EA(s)

 ,

KBT (s) =


EIxx(s) 0 0

0 EIyy(s) 0

0 0 G (Ixx(s) + Iyy(s))

 ,

where A(s) is the area of the cross section, E(s) is Young’s modulus, G(s) is the shear

modulus, and Ixx(s) and Iyy(s) are the second moments of area of the tube cross

section about the principal axes. (Note that Ixx(s) + Iyy(s) is the polar moment of

inertia about the centroid.) While it is possible to employ other nonlinear constitutive

laws in the models throughout this dissertation, we use these linear relationships

because they are notationally convenient and accurate for many continuum robots,

including both designs that we consider here.

Given the above constitutive laws, the elastic energy that is stored in a rod in a

deformed state is given by

E =

∫ `

0

(u− u∗)T KBT (u− u∗) + (v − v∗)T KSE (v − v∗) ds (2.13)
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2.2.4 Model Equations

In order to arrive at a full set of equations that can be used to calculate the shape

of a deformed rod, we must combine the geometric descriptions with the equilibrium

and constitutive laws. We can write (2.9) and (2.10) in terms of the kinematic vari-

ables using (2.12), their derivatives with respect to s, and the differential geometric

relationship (2.5). After manipulation, this yields the full set of differential equations

shown below.

ṗ = Rv

Ṙ = Rû

v̇ = v̇∗ −K−1
SE

((
ûKSE + K̇SE

)
(v − v∗) +RTf

)
u̇ = u̇∗ −K−1

BT

((
ûKBT + K̇BT

)
(u− u∗) + v̂KSE (v − v∗) +RT l

)
(2.14)

Alternatively, an equivalent and often simpler system can be obtained using m and

n as state variables rather than v and u.

ṗ = Rv, where v = K−1
SER

Tn+ v∗

Ṙ = Rû, where u = K−1
BTR

Tm+ u∗

ṅ = −f

ṁ = −ṗ× n− l

(2.15)

If the effects of shear and extension cause relatively small changes in the shape

in comparison to the effects of bending and torsion (which is often the case for long

slender rods, and we assume this in our models for concentric-tube robots), then

a simplified model can be obtained by setting v = v∗. In the case of (2.14) with
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v = v∗ = e3, this results in

ṗ =Re3

Ṙ =Rû

ṅ =− f

u̇ =u̇∗ −K−1
(

(ûK + K̇) (u− u∗) + ê3R
Tn+RT l

)
.

(2.16)

Boundary conditions for a rod which is clamped at s = 0 and subject to an applied

force F ` and moment L` at s = ` would be R(0) = R0, p(0) = p0, m(`) = L`, and

n(`) = F `.

2.2.5 Numerical Solution Methods

In implementing the robot models developed in this dissertation, we have used numer-

ical shooting methods with great success to quickly and accurately solve boundary

value problems like the ones outlined in Section 2.2.4. Research in the field of non-

linear rod mechanics, most notably that of Simo and Vu-Quoc [78], Rubin [13], and

Antman [3], usually focuses any numerical treatments on solution of dynamic equa-

tions. Treatment of the static case is typically not focused on computational speed,

and is done with a nonlinear finite-element approach, many times employing third-

party nonlinear root-finding packages such as Matlab’s fsolve function to solve the

resulting large nonlinear system [13]. For the particular problems we address in this

dissertation, we have found this type of method to perform slower than an easily im-

plemented shooting method which uses standard algorithms for initial value problems

(IVPs), especially when the methods outlined in Chapter 5 are used to efficiently ob-
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tain the gradients necessary to update the initial condition guesses. A more thorough

investigation in the future may find advantages to the finite-element approach, but

since the shooting methods provide sufficient speed (> 1000 Hz on a standard PC)

and accuracy for robot control, we have used them throughout this work.

Turning to the details of the IVP algorithms used in the shooting methods, we

note that because of the special structure that elements of SE(3), and SO(3) have,

numerical integration of equations like (2.5) above may sometimes require special

care. In general, Runge-Kutta, and other standard methods are not guaranteed to

preserve the orthonormality of a rotation matrix when the integration is performed

element-wise using (2.5) or (2.6) directly. To remedy this, one could parameterize

R using Euler angles or unit quaternions, or use a number of numerical methods

specifically designed to preserve the structure of SO(3), a review of which can be

found in [58]. Although not guaranteed to preserve orthonormality, integrating (2.1)

or (2.6) directly is very easily programmed, and we have observed that the deviation

from orthonormality tends to zero as step-size decreases using standard Runge-Kutta

algorithms. If orthonormality is still a concern, a re-orthonormalization procedure

could be implemented as is often done in registration problems. Furthermore, in

several test cases, we observed that the positional accuracy of integrating (2.1) directly

via an element-wise Runge-Kutta method noticeably exceeded the positional accuracy

of several geometrically exact algorithms of the same order and step-size.
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2.2.6 Geometric Exactness

A theory of rod deformation is sometimes referred to as “geometrically exact” if it

makes no approximations with respect to kinematic variables [4]. The non-exact

methods typically used to predict the deformation of structural beams often employ

two “small deflection” approximations (either of which removes geometric exactness)

to enable closed-form solutions: (1) the deformed shape is assumed “close” to the

initial shape when computing the internal forces and moments, and (2) some approx-

imate formula is used for the beam’s curvature in calculating the elastic curve. In this

dissertation, our modeling approaches are based on the geometrically exact Cosserat

rod theory outlined above, in which neither assumption is made.

2.3 Summary of Nomenclature

* : Denotes a variable defined for the reference state of a rod.

˙ : Denotes a derivative with respect to s, except where indicated in Chapter 5.

̂ : Converts R3 to so(3) and R6 to se(3):

û =


0 −uz uy

uz 0 −ux

−uy ux 0

,

v
u


̂
=



0 −uz uy vx

uz 0 −ux vy

−uy ux 0 vz

0 0 0 0


∨ : Inverse of the ̂ operation. For example, (û)∨ = u.

s : ∈ R - Reference length parameter. It is often convenient for this to be the
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arc length along the reference backbone.

p(s) : ∈ R3 - Position of rod centroid in global frame coordinates.

R(s) : ∈ SO(3) - Orientation of the rod material with respect to the global frame.

g(s) : ∈ SE(3) - Homogeneous transformation containing R(s) and p(s).

(The “body frame”.)

u(s) : ∈ R3 - Angular rate of change of g with respect to s in body-frame

coordinates. u =
(
RT Ṙ

)∨
v(s) : ∈ R3 - Linear rate of change of g with respect to s expressed in body-frame

coordinates. v = RT ṗ

n(s) : ∈ R3 - Internal force in the rod expressed in global frame coordinates.

m(s) : ∈ R3 - Internal moment in the rod expressed in global frame coordinates.

f(s) : ∈ R3 - External force per unit s on the rod expressed in global frame

coordinates.

l(s) : ∈ R3 - External moment per unit s on the rod expressed in global frame

coordinates.

E : Young’s modulus of the rod material.

G : Shear Modulus of the rod material.

A : Area of the rod cross section.

Ixx : Second moment of area of the rod cross section about the body frame x axis.

Iyy : Second moment of area of the rod cross section about the body frame y axis.

Izz : Polar moment of area of the backbone cross section about the body frame

z axis. Izz = Ixx + Iyy
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Chapter 3

Concentric-Tube Continuum Robots

3.1 Introduction

As discussed in Chapter 1, robots consisting of several concentric, preshaped, elastic

tubes can work dexterously in narrow, constrained, and/or winding spaces, as are

commonly found in minimally invasive surgery. Previous models of these concentric-

tube robots (also called ‘active cannulas’) use assumptions that imply piecewise con-

stant precurvature of component tubes and neglect torsion in curved sections of the

device. In this chapter we first develop a new model which overcomes these prior

limitations, thus providing greater accuracy and generality. Using a coordinate-free

energy formulation, we derive differential equations describing the interplay between

bending and torsional effects in a collection of n concentric tubes with general pre-

curved shapes. We detail how to solve the model equations to obtain the shape of

the device as a function of base actuation and explore in detail the implications of

torsional flexibility for the special case of two tubes. Experiments demonstrate that

this framework is more descriptive of physical prototype behavior than previous mod-

els; it reduces model prediction error by 82% over the calibrated bending-only model,

and 17% over the calibrated transmissional torsion model in a set of experiments.

In the latter part of this chapter we consider the fact that many practical appli-
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cations where the active cannula must interact with its environment require a model

that accounts for deformation under external loading. We apply geometrically ex-

act rod theory to produce a forward kinematic model that accurately describes large

deflections due to a general collection of externally applied point and/or distributed

wrench loads. This model is a generalization of the kinematic model presented in

the first half of the chapter. Experimental results are provided for both point and

distributed loads. Average tip error under load was 2.91 mm (1.5 – 3% of total robot

length), which is similar to the accuracy of prior kinematic models.

3.2 Kinematic Model

In this section we derive a model which describes the shape of multiple precurved tubes

arranged concentrically in free space. We do this by formulating and minimizing an

energy functional which describes the total elastic energy due to bending and torsion

stored in all tubes of a general n-tube collection.

3.2.1 Assumptions

The energy formulation in this section is performed under the standard assumptions

of Kirchhoff rod theory, a special case of Cosserat rod theory (see [3] for an in-depth

treatment of both). Kirchhoff theory assumes inextensibility and neglects transverse

shear strain, which are generally regarded as good assumptions for long thin rods like

the tubes that make up an active cannula. We also neglect gravitational effects in

this analysis, because they have little effect at the scales and stiffnesses involved in
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our work. This can be seen from standard cantilever beam theory, which predicts

a tip deflection caused by gravity of only 60 microns for a single straight, horizon-

tally cantilevered tube 100mm long, with an OD of 1.6mm, an ID of 1.3mm, and a

Young’s modulus of 50GPa. Note that this is a highly conservative calculation be-

cause (1) the actual cannula will consist of several concentric tubes and thus have

a higher bending stiffness (2) it will not generally be straight (3) it will not gener-

ally be horizontally cantilevered, and (4) the elastic modulus may actually be up to

75GPa (the manufacturer, NDC, Inc., quotes a range of 41-75GPa). Thus, it does

not appear to be necessary to consider gravitational loading this kinematic models

(although we note that gravity may be incorporated using the static model devel-

oped in the second half of this chapter). We also neglect friction as has been done

in all active cannula models to date. Qualitatively the authors have observed some

frictional hysteresis in prototypes with tightly packed tubes, but do not observe any

discernible hysteresis in the prototypes described in the experimental sections of this

chapter. It is likely that frictional effects will be complex functions of a number of

parameters including curvature functions, arc lengths, tolerances between tubes, sur-

face smoothness, lubrication, etc., and a detailed study of all such effects is left to

future work. Quantitatively, the suitableness of all the assumptions listed above can

be tested by comparing model predictions to experimental tip positions. We provide

such comparisons in the experimental sections of this chapter.
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Figure 3.1: Diagram of tube overlap configuration with actuation inputs shown.

3.2.2 Precurved Tube Shapes

A diagram of a typical two-tube robot is shown in Figure 3.1, where blue sections

denote regions where a tube has a non-straight precurved shape. A general n-tube

robot could be more complex, but this example is sufficient for illustrating the vari-

ables associated with each tube. We denote s as the arc length along the robot from

the point where it extends out of a constrained entry point (e.g. a hole in the front of

an actuation unit, or a surgical trocar port), where a fixed global base frame gbase = I

may be located, in whose coordinates we will describe the shape of the robot. The

base of the ith tube is located at an arc length of βi < 0, and is axially rotated by an

angle αi with respect to some fixed base frame. Thus, the robot’s actuator variables

consist of the set {α1...αn, β1...βn}, and the forward kinematics problem consists of

determining the resulting shape of the robot for a given set of tubes and actuation

variables
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Following the conventions in Chapter 2, we assume that each tube is described

by an arc-length-parameterized curve in its reference state p∗i (s) for s ∈ [βi, βi + `i]

where `i is the length of tube i.We attach reference frames to each preshaped tube

continuously along the arc length, s, with the local z axis always pointing along the

tangent to the curve, ṗi, and with the origin of the reference frame at pi(s). Thus, a

set of reference frames g∗i (s) ∈ SE(3) is defined, one for each tube as

g∗i (s) =

R∗i (s) p∗i (s)

0T 1

 ,
where R∗i (s) ∈ SO(3) is the rotation of the frame at the point s along the curve

relative to the base frame, and the z-axis tangency convention implies that

ṗ∗ = R∗e3. (3.1)

The creation of these frames establishes a pre-curvature vector as

u∗(s) =
(
R∗T (s)Ṙ∗(s)

)∨
.

Our goal is to find the new deformed shape gi(s) of each tube when the tubes are

constrained to be concentric and actuated by base rotation and translation as shown

in Figure 3.1.

3.2.3 Constraints for Concentric Tubes

We define concentric tubes as being constrained to follow a common trajectory in

space, that is, p1(s) = p2(s) = ... = pn(s) for s ∈ [0 `]. We designate this common

deformed curve as p(s). Note that this does not imply that each gi(s) must be equal.
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The equality of the deformed curves implies that p1(0) = p2(0) = ... = pn(0) and

ṗ1(s) = ṗ2(s) = ... = ṗn(s).

Under the assumption of zero shear or extension in the tube deformation, the

z-axis tangency constraint (3.1) also holds for the deformed tube shapes, ṗi = Rie3.

This implies that the third columns of each Ri(s) are equal, so that each Ri(s) differs

from the others by a rotation about the local tangent z axis. We introduce an angle

θi(s) to parameterize the angular difference between the frame of tube i and that of

tube one as follows:

Ri(s) = R1(s)Rθi , (3.2)

where Rθi = eê3θi(s) =

[
cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

]
. denotes a rotation about the z axis by

θi(s), and θ1 ≡ 0 by definition. (Similarly, we use a Greek subscripted R to denote

a rotation about z by the subscript angle throughout the dissertation). Figure 3.2

below illustrates how θi(s) relates g1(s) to gi(s).

This further implies a relationship between the tube curvature vectors. Applying

the definition of ui, we obtain,

ui =
(
RT
i Ṙi

)∨
= RT

θi
u1 + θ̇ie3. (3.3)

Interpreted geometrically, this equation says that the local x and y curvatures of each

deformed tube are equal when expressed in the same reference frame. The torsional

z components are free to vary independently for each tube. We note that the third

component of (3.3) gives us

θ̇i = ui,z − u1,z
(3.4)

It will be convenient to define an additional angle ψi(s) for each tube which

39



describes that tube’s absolute material orientation away from a common reference

frame along the length of the robot. We define

ψi(s) = αi +

∫ s

βi

uizdσ. (3.5)

where αi is the z-axis rotation of the tube base with respect to the fixed global frame.

This implies that θi = ψi − ψ1, and

Ri(s) = RB(s)Rψi
(s).

where RB is the Bishop frame rotation matrix which coincides with the fixed global

frame at s = 0 and then evolves along the common deformed curve with no instan-

taneous rotation about the z axis, which is to say that its curvature vector has the

form

uB(s) =
(
RT
BṘB

)∨
= [uBx uBy 0]T .

Then, the tube curvature vectors are related to the bishop curvature by

ui = RT
ψi
uB + ψ̇ie3, (3.6)

which implies that

ψ̇i = uiz. (3.7)

3.2.4 Stored Elastic Energy

As stated above, we assume that the only degrees of freedom required to describe

the conformations of each tube are bending and twisting. Therefore, the deformation

energy stored in a section of tube i from s = σ1 to s = σ2 is given by

E =
1

2

∫ σ2

σ1

[u(s)− u∗(s)]TK(s)[u(s)− u∗(s)]ds, (3.8)
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Figure 3.2: Shown here are coordinate frames for the first and the ith tubes, and the
Bishop backbone frame at an arbitrary cross section of the active cannula. The z
axes coincide and are tangent to the backbone curve. The x axis of each frame is
located an angle ψi away from the Bishop frame, and the x axis of frame i is located
an angle θi away from frame 1.

where K = KBT from Chapter 2, u∗(s) = (R∗(s)T Ṙ∗(s))∨ is the local curvature

vector of the pre-shaped, unloaded tube frame g(s), and u(s) = (R(s)T Ṙ(s))∨ is the

local curvature vector after deformation. A very similar formulation of elastic energy

in a Kirchhoff rod can be found in [10], and a more general formulation similar to 2.13

(for a tendon-driven continuum robot) which includes extensibility and shear is given

in [32]. In general, the stiffness matrix in (3.8) depends on the material properties

of the tube, its geometry, and the way in which the reference frame is attached. For

example, if the local x and y axes of the reference frame are attached according to

the Frenet-Serret convention, then in another reference system, such as a Bishop’s

frame, K̃(s) = QT (s)K(s)Q(s) where Q(s) = exp
{
ê3θ(s)

}
∈ SO(3) is the relative

rotation between these two systems of backbone reference frames around the z axis.
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However, in the special case that

K =


k1 0 0

0 k1 0

0 0 k3

 (3.9)

is constant in one such coordinate system (and this occurs whenever when the tube

has an annular cross section), then K̃(s) = K. Thus for annular tubes, the stiffness

matrix will be independent of the frame assignment as long as the z-axis tangent

convention is followed.

For a cylindrical tube of constant cross-sectional inertia, I = Ixx = Iyy, and polar

moment, J = Izz, then k1 = EI and k3 = GJ , where E denotes the Young’s Modulus

and G denotes the sheer modulus. Note that K can never be a scaled identity for

cylindrical tubes, since

EI = GJ ⇒ E

G
=
J

I
= 2⇒ 2(1 + ν) = 2⇒ ν = 0,

and, for physical materials, ν 6= 0.

For a general collection of n concentric tubes overlapping continuously for s ∈

[σ1, σ2], the stored elastic energy will be the sum of the energies stored in the individual

tubes:

E =
1

2

n∑
i=1

∫ σ2

σ1

[ui (s)− u∗i (s)]TKi(s)[ui (s)− u∗i (s)]ds. (3.10)

where u∗i (s) is the pre-shaped curvature and ui(s) is the equilibrium curvature for

tubes i = 1 . . . n.

Our objective in the next section is to minimize the total elastic energy (3.10)

stored in the tubes, subject to the concentric constraints (3.3).
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3.2.5 Minimizing the Energy Functional

Substituting the concentric constraints (3.3) into the energy functional (3.10), we

have

E =
1

2

∫ σ2

σ1

n∑
i=1

[RT
θi
u+ θ̇ie3 − u∗i ]TKi[R

T
θi
u+ θ̇ie3 − u∗i ]ds

=
1

2

∫ σ2

σ1

n∑
i=1

(
uTKiu+GiJiθ̇

2
i + u∗Ti Kiu

∗
i

+ 2GiJiθ̇i (uz − u∗iz)− 2uTRθiKiu
∗
i

)
ds.

(3.11)

where we have defined u(s) = u1(s), and we have assumed that Ki is diagonal with

its first two diagonal elements equal (since we are primarily concerned with the case

of tubes with annular cross sections), so that

uTRθiKiR
T
θi
u = uTKiu, and uTRθiKiθ̇ie3 = GiJiuz θ̇i. (3.12)

Thus, by incorporating the constraints (3.3), the variables over which we are min-

imizing reduce to (u(s), θ2(s), θ̇2(s), . . . , θn(s), θ̇n(s)). In order to find the minimizing

u, it is possible to complete the square and re-write the energy as

E =
1

2

∫ σ2

σ1

(u−α)TK(u−α) + C ds, (3.13)

where

u∗i = Rθiu
∗
i − θ̇ie3, K =

n∑
i=1

Ki,

α = K−1

n∑
i=1

Kiu
∗
i , C =

n∑
i=1

u∗Ti Kiu
∗
i −αTKα,

(3.14)

and we note since neither C nor α depends on u, it is easy to see that the u which

minimizes this integral must be u = α.

The same result can be obtained by the application of static equilibrium condi-

tions. Realizing that in the absence of external loads, the sum of the internal moments
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carried by each tube must equal zero at every arc length location, we have

n∑
i=1

RθiKi(ui − u∗i ) =
n∑
i=1

RθiKi(R
T
θi
u+ θ̇ie3 − u∗i ) = 0

=⇒ u =K−1

n∑
i=1

Ki

(
Rθiu

∗
i − θ̇ie3

)
= α.

(3.15)

Having found the minimizing u, we now only need to find the minimizing functions

θi(s). To do this, we apply the Euler Lagrange equation,

∂f

∂θi
− d

ds

(
∂f

∂θ̇i

)
= 0, (3.16)

to the expanded integrand of (3.11) n−1 times, once with respect to each θi. Assuming

that GiJi is constant with respect to s, this results in

GiJi

(
θ̈i − u̇∗iz + u̇z

)
+ u∗Ti Ki

∂RT
θi

∂θi
u = 0.

for i = 2...n. Now substituting in the result u = α, we get a system of differential

equations which defines the variables θ1...θn.

GiJiθ̈i −GiJiu̇
∗
iz +

GiJi
GJ

n∑
j=1

GjJj(θ̈j − u̇∗jz) =
EiIi
EI

n∑
j=1

EjIju
∗T
ixyBθijujxy. (3.17)

where EI =
∑n

k=1EkIk, EI =
∑n

k=1 EkIk, and

Bθij =

sin(θi − θj) − cos(θi − θj)

cos(θi − θj) sin(θi − θj)


We note that the system of differential equations given by (3.17) for i = 2...n is

coupled in the variables θ2...θn and θ̈2...θ̈n. Since the coupling in θ̈2...θ̈n is linear,

it is possible to decouple the second derivative variables and write these equations

as a second-order vector system θ̈ = f(s,θ). However, an even simpler system of

differential equations can be derived by re-writing the energy minimization problem in

44



terms of the absolute angular variables ψ1...ψn. This comes at the price of introducing

one more variable than is actually needed to solve the problem, but results in a

simpler, more efficient expression of the governing equations. Re writing the energy

using (3.6), we get

E =
1

2

∫ σ2

σ1

n∑
i=1

[RT
ψi
uB + ψ̇ie3 − u∗i ]TKi[R

T
ψi
uB + ψ̇ie3 − u∗i ]ds

=
1

2

∫ σ2

σ1

n∑
i=1

(
uTBKiuB +GiJiψ̇

2
i + u∗Ti Kiu

∗
i

+ 2GiJiψ̇i (uBz − u∗iz)− 2uTBRψi
Kiu

∗
i

)
ds.

(3.18)

As before, the minimizing uB can be found by completing the square, or by applying

static equilibrium conditions. The result is

uB =K−1

n∑
i=1

Ki

(
Rψi
u∗i − ψ̇ie3

)
. (3.19)

After applying the Euler-Lagrange equation to the integrand of (3.18) for ψ1...ψn, we

get a result similar to (3.17),

GiJi

(
ψ̈i − u̇∗iz + u̇Bz

)
+ u∗Ti Ki

∂RT
θi

∂θi
uB = 0,

but a simplification results from the fact that uBz = 0. Hence, the equations are

already decoupled in ψ̈1...ψ̈n, and can easily be expressed in state-vector form:

ψ̈i = u̇∗iz +
EiIi

EIGiJi

n∑
j=1

EjIju
∗T
ixyBψijujxy. (3.20)

These fundamental differential equations describing the evolution of torsion along

concentric precurved tubes can also be derived from the equilibrium equations of

Cosserat rod theory outlined in Chapter 2. Starting with 2.10 written for tube i,

ṁi + ṗi × ni + li = 0,
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we multiply both sides by eT3R
T
i and expand using mi = Ri(ui−u∗i ), Ṙi = Riui, and

ṗi = Rie3 to obtain

u̇iz = u̇∗iz +
EiIi
GiJi

(
uixu

∗
iy − uiyu∗ix

)
where we have recognized that eT3R

T
i li must be zero because the assumption of no

friction implies that the tubes cannot apply any axial moment distributions to one

another. Then, after applying (3.19), we obtain exactly the same equation as (3.20).

If the preshaped tubes have constant curvature vectors of the form u∗i = [κi 0 0]T ,

or u∗i = [0 κi 0]T , then (3.20) reduces to

ψ̈i =
EiIi

EIGiJi

n∑
j=1

EjIjκiκj sin (ψi − ψj) . (3.21)

This is a very common case for concentric-tube robot prototypes, and thus the sim-

plicity of (3.21) may be very useful for researchers implementing the results of this

dissertation for future robots. In the next section, we discuss how the model equa-

tions can be solved and how the resulting shape of a concentric-tube robot can be

computed.

3.2.6 Solving the Kinematic Model Equations

It is straightforward to apply the model equations developed in the previous section

to compute the shape of a concentric-tube robot. As shown in Figure 3.1, a two tube

robot can be considered to have four distinct sections, which begin and end where

tubes begin and end, or where tubes transition from straight to curved. For example,

beginning at the base of the cannula, the sections will often be as follows: (1) a section

where both tubes are straight, (2) a section where one tube is curved and the other
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Figure 3.3: Diagram of tube overlap configuration with actuation inputs shown.

is straight, (3) a section where both tubes are curved, and (4) a section where only

one tube is present and curved.

For a general n-tube robot, (3.20) can be used to describe the torsional behavior

throughout the entire robot. In each section, the sums must simply be performed

over all the tubes that are present. Equation 3.20 can be equivalently expressed by

the two first order equations,

ψ̇i = uiz

u̇iz = u̇∗iz +
EiIi

EIGiJi

n∑
j=1

EjIju
∗T
ixyBψijujxy.

(3.22)

We assume that the tubes are constrained to be straight until they emerge from the

constrained entry point at the “base” of the robot. In this case, (3.22) implies that

the torsion uiz is constant, and thus the angle ψi varies linearly with s. Thus, we can

write initial conditions for ψi at s = 0 which represent the combined effects of the

actuation variables and the torsional deformation in the s < 0 region, namely

ψi(0) = αi − βiuiz(0). (3.23)
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Since the frictionless assumption implies that tubes cannot apply axial moments to

one another, a torsion-free boundary condition exists at the end of each tube,

uiz(`i) = 0. (3.24)

A simple shooting method is an efficient way to solve the boundary value prob-

lem represented by (3.22), (3.23), and (3.24). The basic procedure is to guess a

value for each unknown initial torsion variable uiz. Then compute the initial con-

ditions for ψi(0) using (3.23), and integrate all variables in (3.22) from s = 0 to

s = max (β1 + `1, ..., βn + `n) using any standard numerical integration algorithm for

initial value problems (IVP’s), such as the Runge-Kutta family of methods. After the

integration is performed, the boundary condition (3.24) is checked. If it is satisfied

then the boundary value problem has been solved. If it is not satisfied, then a new

guess for uiz must be tried until it is. Thus, the shooting method can be thought of as

an IVP integration algorithm couched inside a nonlinear root finding loop where the

next guess for the unknown initial conditions may be calculated according to any of

the well established root-finding methods such as Gauss-Newton, Steepest Descent, or

Levenberg-Marquardt. The implementation of this approach can be done quite easily

in Matlab by using the functions ode45 and fsolve. For computational efficiency, it

is desirable to implement the equations in a compiled language like C++, and to also

take advantage of the methods in Chapter 5 for efficiently computing the Jacobian of

the boundary conditions with respect to the initial conditions.

Once the boundary value problem given by (3.22), (3.23), and (3.24) has been

solved, then the remaining components (uix and uiy) of the deformed curvature vector
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can be obtained for each tube using the calculated solution, (3.19) and (3.6),

uixy =
1

EI

n∑
j=1

Rψj−ψi
EjIju

∗
ixy. (3.25)

This deformed curvature vector then provides the information needed to determine the

deformed shape of any of the tubes by integrating the geometric differential equation

ṗi =Rie3

Ṙi =Riûi,

where numerical methods for doing this have been discussed in Chapter 2.

3.2.7 Analytical Solution for Two Circular Tubes

While the kinematic model equations can be solved numerically for any number of

component tubes, some insight into the fundamental behavior of active cannulas can

be gained buy considering the case of an active cannula composed of two circularly

precurved tubes, for which an analytical solution can be found. This special case is

interesting because an analytical solution exists, and because all prior experimental

inquiries to date into active cannula behavior have addressed exclusively this partic-

ular case (see e.g. [27, 94]).

We consider the case where n = 2, u∗1 = [κ1 0 0]T , and u∗2 = [κ2 0 0]T .

Expanding (3.17) in this case yields

G1J1G2J2

G1J1 +G2J2

θ̈ − κ1κ2
E1I1E2I2

E1I1 + E2I2

sin θ = 0, (3.26)

where θ2 has been replaced with θ. Under the assumption that the two tubes have

the same value of ν, Poisson’s ratio, this equation reduces to

θ̈ − κ1κ2(1 + ν) sin θ = 0, (3.27)
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however, we will not make this assumption here, for the sake of generality. Let

a = κ1κ2
E1I1E2I2(G1J1 +G2J2)

G1J1G2J2(E1I1 + E2I2)
, (3.28)

so that

θ̈ − a sin θ = 0. (3.29)

The appropriate boundary conditions here are the initial angle determined by the

relative angular position of the tube bases, θ(0) = θ0, and the natural boundary con-

dition at the free end, θ̇(L) = 0. This natural boundary condition can be intuitively

understood by considering that θ̇(s) ∝ axial torque applied at s. At L there is no

torque being applied to the distal end of either tube. Thus, θ̇(L) = 0.

Notice that (3.29) has the same form as the differential equation which describes

a simple pendulum. Fortunately, this equation arises often, and it has a known

analytical solution in terms of Jacobi’s elliptic functions. We solve it following the

solution procedure similar to the method described in [1], which begins by multiplying

both sides of (3.29) by θ̇, and integrating once. Applying the boundary condition

θ̇L = 0 then yields

θ̇2 + 2a cos θ = 2a cos θL. (3.30)

Rearranging (3.30), we obtain

s = ± 1√
2a

∫ θ(s)

θ0

dθ√
cos θL − cos θ

(3.31)

Now we use cos(θ + π(1 + 2n)) = − cos θ ∀n ∈ Z, and cos 2θ = 1− 2 sin2 θ, to write

this in terms of incomplete elliptic integrals of the first kind as follows. First let

γ = θ + π(1 + 2n), k = sin
γL
2

=

√
1− cos γL

2
, (3.32)
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and let Φ be defined by

cos γ = 1− 2k2 sin2 Φ. (3.33)

Then we have

cos γ − cos γL = 2k2 cos2 Φ, and sin γ = 2k sin Φ
(
1− k2 sin2 Φ

) 1
2 (3.34)

So that (3.31) becomes

s = ±
√

1

a

∫ Φ(s)

Φ(0)

dθ√
1− k2 sin2(Φ)

= ±
√

1

a

(
F (Φ(s), k)− F (Φ(0), k)

)
(3.35)

where F (Φ, k) is the elliptic integral of the first kind with amplitude Φ and modulus

k. We can now use the Jacobi Amplitude functions, sn and cn which are the sine and

cosine of the inverse function of F defined by the identities

sn(F (Φ, k), k) = sin Φ and cn(F (Φ, k), k) = cos Φ (3.36)

to obtain the following solutions:

θ(s) = 2 sin−1
(
k sn

(
F (Φ(0), k)±

√
as, k

))
− π(1 + 2n)

θ̇(s) = ±2k
√
a cn

(
F (Φ(0), k)±

√
as, k

)
.

(3.37)

The ± signs in (3.37) and take the same sign as θL − θ0, and n is chosen such that

γL takes on a value in the range −π ≤ γL ≤ π.

3.2.8 Implications of Torsion

In order to investigate the phenomena of multiple solutions and non-circular equi-

librium shapes, we provide the following example. Consider a tube and a wire with

properties given in Table 3.1. The long curved lengths of L1=200 mm and L2=140
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Table 3.1: Physical Properties of Tube and Wire used in Simulation.

Outer Tube Inner Wire

Young’s Modulus (GPa) 58 58

Shear Modulus (GPa) 21.5 21.5

Inner Diameter (mm) 2.01 0

Outer Diameter (mm) 2.39 1.60

Length (mm) 140 200

Curvature (1/mm) 0.0099 0.0138

mm for the inner wire and the outer tube, respectively, make the interaction of the

curved portions pronounced and thus more easily visualizable. The boundary condi-

tion at the proximal end, where s = 0, is θ(0) = θ0 = α2 − α1, where α2 and α1 are

the base rotation angles applied by the actuators at the tube bases. The boundary

condition at the free distal end where the outer tube ends (s = L2) is θ̇L2 = 0, which

was already implicitly enforced on our solution in Equation (3.30). The analytical

solution (3.37) contains the unknown constant, θL2 within k, so we find a solution for

θL2 which satisfies the proximal boundary condition θ0 = α2 − α1, using a numerical

root-finding procedure.

In [94] torsion was considered in straight transmission sections of a cannula. It

was shown that in this case, multiple solutions (local minimum energy configurations)

can emerge. We see the same phenomenon here. In general, there can be more

than one value of θL which satisfies the boundary condition. The particular root to

which the algorithm converges is dependent on the initial guess. As noted in [94]
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Figure 3.4: Simulation of the tubes given in Table 3.1 with the inner wire rotated
to a base angle of α1 = −180◦ so that θ0 = 180◦. Three equilibrium conformations
are shown corresponding to the three boundary condition solutions shown in Figure
3.5. The solution with θL2 = 84.4◦ is reached by rotating α1 in the negative direction
to α1 = −180◦, and the solution θL2 = 275.6◦ is be reached by rotating α1 in the
positive direction to α1 = 180◦. The solution with θL = 180◦ is the trivial (unstable)
solution, with the tubes undergoing no torsion.

the particular configuration (solution) taken by the cannula will depend on actuator

history. We illustrate this phenomenon in our example below. The inner wire is

rotated to an angle of α1 = −180◦, while the outer tube stays at α2 = 0◦, making

θ0 = 180◦. The boundary condition residual is depicted in Figure 3.5 with respect

to θL2 . Note that there are 3 places where the graph crosses the x-axis, representing

three different solutions, corresponding to the three different configurations shown in

Figure 3.4. The solution at θL2 = 180◦ is a trivial solution to the differential equation,
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representing the case where neither tube undergoes any torsion (a torsionally rigid

model would produce this result). This is an unstable configuration in that the

cannula will snap to one of the other solutions if perturbed slightly. The cannula

will reach the θL2 = 84.4◦ solution if the actuator starts at α1 = 0◦ and increases α1

continuously until α1 = 180◦. If the actuator decreases continuously from α1 = 0◦

to α1 = −180◦, the solution θL2 = −84.4◦ will be reached, which corresponds to the

θL2 = 275.6◦ solution for α1 = 180◦. In order to find the value of θL2 which corresponds

to the actual configuration of the cannula, it is helpful to start simulating at a known

configuration for which there is only one solution (e.g. θ0 = 0). Then, by undergoing

incremental changes in θ0, the solution for θL at the previous step can be used as the

initial guess for the current configuration. This results in the simulation portraying

the same solution as the physical cannula until a bifurcation in the cannula energy

is reached (where the current solution vanishes – see [94]) and the cannula “snaps

around” to a new solution.

For the a simple, two tube, circular precurvature case we are currently considering,

it is possible to predict analytically when multiple solutions will exist (see [27] for an

alternate derivation of the following result). For θ0 = 180◦ (the angular input where

multiple solutions will first exist) we can examine the integral in Equation 3.35 to

determine whether multiple solutions are possible. If θL = 180◦, the integral is zero by

definition, which means cannulas of any overlapped length have a solution θL = 180◦.

For θL 6= 180◦, the integral has a lower bound of π/2, which can be seen in Figure 3.6

and is shown in (3.38). Thus, by rearranging (3.35) and applying this inequality, it can

be seen that for cannulas with a value of L
√
a < π/2, only the trivial solution exists.
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Figure 3.5: The boundary condition residual is plotted versus θL for the tubes in
Table 3.1 and θ0 = 180◦. Solutions for θL are shown at θL = 180◦, θL = 84.4◦, and
θL = 275.6◦.

On the other hand, if L
√
a ≥ π/2, two nontrivial solutions also exist, symmetric

about θL = 180◦. Thus, as shown in (3.39), the dimensionless parameter L
√
a -

which is composed of the overlapped length, stiffness, and curvature of the tubes -

can be used to predict whether a two tube cannula will exhibit multiple solutions and

thus have the potential to “snap” from one stable solution to another.

To summarize our multiple solutions discussion above, we have the inequality

π/2 ≤

∣∣∣∣∣
∫ Φ(L)

0

dθ√
1− k2 sin2(Φ)

∣∣∣∣∣ ∀θL 6= 180◦, (3.38)

which when combined with (3.35) yields the conditions:

L
√
a < π/2 → only one solution

L
√
a ≥ π/2 → multiple solutions exist

(3.39)
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Figure 3.6: For θ0 = 180◦ the value of the integral in (3.38) is shown in blue as
a function of θL ranging from 0◦ to 360◦. Because it is lower bounded by π

2
, the

dimensionless parameter L
√
a can be used to predict when multiple solutions can

occur.

As shown in Figure 3.4, the two solutions with torsion are significantly different

than the no torsion solution. Thus torsion in the overlapping curved section can be

very important for determining overall shape. Still, it would appear that each sec-

tion is very close to circular, suggesting that some kind of adjustment to a piecewise

circular model could be an effective way to compensate for torsion in the curved sec-

tions. Modeling the individual sections of an active cannula as circular arcs leads

to very convenient kinematic formulations that have been widely exploited in prior

work (e.g. [31, 72, 94], etc. – see also [90] for an overview of piecewise constant cur-

vature kinematics for continuum robots). However, the presence of torsion can, in

some cases, lead to curved shapes that are qualitatively different and which cannot
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Figure 3.7: Shown above are four configurations of a simulation of two fully precurved,
fully overlapping tubes, whose material properties are given in Table 3.1. Both tubes
have a longer arc length of 636.5 mm (equal to one full circle of the outer tube). The
inner wire is rotated in the positive direction to angles of 90◦, 225◦, 315◦, and 350◦

at the base. It is evident that in extreme cases, circular tubes with precurvature can
form highly non-circular shapes when combined due to the effects of torsion.

be approximated well by circular arcs. If the overlapped arc length is long or the cur-

vatures are large, torsional relaxation makes it possible to obtain highly non-circular

shapes from two circularly precurved tubes. To illustrate this, we extend the curved

portions of both tubes used in our first example to 636.5 mm (corresponding to one

full circle of the outer tube) and rotate the inner wire from α1 = 0◦ to α1 = 350. The

resulting shape is shown in Figure 3.7, where the inner wire has been rotated in the

positive direction to angles of 90◦, 225◦, 315◦, and 350◦ at the base. It is clear from

Figure 3.7 that the resulting shape cannot be well approximated by a circle. How-
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Table 3.2: Measured and Assumed Physical Quantities for Experimental Tube and
Wire.

Outer Tube Inner Wire

Young’s Modulus (GPa) 58 58

Shear Modulus (GPa) 21.5 21.5

Inner Diameter (mm) 2.01 0

Outer Diameter (mm) 2.39 1.60

Straight Length (mm) 93.5 218.5

Curved Length (mm) 92.3 85

Curvature (1/mm) 0.0099 0.0138

ever, for cannulas of sufficiently short curved overlap and sufficiently small curvature,

piecewise circular models are reasonably accurate at predicting cannula shape. Such

was the case for many prior prototypes (e.g. [72,94]).

3.3 Experimental Validation of the Kinematic Model

In this section we will compare the predictions of three available models for active

cannula shape with a set of experiments on a prototype cannula. The three models

are the “bending only” model [72], the “transmissional torsion” model [92–94], and

the model provided in Section 3.2.5. The experimental data set used here is the

same as that provided in [94]. As described in [94], these experiments use an active

cannula constructed of one tube and one wire, each of which has an initial straight

transmission, followed by a circularly curved section near its tip.
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Figure 3.8: Manual actuation mechanism used in experiments. In this apparatus,
both tube and wire are affixed to circular acrylic input handles at their bases, which
are etched to encode rotation. The support structure is etched with a linear ruler
to encode translation. Spring pin locking mechanisms lock the input discs at desired
linear and angular input positions. The inset image of a striped cannula on a white
background is an example of an image captured using one of our calibrated stereo
cameras. The black bands seen are electrical tape and allow for point correspondences
to be identified for stereo triangulation. The red circles indicate the locations at
which euclidean errors were calculated. Calibration of model parameters was done to
minimize the sum of these errors over all experiments.

3.3.1 Experimental Dataset

Here, we summarize the experimental data set (the dataset from [94]) which was

used to compare the model given in Section 3.2 with transmissional torsion model.

In these experiments, an outer tube and an inner wire were arranged in two different

translational positions and a range of input angles were applied. The two translational

positions were referred to as the “full overlap case” and the “partial overlap case”. In

the full overlap case, the tube and wire were arranged so that the link lengths were

as follows: 10mm (tube curved, wire straight), 82.3mm (both curved), and 2.7mm

(only wire present). For the full overlap case, data was recorded for 15 different input
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Figure 3.9: Configuration space covered in experiments. Left: partial overlap case,
Right: full overlap case.

angles ranging from 0◦ to 280◦ in 20◦ increments. In the partial overlap case, the

tube and wire were arranged so that the section lengths were as follows: 48mm (tube

curved, wire straight), 44.3mm (both curved), and 40.7mm (only wire present). For

this overlap configuration, data was recorded for 11 different input angles ranging

from 0◦ to 200◦ in 20◦ increments. The workspace range covered by these actuation

inputs is depicted in Figure 3.9.

3.3.2 Procedure and Model Calibration

Each of the above configurations were input to the base of the cannula tube and

wire using the manual actuation unit shown in Figure 3.8. For each, the resultant

overall shape of the cannula was recorded via a calibrated pair of stereo cameras

(Sony XCD-X710 firewire cameras with a resolution of 1024 × 768 pixels). The

fiducial markers shown in the inset image in Figure 3.8 enabled determination of
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Table 3.3: Nominal and Calibrated Dimensionless Parameters

Parameter Nominal Value Calibrated Value

c1 0.350 0.451

c2 0.350 0.449

c3 0.287 0.341

point correspondences for stereo triangulation, after they had been identified in image

coordinates by manually clicking on the center of the black bands in video frames.

One source of error in this data collection procedure is the accuracy of manual point

selection in images, which is estimated to be approximately 2 pixels or 0.6 mm.

Another is fiducial size (they are not infinitesimal points), causing small differences

in intended selection locations. We estimate that fiducial dimensions introduce error

of approximately the diameter of the wire itself (1.6 mm). Based on these, our overall

vision system measurement error is approximately 2.2mm, in a worst-case sense.

The nominal physical properties of the tube and wire used in our experiments are

given in Table 3.2. We compare the model of Section 3.2.5 with the prior transmis-

sional torsion model using both the nominal values given in Table 3.2 and calibrated

parameters (a calibration procedure for the transmissional torsion model is provided

in [94]). Examining the equations in Section 3.2.5, we see that the stiffness coeffi-

cients in Equations 3.15 and 3.29 can be expressed in terms of the three dimensionless

parameters

c1 = ν1, c2 = ν2, and c3 =
E1I1

E1I1 + E2I2

. (3.40)
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Poisson’s ratio is often taken to be approximately 0.35 for Nitinol. It has also been

noted that plastic deformation can increase Poisson’s ratio for Nitinol to 0.5 [95].

Since we pre-shaped our tubes via plastic deformation, we will assume a range of

0.30 to 0.50. An expected range for c3 can be deduced from the uncertainty in each

quantity upon which it depends. Nitinol dimensions are specified by the manufacturer

(Nitinol Devices and Components, Inc.) to ±0.0010 in., while the elastic modulus

E is reported as 41 to 75 GPa. Applying standard error propagation, the expected

range for parameter c3 is 0.143 to 0.431.

These ranges provide a basis for comparison with fitted parameter values pro-

duced by the parameter fitting procedure. To calibrate the parameters, we minimize

the sum of the positional errors at the tip of the wire, the tip of the tube and the

measured point most near the base, as shown in Figure 3.8. Matlab’s fmincon func-

tion was used to optimize the values of the three dimensionless parameters given in

(3.40) with upper and lower bounds set to the expected ranges of the parameters.

As described in [94], the transformation between the stereo camera coordinate frame

and a frame fixed at the base of the cannula was first estimated using point cloud

registration [7]. Images of a 15-mm checkerboard pattern (with corners at known

physical locations with respect to the cannula base frame) were captured. Sixteen

corners on the checkerboard were triangulated with the stereo vision system. This

registration was only expected to provide a rough estimate of the frame transfor-

mation. Thus, six “nuisance parameters” (a 3-vector for position and a 3-vector for

orientation with magnitude of rotation encoded as length) describing the cannula base

frame were included in the calibration procedure and initialized with the results from
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Figure 3.10: Comparison of shape for the transmissional torsion model (green – dotted
line) with nominal parameters, the model given in Section 3.2.5 (red – solid line) with
nominal parameters, and experimental data (blue – dashed line) for configurations
near the edge of the active cannula workspace. Note that the model given in Section
3.2.5 produces predictions closer to experimentally observed cannula shape. Left:
partial overlap case, Right: full overlap case.

the point cloud registration. Nuisance parameters showed only small changes during

optimization, with cannula base frame moving only 0.5 mm, and rotating through

X-Y-Z Euler Angles of α = 0.9◦, β = 0.3◦, γ = 4.0◦.

3.3.3 Results

The calibrated parameter values are given alongside their nominal values in Table

3.3, and we note that they fall well within their expected ranges and converge to

near the same values for initial guesses in a range within ±5% of the optimal values.

In [94] calibration led to one of the parameters falling outside its expected range,

which illustrates that the model presented in this chapter more completely captures
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Figure 3.11: Comparison of shape for the transmissional torsion model (green – dot-
ted line) with calibrated parameters, the model given in Section 3.2.5 (red – solid line)
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rations near the edge of the active cannula workspace. Note that the model given in
Section 3.2.5 produces predictions closer to experimentally observed cannula shape.
Left: partial overlap case, Right: full overlap case.

the underlying mechanics. Note that the unmodeled presence of friction would have

a similar effect on our data as lowering the torsional rigidity of the tubes, namely

increasing torsional windup. Thus, the calibration process would tend to increase c1

and c2 to compensate for frictional effects. This may account for the slightly high

values of c1 and c2, but they are nevertheless still within their expected ranges.

This is also supported by the data in Table 3.4. When using nominal parameters

from data sheets, the model of Section 3.2.5 is significantly more accurate than the

transmissional torsion model. Specifically, the model of Section 3.2.5 results in an

average tip error of only 4.72 mm as opposed to 10.1 mm for the transmissional model.

Figure 3.10 shows the experimental data and the predictions of both models using
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Table 3.4: Tip Error Statistics (Uncalibrated/Calibrated) for Current Model Com-
pared to Prior Models

Mean Tip Error (mm) Max Tip Error (mm)

Bending Only Model 24.8/13.6 54.3/31.5

Transmissional Torsion Model 10.1/3.0 22.1/8.8

Model of Section 3.2.5 4.7/2.5 12.7/7.1

nominal parameters for the two worst experimental cases, where angular input angle

differences are at the edge of the workspace and torsion is most significant. These are

280◦ in the full overlap case, and 200◦ in the partial overlap case.

Quantitatively, the model of Section 3.2.5 with calibrated parameters exhibits a

mean tip error of 2.5 mm across all experiments with a maximum tip error of 7.1 mm,

as shown in Table 3.4). In comparison, the calibrated transmissional torsion model

exhibits a mean of 3.0 mm and a maximum of 8.8 mm, and the bending only model

a mean of 13.6 mm and a maximum of 31.5 mm. With calibrated parameters, the

model of Section 3.2.5 improves the mean tip error 82% over the bending only model,

and 17% over the transmissional torsion model.

Plots of the experimental data and the predictions of both models using calibrated

parameters are shown in Figure 3.11, picturing the same two “worst-case” experiments

shown in Figure 3.10. The behavior pictured is common to all experimental positions

using either calibrated or uncalibrated parameters, namely that the prediction of

the model of Section 3.2.5 lies nearer the experimental data than the transmissional

torsion model prediction. Note also that the predictions of the bending only model
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are not shown in for clarity, since they are sufficiently far from the experimental data

that they would obscure the differences between the other two models. As discussed

in [94], the bending only model neglects the torsional windup that occurs in an active

cannula, so its predictions become increasingly structurally incorrect as the angle

input difference increases. These quantitative results also indicate that the general

modeling framework is providing enhanced predictive ability by reducing tip error.

3.3.4 Conclusions

We have presented a general model formulation for computing the shape of concentric-

tube continuum robots. This model can account for precurvatures and stiffnesses that

vary along the length of component tubes, and it explicitly takes torsion into account

throughout the entire device.

We also showed via simulation and experiments that the new model described in

this chapter captures the underlying mechanics of the cannula more accurately than

prior models. This was illustrated in simulation by the fact that tubes with circular

precurvatures can combine to form a dramatically different shape if torsion is allowed

in curved sections. In the experiments it was shown that the model parameter values

fell within their expected ranges after calibration to the experimental data, which

was not the case for the model with only transmissional (straight section) torsion.

As a tool to simulate possible designs and judge their merits in comparison to

design goals, this new model may have significant implications for active cannula ap-

plications in both medicine and industry. Since accounting for torsion significantly
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increases model accuracy, this model enables active cannulas to be used in applica-

tions which demand increasing accuracy. Furthermore, active cannulas with variable

precurvatures will be able to reach further and through more complex trajectories

while using fewer tubes. This new model also facilitates future studies on patient-

specific preshaping of active cannula component tubes, so that one may match the

capabilities of the device to the particular location and entry trajectory required by

a specific patient.

An important area of further development is the development of concentric-tube

robot models that consider external loading. The next section addresses this problem

by expanding upon the kinematic model using Cosserat-rod theory to describe large

robot deformations due to external loading conditions.
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3.4 Model with External Loading

The mechanics-based model developed in the first half of this chapter describes the

shape of a concentric-tube continuum robot, or “active cannula”, in free-space as

a function the preset tube shapes and the linear and angular positions of the tube

bases. In many practical applications where the active cannula must interact with its

environment, a model that additionally accounts for the effects of external loading

will be necessary in order to control the robot accurately and develop new capabilities

like force-sensing and force control. In this chapter we apply geometrically exact rod

theory to produce a forward kinematic model that accurately describes the large

deflections of a concentric-tube robot due to a general collection of externally applied

point and/or distributed wrench loads. Like the free-space model in the previous

sections of this chapter, this model accommodates any number of generally pre-shaped

tubes and describes the independent torsional deformations of the individual tubes.

Experimental results confirm that the model with external loading is accurate for

both point and distributed loads. Average tip error under load was 2.91 mm (1.5 –

3% of total robot length).

Our model for externally loaded concentric tube robots is based on combining

classical Cosserat rod theory, which is detailed in Chapter 2, with the concentricity

constraints which are detailed in Section 3.2.3 of this chapter. We first summarize our

assumptions below and give the relevant Cosserat-rod equations from Chapter 2 and

which we apply to each tube in the robot. Then, applying the concentricity constraints
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to these equations, we obtain a system of differential equations that describes the

shape of the robot under external loading.

3.4.1 Assumptions

With respect to constitutive behavior, we use the standard assumptions of the clas-

sical elastic rod theory of Kirchoff, a special case of Cosserat rod theory [3]. The

assumptions of Kirchoff are (1) inextensibility and no transverse shear strain, and (2)

linear constitutive equations for bending and torsion. Inextensibility and shearless-

ness are generally regarded to be good assumptions for long thin rods such as the

tubes in active cannulas (e.g. the prototype described in Section 3.5), To illustrate

the validity of the inextensibility assumption, we provide the following calculation.

The maximum insertion force for the inner tube of our prototype was measured to

be 10.1 N using an ATI Nano17 force sensor, a number which also exceeds any of the

applied loads in our experiments. If this load was applied at both ends of a straight

tube with the same dimensions as the inner tube used in our experiments, the total

elongation would be less than 50 micrometers. Thus, we can be confident that bend-

ing and torsion will dominate the deformation behavior of an active cannula. For

simplicity we adopt the linear constitutive equations, but our overall approach does

not require it. Active cannulas often remain below 3% strain in practical use, which

is in the linear range of Nitinol [103].

We also neglect friction in this model, as do all active cannula models to date.

While friction is a worthy topic of future modeling and compensation efforts, the
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fact that we can achieve less than 3 mm average tip error without modeling friction

indicates that its effects do not dominate the behavior of our experimental prototype.

Furthermore, we explored hysteresis with our experimental prototype and noted no

discernible effects, i.e. we could not induce the cannula to reach a different final

position under load when the load was allowed to oscillate. We will comment further

upon how frictional effects might be added to our modeling framework in the future

in the conclusion section of this chapter.

3.4.2 Single Tube Equations

As in the free-space model, we let the unloaded precurved shape of a tube be defined

by an arc-length parameterized curve p∗(s), and we assign frames continuously along

p∗(s), choosing the z axes of these frames to always be tangent to the curve. Thus, a

continuous homogeneous transformation g∗(s) is established, consisting of the position

and orientation of an arc length parameterized reference frame along each tube,

g∗(s) =

R∗(s) p∗i (s)

0 1

 . (3.41)

We then obtain the local pre-curvature vector by using the kinematic relationship

u∗(s) =
(
R∗T(s)Ṙ∗(s)

)∨
.

The deformed backbone shape of each tube, g(s), is then defined differentially by

ġ(s) =g(s)ξ̂(s),
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where ξ(s) =

[
eT

3 uT(s)

]T

, or equivalently

p(s) = R(s)e3, Ṙ(s) =R(s)û(s), (3.42)

where u(s) = u∗(s) + ∆u(s) is the curvature vector of the deformed backbone curve,

and v = v∗ = e3 because of the Kirchoff assumptions, arc-length parameterization,

and the z-axis tangent convention.

We use a linear constitutive law to describe the relationship of the strains to the

internal moment vector (expressed in global frame coordinates) at s:

m(s) = R(s)K(s)∆u(s), (3.43)

where

K(s) =


E(s)I(s) 0 0

0 E(s)I(s) 0

0 0 G(s)J(s)

 ,

E(s) is Young’s modulus, I(s) is the second moment of area of the tube cross section,

G(s) is the shear modulus, and J(s) is the polar moment of inertia of the tube cross

section. Note that since we assume zero shear and extension, we have replaced KBT (s)

with K(s) in this chapter.

As detailed in Chapter 2, the classic Cosserat-rod equilibrium equations are ob-

tained by taking the arc-length derivative of the static equilibrium conditions on a

section of rod, yielding

ṅ(s) + f(s) = 0. (3.44)

ṁ(s) + ṗ(s)× n(s) + l(s) = 0. (3.45)
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Combining the kinematics with the equilibrium and constitutive laws, we can write

(3.44) and (3.45) in terms of the kinematic variables using (2.12), their derivatives

with respect to s, and the differential geometric relationships Ṙ = Rû and ṗ =

Re3 from (2.5). After algebraic manipulation, this yields the full set of differential

equations shown below is obtained, assuming that K is constant with respect to s:

ṗ = Re3

Ṙ = Rû

ṅ = −f

u̇ = u̇∗ −K−1
(
ûK (u− u∗) + ê3R

Tn+RT l
)

(3.46)

Alternatively, an equivalent system can be obtained usingm as a state variable rather

than u:

ṗ = Re3,

Ṙ = Rû, where u = K−1
BTR

Tm+ u∗

ṅ = −f

ṁ = −ṗ× n− l

(3.47)

Typical boundary conditions for this a simple cantilevered case would be g(0) = g0,

ni(`) = F tip, and mi(`) = Ltip where F tip and Ltip are applied point force and point

moment vectors at s = L. We note that the equation for ṅ is linear and decoupled

from the rest of the equations and may be directly integrated to obtain n.

3.4.3 Concentric Constraints and Multi-Tube Equations

We now consider a robot composed of a collection of precurved concentric tubes

subject to a set of external forces and moments along its length. We first review the
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concentric constraints derived in the first half of this chapter, and then derive a set

of multi-tube model equations analogous to (3.46) and (3.47).

As in the free-space model, we assign each tube has its own arc length parame-

terized transformation g∗i (s) as in (3.41), and associated precurvature vectors u∗i (s).

The reference frames of each tube are then related to that of the first tube by an

angle θi(s) about the z-axis, and to the backbone bishop frame by an angle ψ(s).

Ri(s) = R1(s)Rθi = RB(s)Rψi
, (3.48)

This implies the following constraint on the tube curvatures:

ui = RT
θi
u1 + θ̇ie3 = RT

ψi
uB + ψ̇ie3. (3.49)

We note that the third component of (3.49) gives us

θ̇i = ui,z − u1,z, and ψ̇i = uiz. (3.50)

We can sum (3.44) and (3.45) over all the tubes to obtain a set of equilibrium

equations for the entire collection of tubes at a given location on the robot:

n∑
i=1

(ṅi + f i) = 0, (3.51)

n∑
i=1

(ṁi + ṗ× ni + li) = 0, (3.52)

where we have recognized that p1 = p2 = ... = pn = p.

As in the single tube case, we can now apply the expand (3.52) by using the

constitutive law (3.43) and the kinematic relationship (3.42) for each tube to write

n∑
i=1

ṁi(s) =
n∑
i=1

Ri

(
Ki (u̇i − u̇∗i ) + ûiKi (ui − u∗i )

)
,
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assuming that Ki is constant with respect to s. We then use the derivative of the

concentric constraint equation (3.49),

u̇i(s) = θ̇i
dRT

θi

dθi
u1 +RT

θi
u̇1 + θ̈ie3, (3.53)

to eliminate u̇2, ...u̇n from (3.52). This substitution enables us to solve (3.52) for the

first two components, u̇1,x and u̇1,y.

u̇1xy = −K−1

n∑
i=1

Rθi

(
Ki(θ̇i

dRT
θi

dθi
u1 − u̇∗i ) + ûiKi(ui − u∗i )

)∣∣∣
x,y

−K−1
(
ê3R

T
1n+RT

1 l
)∣∣∣

x,y

(3.54)

where n(s) =
∑n

i=1ni(s), l(s) =
∑n

i=1 li(s), K =
∑n

i=1Ki and |x,y denotes selection

of only the first two components of a vector.

Now, since equation (3.45) applies to each individual tube, we multiply both sides

by eT3R
T
i and expand using the constitutive law and the kinematic equations to obtain

u̇iz = u̇∗iz +
EiIi
GiJi

(
uixu

∗
iy − uiyu∗ix

)
− 1

GiJi
lTi Rie3. (3.55)

This torsional behavior completes our multi-tube model, so that we now have first

order state equations for the variable set {p, R1,n, u1x, u1y, u2z, ..., unz, θ2, ...θn}. The

equations that define their derivatives are (3.42), (3.44), (3.54), (3.55), and (3.50).

The intermediate variables ui can be calculated directly from u1 at every step using

(3.49).

Alternate Formulation

We can write an alternate formulation of our externally loaded model by using the

constitutive law to expand the internal moment carried by the entire collection of
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tubes.

m =
n∑
i=1

mi =
n∑
i=1

RiKi (u− u∗)

We define mb as the total moment m expressed in the frame of tube 1, mb = RT
1m,

so that

mb =
n∑
i=1

RθiKi (u− u∗) .

By applying the concentric constraint (3.49), we can solve for the x and y components

of the first tube’s curvature vector in terms of the x and y components of mb, and

the pre-curvatures:

u1xy =
1∑n

k=1EkIk

(
mb

xy +
n∑
j=1

RθjEjIju
∗
jxy

)
. (3.56)

The x and y components of the ith tube’s curvature vector is then obtained by

uixy = RT
θi
u1xy. (3.57)

Using the equations derived in the previous section, the above results allows us to

write the model equations as

ṗ =R1e3

Ṙ1 =R1û1

θ̇i =uiz − u1z

u̇iz =u̇∗iz +
EiIi
GiJi

(
uixu

∗
iy − uiyu∗ix

)
− 1

GiJi
lTi R1e3.

ṅ =− f

ṁb
xy =

(
−ûmb − ê3R

T
1n−RT

1 l
) ∣∣∣

xy

(3.58)
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Figure 3.12: Diagram of a two tube cannula showing transition points where continu-
ity of shape and internal moment must be enforced. The constrained point of entry
into the workspace is designated as the arc length zero position.

where (3.56) and (3.57) are used to obtain the curvature vectors from the state vari-

ables. In this form, the state variable set is
{
p, R1,n,m

b
xy, u1z, ..., unz, θ2, ...θn

}
. A

similar formulation was presented by Lock et al. in [50].

3.4.4 Solving the Loaded Model Equations

Nominally, the boundary conditions appropriate for our loaded model are the same

as those for the free-space kinematic model, plus new boundary conditions for the

new additional variables in the loaded model. Referring again to the diagram of a

typical two-tube robot in Figure 3.12, the initial conditions for ψi are

ψi(0) = αi − βiuiz(0). (3.59)

Thus, the initial conditions for p and R1 are

p(0) =0,

R1(0) =Rψ1(0).

(3.60)
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In the absence of applied point loads, the torsion-free boundary condition still exists

at the end of each tube,

uiz(`i) = 0, (3.61)

and the moment and force boundary conditions at the very end of the device (the

end of tube 1) are

m(`1) =0,

n(`1) =0.

(3.62)

Challenges in practical implementation of our model include numerically dealing

with point loads, the issue of tubes undergoing step changes in pre-curvature, and

beginning and ending at different arc lengths. All such occurrences should ultimately

result in a step change in the deformed curvature. To account for this, we propose

solving a series of systems bounded by the discontinuous solution points while enforc-

ing appropriate boundary conditions at the junctions.

Possible discontinuous solution points for a typical two-tube cannula are illustrated

by gray lines perpendicular to the cannula in Figure 3.12, which break it into sections.

The boundary conditions to be enforced across each transition point between sections

(at arc length s) are as follows: (1) the position and orientation of each tube must be

continuous across the boundary, so

gi(s
−) = gi(s

+),

and (2) static equilibrium requires that the sum of the internal moments carried by

the tubes just before the end of the section equal the sum of the internal moments

carried by the tubes just after the end of the section plus the sum of the applied point
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moments at the boundary (a point moment applied to tube i is denoted by lp,i(s)),

that is

n∑
i=1

mi(s
−) =

n∑
i=1

mi(s
+) +

n∑
i=1

lp,i(s).

This enforcement of static equilibrium across discontinuous boundaries is also required

in application of Cosserat theory to other types of continuum robots, and forms of

these same conditions are also given in [84].

3.5 Experimental Validation of Model with Exter-

nal Loading

In order to validate the model developed in Section 3.4, a set of experiments was

performed for a collection of two Nitinol tubes with general precurvatures (see Figure

3.15) in various configurations and under various loading conditions.

3.5.1 Tube Properties and Measurement Procedures

The physical properties of the tubes used are given in Table 3.5. Each tube has an

initial straight length followed by a curved section, the curvature of which is shown

in Figure 3.15. In our experiments, the outer tube was held stationary in its fully

extended position, while the base of the inner tube was translated to 5 different

positions, given in Table 3.6. At each of these translational positions, the inner tube

was rotated to 8 evenly spaced angular positions, given in Table 3.71. Thus, the

1α1 = 60◦ was substituted for α1 = 45◦ when β1 = −131.7 mm to keep the tip of the cannula in
the field of view of both cameras.
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Figure 3.13: Photograph of the experimental setup. Tube bases were translated
and rotated precisely by manual actuators. Three-dimensional backbone points were
triangulated by identifying corresponding markers along the cannula in stereo images.
The vector of the applied force was measured by triangulating positions along the wire
which connects the cannula tip (via the pulley) to the applied weight.

tubes were actuated to 40 different workspace locations which evenly span the set of

angular and linear differences of tube base positions (see Figure 3.16). The rest of

the configuration space could be generated by a rigid rotation of the experimentally

sampled space about the base frame z axis, so this set of tube positions evenly samples

the unique – from the perspective of the model – configuration space locations.

As shown in Figure 3.13, at each of these configurations, a set of 3D points

along the backbone was determined via images taken from a calibrated pair of stereo

cameras (Sony XCD-X710 Firewire cameras with a resolution of 1024 × 768 pixels)
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Figure 3.14: Manual actuation unit used to precisely position the bases of the tubes.

Table 3.5: Measured and Assumed Physical Quantities for Experimental Tubes

Tube 1 Tube 2

(Inner) (Outer)

Inner Diameter (mm) 1.25 2.00

Outer Diameter (mm) 1.75 2.37

Straight Length (mm) 122.7 30.7

Curved Length (mm) 206.9 102.5

Young’s Modulus (E) (GPa) 60 60

Shear Modulus (J) (GPa) 23.1 23.1

mounted above the robot. The fiducial markers shown in the inset image in Figure

3.13 enabled determination of point correspondences for stereo triangulation, after

they had been identified in image coordinates by manually clicking on the center of

the black bands in each image with Matlab’s ginput command. The cameras were

calibrated using a camera calibration toolbox for Matlab [12], and the transforma-

tions between the stereo camera coordinate frames and the robot base frame were

initially estimated by triangulating a grid of points with known locations in the base
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Table 3.6: Translational Actuator Configurations

β1 (mm) -131.7 -154.7 -177.7 -200.7 -223.7

β2 (mm) -30.7 -30.7 -30.7 -30.7 -30.7

Tip Load (N) 0.981 0.981 0.981 1.962 4.905

Table 3.7: Rotational Actuator Positions Applied at Each Translational Configuration
Shown in Table 3.6

α1 (deg) 0 45 90 135 180 225 270 315

α2 (deg) 0 0 0 0 0 0 0 0

frame and performing rigid point cloud registration [7]. The mean, max, min, and

standard deviation of the euclidean registration errors were 0.57 mm, 1.30 mm, 0.11

mm, and 0.32 mm respectively. Directionally, the mean registration errors along the

x, y, and z axes were 0.50 mm, 0.12 mm, and 0.15 mm respectively, where the x axis

points toward the cameras and the z axis points along the robot axis at the base.

These numbers encompass the error in the process of manually identifying the pixel

coordinates of the points, as well as any error intrinsic to the stereo camera system.

We take this to be a rough estimate of the effective accuracy of our vision-based

triangulation system.

In each of the 40 actuator configurations, a point force was also applied to the tip

of the cannula by a wire tied through a hole in the tip of the inner tube, and backbone

data was taken in the robot’s loaded state. The direction of the force vector applied

by this wire was also determined by triangulating points marked along its length, as
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shown in Figure 3.13. As can also be seen in the figure, the wire was run over a pulley

and attached to a mass ranging from 100 g to 500 g, as detailed in Table 3.62. From

the perspective of the cannula, the applied tip load vector was in a different direction

in each experiment because the robot was in a different configuration in each.

The pulley was mounted to a 6 DOF manually adjustable frame made from stan-

dard 80-20 Inc. parts. In each of the 40 robot configurations, before taking data,

the location and angle of the pulley was adjusted as needed to make sure that the

cable was orthogonal to the pulley axis. At this time we also checked for hysteresis

due to pulley friction by displacing the mass up and down (the flexible cannula act-

ing as a spring) and noting that the pulley always returned to the same equilibrium

angle when the weight was released. A subsequent experiment was done using this

same procedure, in which the cable tension was measured using a six-axis load cell

(Nano17, ATI, Inc.). The resolution of the cable tension was found to be ±0.009 N

for the 0.981 N load, ±0.020 N for the 1.962 N load, and ±0.088 N for the 4.905 N

load. Thus we conclude that any unmodeled pulley effects did not significantly affect

the loads transmitted to the cannula.

The two tubes have general precurvatures u∗1(s) and u∗2(s). To obtain these, we

began by capturing points along them (individually before inserting one into the

other), using the stereo triangulation system in the manner described previously. We

then fit a parametric polynomial curve to these points and gathered curvature data

from these smooth fits. The components of precurvature for each tube are plotted

in Figure 3.15 (the tube curves were framed using Bishop’s frames, so there is only

2In the case where β1 = −223.7, β2 = −30.7, α1 = 0◦, and α2 = 0◦, the load was 1.962N
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Figure 3.15: Measured curvatures of the preset tube shapes expressed in a Rotation
Minimizing frame (Note that for Rotation Minimizing frames, u∗1,z and u∗2,z are zero

by definition.)

x and y curvature). Note that the curvatures are not constant over s, and all prior

prototypes reported in the literature have had constant curvature pre-set tube shapes.

3.5.2 Model Performance and Calibration

Since model error nearly always increases with the arc length along the robot toward

the tip, we use tip location difference (called “tip error” henceforth) as a metric for

comparing predictions to experiments, as has been done in many previous studies

with active cannulas and other continuum robots. In our particular experiments, we

also visually verified that tip error was the point of greatest deviation between model

and experimental data, by plotting the two together for all experimental positions.

Using the nominal parameter values (those that were directly measured or ap-

peared on data sheets – see [94] for further discussion of active cannula nominal
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Figure 3.16: Illustration of the cannula in all 40 experimental configurations. One can
span the entire workspace by rigidly rotating this collection about the z axis, which
can be accomplished by rotating the base of each tube by the same amount, while
keeping their angular differences the same. Thus, the above illustrates a sampling of
all unique configuration space locations, from the model’s point of view. For each
configuration, backbone data was collected in the unloaded state and with a force
applied to the tip of the cannula.

parameters, variances, and error propagation in model parameters) listed in Table

3.5, the mean tip error over all 80 experiments was 5.94 mm. Since actual values

for the moduli of Nitinol tubes are highly uncertain (Young’s modulus is listed as

41–75 GPa on data sheets from the manufacturer, NDC, Inc.), the values of each

tube’s bending and torsional stiffness were subsequently calibrated by finding the set

of tube parameters which minimized the sum of the positional errors at three loca-

tions along the robot: the base (s = 0), the tip of the outer tube (s = `2), and the tip

of inner tube (the tip of the device, s = `1). To reduce uncertainty in the registration

of the robot base frame to the stereo camera frames, we included small changes to
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Figure 3.17: Comparison of model prediction and experimentally determined back-
bone points for the unloaded and loaded cases where actuators are set to β1 = −154.7,
β2 = −30.7, α1 = 135◦, and α2 = 0◦. The direction of the 0.981 N applied force is
shown by an arrow at the tip of the deformed model prediction. These examples are
representative of our data set – their tip errors (approximately 3 mm) are near the
2.91 mm mean tip error over all 80 experiments.

the base frame position (translations δx, δy, δz) and to the orientation (XYZ Euler

angle rotations δα, δβ, δγ) as additional parameters to be calibrated. Our calibration

process is accomplished by solving an unconstrained nonlinear optimization problem

for the parameter set

P = {E1I1, E2I2, J1G1, J2G2, δx, δy, δz, δα, δβ, δγ}:

Pcalibrated = argmin
P

(
80∑
k=1

ek(0) + ek(`2) + ek(`1))

where ek(s) = ‖pmodel(s)− pdata(s)‖k is the euclidean distance between the model

backbone prediction and the data in experiment k. To implement this minimiza-
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Table 3.8: Nominal and Calibrated Parameters

Nominal Value Calibrated Value

E1I1 (Nm2) 0.0204 0.0197

J1G1 (Nm2) 0.0157 0.0123

E2I2 (Nm2) 0.0458 0.0368

J2G2 (Nm2) 0.0352 0.0331

δx (mm) 0 -1.7

δy (mm) 0 -1.0

δz (mm) 0 0.3

δα (deg) 0 -0.06

δβ (deg) 0 0.67

δγ (deg) 0 -0.58

tion, we used the Nelder-Meade simplex algorithm, as implemented by MATLAB’s

fminsearch function.

The parameters resulting from this model fitting procedure are shown in compar-

ison to their nominal counterparts in Table 3.8. The base frame parameters showed

only small changes during optimization, with XYZ Euler angles changing by −0.06◦,

0.67◦, and −0.58◦, while the frame origin translated 2.0 mm. Using these calibrated

parameters, the mean error over all experiments was 2.91 mm as shown in Table 3.10.

Figure 3.17 shows the unloaded and loaded states of the cannula for actuator

values of β1 = −154.7, β2 = −30.7, α1 = 135◦, and α2 = 0◦. Experimental data

points are overlaid on the model prediction, and the model shown in the figure uses

86



0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

Tip Error

O
c
c
u

re
n

c
e

s

Figure 3.18: Histogram of tip error for all 80 experiments using fitted model param-
eters. 75% of the errors are below 3 mm, and 85% are below 4 mm

the calibrated parameters. The configuration shown is typical of all 80 experimental

positions, in that the tip error in both cases is about 3 mm, while the mean for all

experiments is 2.91 mm. The rest of the shape is also typical of the 80 experimental

runs in that the experimental data lies very close to the model prediction along the

entire backbone, and the applied forces were sufficient to cause large deflection in all

cases.

3.5.3 Distributed Load Experiment

In order to demonstrate capability of the model of Section 3.4 to handle distributed

loads, an experiment was conducted where a force distribution was applied along

the length of the cannula. The actuator configuration was β1 = −122.7 mm, β2 =

−30.7 mm, α1 = α2 = 0◦. Note that the cannula’s own weight is not sufficient to

cause appreciable gravitational deflection, so we added additional weights along its
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Table 3.9: Experimental Tip Error Statistics – Nominal Parameters

Tip Error 40 Unloaded 40 Loaded All

Statistic (mm) Cases Cases Cases

mean 3.76 7.82 5.79

min 0.60 2.42 0.60

max 10.59 25.53 25.53

std. dev. 2.85 4.13 4.08

Table 3.10: Experimental Tip Errors After Calibration

Tip Error 40 Unloaded 40 Loaded All

Statistic (mm) Cases Cases Cases

mean 2.89 2.92 2.91

min 0.62 0.91 0.62

max 8.49 15.20 15.20

std. dev. 2.19 2.52 2.34

length. As shown in Figure 3.19, we approximated a distributed load by placing a

large number of nuts along the shaft of the cannula (on both the outer tube and

the portion of the inner tube which extended out from the outer tube). The nuts

were spaced evenly along the shaft and had a total mass of 56.96 grams. Stereo

point correspondences were determined based on manually clicking backbone points

between the nuts. The tip of the device was covered by the last nut, making it

impossible to locate the tip in stereo images, so the tip was considered to be the last
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Figure 3.19: The active cannula under a distributed load represented by nuts equally
spaced along its length.

visualizable section of the backbone, and the model arc length was reduced by one

nut width. The model and experimental data for this loading condition are shown in

Figure 3.20, along with the unloaded model for the same configuration. The tip error

was 4.54 mm.

3.5.4 Statistical Analysis

Error statistics for both nominal and fitted parameter sets are given in Tables 3.9

and 3.10. The data set corresponds well to model predictions, with a mean tip error

of 2.91 mm. An error histogram for all 80 cases shows that 75% of the errors were

below 3 mm, and 85% were below 4 mm (Figure 3.18).

A statistical outlier with 15.20 mm of tip error occurred in the loaded state with

β1 = −130.7, β2 = −30.7, α1 = 270◦, α2 = 0◦. The error in this case may have been

increased by a procedural error (e.g. an incorrect α1 value being recorded), or simply

a worst-case compounding of unmodeled phenomena and measurement uncertainty.

It is also worth noting that in this configuration the cannula was fully extended, and

this error corresponds to only 7.68% of the arc length.
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Figure 3.20: Comparison of loaded and unloaded model predictions with experimen-
tally determined backbone points for a distributed load. The tip error is 4.54 mm.

We note that for long, slender continuum robots, tip error is highly dependent

on the total arc length, since errors tend to increase from the base of the cannula

to its tip, as mentioned previously. The total arc length of the active cannula in

our experiments ranged from 105.9 mm to 197.9 mm over the experimental data set.

Thus, an average tip error of 2.91 mm is approximately 1.5-3% of the arc length.

3.5.5 Error Sources

The unmodeled phenomena of transverse shear strain and elongation could potentially

be accounted for by allowing ∆ξ(s) to include the first three components, ∆v(s), but

the kinematic constraints in this case become more complex, and shear effects are

known to be negligible for long, thin beams. Additional torsion due to friction is likely

a more significant effect, and could potentially be included in the model by additions
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or modifications of (3.55), which describes the axial torque along a tube. Depending

on cannula design (intra-tube tolerances, precurvature functions, arc lengths, etc.),

we believe that friction can become more pronounced than it was in our experimental

prototype, and future model extensions accounting for it may be useful despite the

minimal hysteresis observed in our experiments.

An unmodeled hardware detail that may be important is the fact that there is a

small amount of clearance between the outside diameter of the inner tube and the

inside diameter of the outer tube. This means that the tube tangents are not quite

coincident where one exits the other, as the model assumes. In terms of design,

this effect can be reduced by choosing tighter intra-tube tolerances, at the cost of

increasing frictional effects. Alternatively, this effect could be modeled by modifying

the continuity of position and orientation across transition points to include a small

rotational and translational displacement where one tube exits another.

However, the fact that small tip errors were achieved without modeling any of

the above effects indicates that they are largely negligible in our prototype. The

model presented in this chapter effectively captures the main structural features of

concentric tube continuum robots because it allows independent tube torsion during

deformation. Whether it will be necessary to model any of these effects in the future

will likely depend upon the design of the active cannula and the accuracy required by

the application. Many clinical applications (e.g. needle biopsy or thermal ablation)

can tolerate 3 mm tip errors. Other potential applications, such as retinal micro-

surgery, will require higher accuracy. In many cases, implementation of closed-loop

control using this model is likely to significantly increase the operational accuracy
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and may render additional modeling detail unnecessary.

3.5.6 Conclusions

In this chapter we have presented an extension of the geometrically exact Cosserat

rod theory to analyze a collection of concentric pre-curved tubes under a general set

of distributed and point wrenches. We then tested this model in a set of experiments

using an active cannula robot composed of two Nitinol tubes with general pre-set

curved shapes, subject to both tip loads and distributed loads along the length of the

device. With parameter fitting, the model achieved an average tip error of 2.91 mm

across all 80 experimental positions, which span the model-unique configuration space.

Our modeling work in this chapter provides a theoretical foundation from which

to understand active cannula shape under load, and from which to begin to explore

many future applications. We expect that this model will be a valuable design tool

in simulating proposed active cannula designs, enabling accurate compliance and

kinematic analysis for cannulas intended to interact with tissue under environmental

constraints. We also expect that it may facilitate use of the cannula’s flexibility to

sense and control contact forces. Intrinsic force sensing is desirable for thin contin-

uum medical robots where inclusion of a force sensor could significantly affect device

function (see [100]). Force information has the potential to enable tissue property es-

timation for locating lesions via palpation, or provide haptic feedback to the surgeon

in a teleoperated system.
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Chapter 4

Tendon-Actuated Continuum Robots

Tendons are a widely used actuation strategy for continuum robots, enabling forces

and moments to be transmitted along the robot from base-mounted actuators. While

most prior robots use tendons routed in straight paths along the robot, routing them

through general curved paths within the robot offers potential advantages in reshap-

ing the workspace and enabling a single section of the robot to achieve a wider variety

of desired shapes. In this chapter, we provide a new model for the statics and dy-

namics of robots with general tendon routing paths, derived by coupling the classical

Cosserat-rod and Cosserat-string models. This model also accounts for general ex-

ternal loading conditions, and encompasses traditional axially routed tendons as a

special case. The advantage of using this coupled model for prior straight-tendon

robots is that it accounts for the distributed wrenches that tendons apply along the

robot. We show that these are necessary to consider when the robot is subjected to

out-of-plane external loads. Experiments demonstrate the coupled model’s ability to

account for tendons routed through various curved paths. We show that the model

matches experimental tip positions with an error of 1.7% of the robot length, in a set

of experiments that include both straight and non-straight routing, with both point

and distributed external loads.
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4.1 Review of Classical Cosserat Rod Model

In this section we again provide a brief overview of the classical Cosserat rod model

detailed in Chapter 2.

4.1.1 Rod Kinematics

In Cosserat-rod theory, a rod is characterized by its centerline curve in space p(s) ∈

R3 and its material orientation, R(s) ∈ SO(3) which are functions of a reference

parameter s ∈ [0 L]. Thus a homogeneous transformation can be used to describe

the entire rod:

g(s) =

R(s) p(s)

0 1

 .
Kinematic variables v(s) and u(s) represent the linear and angular rates of change

of g(s) with respect to s expressed in coordinates of the “body frame” g(s). Thus,

the evolution of g(s) along s is defined by the following relationships;

Ṙ(s) = R(s)û(s), ṗ(s) = R(s)v(s), (4.1)

where, the dot denotes a derivative with respect to s, and the ̂ and ∨ operators are

as defined in Chapter 2, and [53].

We let the undeformed reference configuration of the rod be g∗(s), where the z

axis of R∗(s) is chosen to be tangent to the curve p∗(s). One could use the Frenet-

Serret or Bishop’s convention to define the x and y axes of R∗(s), or, if the rod has

a cross section which is not radially symmetric, it is convenient to make the x and y
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axes align with the principal axes. The reference kinematic variables v∗ and u∗ can

then be obtained by

[v∗T u∗T ]T =
(
g∗−1(s)ġ∗(s)

)∨
,

If the reference configuration happens to be a straight cylindrical rod with s as the

arc length along it, then v∗ = [0 0 1]T , and u∗(s) = [0 0 0]T .

4.1.2 Equilibrium Equations

Following [3], and our derivation in Chapter 2, one can write the equations of static

equilibrium for an arbitrary section of rod as shown in Figure 4.1. The internal

force and moment vectors (in global frame coordinates) are denoted by n and m,the

applied force distribution per unit of s is f , and the applied moment distribution per

unit of s is l. Taking the derivative of the static equilibrium conditions with respect

to s, one arrives at the classic forms of the equilibrium differential equations for a

special Cosserat rod,

ṅ(s) + f(s) = 0, (4.2)

ṁ(s) + ṗ(s)× n(s) + l(s) = 0. (4.3)

4.1.3 Constitutive Laws

One can use linear constitutive laws to map the kinematic strain variables to the

internal forces and moments. Assuming that the x and y axes of g∗ are aligned with
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Figure 4.1: Arbitrary section of rod from c to s subject to distributed forces and
moments. The internal forces n and moments m are also shown.

the principal axes of the cross section, we have

n(s) =R(s)KSE(s) (v(s)− v∗(s)) ,

m(s) =R(s)KBT (s) (u(s)− u∗(s)) ,
(4.4)

where

KSE(s) =diag (GA(s), GA(s), EA(s)) , and

KBT (s) =diag (EIxx(s), EIyy(s), EIzz(s)) .

KSE is the stiffness matrix for shear and extension, and KBT is the stiffness matrix for

bending and torsion, where A(s) is the area of the cross section, E(s) is Young’s mod-

ulus, G(s) is the shear modulus, and Ixx(s) and Iyy(s) are the second moments of area

of the tube cross section about the principal axes. (Note that Izz(s) = Ixx(s) + Iyy(s)

is the polar moment of inertia of the cross section about the z axis pointing normal

to the section and originating at its centroid.) We use these linear relationships here

because they are notationally convenient and accurate for many continuum robots,

but the Cosserat rod approach does not require it.
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4.1.4 Explicit Model Equations

We can now write (4.2) and (4.3) in terms of the kinematic variables using (4.4), their

derivatives, and (4.1). Assuming that the stiffness matrices are constant with respect

to s, this leads to a the full set of differential equations shown below:

ṗ = Rv

Ṙ = Rû

v̇ = v̇∗ −K−1
SE

(
ûKSE (v − v∗) +RTf

)
u̇ = u̇∗ −K−1

BT

(
ûKBT (u− u∗) + v̂KSE (v − v∗) +RT l

)
(4.5)

Alternatively, an equivalent system can be obtained using m and n as state variables

rather than v and u:

ṗ = Rv, v = K−1
SER

Tn+ v∗

Ṙ = Rû, u = K−1
BTR

Tm+ u∗

ṅ = −f

ṁ = −ṗ× n− l

(4.6)

Boundary conditions for a rod which is clamped at s = 0 and subject to an applied

force F ` and moment L` at s = ` would be R(0) = R0, p(0) = p0, m(`) = L`, and

n(`) = F `.

4.2 Coupled Cosserat Rod and Tendon Model

Having reviewed the classic Cosserat-rod model, we now derive a new model for

tendon driven continuum manipulators. We use the Cosserat model of Section 4.1 to
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describe the elastic backbone, and we use the classic Cosserat model for extensible

strings to describe the tendons. We will couple the string and rod models together

by deriving the distributed loads that the tendons apply to the backbone in terms of

the rod’s kinematic variables, and then incorporating these loads into the rod model.

4.2.1 Assumptions

We employ two standard assumptions in our derivation. First, we assume frictionless

interaction between the tendons and the channel through which they travel. This

implies that the tension is constant along the length of the tendon. Frictional forces

are expected to increase as the curvature of the robot increases due to larger normal

forces, but the assumption of zero friction is valid if low friction materials are used,

which is the case for our experimental prototype. Second, the locations of the tendons

within the cross section of the robot are assumed not to change during the deforma-

tion. This assumption is valid for designs which use embedded sleeves or channels

with tight tolerances, as well as designs which use closely spaced standoff disks.

4.2.2 Tendon Kinematics

We separate the terms f and l in (4.5) into truly external distributed loads, f e and

le, and distributed loads due to tendon tension, f t and lt.

f =f e + f t

l =le + lt.

(4.7)

In order to derive f t and lt, we start by defining the path in which the tendon

is routed along the robot length. Note that this path can be defined by channels or
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Figure 4.2: General cross section of the continuum robot material or support disk,
showing tendon locations.

tubes within a homogeneous elastic structure, or support disks on an elastic backbone

– both of which afford considerable flexibility in choosing tendon routing. In our

experimental prototype, we drill many holes around the periphery of each support

disk, allowing easy reconfiguration of tendon path as desired.

A convenient way to mathematically describe the tendon routing path is to define

the tendon location within the robot cross section as a function of the reference

parameter s. Thus, we define the routing path of the ith tendon by two functions

xi(s) and yi(s) that give the body-frame coordinates of the tendon as it crosses the

x − y plane of the attached backbone frame at s. As shown in Figure 4.2, a vector

from the origin of the attached frame to the tendon location is then given in attached

frame coordinates by

ri(s) =

[
xi(s) yi(s) 0

]T
. (4.8)

The parametric space curve defining the tendon path in the global frame when the

robot is in its undeformed reference configuration is then given by

p∗i (s) = R∗(s)ri(s) + p∗(s).
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Similarly, when the robot is deformed due to tendon tension or external loads, the

new tendon path in the global frame will be

pi(s) = R(s)ri(s) + p(s). (4.9)

4.2.3 Distributed Forces on Tendons

The governing differential equations for an extensible string can be derived by taking

the derivative of the static equilibrium conditions for a finite section [3]. This results

in the same equation for the internal force derivative as in (4.2).

ṅi(s) + f i(s) = 0, (4.10)

where f i(s) is the distributed force applied to the ith tendon per unit of s, and ni(s)

is the internal force in the tendon. In contrast to a Cosserat rod, an ideal string

has the defining constitutive property of being perfectly flexible, meaning it cannot

support internal moments or shear forces, but only tension [3] which we denote by τi.

This requires that the internal force be always tangent to the curve pi(s). Thus, we

write

ni(s) = τi
ṗi(s)

‖ṗi(s)‖
. (4.11)

If friction were present, τi would vary with s, but under the frictionless assumption,

it is constant along the length of the tendon. Using (4.10) and (4.11) one can derive

an expression for the distributed force on the tendon as follows.

Beginning with (4.11),

ni = τi
ṗi
‖ṗi‖

,
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we re-arrange and differentiate to obtain

ṗi =
1

τi
‖ṗi‖ni, p̈i =

1

τi

(
d

ds
(‖ṗi‖)ni + ‖ṗi‖ ṅi

)
.

Noting that ni × ni = 0, one can take a cross product of the two results above to

find,

p̈i × ṗi =
‖ṗi‖

2

τ 2
i

(ṅi × ni)

and so

ṗi × (p̈i × ṗi) =
‖ṗi‖

3

τ 3
i

(ni × (ṅi × ni)) .

Applying the vector triple product identity, a × (b× c) = b (a · c) − c (a · b), we

can expand the right-hand side of this equation. Since τi (the magnitude of ni) is

constant with respect to s, then ni · ṅi = 0, and this results in

f i = −ṅi = −τi
ṗi × (p̈i × ṗi)
‖ṗi‖

3 .

Using the fact that a×b = −b×a, and writing the cross products in skew-symmetric

matrix notation (a× b = âb), we arrive at

f i = τi
ṗi × (ṗi × p̈i)
‖ṗi‖

3 = τi
̂̇p2

i

‖ṗi‖
3 p̈i. (4.12)

4.2.4 Tendon Loads on Backbone

We can now write the collective distributed loads f t and lt that the tendons apply

to the backbone, in terms of the individual forces on the tendons and their locations

in the backbone cross-section.
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Figure 4.3: A small section of rod showing how the force distribution that the tendon
applies to its surrounding medium is statically equivalent to a combination of force
and moment distributions on the backbone itself.

The total distributed force is equal and opposite to the sum of the individual force

distributions on the tendons (4.12), namely,

f t = −
n∑
i=1

f i.

The distributed moment at the backbone centroid is the sum of the cross products of

each moment arm with each force. Thus,

lt = −
n∑
i=1

(pi − p)× f i = −
n∑
i=1

(Rri)̂ f i.

Substituting (4.12), yields

f t = −
n∑
i=1

τi
̂̇p2

i

‖ṗi‖
3 p̈i,

lt = −
n∑
i=1

τi (Rri)̂
̂̇p2

i

‖ṗi‖
3 p̈i.

(4.13)

We now express these total force and moment distributions in terms of the kine-

matic variables u, v, R and p so that we may substitute them into equations (4.7)
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and (4.5). To do this, we expand ṗi and p̈i. Differentiating (4.9) twice yields,

ṗi =R (ûri + ṙi + v) ,

p̈i =R
(
û (ûri + ṙi + v) + ̂̇uri + ûṙi + r̈i + v̇

)
.

(4.14)

We here note that p̈ is a function of u̇ and v̇. Therefore, if we substitute these results

into (4.13), and substitute (4.13) into the rod model (4.5) via (4.7), we obtain an

implicitly defined set of differential equations. Fortunately, the resulting equations

are linear in u̇ and v̇, and it is therefore possible to manipulate them into an explicit

form. Rewriting them in this way (such that they are amenable to standard numerical

methods) is the topic of the following subsection.

4.2.5 Explicit Decoupled Model Equations

Our coupled rod and tendon model is given in implicit form by (4.5), (4.7), (4.13),

and (4.14). In this subsection, we algebraically manipulate these implicit equations

into explicit, first-order, state-vector form. To express the result concisely, we have

defined some intermediate matrix and vector quantities, starting with (4.14) expressed

in body-frame coordinates, i.e.

ṗbi = ûri + ṙi + v,

p̈bi = ûṗbi + ̂̇uri + ûṙi + r̈i + v̇.
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We define vectors ai, a, bi, and b, as well as matrices Ai, A, Bi, B, G, and H as

follows:

Ai =− τi

(̂̇pbi)2

∥∥ṗbi∥∥3 , Bi = r̂iAi,

A =
n∑
i=1

Ai, B =
n∑
i=1

Bi,

G =−
n∑
i=1

Air̂i, H = −
n∑
i=1

Bir̂i

ai =Ai
(
ûṗbi + ûṙi + r̈i

)
, bi = r̂iai,

a =
n∑
i=1

ai, b =
n∑
i=1

bi.

We then find that f t and lt can be expressed as

f t =R (a+ Av̇ +Gu̇) ,

lt =R (b+Bv̇ +Hu̇) .

(4.15)

Substituting tendon load expressions into the last two equations of (4.5) and rear-

ranging them, we have

(KSE + A) v̇ +Gu̇ = d

Bv̇ + (KBT +H) u̇ = c

where the vectors c and d are functions of the state variables as shown below.

c =KBT u̇
∗ − ûKBT (u− u∗)− v̂KSE (v − v∗)−RT le − b

d =KSEv̇
∗ − ûKSE (v − v∗)−RTf e − a.
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We can now easily write the governing equations as

ṗ = Rv

Ṙ = Rûv̇
u̇

 =

KSE + A G

B KBT +H


−1 d

c

 .
(4.16)

Noting that the quantities on the right hand side of (4.16) are merely functions of

the state variables and system inputs (u, v, R, τ1, ..., τn, f e and le), we have arrived

at a system of differential equations in standard explicit form, describing the shape

of a continuum robot with any number of generally routed tendons and with general

external loads applied.

This system can be solved by any standard numerical integration routine for sys-

tems of the form ẏ = f(s,y). The required matrix inverse may be calculated (either

numerically or by obtaining a closed form inverse) at every integration step, or one

could alternatively rewrite the equations as a system with a state dependent mass

matrix on the left hand side and use any standard numerical method for solving

M(y, s)ẏ = f(s,y). For purposes of the simulations and experiments in this chapter,

we simply numerically invert.

4.2.6 Simplified No-Shear Model

It is often the case that the effect of shear and extension is negligible when computing

the deformed shape of a rod. Below we give decoupled model equations that result

from assuming that there is zero shear and extension. Specifically we let v = v∗ =
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[0 0 1]T . This results in the following decoupled model equations:

ṗ =Rv

Ṙ =Rû

u̇ = (H +KBT )−1
(
KBT u̇

∗ − ûKBT (u− u∗)− v̂RTn−RT le − b
)

ṅ =−R (a+Gu̇)− f e

(4.17)

4.2.7 Boundary Conditions

When tendon i terminates at s = `i along the length of the robot, it applies a point

force to its attachment point equal and opposite to the internal force in the tendon

given by (4.11). Thus, the point force vector is given by

F i = −ni(`i) = −τi
ṗi(`i)

‖ṗi(`i)‖
(4.18)

With a moment arm of pi(`i) − p(`i), this force creates a point moment Li at the

backbone centroid of,

Li = −τi (R(`i)ri(`i))̂
ṗi(`i)

‖ṗi(`i)‖
. (4.19)

If at some location s = σ, point loads F (σ) and L(σ) (resulting from tendon termi-

nations or external loads) are applied to the backbone, the internal force and moment

change across the boundary s = σ by,

n(σ−) = n(σ+) + F (σ),

m(σ−) = m(σ+) +L(σ).

(4.20)

where σ− and σ+ denote locations just before and just after s = σ. Any combination

of external point loads and tendon termination loads can be accommodated in this

way.
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4.2.8 Point Moment Model

In prior tendon robot models, tendon actuation has often been modeled by simply

applying the pure point moment in (4.19) to an elastic backbone model at the location

where each tendon is attached, without considering the point force at the attachment

point and the distributed tendon loads along the length (see Figure 4.4). This ap-

proach is convenient because it allows one to use the classical Cosserat rod equations

(2.15) by simply applying boundary conditions that take into account the tendon

termination moments.

In [32], Gravagne justified this approximation for planar robots by showing that

the effects of the point force and the distributed loads effectively “cancel” each other,

leaving only the point moment. Thus, as shown in Figure 1.3 this approach yields

almost exactly the same final shape as the full coupled model when the robot defor-

mation occurs in a plane.

However, as shown in Figure 1.3, the two approaches diverge as the robot shape

becomes increasingly non-planar due to a transverse load at the tip. In Section 4.4,

we investigate the accuracy of both approaches through a set of experiments on a

prototype robot.

4.3 Dynamic Model

Based on the coupled rod and tendon model presented above for static continuum

robot deformations, we now derive a model for the dynamics of a continuum robot
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Figure 4.4: (a) The coupled Cosserat rod and tendon approach includes all of the
tendon loads. These loads are themselves functions of the robot shape, so the robot
is treated as a coupled system. (b) The point moment approach only includes the
attachment moment. For planar deformations the two approaches predict a similar
robot shapes, but our experimental results show that for out-of-plane loading, the
coupled approach is more accurate.

with general tendon routing. Such a model will be useful for analyzing the character-

istics of specific designs as well as the development of control algorithms similar to

those derived for planar robots with straight tendons [33]. As we will show, adding the

necessary dynamic terms and compatibility equations results in a hyperbolic system

of partial differential equations, which can be expressed in the standard form

yt = f(s, t,y,ys), (4.21)

where a subscript s or t is used in this section to denote partial derivatives with

respect to the reference parameter s and time t respectively.

We introduce two new vector variables, q and ω, which are the body frame linear

and angular velocity of the rod at s. These are analogous to u and v respectively,

but are defined with respect to time instead of arc length. Thus,

pt = Rq Rt = Rω̂. (4.22)
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Recalling from (4.5) that

ps = Rv Rs = Rû, (4.23)

and using the fact that pst = pts and Rst = Rts, we can derive the following compat-

ibility equations,

ut = ωs + ûω vt = qs + ûq − ω̂v, (4.24)

Equations (4.2) and (4.3) describe the static equilibrium of the rod. To describe

dynamics, we can add the time derivatives of the linear and angular momentum per

unit length in place of the zero on the right hand side, such that they become,

ṅ+ f = ρAptt, (4.25)

ṁ+ ṗ× n+ l = ∂t (RρJω) , (4.26)

where ρ is the mass density of the rod, A is the cross sectional area of the backbone,

and J is is the matrix of second area moments of the cross section. Expanding these

and applying (4.24) one can obtain a complete system in the form of (4.21),

pt =Rq

Rt =Rω̂

vt =qs + ûq − ω̂v

ut =ωs + ûω

qt =
1

ρA

(
KSE (vs − v∗s) + ûKSE (v − v∗)

+RT (f e + f t)− ρAω̂q
)

ωt =(ρJ)−1
(
KBT (us − u∗s) + ûKBT (u− u∗)

+ v̂KSE (v − v∗) +RT (le + lt)− ω̂ρJω
)

(4.27)
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Figure 4.5: In each experiment, a set of 3D data points along the backbone was taken
with an optically tracked stylus. (Inset) A standoff disk with a central hole for the
backbone rod and outer holes through which tendons may be routed. Twelve copies
of this disk were attached along the backbone as shown in the larger figure.

where f t and lt can be computed using (4.15). Typically, conditions at t = 0 are

given for all variables along the length of the robot, and the boundary conditions of

Subsection 4.2.7 apply for all time.

An active research field in mechanics and computer graphics simulation is to

numerically evaluate models of dynamic rods that are physically accurate, and yet

capable of being simulated in real-time (see e.g. [10]). Future research for our coupled

rod and string model may address computational efficiency, internal damping, and

real-time dynamic control.
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4.4 Experimental Validation

We now describe several different experiments conducted using a continuum robot

prototype with a variety of tendon paths and external loading conditions applied.

4.4.1 Prototype Construction

Our prototype robot is shown in Figure 4.5. The central backbone is a spring steel

rod (ASTM A228) of length ` = 242 mm and diameter d = 0.8 mm with 12 stand-off

disks, 20 mm in diameter, spaced 20 mm apart along its length. The disks were

laser cut from a 1.57 mm thick PTFE filled Delrin plastic to minimize friction with

the tendons. As shown in the inset of Figure 4.5, 24 small pass-through holes were

laser cut in a circular pattern at a radius of 8 mm from the center of each disk. The

backbone rod was passed through the center holes of the disks and each was fixed to

it using Loctite 401. For tendons, we used 0.36 mm PTFE coated fiberglass thread.

Each tendon was run through various pass-through holes along the robot and knotted

at the end, after passing through the final support disk. We note that in [49], the

optimal ratio of tendon support spacing to offset distance from the backbone was

found to be 0.4, and our prototype was designed to exactly match this ratio.

The tendon routing paths can be reconfigured on this robot by “re-threading” the

tendons through a different set of holes in the various support disks. The robot’s self-

weight distribution was measured to be 0.47 N/m, which is enough to cause significant

deformation, producing 44 mm of downward deflection at the tip (18% of the total

111



Table 4.1: Tendon Routing Paths used in Experiments

Tendon (i) 1 2 3 4 5 6

xi(s) (mm) 8 0 -8 0 8 cos(2πs/`) refer to (4.28)

yi(s) (mm) 0 8 0 -8 8 sin(2πs/`) refer to (4.28)

arc length) for zero tendon tension. This weight was incorporated into all model

calculations as a distributed force.

4.4.2 Experimental Procedure

In each of the following experiments, we applied known tensions to tendons behind

the base of the robot by passing the tendons over approximately frictionless pulleys

and attaching them to hanging calibration weights. In those cases with applied point

loads, we also hung weights from the tip of the robot.

In each experiment, a set of 3D backbone points was collected by manually touch-

ing the backbone with the tip of an optically tracked stylus as shown in Figure 4.5.

We used a MicronTracker 2 H3-60 (Claron Technology, Inc.) to track the stylus,

which has a specified fiducial measurement accuracy of 0.20 mm.

4.4.3 Calibration

The base frame position of the robot can be determined accurately using the optically

tracked stylus. The angular orientation of the robot backbone as it leaves the base

support plate is more challenging to measure. (Note that the backbone cannot be
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Table 4.2: Experimental Tensions and Tip Loads

Experiments with Tendons 1 - 4 (Straight)

Tension (N) 0 0.98 1.96 2.94 2.94 2.94 4.91

Tip Load (N) 0 0 0 0 0.098 0.196 0

Experiments with Tendon 5 (Helical)

Tension (N) 0.98 1.96 2.94 4.91 4.91 4.91 6.87

Tip Load (N) 0 0 0 0 0.098 0.196 0

Experiments with Tendon 6 (Polynomial)

Tension (N) 1.50 2.46 3.66 4.91 4.91

Tip Load (N) 0 0 0 0 0.0196

assumed to exit exactly normal to the plate due to the tolerance between the backbone

and the hole drilled in the plate, and a 2◦ angular error in base frame corresponds

to an approximately 8 mm tip error when the robot is straight). Also, the effective

stiffness of the backbone was increased due to the constraints of the standoff disks and

Loctite adhesive at regular intervals. To account for these uncertainties we calibrated

the effective Young’s modulus and the set of XYZ Euler angles (α, β and γ) describing

the orientation of the base frame.

Our calibration process was accomplished by solving an unconstrained nonlinear

optimization problem to find the set of parameters which minimizes the sum of the

positional errors at the tip of the device for the set of 25 experiments with straight

tendon paths described in Sec. 4.4.4 and Table 4.2. In other words, for the parameter
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Table 4.3: Nominal and Calibrated Parameters

Parameter Nominal Calibrated Value Calibrated Value

Value (Point Moment Model) (Coupled Model)

E (GPa) 210 227.9 229.6

α (deg) 180 177.7 177.9

β (deg) 0 2.2 2.2

γ (deg) -90 -89.6 -89.7

set P = {E,α, β, γ}:

Pcal = argmin
P

(
25∑
k=1

ek)

where ek = ‖pmodel(`)− pdata(`)‖k is the euclidean distance between the model tip

prediction and the data in experiment k. To implement this minimization, we used

the Nelder-Meade simplex algorithm, as implemented by MATLAB’s fminsearch

function.

To ensure fair comparison of the coupled model and the point moment model, the

calibration procedure was performed separately for each model. Results are shown in

Table 4.3. Note that the similarity in calibrated Euler angles and their low deviations

from nominal values provide confidence that the correct base frame was obtained for

both models. It is also important to note that the models contain the same number

of parameters, so a fair comparison can be made. As expected, the calibrated values

for Young’s modulus are slightly higher than the nominal value of 210 GPa for spring

steel, due to the increased stiffness provided by the disks and glue. Poisson’s ratio

was held constant at ν = 0.3125 during calibration so that the shear modulus was
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Table 4.4: Model Tip Errors for Straight Tendon Experiments

13 Cases with In-Plane Loads

Tip Error Statistic (mm) mean std. dev. min max

Point Moment Model 3.5 1.4 1.2 5.6

Coupled Model 3.1 1.3 0.3 5.3

12 Cases with Out-of-Plane Loads

Tip Error Statistic (mm) mean std. dev. min max

Point Moment Model 9.8 5.5 1.7 16.2

Coupled Model 4.1 2.1 0.6 7.9

Table 4.5: Coupled Model Tip Errors for Non-Straight Tendon Experiments

mean std. dev. min max

Tendon 5 (Helical) 5.5 2.7 1.9 10.0

Tendon 6 (Polynomial) 4.6 1.9 2.7 7.2

correctly scaled relative to Young’s modulus.

4.4.4 Straight Tendon Results and Model Comparison

Table 4.1 details the location of the tendon routing paths used in our experiments

in terms of xi(s) and yi(s) as defined in (4.8). We first performed 25 experiments

(detailed in Table 4.2) with straight tendon paths in order to compare the accuracy of

the new coupled model with that of the point moment model. We detail the tip error
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Figure 4.6: Pictured are the 13 experimental cases with in-plane external loads. The
tendons on the top and bottom of the robot (tendons 1 and 3) were tensioned and
vertical tip loads were applied in four of the cases. Distributed gravitational loading
is present in every case. As detailed in Table 4.4, both the coupled model and the
point moment model are accurate and nearly identical for in-plane loads.

statistics for both models with calibrated parameters in Table 4.4. The results for

in-plane loading are accurate for both models, as shown in Figure 4.6. In contrast,

for out-of-plane loads, the coupled model provides more accurate predictions (see

Figure 4.7).

With calibrated parameters, the mean tip error over all 25 straight tendon ex-

periments was 3.6 mm for the coupled model. This corresponds to 1.5% of the total

arc length of the robot. Note that experimental data points lie close to the model

prediction along the entire robot length, and the error increases gradually along the
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Figure 4.7: Pictured are the twelve experimental cases with out-of-plane external
loads. The tendons on the left and right of the robot (tendons 2 and 4) were tensioned.
(a) Distributed loading (robot self-weight) applied, (b) additional tip loads applied.
As detailed in Table 4.4, the data agrees with the coupled model prediction, but the
point moment model becomes inaccurate as the out-of-plane load increases, and as
the curvature increases.

robot length, so that tip error normalized by the robot length is a reasonable metric

for the accuracy of our model.

4.4.5 A High-Tension, Large-Load, Straight Tendon Experi-

ment

We performed one additional straight tendon experiment to see how the two ap-

proaches compare for a case of large tension and large out-of-plane load, similar to

the case which is simulated in Figure 1.3. Tendon 4 was tensioned to 6.38 N and a
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Figure 4.8: Pictured is a straight tendon case with high tension and high out-of-plane
load, similar to the case depicted in Figure 1.3. The data clearly indicates that the
coupled model is more accurate than the point moment model.

downward tip force of 0.196 N was applied. The resulting data and model predictions

are shown in Figure 4.8. As illustrated in Figure 1.3, the two models produce very

different results, and we can now see from Figure 4.8 that the coupled model predic-

tion lies much closer to the data. Here, the tip error of the point moment model is

57 mm (23.5% of robot length), while the coupled model tip error is 12.8 mm (5.3%

of robot length).

4.4.6 Experiments with Helical Tendon Routing

To explore more complex tendon routing we experimentally evaluated helical routing

paths. As given in Table 4.1, our helical routing path winds through one complete
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Figure 4.9: Pictured are the seven experiments performed with helical tendon routing
(tendon number 5): (a) self-weight only, (b) cases with external tip loads. Numerical
tip errors are given in Table 4.5 (mean 5.5 mm).

revolution as it traverses the robot from base to tip. The tensions and tip loads for

these experiments are detailed in Table 4.2. Using the parameters calibrated from the

previous straight tendon dataset, we plot the resulting data and model predictions

in Figure 4.9 and 4.10. We see from Table 4.5 that the model agrees with the data

with a mean tip error of 5.5 mm. The small increase in error over the straight tendon

cases may be due to increased frictional forces, since the tension for the helical cases
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Figure 4.10: Two helical cases are shown with photographs from the same angle
for better visualization. Left: The helical tendon is tensioned to 4.91 N, causing
the backbone to assume an approximately helical shape which is deformed under its
own weight. Right: An additional 20 g mass hung from the tip causes large overall
deflection.

was higher.

4.4.7 Experiments with Polynomial Tendon Routing

In order to further illustrate our model’s generality, we performed additional exper-

iments with a general curved tendon routing choice. We parameterized the routing

path variables by two trigonometric functions whose arguments are defined by a poly-

nomial function of degree 4 as follows:

x6(s) =8 cos(5887s4 − 2849s3 + 320s2 + 6s)

y6(s) =8 sin(5887s4 − 2849s3 + 320s2 + 6s),

(4.28)

where s is in meters and x6 and y6 are in millimeters. This routing path starts at

the top of the robot, wraps around to the right side for most of the length, and
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Figure 4.11: Pictured are five cases with polynomial tendon routing as specified
Equation 4.28.

then returns to the top at the end of the robot. The tensions and loads are given in

Table 4.2, and the results are detailed Table 4.5 and illustrated in Figure 4.11. The

coupled model’s predictions agree with the data, with a mean tip error of 4.6 mm.

This set of experiments confirms the coupled model’s ability to handle an arbitrary

tendon routing choices.

4.4.8 Sources of Error

The largest source of measurement uncertainty is likely the procedure of manually

placing the tip of the stylus on the robot during data capture. We estimate this

uncertainty to be at most 2 mm. In general, the largest model errors occurred when

the tendons were under the greatest tension. This agrees with the intuition that

effects of static friction should become more significant as the tension and curvature

121



increase. However, the low overall errors suggest that neglecting static friction is

justifiable for this prototype.

4.5 Conclusions

In this chapter we have derived exact models for the forward kinematics, statics,

and dynamics of continuum robots with general tendon routing experiencing exter-

nal point and distributed loads. The models account for large deformations due to

bending, torsion, shear, and elongation. The static model is formulated as a set of

nonlinear ordinary differential equations in state vector form with boundary condi-

tions, and the dynamic model consists of a system of hyperbolic partial differential

equations.

Our experimental results demonstrated that using this approach, one can accu-

rately predict the shape of a physical prototype with both straight and non-straight

tendon routing paths and with external loading. With calibrated parameters, the

mean tip error over all the experiments was 4.1 mm, or 1.7% of the total robot

length. The straight tendon results also showed that the coupled model was on av-

erage twice as accurate as the point moment model for typical out-of-plane loading

scenarios, and far more accurate for a case with high tension and loading.

The models developed in this chapter can be useful as design tools, and also

provide the theoretical foundations for new control algorithms for tendon-actuated

continuum robots. As illustrated in Figure 1.4, the design space of achievable robot

shapes can be expanded by considering general tendon routing paths. We also be-
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lieve that the models presented in this chapter will pave the way for new quasi-static

and/or dynamic control techniques for tendon-actuated continuum robots in the fu-

ture, although significant work remains to be done on efficient computational imple-

mentation (or suitable model approximations), before real-time dynamic control is

possible. Furthermore the inclusion of general external loads in tendon-actuated con-

tinuum robot models is an important step forward for future practical applications,

given their significant sag under self-weight and when carrying payloads.

In summary, continuum robots have the potential to increase the performance

of robotic systems working in cluttered or unstructured environments, manipulating

objects with the whole arm, or when compliant interaction with the environment is

necessary. These capabilities appear useful in some traditional industrial robotics

applications, and also in many new applications where traditional robots are not

applicable due to lack of dexterity or danger of excessive force application. We believe

that designs with general tendon routing, and use of static and dynamic models

accounting for external loading, such as those derived in this chapter, will be key

enablers of wider application of continuum robots in the future.
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Chapter 5

Model-Based Control and Force Sensing

In Chapters 3 and 4, kinematic models that account for deformation due to applied

loads were developed for two different continuum robots designs. For these two models

and others reported in the literature, a set of nonlinear differential equations with

boundary conditions must be solved to obtain the robot shape, thus making the

task of computing manipulator Jacobians and compliance matrices computationally

burdensome. In this chapter, we first propose a method for efficiently obtaining an

arc length parametrized Jacobian and compliance matrix. Our approach involves

propagating the necessary partial derivatives through the model equations, resulting

in a new set of differential equations which can be solved as an initial value problem,

via a single numerical integration to obtain Jacobians and compliance matrices along

the robot length. We provide a specific case study using this method to obtain the

Jacobian for a concentric-tube robot, and show that using this method, the kinematic

model can be solved and the Jacobian obtained at rates sufficient for real-time control,

using a standard desktop PC or laptop. We further describe a damped-least-squares

approach to achieving inverse-kinematic control of continuum robots using the robot

Jacobian. Using this method we demonstrate model-based 6 DOF teleoperation of

a simulated concentric-tube robot in real time at approximately 200-300 Hz on a

standard PC.
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In the second half of this chapter, we explore the idea of using sensed robot de-

flections to estimate external forces applied to the robot via the compliance matrix.

This way of achieving “intrinsic force sensing” may be particularly useful for thin

continuum robots where application constraints preclude the use of traditional force

sensors. We describe and simulate an Extended-Kalman-Filter-based approach to

estimate forces applied at the tip of a flexible tendon-actuated robot using only un-

certain measurements of the tip pose and an uncertain kinematic-static model for the

robot.

5.1 Computing Jacobians and

Compliance Matrices

5.1.1 Problem Statement

Models for the deformation of continuum robots with actuator values q and under a

six degree-of-freedom point wrench w can be written in the following form [44,62,84]:

g′ =gξ̂(y, g),

y′ =f(s,y, g, q,w)

(5.1)

where g(s) ∈ SE(3) is a homogeneous transformation defining the backbone location

and orientation at arc length s, ξ ∈ se(3) (a body frame twist describing how g

evolves in s, see Chapter 2 and [53]) is a function of a set of state variables y and

possibly the matrix g, and the ′ denotes a derivative with respect to s. (Note since

we require derivatives with respect to both time and arc length, we will employ ˙ to
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denote a derivative with respect to time, and ′ to denote a derivative with respect to

arc length.)

At the base of the robot (s = 0), some subset of the elements of y are unknown,

which we denote yu. These unknown variables typically include torsional and bending

strains. The initial position and orientation g, and the remaining elements of y,

denoted by yk, may be specified in terms of yu and the actuator positions q. Thus,

the boundary conditions at the proximal end of the robot are:

g(0) =H(yu(0), q,w),

yk(0) =h(yu(0), q,w).

(5.2)

At the distal end of the robot (s = `), there are general boundary conditions to be

satisfied:

b(y(`), g(`), q,w) = 0. (5.3)

Shooting methods can be used to solve such boundary value problems (BVP’s). Since

b is a function of the unknown initial conditions yu, a shooting method consists of

using a nonlinear root-finding algorithm to iteratively converge on values for yu which

satisfy b = 0. For a particular value of yu(0), evaluation of b simply requires numer-

ical integration of the initial value problem, which can be computed using standard

methods such as the Runge-Kutta or Adams-Bashforth families of algorithms.

We are are interested in obtaining the spatial manipulator Jacobian, which is

defined as follows [53]:

Js =

[(
∂g

∂q1

g−1

)∨
...

(
∂g

∂qn
g−1

)∨]
.
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Similarly, we define the spatial manipulator compliance matrix with respect to a tip

wrench as,

Cs =

[(
∂g

∂w1

g−1

)∨
...

(
∂g

∂w6

g−1

)∨]
.

These matrices can be generalized as continuous functions of arc length, and thus de-

scribe the motion of the entire robot with respect to changes in the actuator positions

or the components of an applied wrench as,

(
ġ(s)g−1(s)

)∨
= Js(s, q,w)q̇ + Cs(s, q,w)ẇ,

where the dot denotes a derivative with respect to time.

A straightforward approach to approximating Js and Cs is to use a finite difference

approximation on the BVP to compute each partial derivative. Thus, if g(s) is the

solution of the BVP given by (5.1), (5.2), and (5.3), the columns of the Jacobian and

compliance matrix are given by

Jsi ≈
(
gi(s)− g(s)

∆qi
g(s)−1

)∨
i = 1...n,

Cs
i ≈

(
gi(s)− g(s)

∆wi
g(s)−1

)∨
i = 1...6,

(5.4)

where gi(s) is the solution of the BVP with qi = qi+∆qi or wi = wi+∆wi respectively,

and n is the number of actuators.

Using this method (which we henceforth call BVP finite differences, and which is

depicted in Figure 5.1), the manipulator Jacobian and compliance matrix are obtained

after n + 6 solutions of the boundary value problem. To increase computational

efficiency, it is desirable to have a method which uses information from the related

initial value problem (IVP) instead. In the next section, we describe such a method.
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Figure 5.1: The above block diagram details the steps involved in computing the
manipulator Jacobian and compliance matrices via the computationally inefficient
method of performing finite difference calculations on the model BVP.

It is based on building a “Jacobian-like” matrices with respect to the IVP problem,

and treating the actuator positions, the elements of the tip wrench, and the unknown

initial conditions simultaneously as independent variables.

5.1.2 IVP Jacobians and Compliance Matrices

In this section, we consider the initial value problem below which is identical to our

original boundary value problem given by (5.1), (5.2), and (5.3), except that the initial

conditions are now specified for all variables, and the distal boundary conditions have

128



been removed:

yu(0) = yu,0

g(0) = H(yu(0), q,w)

yk(0) = h(yu(0), q,w)

g′ = gξ̂(y, g)

y′ = f(s,y, g, q,w)

(5.5)

We define a Jacobian matrix E with respect to the solution of this IVP, consisting of

sub-matrices Eq, Ew and Eu which describe changes in g in with respect to changes

in q, w, and yu(0) respectively as,

E = [Eq Ew Eu] ,

Eq =

[(
∂g

∂q1

g−1

)∨
...

(
∂g

∂qn
g−1

)∨]
,

Ew =

[(
∂g

∂w1

g−1

)∨
...

(
∂g

∂w6

g−1

)∨]
,

Eu =

[(
∂g

∂yu,1(0)
g−1

)∨
...

(
∂g

∂yu,m(0)
g−1

)∨]
.

Similarly, we construct matrices Bq, Bw, and Bu which describe the change in the

function b defined in (5.3) as,

B = [Bq Bw Bu] ,

Bq =
∂b

∂q
, Bw =

∂b

∂w
, Bu =

∂b

∂yu(0)
.

Using the above definitions, one can write down the time derivative of the robot

pose, as well as the rate of change of the boundary condition function in terms of the

time derivatives of q, w, and yu(0) as,

(
ġg−1

)∨
= Eqq̇ + Ewẇ + Euẏu(0) (5.6)
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ḃ = Bqq̇ +Bwẇ +Buẏu(0). (5.7)

Now, if the original boundary value problem has been solved, we want b to remain

at zero for any q̇ and ẇ. Thus, if we set ḃ = 0 in (5.7), we can solve for the ẏu(0)

which will continue to satisfy the boundary conditions, namely,

ẏu(0) = −B†u (Bqq̇ +Bwẇ)

Substituting the result into (5.6) yields

(
ġg−1

)∨
=
(
Eq − EuB†uBq

)
q̇ +

(
Ew − EuB†uBw

)
ẇ,

from which we can see that the actual manipulator Jacobian and compliance matrix

(as continuous functions of s) can be expressed in terms of the initial value Jacobians

as follows,

Js(s) = Eq(s)− Eu(s)B†uBq
(5.8)

Cs(s) = Ew(s)− Eu(s)B†uBw. (5.9)

In the following sections we discuss two ways of computing E and B: approxima-

tion by finite differences, and derivation of differential equations that define E and B

exactly.

5.1.3 IVP Matrices Via Finite Differences

If g(s) is the solution of the BVP, it is straightforward to approximate the columns

of E and B matrices from a finite difference method on the IVP. Defining the vector

x = [q1, ..., qn, w1, ..., w6, yu,1(0), ..., yu,m]T to contain all of the variables with respect

130



to which we are interested in obtaining partial derivatives, we can approximate the

ith columns of E and B as

Ei ≈
(
gi(s)− g(s)

∆xi
g−1(s)

)∨
,

Bi ≈
bi − b
∆xi

where gi(s) and bi(s) are obtained from the solution of the IVP with xi = xi + ∆xi.

With this method (which we call IVP finite differences, and which is depicted in

diagram in Figure 5.2), the actual Jacobian and compliance matrices are obtained

via (5.8) and (5.9) after n + m + 6 numerical integrations of the IVP problem de-

fined in (5.5), where m is the number of elements in yu(0). This requires much less

computation than the finite difference BVP algorithm in (5.4) because when using a

shooting method, each BVP solution usually requires m IVP integrations to obtain

the gradients and move one step. Thus, even if the shooting method converges in

a single step (which is not guaranteed), the number of IVP integrations required by

implementation of (5.4) is (m)(n+ 6).

Next, we propose a method which is not based on finite difference approximations,

but on deriving a new set of differential equations which define E and B exactly.

Using this method, E and B are obtained after one integration of an IVP (albeit

a much larger one than the one required for forward kinematics). Our simulation

results in Section 5.2.1 show that this method provides an significant improvement in

computational efficiency over both BVP and IVP finite differencing.
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Figure 5.2: The above block diagram details the steps involved in computing the ma-
nipulator Jacobian and compliance matrices via the method of performing finite dif-
ference calculations on the model IVP. Though much more efficient than the method
of BVP finite differences, the derivative propagation method provides an even greater
increase in efficiency.

5.1.4 Derivative Propagation Approach

As a brief aside to illustrate our basic approach in derivative propagation, consider a

simple example IVP,

y(0) = h(q), y′ = f(s,y), (5.10)

and suppose that we are interested in obtaining a matrix V describing how y changes

with respect to q, namely,

V =
∂y

∂q
.
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We can differentiate V with respect to s, and use (5.10) to obtain

dV

ds
=

d

ds

(
∂y

∂q

)
=

∂

∂q

(
dy

ds

)
=
∂f

∂q
=
∂f

∂y

∂y

∂q
.

Then, taking the partial derivative of the initial conditions, we obtain an IVP that

defines V ,

V (0) =
∂h

∂q
,

dV

ds
=
∂f

∂y
V. (5.11)

The above technique is often used in the implementation of shooting methods to

supply derivative information for the update step (to obtain Bu), and we will adapt

this technique in the subsection below to obtain E and B for the IVP in (5.5).

5.1.5 IVP Matrices Via Derivative Propagation

We wish to obtain a differential equation which defines the matrix E. Considering

the ith column of the matrix E,

Eq,i =

(
∂g

∂xi
g−1

)∨
, (5.12)

we can derive an expression for its arc length derivative as follows:

d

ds
Ei =

(
∂

∂xi

(
dg

ds

)
g−1 +

∂g

∂xi

d

ds

(
g−1
))∨

=

(
∂g

∂xi
ξ̂g−1 + g

∂ξ̂

∂xi
g−1 +

∂g

∂xi

d

ds

(
g−1
))∨

=

(
g
∂ξ̂

∂xi
g−1

)∨
= Adg

∂ξ

∂xi
,

where we have used g′ = gξ̂, and the fact that

d

ds

(
g−1
)

= −ξ̂g−1.
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Adg is the adjoint transformation of g, defined as

Adg =

R p̂R

0 R

 .
By expanding ∂ξ

∂xi
, we can express E ′i as

E ′i =Adg

(
∂ξ

∂y
Vi +

∂ξ

∂vec(g)
vec
(
Êig
))

(5.13)

where we have used (5.12) to substitute in for ∂g
∂xi

, vec() simply reshapes a matrix

into a column vector, and

V = [Vq Vw Vu] =
∂y

∂x
.

Similarly, we find that the columns of B can be expressed as

Bi =
∂b()

∂y
Vi +

∂b()

∂vec(g)
vec
(
Êig
)

+
∂b()

∂xi
. (5.14)

where we use ∂b() to denote the partial derivative of the function b(y(`), g(`), q,w)

with respect to the argument appearing in the given term’s denominator. This nota-

tion is necessary for clarity because q and w affect the value of b both directly and

also indirectly through changes in y(`) and g(`).

We now only need an equation for V to have a complete set of equations defining

E and B. Thus, we obtain

V ′i =
∂f()

∂y
Vi +

∂f()

∂vec(g)
vec
(
Êx,ig

)
+
∂f()

∂xi
, (5.15)

At s = 0 it is straightforward to calculate the V (0) and E(0) from the initial
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conditions:

V (0) =

[
∂y(0)

∂q

∂y(0)

∂w

∂y(0)

∂yu(0)

]
Eq,i(0) =

(
∂H

∂qi
g(0)−1

)∨
,

Ew,i(0) =

(
∂H

∂wi
g(0)−1

)∨
,

Eu,i(0) =

(
∂H

∂yu,i(0)
g(0)−1

)∨
(5.16)

We now have an IVP, consisting of (5.13), (5.14), (5.15), and (5.16), which when

integrated simultaneously with the equations in (5.5), yields the initial value matrices

E and B from which we can obtain Js and Cs using (5.8) and (5.9). Furthermore,

we obtain the matrix Bu, which we can use in our shooting method to solve the

boundary value problem efficiently. The resulting derivative propagation algorithm

is summarized in the diagram in Figure 5.3.

5.2 Example: The Concentric-Tube Robot Model

with External Loading

In this section we apply the methods derived above to obtain a continuous set of

Jacobians and compliance matrices along the length of a concentric-tube robot, or

active cannula. A model for the statics of an active cannula under external loads was

derived in Chapter 3, and we give a brief, self-contained statement of those model

equations here before applying the methods of Section 5.1.4.

For the loaded model example, we consider the case of n tubes with piecewise-

constant pre-curvature, ui = [ki 0 0]T , and zero distributed loads, with a point
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Figure 5.3: The above block diagram details the steps involved in computing the
manipulator Jacobian and compliance matrices via the method of obtaining IVP ma-
trices through derivative propagation. This method eliminates all finite difference
loops, and appears to be more computationally efficient than either BVP finite dif-
ferences or IVP finite differences.

wrench w applied to the tip of the robot, consisting of a point force F and a point

moment L. In this case, the loaded model equations in (3.58) reduce to

ṗ1 =R1e3

Ṙ1 =Rû1

θ̇i =uiz − u1z for i = 2...n

u̇iz =− kiEiIi
GiJi

uiy for i = 1...n

ṁb
xy =

(
−û1m

b − ê3R
T
1F
)
xy

(5.17)

where the following relationships are used to obtain mb
z, u1xy, and uiy from the state
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variables:

mb
z =

n∑
i=1

GiJiuiz,

u1xy =
1∑n

i=1 EiIi

(
mb

xy +
n∑
i=1

[
cos θi
sin θi

]
EiIiki

)
,

uiy = [sin θi cos θi]u1xy.

(5.18)

The initial conditions at s = 0 are

p1(0) =[0 0 0]T ,

R1(0) =

[
cos(α1−β1u1z(0)) − sin(α1−β1u1z(0)) 0
sin(α1−β1u1z(0)) cos(α1−β1u1z(0)) 0

0 0 1

]
,

θi(0) =αi − α1 − (βiuiz(0)− β1u1z(0)) .

(5.19)

and the boundary conditions are

0 = G1J1u1z(`1)− eT3RT
1L

0 = GiJiuiz(`i), for i = 2...n

0 = mb
xy(`1)−

(
RT

1L
)
xy
.

(5.20)

Thus, for this system, y =
[
θ2, ..., θn, u1z, ..., unz,m

b
x,m

b
y

]T
, the actuator variables

are q = [α1, ...αn, β1, ...βn]T , the vector of unknown initial conditions is

yu(0) =
[
u1z(0), ..., unz(0),mb

x(0),mb
y(0)

]T
, and the boundary condition function is

b =
[
G1J1u1z(`1)− eT3RT

1L,

G2J2u2z(`2), ...GnJnunz(`i),

mx(`1)−
(
RT

1L
)
x
,

my(`1)−
(
RT

1L
)
y

]T
,

(5.21)

For clarity, we further define a vector x to contain all the variables with respect to

which we are interested in obtaining the partial derivatives, namely

x =
[
qT ,F T ,LT ,yTu (0)

]T
(5.22)
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The kth column of V contains the following partial derivatives

∂θ̇i
∂xk

=
∂uiz
∂xk
− ∂u1z

∂xk

∂u̇iz
∂xk

=− kiEiIi
GiJi

∂uiy
∂xk

∂ṁb
xy

∂xk
=
(
− ∂û1

∂xk
mb − û1

∂mb

∂xk
− ê3

∂RT
1

∂xk
F − ê3R

T
1

∂F

∂xk

)∣∣∣
xy
,

(5.23)

and the derivative of the kth column of E is

Ėk =Adg

 0

∂u1

∂xk

 (5.24)

The quantities ∂mz

∂xk
,
∂uiy
∂xk

, ∂u1xy

∂xk
, and ∂R1

∂xk
are used in the above computations. They

can each be obtained from the elements of V and E as follows:

∂mz

∂xk
=

n∑
i=1

GiJi
∂u1z

∂xk

∂uiy
∂xk

=
∂θi
∂xk

[− cos θi sin θi]u1xy + [− sin θi cos θi]
∂u1xy

∂xk

∂u1xy

∂xk
=

1∑n
i=1EiIi

(
∂mb

xy

∂xk
+

n∑
i=1

[ − sin θi
cos θi

]
EiIiki

)
∂R1

∂xk
= ([03x3 I3x3]Ek )̂ R1.

(5.25)

We obtain initial conditions for E and V at s = 0 by directly differentiating the initial

conditions.

We note that the state variables in (5.17) are continuous along the entire robot,

but their derivatives are discontinuous at points where tubes end or undergo step-

changes in pre-curvature. If the arc-length location of a particular discontinuity is a

function of βi, and it can be shown that the columns Vβi and Eβi undergo transitions

across the boundary as follows:

V +
βi

= V −βi + ẏ− − ẏ+

E+
βi

= E−βi + Adgξ
− − Adgξ+.
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where − and + superscripts indicate a value as approached from the left and the

right, respectively. At the end of the robot, the same transition occurs with ẏ+ = 0

and ξ+ = 0.

After integrating V and E, the columns of the matrix B = ∂b
∂x

can be calculated

as

∂b

∂xk
=
[
G1J1

∂u1z(`1)

∂xk
− eT3

(
∂RT

1 (`1)

∂xk
L+RT

1 (`1)
∂L

∂xk

)
,

G2J2
∂u2z(`2)

∂xk
, ..., GnJn

∂unz(`n)

∂xk
,

∂mb
x(`1)

∂xk
−
(
∂RT

1 (`1)

∂xk
L

)
x

−
(
RT

1 (`1)
∂L

∂xk

)
x

,

∂mb
y(`1)

∂xk
−
(
∂RT

1 (`1)

∂xk
L

)
y

−
(
RT

1 (`1)
∂L

∂xk

)
y

]T
.

(5.26)

5.2.1 Simulations Evaluating Computational Efficiency

We now provide simulation results using the model above for a concentric-tube robot

with three tubes. Each tube has a straight section at its proximal end followed by

a distal section with constant curvature. The diameters, lengths, curvatures, and

mechanical properties of the tubes used in our simulation are provided in Table 5.1.

We used the derivative propagation approach to solve the inverse kinematics prob-

lem via simple resolved rate servoing, commanding tip velocities in the desired direc-

tion. We commanded the tip of the cannula to trace the outline of the letter “V”,

as shown in Figure 5.4 (left). To illustrate the correctness of the Jacobian when the

robot is experiencing an external load, we performed the same simulation with a 0.4

N downward force applied to the tip of the cannula. Results of this simulation are

shown in Figure 5.4 (right). Intuition suggests that the body of the robot will have
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Table 5.1: Physical Parameters for Tubes used in Simulations

Tube 1 Tube 2 Tube 3

(Inner) (Middle) (Outer)

Inner Diameter (mm) 0.50 1.25 2.00

Outer Diameter (mm) 1.00 1.75 2.50

Straight Length (mm) 450 250 100

Curved Length (mm) 150 150 100

Curvature (m−1) 20 10 5

Young’s Mod. (E) (GPa) 60 60 60

Shear Mod. (J) (GPa) 23.1 23.1 23.1

to extend further upward in order to compensate for the load at its tip, and this

behavior is visible in the figure.

We further compared the computational efficiency of the three approaches in this

chapter in a series of experiments, the results of which are shown in Table 5.2. The

Jacobian was calculated at 100 evenly distributed configuration-space points using

three numerical integration schemes with a fixed arc length step size of 0.01 m: a

fourth/fifth order Runge Kutta scheme, a second/third order Runge-Kutta scheme,

and a fourth order Adams-Bashforth multi-step method. All were implemented in

MATLAB, running in the Windows operating system, on a laptop computer with a 2.8

GHz dual core processor. In these results, the derivative propagation approach shows

a clear advantage over the other methods. By implementing the model and derivative-

propagating approach in C++, we were able to compute the model solution and the
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Table 5.2: Computation Times for Proposed Methods

Integration BVP Finite IVP Finite Derivative

Scheme Differences Differences Propagation

RK 4/5 2.594 s 0.457 s 0.137 s

RK 2/3 1.494 s 0.251 s 0.076 s

AB 4 0.940 s 0.161 s 0.040 s

Jacobian at a rate of 1000 Hz. Thus, the investment in developing computationally

efficient algorithms in this section will be essential to our efforts to create of a high-

performance kinematic control system.

5.3 Control Algorithms for Concentric-Tube Robots

In this section we outline an algorithm for quasi-static control of concentric-tube

robots. Though concentric-tube robots have dynamics, the prototypes developed

thus far have all had high stiffness and low mass characteristics, so that that their

dynamic are typically stable and very fast. Therefore, we are primarily concerned

with the quasi-static inverse kinematics problem, namely how to determine the static

actuator values (rotations and translations of the tube bases) that will produce a

desired end-effector pose in steady-state. Since we can obtain forward kinematic

solutions and Jacobians at 1000 Hz, our approach to solving this problem in the

context of human-input teleoperation will be to adapt differential-inverse-kinematics

strategies from the well-established body of literature on kinematic control to our
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Figure 5.4: The three tube active cannula described in Table 5.1 traces the outline of
the letter “V”, with no external load (left), and while under a constant tip force of 0.4
N in the negative z-direction (right). The inverse kinematic solution is achieved by
computing the Jacobian and compliance matrix using the proposed approach. The
inner, middle, and outer tubes are shown in red, blue, and black respectively.

particular robot architecture. Using the robot Jacobian, we implementing a general

“resolved-rates” type of algorithm in order to quickly converge on inverse-kinematics

solutions in real time.

5.3.1 General Damped-Least-Squares (DLS) Formulation

Perhaps the earliest work on differential-inverse-kinematics is that of Whitney [96],

who coined the phrase “resolved rates” to describe the process of converting desired

workspace velocities into their corresponding actuator-space velocities. This and other

early works have been summarized in a review paper by Arati and Walker [6]. Dif-

ficulties that arise when trying to control robots along the general non-pre-planned

trajectories that arise in teleoperation include (1) maintaining algorithm stability and

avoiding extremely high actuator velocities when the robot is near a singular config-
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uration, (2) avoiding joint limits, and (3) dealing with the issue of non-homogeneous

units that arises when controlling both position and orientation, and when different

actuator types are used, and (4) resolving any redundant degrees of freedom.

In order to resolve all of these issues we have adopted a generalized “damped-

least-squares” approach to the differential-inverse-kinematics problem as proposed by

Wampler in [88] and reviewed in [6]. The basic approach is to convert the problem

to finding the actuator velocities which minimize a custom-built objective function

which takes into account all of the competing goals (accurately tracking the desired

trajectory, maintaining stability, limiting actuator velocities, and avoiding actuator

limits and other undesirable configurations). The form of our general objective func-

tion is shown below:

F =
1

2

(J q̇ − ξ̇0

)T
W0

(
J q̇ − ξ̇0

)
︸ ︷︷ ︸

Weighted Tracking Accuracy

+
m∑
i=1

(q̇ − vi)T Wi (q̇ − vi)︸ ︷︷ ︸
Damping & Avoiding

 , (5.27)

where q̇ is the vector of actuator velocities, and ξ̇0 is the desired end-effector ve-

locity vector (which may contain both linear and angular components). The vi are

desired actuator velocity vectors, which may be set to zero to achieve damping, or to

the scaled gradient of an objective function which penalizes closeness to undesirable

configurations, and Wi are non-negative symmetric weighting matrices which may

be constant or configuration dependent. Setting ∂F
∂q̇

= 0, we find that the necessary

condition for q̇ to minimize F is

q̇ =

(
JTW0J +

m∑
i=1

Wi

)−1(
JTW0ξ̇0 +

n∑
i=1

Wivi

)
. (5.28)

In the case where m = 1, W0 = I, v1 = 0 and W1 = λI, this solution reduces to the
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standard damped-least-squares pseudo-inverse solution

q̇ =
(
JTJ + λI

)−1
JT ξ̇0 = J#ξ̇0. (5.29)

5.3.2 Specific DLS Algorithm for a Concentric-Tube-Robot

We now discuss a specific case of (5.28) used to teleoperate a three-tube concentric-

tube robot prototype. In our implementation, we consider 5.27 in a discrete sense,

using q̇ to represent the finite actuator displacements that we will command in the

next time-step, and v0 to represent the desired linear and angular end-effector dis-

placements to be achieved in the next time step. Assuming that we want to eliminate

all tracking error in a single step, we can compute v0 as the difference between the

commanded end-effector frame, gc, and the most recent model-predicted frame, gp by

using the first-order approximation to the constant-twist solution as follows:

ξ0 =
(
g−1
p gc − I

)∨
. (5.30)

We obtain the commanded frame gc from a master input device by first defining a

start time t0 (when the operator “clutches in” by pressing a button). Then, as the

master device moves, we apply its relative motion to the predicted frame at t0, so

that

gc = gp(t0)g−1
m (t0)gm, (5.31)

where gm is the master device frame. We note that this formulation gives ξ0 in

coordinates of gp, so the body-frame Jacobian should be used in (5.28). A schematic

block diagram of our control framework is given in Fig. 5.5.
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Figure 5.5: A schematic block diagram of the control framework.

In addition to the clutching, we have implemented motion scaling in order to allow

the operator to make more precise movements with the robot end effector. The scaling

is achieved by altering the commanded relative motion g−1
m (t0)gm, which appears in

(5.31). The relative position command is simply scaled by a multiplicative factor

less than one, and the rotation matrix is scaled by first transforming to the axis-angle

representation, scaling the angle by the same multiplicative factor, and then returning

to the rotation matrix representation. The singularity at the identity in the map from

rotation matrices to the axis-angle representation is handled by not performing the

scaling for relative rotations are very small.

Our implementation includes the kinematic control and damping terms in (5.28).

By iteratively testing our algorithm with various values for the weighting matrices

W0 and W1 (setting v1 = 0 for damping), we have selected ones that perform well

for our choice of units (we used meters for translation and radians for rotation) and

our kinematic model loop rate of approximately 250 Hz.

Our end-effector tracking accuracy weighting matrix, W0 is chosen such that 1
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Figure 5.6: Experimental setup for our user study in which subjects completed a
laparoscopic dexterity evaluation task. The task consisted of a pick-and-place excise
where users removed the rubber cylinders from the pegs on the right, and placed them
on the pegs arranged in a hexagon on the left. This was accomplished by teleoperating
a prototype concentric-tube robot with a gripper-type end-effector.

mm of positional error is as “important” as 2◦ of angular error. This yields

W0 =


106 0 0 0 0 0
0 106 0 0 0 0
0 0 106 0 0 0
0 0 0 (90/π)2 0 0

0 0 0 0 (90/π)2 0

0 0 0 0 0 (90/π)2

 (5.32)

We choose W1 such that 3◦ of rotational movement is damped as much as 1 mm of

translational movement, and we weight the damping term by an additional factor of

40.

W1 = 40


(60/π)2 0 0 0 0 0

0 (60/π)2 0 0 0 0

0 0 (60/π)2 0 0 0

0 0 0 106 0 0
0 0 0 0 106 0
0 0 0 0 0 106

 (5.33)
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5.3.3 Experimental Validation

The above framework was implemented in C++ to teleoperate an active cannula

robot. The robot chosen for the experiments consists of three Nitinol tubes, the

physical parameters of which are given in Table 5.3. Each tube is composed of a

straight segment followed by a circular arc, and the inner tube has a wire-actuated

gripper affixed to the end. A Sensable PHANTOM Omni haptic display (Sensable,

USA) device was used for the master input, with the two buttons on the stylus

mapped to the teleoperation “clutch” and the gripper actuator.

Table 5.3: Tube parameters for the active cannula robot

Inner Middle Outer

Straight Length [mm] 435.6 241.4 94.6

Curved Length [mm] 39.4 54.6 53.4

Curvature [mm−1] 0.0070 0.0059 0.0032

Inner Radius [mm] 0.381 0.673 0.933

Outer Radius [mm] 0.584 0.842 1.162

The program is able to evaluate the kinematic model, including computation

of the Jacobian and Compliance matrices, at approximately 200 to 300 Hz on a

PC with a 2.5GHz Xeon processor, which we have observed to be fast enough for

smooth teleoperation. The integration of the differential equations is performed by the

Adams-Bashforth-Moulton 4th order predictor-corrector method, with the number of

integration steps chosen to balance speed and model error. We used approximately
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one integration point for every three millimeters of arc length. The unloaded model

of Chapter 3 can be solved runs considerably faster, but the model with tip loading

will be useful for achieving accurate control when the robot is in contact with objects

in its workspace or carrying loads via its gripper. For the experiments in this paper,

we used our loaded model implementation with the tip load assumed to be zero.

Using this system we conducted an experimental trial that consisted of users

moving small rubber cylinders from six initial pegs to six final pegs. This setup is

shown in Fig. 5.6. The criteria evaluated were (1) the number of cylinders successfully

moved and (2) the total time required to complete the transfers. Users were given

some time before the experiment to adjust to the robot, but no formal training period

was given. Data from three users was recorded. There was a 100% success rate in task

completion; all users succeeded in moving all six cylinders to the desired locations

without dropping them. The completion times for the individual trials were 270, 244,

965, and 237 seconds. The first two trials were performed by two individual users.

The latter two trials were performed by the same user, who experienced a large

improvement between the first and second trials, indicating that this user’s initial

acclimatization period may not have been sufficiently long before the first trial.

5.3.4 Control Conclusions

We have presented a Jacobian-based teleoperation method for concentric tube robots

that enables external loads to be explicitly considered. The kinematic model and

teleoperation framework presented were successfully implemented on hardware at
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a rate 200-300 Hz in our experiments, which includes a complete kinematic model

computation (solution of the model boundary value problem) at every iteration of

the control loop. Our user studies demonstrated that this teleoperation method

with clutching and motion scaling enabled users to successfully complete laparoscopic

dexterity assessment trials. We believe this teleoperation framework will enable many

of the surgical applications foreseen for concentric-tube robots to be accomplished in

practice. Future work will include evaluation studies in anthropomorphic phantoms

and cadaveric specimens with physicians, to ensure that our teleoperation methods

perform as well in surgical scenarios as they have in our initial benchtop evaluation

studies.

5.4 Probabilistic Deflection-Based Force Sensing

In this section, we develop techniques for using sensed robot deflections to estimate

external forces applied to the robot via the compliance matrix. Our approach is

probabilistic, based on the well-known Extended-Kalman-Filter. We demonstrate

in simulation the feasibility of determining unknown forces applied at the tip of a

flexible tendon-actuated robot using only uncertain measurements of the tip pose

and an uncertain kinematic-static model for the robot.

5.4.1 Problem Statement

We assume that a robot model exists in the form

p = g(τ ,F ), (5.34)
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and that the robot’s Jacobian J and compliance matrix C can be obtained, where τ

is a vector of actuator values, F is an externally applied force, and p is the robot’s

pose. We note that the force sensing methodology and algorithms developed herein

can be used with any flexible robot as long as a model of this form exists for the

robot’s kinematics and static deformation.

Then, our problem statement can be formulated as follows: The state of the robot

at a given time is defined by the vector x = [p τ F ]T . Given an input Gaussian

probability distribution (defined by µinput, and Σinput) which contains the current

measurements of the pose and actuator values, a previous estimate of the force, and

the uncertainty in those measurements and estimates, find the actual probability

distribution for x (defined by µt, and Σt), which represents the best combined estimate

of the actual pose, actuator values, and applied force, at time t, and the uncertainty

in that estimation.

5.4.2 Simplified Example Robot Model

For our purposes in this section (demonstrating proof of concept for probabilistic

force sensing), we will use a simplified model of a tendon-driven manipulator in our

simulations by restricting the robot’s motion to a plane, neglecting transverse shear

strain and axial extension, and considering external loads only at the end effector.

Specifically, this results in a special case of the general model developed in Chapter

4. It it is similar to models used in much of Gravagne and Walker’s work [33, 37],

where the robot structure consists of a planar elastica acted on by actuator torques
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Figure 5.7: Left - A tendon driven continuum robot prototype. Right - Schematic of
our planar robot model with actuation torques and tip forces.

at discrete points along the length. In the case where there are no external loads, this

model reduces to the piecewise constant-curvature result that has been experimentally

validated by several groups (see, e.g. [16, 33]) using robots driven by tendon wires,

such as the one shown in Figure 5.7-right.

Our simplified robot model is pictured in Figure 5.7-right with its kinematic vari-

ables x, y, the tangent angle θ, actuator torques τ1, τ2, and external tip force compo-

nents Fx and Fy. Assuming a linear constitutive law, the internal bending moment

in the backbone at s is proportional to the curvature

m = [0 0 EIu] (5.35)

where E is Young’s modulus, I is the second moment of area of the backbone cross

section about the z axis, and u(s) ≡ dθ
ds

is the curvature of the rod. Assuming that

there are no distributed loads, the internal force vector will be

n = [Fx Fy 0], (5.36)
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and the backbone position is differentially related to the tangent angle θ as follows:

r =[x y 0],

ṙ =[cos(θ) sin(θ) 0].

(5.37)

Thus, using (2.10), we arrive at a set of first order differential equations describing

the shape of the robot as follows:

ẋ = cos(θ)

ẏ = sin(θ)

θ̇ =u

u̇ =
1

EI
(Fx sin(θ)− Fy cos(θ)) .

(5.38)

The boundary conditions for this system are given by:

x(0) =0

y(0) =0

θ(0) =0

u+ (L/2) =u− (L/2)− τ1

EI

u (L) =
τ2

EI
,

(5.39)

where − and + superscripts indicate the value as approached from the left and the

right.

The procedure for solving the boundary value problem to calculate the robot’s end

effector pose p = [x y θ]T as a function of the actuator values τ = [τ1 τ2]T and

applied loads F = [Fx Fy]
T will hereafter be referred to as the forward kinematic

mapping p = g(τ ,F ).
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The robot Jacobian relates how the pose changes with respect to changes in the

actuation variables τ1, and τ2, as

J =


∂x
∂τ1

∂x
∂τ2

∂y
∂τ1

∂y
∂τ2

∂θ
∂τ1

∂θ
∂τ2

 . (5.40)

Similarly, the compliance matrix relates kinematic changes to changes in the external

loads Fx, and Fy, as

C =


∂x
∂Fx

∂x
∂Fy

∂y
∂Fx

∂y
∂Fy

∂θ
∂Fx

∂θ
∂Fy

 . (5.41)

J and C can be efficiently obtained using the methods outlined in the first section of

this chapter. These matrices are used in the prediction step of our Extended Kalman

Filter algorithm to map an uncertainty in the actuator and force values to a resulting

uncertainty in the pose, as discussed in the next section.

5.4.3 Robot Parameters and Uncertainty

In this section, we will define some specific robot parameters in order to investigate

and visualize the effects of actuation and applied force uncertainty on the robot. For

the prototype robot shown in Figure 5.7-left, its central backbone is a spring steel

rod (ASTM A228) of length L = 242 mm and diameter d = 0.8 mm with a Young’s

modulus of E = 210 GPa. This results in a bending stiffness of EI = .0042 Nm2.

Suppose that F = [0 0]T is known, and the uncertainty in τ = [τ1 τ2]T is
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Figure 5.8: Left - The σ and 3σ Gaussian uncertainty ellipses for the tip position are
plotted assuming the symmetric Gaussian distribution for τx and τy given in (5.42).
Right - The σ and 3σ Gaussian uncertainty ellipses for the tip position are plotted
assuming the symmetric Gaussian distribution for Fx and Fy given in (5.44).

Gaussian with mean and covariance,

µτ =[120 − 60]T mNm

Στ =

1 0

0 1

 (mNm)2.

(5.42)

Then, using a linearized approximation of the forward kinematic mapping (which

is assumed to be a good approximation over the region of uncertainty) the resulting

probability distribution for p will be Gaussian with mean and covariance given by the

model prediction step of the conventional EKF, using the forward kinematic mapping

and the Jacobian matrix,

µp =g(µτ ,0)

Σp =JΣτJ
T .

(5.43)

The eigenvectors of Σp provide the directions of the principal axes of an uncertainty

ellipsoid for p, and the square roots of the corresponding eigenvalues give the axis
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lengths for one standard deviation, σ, away from the mean. Plotting the resulting

σ and 3σ uncertainty ellipses for the robot’s tip position in Figure 5.8-left, we see

that the resulting tip uncertainty is much larger in one direction, illustrating that the

Jacobian is ill-conditioned.

Similarly, if τ is known, and the uncertainty in the applied force is described by

a Gaussian distribution with mean and covariance,

µF =[0 0]T mN

ΣF =

100 0

0 100

 mN2,

(5.44)

then the resulting mean and covariance for x are

µp =g(µτ ,µF ,0)

Σp =CΣFC
T ,

(5.45)

and the resulting position ellipses are plotted in Figure 5.8-right. The ill-conditioned

nature of J and C exhibited in both plots makes position-based force sensing a chal-

lenging task. A small amount of inaccuracy in the measurements of the tip location

may lead to large errors in a force estimation depending on the direction. Thus, a

probabilistic approach is needed to take these effects into account and quantify the

uncertainty of any estimates that are based on measurements of the tip pose.

5.4.4 Extended Kalman Filter Approach

The conventional Extended Kalman Filter algorithm is based on a Hidden Markov

Model for the robot, where the current robot state xt is a function of the previous state
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xt−1 and the current control input ut. The EKF determines a Gaussian probability

distribution for the current state given the previous state distribution, the current

control input, and the current measurement zt of some quantities related to the states,

i.e.,

(µt,Σt) = EKF
(
µt−1,Σt−1,ut, zt

)
. (5.46)

For a flexible serial robot, the probability distributions for the pose p, actuators τ ,

and forces F should be dependent on each other because these quantities are related

through the forward kinematic model. This leads us to define the following “state”

vector,

x = [p τ F ]T , (5.47)

which will allow us to estimate the most likely combination of pose, actuator values,

and tip forces simultaneously. In this formulation, there is no “control input”, ut,

since all of the kinematic model inputs have been included in the state, xt. We

account for any modeling inaccuracy by assuming Gaussian uncertainty in τ ), and

we assume that noisy measurements of the tip pose and actuator values are available.
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Specifically, this formulation leads to the following EKF algorithm:

(µt,Σt) = EKF(µinput,Σinput, zt)

µ =


g(µ(4 : 5),µ(6 : 7))

µ(4 : 5)

µ(6 : 7)



G =

03×3 J C

04×3 I4×4


Σt =GΣinputG

T

Kt =ΣtH
T
t (HtΣtH

T
t +Qt)

−1

µt =µt +Kt(zt − h(µt))

Σt =(I −KtHt)Σt

(5.48)

where H is the Jacobian matrix of the measurement function z = h(x)+δ = Hx+δ,

H =

[
I5×5 05×2

]
, (5.49)

Q is the covariance matrix of the Gaussian measurement noise δ, (we used the one

below in our simulations),

Q =

 1 mm2 0 0 0 0
0 1 mm2 0 0 0
0 0 1 deg2 0 0
0 0 0 1 (mNm)2 0

0 0 0 0 1 (mNm)2

 , (5.50)

µinput consists of the current measured values for x, y, θ, τ1, and τ2, and the previous

estimate of the force components,

µinput =

[
zt µt−1(6 : 7)

]
, (5.51)
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Figure 5.9: The applied tip force suddenly changes from zero to [30 30]T mN , after
which point the robot’s actuators continually move the robot. Left: The Q matrix
from (5.50) is used. Right: the last ten measurements are averaged, and Q/10 is used
in the algorithm.

and Σinput is the prior state covariance which is given below for our simulation cases,

Σinput =


Q 0 0

0 100 mN2 0

0 0 100 mN2

 . (5.52)

5.4.5 Force Sensing Simulation Results

We tested the algorithm given in Section 5.4.4 with simulated noisy measurements of

the tip coordinates and actuator values sampled from Gaussian distributions. Two

test cases were performed. The first simulates a sudden change in the applied force
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from zero to [30 30]T mN . After this, the forces remain constant but the robot’s

actuators continually move the robot. This case is illustrated in Figure 5.9. The

robot’s ground truth shape is plotted, along with a black vector at the tip which

represents the magnitude and direction of the applied force. The blue ellipses are the

σ and 3σ uncertainty ellipses for the tip position, and the red ellipses are the σ and

3σ uncertainty ellipses for the location of the tip of the force vector.

Figure 5.9-left shows the result when the Q defined in (5.50) is used. In Figure

5.9-right, the previous ten measurements were averaged at each time step, and the

Q from (5.50) was accordingly replaced with Q/10 (since the variance of the sample

mean of a Gaussian scales inversely with the number of samples). The result in Figure

5.9-right is higher accuracy, but the accuracy is more dependent on the direction, as

shown by the smaller, flatter ellipses.

The second test case is shown in Figure 5.10-left, and 5.10-right. The actuators

remain at fixed values, and the force was increased from 0 to [100 100]T mN in

increments of [20 20]T mN at each time step. This represents a difficult scenario for

force estimation, since the force is applied in a direction in which the robot is much

stiffer (corresponding to the short axis of the ellipse in Figure 5.8-right). In this case,

Figure 5.10-left shows that the measurement accuracy (Q in (5.50)) is insufficient to

for good convergence of the EKF algorithm. In Figure 5.10-right, the previous 100

measurements were averaged at each time step, and Q/100 was used in the EKF.

Thus, increasing the measurement accuracy helps the algorithm to converge more

quickly in this scenario.
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Figure 5.10: The applied tip force continually increases in a direction in which the
robot is extremely stiff. Left: The Q matrix from (5.50) is used. Right: the last 100
measurements are averaged, and Q/100 is used in the algorithm.

5.4.6 Conclusions

The results in Section 5.4.5 provide an indication that our Extended Kalman Filter

approach is suitable for position-based force sensing in flexible continuum robots,

which, as we showed in Section 5.4.2, typically have ill-conditioned compliance matri-

ces and Jacobians. There is much future work to be done, including developing rules

for how accurate sensors must be for various kinds of robots in various configurations

to achieve force sensing, and when it may not be possible in certain directions (this

is analogous to the sensable and insensable wrenches seen in prior continuum robot

work [102]). Also, experimental validation of sensed forces against known applied

forces is essential, and experiments will be conducted in the near future. We also

intend to extend this work to consider forces along the robot (not just at the tip),

apply the method to continuum robots that are actuated by mechanisms other than
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tendons, and apply it to non-planar robot configurations. The work in this chapter

serves as a first step toward these future goals.
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Chapter 6

Conclusions and Future Work

This dissertation has presented several main contributions to the established, yet

growing body of knowledge about continuum robots. Having laid foundations in

modeling, control, and sensing for continuum robots, there are a variety of promising

directions, outlined in the following sections, in which future research could proceed,

using the work in this dissertation as a foundation.

6.1 Future Work in Modeling an Design

The models for concentric tube robots developed in Chapters 3 and 4 capture the es-

sential physical phenomena governing the deformed shape of a general concentric-tube

robot and have been shown to be accurate for several prototype robots. However, to

obtain greater model accuracy, it may be necessary in the future to consider addi-

tional effects which are not represented in the current modeling frameworks. First,

in practice there is usually a small amount of “non-tangency” of tube centerlines al-

lowed by the clearance between concentric tubes. For robot configurations in which

the inner tubes extend far beyond the ends of outer tubes, this effect may account

for a significant portion of the total model error. Second, the effect of static fric-

tion between tubes introduces a hysteresis effect which, although usually small, may

be non-negligible in some cases. Third, the effects of transverse shear deformation
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and extension could be incorporated, although these effects are minimal for robots

constructed from long, slender, metal tubes. Fourth, incorporating more accurate,

nonlinear, constitutive laws may be advantageous, especially for materials with known

nonlinear constitutive behavior, like Nitinol.

Finding alternate model formulations may also be a fruitful area of future in-

quiry. In the case of the model in Chapter 5 for a general tendon-actuated robot, it

would be useful to have an computationally efficient model which does not require

the tendon tensions, but rather the tendon displacements as inputs. This could con-

ceivably be accomplished by minimizing the potential energy functional subject to a

tendon-length constraint. Real-time numerical implementation of the dynamic model

presented in Chapter 5 would also be valuable towards facilitating inverse-dynamic

control.

Future novel robot designs and architectures may also provide a perfect setting in

which to apply rod-mechanics-based approaches like the ones presented in this work.

Specifically, one can envision a hybrid robot which combines the actuation strategies

of concentric tubes and embedded tendons. The dexterity of such a design may

have the capability to exceed that of designs which use concentric tubes or tendons

alone, and many of the results in this dissertation may be directly applied in order

to generate a model for it. Furthermore, the optimization of workspace volume or

dexterity measures by selecting design parameters has been relatively understudied

for continuum robots, and the models in this dissertation should serve as efficient

computational tools for studying these types of problems.
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6.2 Future Work in Control and Sensing

In the area of control and sensing, the strategies outlined in Chapter 5 lay the ground-

work for further work. One key idea which has not been considered is the bifurcation

behavior of continuum robots described in [94]. Bifurcation may be addressed by a

combination of design, planning, and control strategies. Specifically on-line detection

and avoidance of potential bifurcation behavior during teleoperation may be possible

by examining certain properties of the model and the robot Jacobian.

To facilitate using concentric-tube robots as steerable needles and to traverse

tubular anatomical cavities, future work should also address insertion along desired

paths (so that the body of the robot conforms or approximately conforms to the

path at each point during the insertion). This problem may also be addressed by a

combination of design, planning, and control.

The probabilistic approach to deflection-based force sensing may also be expanded

and validated in future work. Implementation on concentric-tube robot hardware

with external sensing, and incorporation of intrinsic wrench sensing into the proposed

control framework are the necessary next steps toward a teleoperation system with

intrinsic haptic feedback. In addition, the sensing of multiple loads located at different

points along the continuum robot may be desirable to facilitate compliant interaction

with sensitive structures.
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6.3 Conclusions

This dissertation has presented 5 main contributions to the established, yet growing

body of knowledge about continuum robots. In Chapter 3, we derived and experimen-

tally validated two generalized, mechanics-based models for concentric-tube robots,

which describe the shape of a general robot both in free-space under external loads.

In Chapter 4, we derived and experimentally validated a new mechanics-based model

for continuum robots actuated by tendon wires with general routing, and acted on by

external loads. In Chapter 5, we developed a method for efficiently obtaining robot

Jacobians and compliance matrices directly from a general set of model equations,

and we showed how to use them to achieve inverse-kinematic control and probabilistic,

deflection based force sensing.

The symbiotic relationship between robotics and continuum mechanics has had a

long and fruitful history. We hope that the work in this dissertation provides a small

contribution to this tradition that future work may build upon, and we anticipate

that the overlap between the two will continue to generate both intriguing theoretical

questions and solutions to practical problems in both fields.
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