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ABSTRACT
CENK BAYKAL: Design Optimization Algorithms for Concentric Tube Robots.

(Under the direction of Ron Alterovitz.)

Concentric tube robots are tentacle-like surgical robots that can bend around anatomi-
cal obstacles to access hard-to-reach surgical targets. These robots have potential to enable
minimally invasive surgical procedures by allowing physicians to access clinical regions that
were previously unreachable using traditional instruments. Concentric tube robots are com-
posed of nested, customizable tubes which undergo complicated mechanical interactions that
generate tentacle-like motion. As a consequence of this intricate kinematic mechanism, the
physical specifications of each of the robots tubes, i.e. the robot’s design, significantly af-
fect the shapes that the robot can undertake and the regions it can reach. Customizing the
design of these robots can potentially facilitate successful surgical procedures on a variety
of patients. In this thesis, we present design optimization algorithms to generate appropriate
design parameters on an application- and patient-specific basis.

We consider three design optimization problems. First, we present a design optimization
algorithm that generates a concentric tube robot design under which the robot can maximize
the reachable volume of a given goal region in the human body. We provide analysis estab-
lishing that our design optimization algorithm for generating a single design is asymptoti-
cally optimal. Second, we present an algorithm that computes sets of concentric tube robot
designs that can collectively maximize the reachable volume of a given goal region in the
human body. Third, we introduce an algorithm that generates the set of designs of minimal
size such that the designs in the set can collectively reach a physician-specified percentage of
the goal region.

Each of our algorithms combines a search in the design space of a concentric tube robot
using Adaptive Simulated Annealing with a sampling-based motion planner in the robot’s
configuration space in order to find a single or sets of designs that enable paths to the goal
regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness
of each of our algorithms in a simulated scenario based on lung anatomy and compare our
algorithms’ performance with that of current state-of-the-art design optimization algorithms.
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Chapter 1

Introduction

Concentric tube robots are tentacle-like surgical robots that can potentially enable safer min-
imally invasive interventions to many sites in the human body, including the lungs, the skull
base, and the heart (Gilbert et al., 2013). These robots are composed of nested Nitinol tubes
that each are precurved, typically with a straight segment followed by a curved segment.
To perform a task, the robot axially rotates and translates each tube relative to one another,
causing the entire device’s shape to change. Concentric tube robots act like shape-changing
robotic needles that can curve around anatomical obstacles (e.g., bones, blood vessels, criti-
cal nerves, etc.) to reach surgical targets not easily accessed using traditional straight surgical
instruments.

The curvilinear shapes achievable by concentric tube robots are highly dependent on the
component tubes’ physical specifications. The design of the concentric tubes, including the
tubes’ lengths and precurvatures, affects the robot’s workspace and the space of the robot’s
attainable shapes. Consequently, the design of the concentric tubes determines the set of
clinical targets that the robot can safely reach.

The fact that the robot’s design has a profound impact on the clinical targets the robot can
reach implies that a successful medical procedure is contingent upon using an= appropriately-
designed robot. In this thesis, we present a novel algorithm for optimizing the design of a
single concentric tube robot with respect to the patient’s anatomy and the physician-specified
goal region. We thoroughly analyze the optimality property of our single design optimization
algorithm and show that our algorithm is asymptotically optimal.

Even with the shape-changing capabilities of a concentric tube robot, due to kinematic
constraints a single design is may not capable of reaching all targets in a physician-specified
goal region. Fortunately, concentric tube robots can be built to facilitate simple swapping
of tubes of varying physical specifications; selecting concentric tubes for a particular task



Figure 1.1: A simulated concentric tube robot operating under 4 different designs reaching
clinical goal regions within the lung. In the figures above, the three colors aqua, orange, and
pink correspond to the 3 different tubes that constitute the robot. The green sphere marks
the position in the workspace that the robot can reach with its end effector without colliding
with the anatomical obstacles, which include arteries (red), veins (blue), and bronchial tubes
(light pink).

could maximize the robot’s efficacy during the procedure. For the sake of efficiency, it is
desirable to generate and use the minimum number of designs required in order to conduct
a successful medical procedure. To this end, we introduce a new algorithm to efficiently
compute a minimal set of designs for a concentric tube robot, such that this set of designs
can be sequentially swapped into the robot to access as much of the goal region as feasibly
possible while avoiding anatomical obstacles.

The methods we propose could be used to create designs for classes of procedures or on
a patient-specific basis. Prior to a procedure, physicians typically obtain a CT scan or MRI
of the relevant anatomy, and we can use these volumetric images to segment (either manu-
ally or via automatic segmentation software) the goal region as well as anatomical obstacles
that must be avoided. Fig. 1.3 illustrates the envisioned clinical workflow at highlights the
juncture when our design optimization algorithm would be used. Unfortunately, the com-
plex kinematics of concentric tube robots makes it difficult to assess if a given design of
concentric tubes can safely access a given target while avoiding anatomical obstacles. As
the device’s tip moves, the shape of the shaft of the device may change substantially, and
this shape change must be considered to ensure obstacle avoidance. Torres et al. previously
addressed the challenge of computing a single design to reach a finite set of points by using
a sampling-based motion planning method that explicitly considered the shape of the entire
device en route to a target point (Torres et al., 2012).

In this thesis, we build on the prior approach by Torres et al. by interleaving a search
in the concentric tube robot’s design space (i.e., the lengths and precurvatures of the robot’s
component tubes) with a motion planner in the robot’s configuration space (i.e., the rotations

2



Figure 1.2: We show the points reachable in a human lung model by a concentric tube robot
(deployed near the base of the primary bronchus) under two different designs in red and
green. The figure shows that the two designs complement one another; the two designs
can collectively reach a larger volume of the lung than can either of the designs alone. By
generating sets of designs that can collectively reach the entire lung, physicians can perform
a wider variety of surgical procedures with just one robot platform.

and translations of the robot’s tubes). As an extension to the algorithm of Torres et al., our
algorithms employ Adaptive Simulated Annealing (ASA) (Ingber, 1989) global optimization
algorithm to accelerate the design space search. As was done by the algorithm introduced by
Torres et al., our algorithms employ the Rapidly-exploring Random Trees (RRT) (LaValle,
2006) motion planning algorithm to quickly evaluate the goal region reachability of candidate
designs. We demonstrate the effectiveness of our algorithms in generating appropriate de-
signs and minimal sets of designs for concentric tubes on an application- and patient-specific
basis using anatomy-inspired scenarios.
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Figure 1.3: A flow diagram illustrating the envisioned clinical workflow and the stage at
which our design optimization algorithms would be used. We note that the inputs to our
algorithm are a medical image and a physician-specified goal region. By feeding this input
to our design optimization algorithm, we enable our method to generate designs specific to
the patient and application.

4



Chapter 2

Related Work

A number of approaches have previously been developed for the single design problem.
Moreover, the problem of computing an optimal set of designs can be seen as a generalization
of the single design problem.

Bergeles et al. proposed a powerful optimization framework for generating robot tube
designs that can reach sets of points subject to anatomical constraints, and then applied this
method to brain and heart surgery scenarios (Bergeles et al., 2015). They achieve computa-
tional tractability by (1) reducing the motion planning problem to finding individual config-
urations that can reach each specified task point, and (2) using a simpler and faster kinematic
model for the general optimization, and then refining the solution using a more accurate (but
slower) kinematic model. Although this method works well for a variety of cases, the as-
sumptions that enable computational tractability can sometimes yield suboptimal solutions
(Torres et al., 2012). This can happen because the method does not explicitly consider the
entire robot deployment to the surgical task site (Torres et al., 2012).

Ha et al. presented a method for designing concentric tube robots while maximizing de-
vice stability (Ha et al., 2014). This method complements this paper’s approach to computing
minimal sets of concentric tube robot designs.

Burgner et al. addressed the problem of finding a concentric tube robot design that max-
imized the reachable region of points in the sella of the human skull, subject to physical
constraints imposed by the bones in the skull (Burgner et al., 2013). They achieved this by
performing a nonlinear optimization over the design space of the robot; they quantify how
much of the sella is reachable under a given design by computing the forward kinematics
over a grid on the robot’s configuration space. Their approach is well-suited for the neuro-
surgical scenario in question, but can be subject to the same suboptimal solutions as the work
by Bergeles et al. due to not considering the full robot deployment to the surgical task site.



We take an alternative approach that explicitly considers the entire robot deployment to
the surgical task site. Torres et al. first explored this approach by using sampling-based
motion planning (Torres et al., 2012). In this paper we extend the work of Torres et al. work
to (i) find an optimal single design with respect to volume-based objectives and (ii) generate
a minimal set of robotic designs that can enable a wide variety of surgical tasks. We also use
an improved search strategy based on Adaptive Simulated Annealing (ASA) (Ingber, 1989)
that enables faster convergence to higher quality solutions. Moreover, we present analysis
outlining a proof asserting that the single design optimization algorithm is asymptotically
optimal.

Designing a concentric tube robot in advance to perform a particular task requires ac-
curate kinematic modeling. Kinematic modeling of concentric tube robots has rapidly pro-
gressed in accuracy and sophistication, from bending models (Sears and Dupont, 2006), to
torsionally compliant models (Dupont et al., 2009; Rucker and Webster III, 2009), exter-
nally loaded models (Rucker et al., 2010; Lock et al., 2010), and friction models (Lock and
Dupont, 2011). In this work we used a mechanics-based model developed by Rucker et al.
(Rucker, 2011).

Our approach depends on the ability to determine the positions in the anatomy that are
safely reachable by a concentric tube robot. Burgner-Kahrs et al. developed a novel method
to characterize the workspace of concentric tube robots (Burgner-Kahrs et al., 2014); we
instead take a motion planning approach in order to find points that are reachable by robot
motions that avoid contact with anatomical obstacles. Prior work in motion planning for
concentric tube robots include fast planners using simplified kinematic models (Lyons et al.,
2009; Trovato and Popovic, 2009), non-interactive planning for mechanics-based kinematic
models (Torres and Alterovitz, 2011), and fast planning for mechanics-based models using
precomputation (Torres et al., 2014). In this paper we prioritize an accurate approximation of
the robot’s reachability, so we use an accurate kinematic model combined with the classical
Rapidly-exploring Random Tree motion planning algorithm (LaValle, 2006).

The problem of optimizing robotic design has been addressed in previous work for serial
manipulators. Prior work has used genetic algorithms to optimize the structure of manip-
ulators under various metrics (Katragadda, 1997; Leger, 1999; Chocron, 2008; Salle et al.,
2004). Other approaches to optimal manipulator design have used interval analysis (Merlet,
2005), geometric methods (Vijaykumar et al., 1986), and grid-based methods (Park et al.,
2003). We explore an alternative approach that can handle the complex kinematics of con-
centric tube robots.
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Chapter 3

Problem Definition

A concentric tube robot design d is the set of physical parameters of the robot’s component
tubes that are selected and fixed before performing a surgical task and cannot be changed
during the performance of the procedure. Specifically, we describe each tube’s design with
the following 3 parameters.

• Ls
i : length of tube i’s straight section

• Lc
i : length of tube i’s pre-curved section

• κi: curvature of tube i’s pre-curved section

Therefore, a concentric tube robot composed of n tubes has a design space D with 3n param-
eters, i.e., D⊂ R3n.

During operation of a concentric tube robot, each tube can be independently axially ro-
tated and translated, meaning that an n-tube robot’s configuration is a 2n-dimensional vector
q. The configuration space of a concentric tube robot is Q⊂ (S1)n×Rn.

We represent the shape of a concentric tube robot during operation as a 3D space curve
that depends on (i) the robot’s design and d (ii) the robot’s configuration q. We therefore
denote the robot’s shape using a function Shape(d,q) : D×Q→ ([0,1]→ R3) that assigns a
3D space curve representing the robot’s shape under design d at configuration q. The curve
itself is parametrized by s ∈ [0,1], i.e. Shape(d,q)(s) generates points along the shaft of
the robot. The positions of the robot’s insertion point and end-effector correspond to s = 0
and s = 1, respectively. We compute Shape using an accurate mechanics-based model of
concentric tube interactions (Rucker, 2011).

Safe operation of a concentric tube robot requires that we avoid collisions between the
robot’s shaft and anatomical obstacles such as bones, blood vessels, and sensitive tissue. We



define the anatomical obstacles O ⊂ R3 as all 3D points in space that should never intersect
with the robot’s shape Shape. The collision-free subset of robot configurations is Qfree. We
note that, because the robot shape Shape varies with the robot’s design, the collision-free
subset of configurations also depends on the robot’s current design, so we denote it as Qd

free.
We can determine O via manual or automatic segmentation on the patient’s preoperative
medical imaging (Johnson et al., 2013).

3.1 Optimization Objectives

We wish to find a single design or sets of concentric tube robot designs that can access
surgical targets by following collision-free paths. We consider a path Π = (q1, . . . ,ql) to be
collision-free if the continuous paths to each subsequent configuration qi are all collision-free
(i.e., free of intersection with O).

The goal of this thesis is to find concentric tube robot designs that allow for collision-free
paths to as many points as possible in a goal region G ⊂ R3, which is identified in medical
images by physicians in a manner similar to obstacles. We emphasize that this goal region
is different from typical motion planning problems since we want to reach as many points as
possible in the goal region rather than finding a single collision-free path to any point in the
goal region.

We denote the set of points that a concentric tube robot can reach by collision-free paths
as W (d)⊂R3 (i.e., the feasible workspace). We can therefore quantify the quality of a given
design as the percentage of G that lies in the robot’s feasible workspace W . For computational
feasibility, we discretize the goal region G into a countable and finite set of voxels V (i.e.,
cells in a 3D grid). We compute the reachable goal percentage r of a given design d as follows

r(d) =
∣∣VoxelsReached(d)

∣∣
|V |

. (3.1)

Similarly, the reachable goal percentage r of a given design set S is evaluated by

r(S) =

∣∣⋃d∈S VoxelsReached(d)
∣∣

|V |
. (3.2)

When computing VoxelsReached, we emphasize that we must consider the entire sequence
of motions executed to reach a goal voxel. With these definitions in place, we consider the
following two problems:

8



Problem 1: Optimal Single Design Generate the single design d∗ that maximizes the
reachable goal percentage, i.e.,

d∗ = argmax
d∈D

r(d). (3.3)

Problem 2: Minimal Design Set Find a set S∗ of robot designs that is minimal (in car-
dinality) but with a reachable goal percentage greater than a physician-specified threshold
rthreshold:

S∗ = argmin
S∈2D

|S|, s.t. r(S∗)> rthreshold, (3.4)

where 2D is the set of all possible sets of designs.

9



Chapter 4

Methods

Our algorithms for generating d∗ and S∗ in Eq. 3.3 and 3.4 respectively interleave a guided
sampling-based search in the robot’s design space with a sampling-based motion planner in
the robot’s configuration space. For computation of d∗, we use a global optimization algo-
rithm called Adaptive Simulated Annealing (ASA) (Ingber, 1989). For motion planning in
the configuration space, we use the Rapidly-exploring Random Tree (RRT) (LaValle, 2006)
algorithm. We use ASA to sample a single design, and then we use RRT to evaluate this
design’s reachable goal percentage. We iterate on this process, incrementally finding designs
with higher reachable goal percentages.

The algorithm for generating S∗ can be seen as an extension of our algorithm for finding
d∗. In this case, we use ASA to sample sets of m designs and then we employ RRT to evaluate
this set’s reachable goal percentage. We iterate on this process until we find a set of designs
that can collectively reach a sufficient percentage of the goal region (rthreshold). If a design
set of size m is found, then we try to find a set of smaller size by repeating this process for a
group of designs of size m−1 and so on until a minimal set of designs reaching a satisfactory
percentage of the goal region is found.

4.1 Computing Reachable Goal Percentage for a Single De-
sign

According to Eq. 3.3 in order to evaluate the reachable goal percentage r of a single design
d, we need to compute VoxelsReached(d). Computing the output of VoxelsReached(d),
i.e. checking whether a given voxel can be reached by a collision-free path is equivalent
to solving the motion planning problem, which is known to be PSPACE-hard (Reif, 1979).



This implies that, in order to generate solutions in a feasible amount of time, we must accept
approximate solutions. We therefore use a probabilistic, sampling-based motion planning
algorithm called RRT that can quickly compute an approximation of the robot’s feasible
workspace (LaValle, 2006).

RRT incrementally builds a tree of robot configurations that can be reachable by collision-
free paths from a given start configuration under a given design d. After a given number t of
iterations of RRT, we iterate over each configuration q in the tree to check which goal voxels
can be reached from these configurations.

In this way we compute an approximation of VoxelsReached(d) and then use Eq. 3.1 to
compute the design’s approximate reachable goal percentage r̂t(d). We use the t in r̂t(d)
to denote that this approximation was generated using t iterations of the RRT algorithm.
We note that the nature of RRT’s feasible workspace approximation is such that we never
overestimate the design set’s true reachable goal percentage, i.e., r̂t(d) ≤ r(d). RRT also
provides probabilistic completeness, a useful property in which the longer we execute the
RRT algorithm, the more likely it is to find a collision-free path to a given target (if a feasible
path exists). This implies that, as we increase the iterations t of RRT, the probability of our
approximation r̂t(d) being equal to the true r(d) approaches 100%.

4.2 Sampling a New Single Design

In the previous section we described how we compute the reachable goal percentage of a
single design. In this section, we discuss the strategy we use to generate new single designs
that are evaluated by the process outlined in Sec. 4.1.

We note that the space of single designs is D, i.e. the design space. In accordance with
traditional optimization terminology, we will refer to members of the set D as states. For an
n-tube concentric tube robot, this problem is a 3n-dimensional search for an optimal design
(i.e., a state), d, with highest reachable goal percentage. Due to the high dimensionality of
the search space, we opt for a stochastic approach based on the Adaptive Simulated Anneal-
ing (ASA) algorithm. We use ASA because because it provides global optimality, which
guarantees that we will not get stuck indefinitely in local optima during our search for better
designs. Moreover, as shown in Sec. 5, ASA exhibits favorable algorithmic properties that
allow us to prove asymptotic optimality of our single design optimization algorithm.

ASA is always centered on a “current” state dcurrent in the search space. At the beginning,
ASA tends to sample states far away from dcurrent in order to adequately explore the space.
As ASA progresses, it tends to sample states nearer and nearer to dcurrent in order to make
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local refinements. ASA controls this sampling variance using a temperature parameter T

that decreases with each iteration of ASA. Whenever ASA samples a state dsample with a
lower cost than that of dcurrent, ASA updates dcurrent to be equal to this new sample dsample.
Additionally, if the cost of the new sample is higher than that of the current state, ASA might
still update to the new sample with an acceptance probability that decreases over time (also
controlled by the temperature T ). This potential to take steps of increasing costs allows ASA
to escape local minima in state space.

In our method, a state d ∈ D has a low cost if it has a high reachable goal percentage,
which we approximate with r̂t(d) as described in Sec. 4.1. Evaluation of r̂t(d) requires that
we specify t, i.e., the number of iterations of RRT to use for the approximation. We cannot
know in advance how many iterations of RRT it will take to compute an adequate approxima-
tion of a design’s goal reachability, so we set this number of iterations t to an initial value tstart

and increase it by tincrease after every design we consider. This enables us to more quickly
(but more coarsely) and evaluate many designs in the initial phases of our algorithm, and
then evaluate designs at a slower rate with higher accuracy as the algorithm progresses. This
behavior is analogous to ASA’s decreases in sampling variance and acceptance probability
over time. This key property of our algorithm is fundamental in establishing asymptotic
optimality for the single design optimization algorithm.

4.3 Finding an Optimal Single Design

In the previous sections, we described how a single design is evaluated (Sec. 4.1) and sam-
pled (Sec. 4.2). In this section we present Alg. 1, our asymptotically optimal single design
optimization that interleaves the search and evaluation subroutines. At each iteration of our
algorithm, our algorithm samples a design using ASA’s sampling procedure and evaluates
it using an RRT. This process of sampling and evaluation is repeated until the algorithm is
terminated, at which point our algorithm outputs the best design found thus far by our algo-
rithm.

4.4 Computing Reachable Goal Percentage for a Design Set

Similar to the case of evaluating the reachable goal percentage of a single design outlined in
Sec. 4.1, according to Eq. 3.4 in order to evaluate the reachable goal percentage r of a set of
designs S, we need to compute VoxelsReached(d) for each design d in the set S. This com-

12



Algorithm 1 Find a single design with maximum reachable goal percentage
Output:

d∗: a concentric tube robot design with maximum reachable goal percentage

1: t← tstart;
2: T ← Tinitial;
3: rcurrent← 0;
4: dcurrent← random initial design;
5: while allotted time remains do
6: d′← ASA SampleSingleDesign(dcurrent,T )
7: Vd′ ← executeRRT (d′, t)
8: r′←

∣∣Vd′|/|V |
9: if r′ > rcurrent then

10: Scurrent← S′;
11: rcurrent← r′;
12: else
13: if ASA maybeAccept(r′,rcurrent,T ) then
14: Scurrent← S′;
15: rcurrent← r′;
16: t← t + tincrease;
17: T ← ASA updateTemperature(T );
18: return design d∗ found with highest goal reachability;

putation can be done by executing the process mentioned in Sec. 4.1 for each design d ∈ S.
We compute an approximation of VoxelsReached(d) for each d ∈ S in parallel for a consid-
erable computational speedup and then use Eq. 3.2 to compute the design set’s approximate
reachable goal percentage r̂t(S).

4.5 Sampling New Sets of Designs

In the previous section we described how we compute the goal reachability of a design set; in
this section, we discuss the strategy we use to generate new sets of designs. We will discuss
how to find a set of designs of minimal size in Sec. 4.6; for this section, we will assume that
the required size of the design set is fixed, i.e., |S∗|= m.

The procedure for sampling sets of designs is very similar to the process of sampling a
single design which was outlined in Sec. 4.2. Nevertheless, in the case of a set of designs, the
space of possible sets of designs is Dm and states in this context refer to design sets, rather
than single designs. In other words, we treat members of the set Dm as states in the context
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of the optimization objective of Problem 2. For an n-tube concentric tube robot, this problem
is a 3nm-dimensional search for a design set (i.e., a state) with sufficient goal reachability.
With the exception of the expanded state space and the consideration of design sets as states,
the ASA algorithm’s behavior for sampling new states is the same as that for sampling single
designs, described in Sec. 4.2.

As mentioned in Sec. 4.4, for efficiency we compute r̂t(S) by parallelizing the computa-
tions of VoxelsReached(d) for all d ∈ S across multiple processor cores. However, we often
have more processor cores than designs in a design set, i.e., c > m for c processor cores and
m designs per design set. This leaves c−m cores that are free for additional computation.
In order to make use of all our cores, at each iteration of ASA we actually sample a design
set S′ of size c and evaluate each design’s reachable goal voxels. We then iterate over all

( c
m

)
subsets of S′ of size m to find the set of designs that collectively yield the highest reachable
goal percentage r̂t(S). This subset iteration step is completely dominated in computation
time by the evaluation of each design’s reachable goal percentage, so this method effectively
enables us to sample design sets of higher quality with no extra computation time due to
parallelization.

4.6 Finding a Design Set of Minimal Size

In the previous section, we described how we find a set of designs of fixed size that collec-
tively maximize the reachable percentage of the goal. We use this method as a subroutine
to solve our full problem of finding a set of designs of minimal size with a reachable goal
percentage greater than a specified threshold rthreshold (shown in Alg. 4).

We begin by invoking the fixed size algorithm (Alg. 3) with a user-specified maximum
set size mmax. Once a design set of size mmax has been found that can reach a percentage
of the goal greater than rthreshold, we invoke Alg. 3 using a design set size of mmax− 1. We
iterate this process until we run out of the time allotted for this task.
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Algorithm 2 Sample and evaluate a design set
Input:

Scurrent: Current design set of size m
m: required design set size
c: number of available processing cores
t: number of RRT iterations to execute
T : ASA’s current annealing temperature

Output:

Snew: new set of robot designs of size m
rnew: reachable goal percentage of Snew

1: S← ASA SampleDesignSet(Scurrent,c, t,T );
2: designToVoxelsMap= /0;
3: for di ∈ S (in parallel) do
4: designToVoxelsMap[di]← executeRRT(di, t);
5: candidateSets← subsets of size m of S;
6: rnew← 0;
7: Snew← /0;
8: for each S′ ∈ candidateSets do
9: r←

∣∣⋃d∈S′ designToVoxelsMap[d]
∣∣;

10: if r > rnew then
11: rnew← r;
12: Snew← S′;
13: return Snew,rnew;
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Algorithm 3 Find a design set of fixed size with maximum reachable goal percentage
Input:

m: number of designs in the design set S
c: number of available processing cores
rthreshold: stopping point for our design search

Output:

S∗: a set of m concentric tube robot designs that together maximize the reachable goal
percentage

1: t← tstart;
2: T ← Tinitial;
3: rcurrent← 0;
4: Scurrent← arbitrary random set of designs;
5: while rcurrent < rthreshold do
6: S′,r′← Algorithm2(Scurrent,m,c, t,T )
7: if r′ > rcurrent then
8: Scurrent← S′;
9: rcurrent← r′;

10: else
11: if ASA maybeAccept(r′,rcurrent,T ) then
12: Scurrent← S′;
13: rcurrent← r′;
14: t← t + tincrease;
15: T ← ASA updateTemperature(T );
16: return design set S∗ found with highest goal reachability;

Algorithm 4 Find a minimal design set that reaches a sufficient percentage of the goal
Input:

mmax: maximum number of designs in the design set
rthreshold: desired reachable goal percentage

Output:

S∗: a minimal set of designs with goal reachability greater than rthreshold

1: m← mmax;
2: while allotted time remains and m > 0 do
3: S∗← Algorithm3(m,c,rthreshold);
4: m← m−1;
5: return S∗;
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Chapter 5

Analysis

In this section we consider the quality of the designs generated by our single design opti-
mization algorithm (Alg. 1) as the number of optimization iterations tends to infinity. We
outline a proof that the solution generated by our algorithm converges in probability to the
globally optimal solution. We remark that detailed proofs of the Lemmas and Theorems are
being formalized and will be published in future work. For the outline of this proof, we will
utilize the following preliminaries and assumptions.

Assumption 1 (Voxels as Open Sets). Each voxel v ∈V is as an open set, i.e.

∀v ∈V , ∀x ∈ v, ∃ε ∈ R+Bε(x)⊆ v

Recall that Shape(d,q) : D×Q→ ([0,1]→ R3) is a function that assigns a 3D space
curve representing the robot’s shape under design d at configuration q. In this representation,
Shape(d,q)(1) denotes the position of the robot’s end effector. Let Tip : D×Q→ R3 be
the function that outputs the tip position of the robot under design d at configuration q. The
following assumption on the Shape function ensures that robots under similar designs have
similar shapes at the same configuration.

Assumption 2 (Lipschitz Continuity of the Shape Function). The Shape function is Lipschitz

continuous: for all d1,d2 ∈ D and q ∈ Qd1 ∩Qd2

‖Shape(d1,q)−Shape(d2,q)‖∞ ≤ L‖d1−d2‖∞

for some constant L ∈ R+.

Note that we utilize the infinity (Chebyshev) norm in Assumption 2.



Assumption 3 (Obstacle Spacing). Let X f ree ⊂ R3 denote the obstacle-free space. There

exists a constant δ ∈ R+ such that for any point x ∈ X f ree, there exists x′ ∈ X f ree such that

Bδ (x′)⊂ X f ree and x ∈ Bδ (x′).

Assumption 3 is the same assumption that was made by Karaman and Frazzoli (Karaman
and Frazzoli, 2010).

The outline of the proof is as follows. First, we show that the optimal set of designs D∗

has non-zero measure, i.e. µ(D∗)> 0 given Assumptions 1, 2, and 3 hold. Subsequently, we
show that the ASA algorithm will sample designs infinitely many times from D∗, which will
lead to exact evaluations of R(d) for designs sampled from D∗, i.e., d ∈ D∗ as the number of
iterations n→ ∞.

Note that in order for the Lipschitz condition of Assumption 2 to be utilized, there must
exist a set of configurations that the robot can achieve under both designs d1,d2 ∈ D, i.e.,
Qd1 ∩Qd2 , since due to mechanical constraints, some configurations may be unachievable
under certain designs. In the following lemma, we establish, for all d ∈ D, the existence of
an open set of designs, Dnear such that µ(Dnear) ∈ R+ and ∀d′ ∈ Dnear, Qd ⊆ Qd′ .

Lemma 4 (Configuration Space of Nearby Designs). For any design d ∈ D there exists a

set of designs Dnear ⊆ Bε(d), with ε ∈ R+, such that each design d′ ∈ Dnear can achieve the

configurations that d can, i.e.

Dnear = {d′ ∈ Bε(d) | Qd ⊆ Qd′}

such that µ(Dnear) ∈ R+.

Lemma 5 (Proximity of Tip Positions). For all d1,d2 ∈D and q∈Qd1∩Qd2 , if ‖Shape(d1,q)−
Shape(d2,q)‖∞ ≤ ε , then ‖Tip(d1,q)−Tip(d2,q)‖ ≤ ε , for ε ∈ R+.

For a design d ∈ D, let Σd(p) denote the set of feasible paths that the robot under design
d can undertake to reach the goal p ∈ R3. The following lemma establishes the existence of
an open set of designs around d ∈ D, Dnear, with positive measure such that the robot under
a design d ∈ Dnear can reach arbitrarily ”close” points to those reachable under design d.

Lemma 6 (Existence of Designs Capable of Reaching Close Goal Points). Consider any

d ∈ D that can reach a goal point p ∈ R3 with its end effector by following a sequence of

collision-free configurations ψ . Then, ∀ξ ∈ R+ satisfying ξ ≤ δ there exists a non-empty,

open subset of D, Dnear with µ(Dnear) ∈ R+, such that the robot under any design in Dnear
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can reach a goal point p′ ∈ R3 satisfying ‖p−p′‖2 ≤ ξ , with its end effector by following a

collision free path, i.e.,

Dnear = {d′ ∈ D | Σd′(p′) 6= /0∧‖p−p′‖2 ≤ ξ}

where δ is the obstacle-spacing constant as defined in Assumption 3.

Recall that the function VoxelsReached(d) computes the set of voxels reached by the
robot’s end effector under design d. Note that there exists a voxel v ∈ VoxelsReached(d) if
and only if there exists a point p ∈ v that the robot’s end effector can reach under design d by
following a collision-free path. For all v ∈ VoxelsReached(d), let pd

v ∈ v, denote the reached
point in voxel v under design d. Moreover, let the function SupRadius(v,p) : V ×R3→ R+

compute the least upper bound of the radius of an open ball centered at p that is entirely
within voxel v.

Lemma 7 (Existence of an Open Set of Solutions). If a design d ∈ D can reach a set of

voxels V ′ ⊆ V , then there exists a non-empty, open subset of designs Dnear ⊆ D such that

∀d′ ∈ Dnear, VoxelsReached(d′) =V ′ satisfying µ(Dnear) ∈ R+.

Theorem 8 (Positive Measure of the Set of Optimal Solutions). Let Assumptions 1, 2, and

3 hold. The set of optimal solutions, D∗, to Problem 1 as defined in Section 3.1 has positive

measure, i.e. µ(D∗)> 0.

We now show that our algorithm’s approximation of r̂(d) almost-surely approaches the
true value, r(d), as the number of optimization iterations approaches infinity. We consider
design optimization as a mathematical optimization problem by treating the function R as our
objective function that we seek to maximize. Since r(d) cannot be exactly computed within a
practical amount of time, we generate an iterative approximation in the form of the sequence
{r̂d

n}n∈N.
We note that randomness may arise in our approximation due to the probabilistic nature of

RRT which we use to generate our approximations. To this end, we let Ω be the sample space
of outcomes and redefine our iterative approximation as a sequence of functions mapping
outcomes to real values. More precisely, we let r̂d

n(ω) denote the approximation generated by
a specific outcome ω ∈Ω at iteration n ∈N. Moreover, we let V̂ d

n (ω) denote our algorithm’s
approximation of the voxels reached by design d by a specific outcome ω ∈ Ω at iteration
n ∈ N.
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Lemma 9. The approximation of r(d) almost-surely approaches the true value as n →
∞, ∀d ∈ D, i.e.,

∀ω ∈Ω, ∀d ∈ D, Pr
(

lim
n→∞

r̂d
n(ω) = r(d)

)
= 1

Lemma 10 (Approximation Lower Bound). Our approximation of r(d) is always a lower

bound

∀n ∈ N,∀d ∈ D,∀ω ∈Ω, r̂d
n(ω)≤ r(d)

.

To prove asymptotic optimality of our design optimization algorithm, we will need the
following result about Adaptive Simulated Annealing algorithm (ASA).

Lemma 11 (Frequency of Sampling from a Design Set). For any set of designs D′ ⊆ D with

non-zero measure, i.e. µ(D′)> 0, elements from D′ will be sampled infinitely many times by

ASA as the number of optimization iterations n→ ∞.

For the purposes of the asymptotic optimality proof, let d∗ ∈D∗ denote a globally optimal
design, i.e. a design that solves Problem 3.1 optimally and r∗ as the optimal reachable goal
percentage, i.e., r∗ = r(d∗).

Theorem 12 (Asymptotic Optimality of Design Optimization). Given that Assumptions 1, 2,

and 3 hold, the design found by Alg. 1 converges in probability to a globally optimal design

d∗ ∈ D∗, where r∗ = r(d∗) is the optimal reachability value, as the number of iterations

n→ ∞.
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Chapter 6

Results

We evaluate our design optimization algorithms in a simulated scenario based on lung anatomy.
In this scenario, the concentric tube robot is deployed near the base of the primary bronchus
of the right human lung using a rigid bronchoscope with the objective of reaching regions
within the lung while avoiding anatomical obstacles, e.g., blood vessels and smaller bronchial
tubes. All experiments were conducted on a PC with two 2.40 GHz Intel Xeon E5620 pro-
cessors (8 cores total) and 12 GB of RAM.

6.1 Single Design Experiments

In this experiment, we consider finding a solution to Problem 1 as described in Section 3.1.
Namely, we seek to find a single robot design, d∗, that maximizes the reachable goal per-
centage for a specified goal region G. To simulate a clinical target region that a physician
may want to reach with the robot, e.g. a lung nodule for biopsy used for early-stage lung
cancer diagnosis, we generated a random contiguous goal region within the right human lung
consisting of 8 voxels, each voxel with a side length of vs = 5 mm. Goal voxels that were
in collision with anatomical obstacles were pruned before the execution of trials. Fig. 6.1
shows a screenshot of the random goal region used for the experiments.

We compared our single design optimization algorithm, Alg. 1, with four other design
optimization algorithms, three of which borrow some elements of the design optimization
algorithm presented by Burgner et al. (Burgner et al., 2013), which we note was developed
for different anatomical scenarios.

• NM + G: We use the Nelder-Mead optimization algorithm instead of ASA for generat-
ing new designs to consider. To evaluate the reachable goal percentage of a design, we
do not use motion planning; we instead consider a goal voxel reachable if there exists



Figure 6.1: A screenshot of the experimental setup. In this image, we can see the concentric
tube robot being deployed at the base of the primary bronchus with the objective of reach-
ing physician-specified goal regions within the lung without colliding with vital anatomical
structures. We note that the anatomical obstacles in the figure include arteries (red), veins
(blue), and bronchioles and bronchi (light pink).

a single collision-free robot configuration where the tip lies inside the goal voxel. We
compute the reachable goal voxels of a design by discretizing the robot’s configuration
space into a grid and iterating over each point on the grid.

• NM + MP: We use the Nelder-Mead optimization algorithm to sample new designs
instead of ASA. We use motion planning to compute the reachable goal percentage of
designs.

• ASA + G: We use the ASA optimization algorithm to sample new designs. To evaluate
the reachable goal percentage of a design, we do not use motion planning; we instead
use the grid-based evaluation approach as is used in NM + G.

• RRT of RRTs: We use a search strategy based on generating an RRT in the design
space to sample new designs instead of ASA. We use motion planning to compute the
reachable goal percentage of designs (Torres et al., 2012).
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Figure 6.2: A visualization of the random goal region that was generated for the single de-
sign optimization experiment. The green voxels in the figure constitute the goal region, i.e.
volume of points that the physican wants to reach with the robot’s tip. In the figure, we see
the concentric tube robot reaching a point within random goal region with its end effector
(denoted by the green sphere)..

We compared the above approaches against our full method, which we will denote as “ASA
+ MP”. We executed each algorithm on the human lung scenario and allotted 6 hours (360
minutes) of computation time per trial. Since the grid-based algorithms, “NP + G” and “ASA
+ G”, do not ensure that goal voxels are reachable by entirely collision-free paths, we verified
the reachable goal voxels of designs generated by these variant by executing 300,000 RRT
iterations on each design returned (and we did not count this verification step in the timing
results).

We executed 16 trials of each approach and averaged their reachable goal percentage
over time to generate the results in Fig. 6.3. The results demonstrate that the use of ASA
and motion planning yields favorable results that are, in a sense, greater than the sum of each
algorithm’s contribution alone, as noted by the performance by other algorithms which utilize
only ASA or only motion planning. Moreover, we can see the emergence of convergence
of the reachable goal percentage to 100% for the ASA + MP method which highlights the
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Figure 6.3: We compare the performance of our proposed algorithm (ASA+MP) with other
design optimization algorithms for generating an optimal single design for the lung scenario,
some of which are inspired by the design algorithm from prior work (Burgner et al., 2013).
Moreover, we compare the performance of our algorithm with the method that we extend in
this thesis: the algorithm of Torres et al. which uses the method of RRT of RRTs for design
optimization (Torres et al., 2012).

established asymptotic optimality of our algorithm.
It should be noted that, interestingly enough, the combination of “NM + MP” did not

perform better than “NM + G”, contrary to the expected. This may be due to the fact that
the number of trials (16) was not large and hence the Nelder-Mead algorithm, a local op-
timization method highly sensitive to initial designs, could have had been initialized with
pathological random initial states during the ‘NM + MP” algorithm. For future work, we will
conduct experiments with a larger number of trials and longer computation time per trial.

6.2 Set of Designs Experiments

In this section, we consider finding a solution to Problem 2 as described in Section 3.1.
For the experiments in this section, we set the goal region G to be set the goal region to
the entire lung. We subdivide the interior volume of the lung into 4156 equally-sized cubic
voxels for purposes of evaluating voxels reached. In our optimization, we also consider the
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start pose of the concentric tube robot as a design parameter, which for this scenario are the
additional variables α and β , which correspond to angular offsets in two directions from the
rigid bronchoscope’s tangent axis.

6.2.1 Maximizing Reachability of a Design Set of Fixed Size

We first show how the reachable goal percentage of a set of designs is affected by the size of
the design set. We considered set sizes M = {1,2,4,6}. For each mi ∈M, we executed our
subroutine Alg. 3 to find a design set of size mi that maximizes the reachability of the right
lung. For each trial we recorded how the solutions’ reachable goal percentage progressed
over an allotted time of 3 hours, and we averaged the results of 20 trials for each mi. These
progressions of goal reachability over time are shown in Fig. 6.4.

In the time allotted, design sets of larger size were found to reach a larger percentage
of the goal region by our design algorithm, with design sets of sizes 1, 2, 4, and 6 being
found to reach approximately 70%, 84%, 94%, and 97% of the right lung, respectively. This
demonstrates the need to consider collections of designs in order to enable a wider variety
of possible surgical procedures. Also, the marginal difference in reachable goal percentage
between using 4 and 6 designs highlights the diminishing returns of adding more and more
designs to the set. This implies that, depending on the physician’s requirements, we may be
able to reduce the design set size while maintaining sufficient coverage of the goal region.

6.2.2 Minimal Design Set with Sufficient Goal Reachability

We next evaluated the ability of our full design algorithm (Alg. 4) to generate a robot design
set of minimal size that can reach at least rthreshold = 95% of the right lung. We used a
maximum design set size of mmax = 12. We executed 20 trials of our algorithm, with 3 hours
of computation time per trial.

We show the average minimum set size found by our algorithm over time in Fig. 6.5. We
note that we did not begin averaging results until all trials had found their first design set with
a sufficient reachable goal percentage rthreshold, which occurred at 116 minutes. The figure
shows that, over time up to 3 hours, our algorithm progressively finds smaller and smaller
sets of robot designs that can still reach a sufficient percentage of the goal region.
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Figure 6.4: We show the performance of Algorithm 3 over time in finding design sets of fixed
sizes 1, 2, 4, and 6 that collectively maximize the reachable percentage of a human lung. In
general, larger design sets can reach a greater percentages of the goal region.

6.2.3 Benchmarking Variations on Algorithm

We next compare our method with different approaches to design optimization. We compare
our algorithm for fixed-size design sets against two other design optimization algorithms that
were described in the single design experiments section (Sec. 6.1): “NM + G” and “NM +
MP”.

We compare the above approaches against our full method, which we denote as “ASA
+ MP”. We executed each algorithm on the human lung scenario with a fixed design set
size of 2. Since the “NM + G” variant does not ensure that goal voxels are reachable by
entirely collision-free paths, we verified the reachable goal voxels of designs generated by
this variant by executing 200,000 RRT iterations on each design returned (and we did not
count this verification step in the timing results).

We executed 20 trials of each approach and averaged their reachable goal percentage
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Figure 6.5: We show the performance of Algorithm 4 over time in finding a design set of
minimal size that can reach 95% of the human lung. This plot is averaged over 20 trials and
we began the plot when all 20 trials had found their first design set capable of reaching 95%
of the lung.

over time to generate the results in Fig. 6.6. The results demonstrate that (1) using motion
planning to determine a set of designs’ reachable goal percentage and (2) using a globally
optimal optimization algorithm like ASA enable us to most quickly compute sets of concen-
tric tube robot designs that can reach large portions of the goal region without colliding with
anatomical obstacles.
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Figure 6.6: We compare the performance of our proposed algorithm (ASA+MP) with variants
inspired by a design algorithm from prior work (Burgner et al., 2013). This prior method used
the Nelder-Mead (NM) optimization algorithm, whereas we use a globally optimal algorithm
called Adaptive Simulated Annealing (ASA). We also extended the prior work to consider
obstacle avoidance in the entire deployment of the concentric tube robot by using motion
planning. These extensions result in finding better sets of robot designs in less time.
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Chapter 7

Conclusions

In this thesis, we presented design optimization algorithms capable of generating an opti-
mal single concentric tube robot design and a minimal set of designs on an application- and
patient-specific basis, that can reach a sufficient percentage of a physician-specified goal
region while avoiding contact with anatomical obstacles. Our algorithms interleave a glob-
ally optimal stochastic search over the space of robot designs with a sampling-based motion
planner in the robot’s configuration space.

We outlined a proof of the theoretical guarantees of asymptotic optimality for our single
design optimization algorithm and empirically showed that our algorithm was able to com-
pute higher quality designs faster when compared to other design optimization algorithms.
We also showed experimentally that our algorithm for computing minimal sets of designs
and showed that our method was able to generate a low number of design sets capable of
reaching almost all of the right lung.

In this work, we used one set of anatomical obstacles to generate our minimal design
set. In clinical settings, we would want to find a set of robot designs that would enable
a wide variety of procedures on many different patients of varying internal anatomy (and
consequently varying anatomical obstacles). To accommodate this use case, our algorithm
can be extended to consider many different sets of anatomical obstacles in assessing goal
region reachability.

For future work, we will flesh out the proofs of the theorems and lemmas enumerated
in Moreover, another avenue of interest for the minimal designs algorithm is the rigorous
analysis of its optimality guarantees, as was done for the single design case in this thesis.

There is also potential for future investigation in design quality measures and objectives
to be used in addition to goal reachability, such as maximizing probability of surgical success
and minimizing tissue damage.
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