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Abstract

If the 20th century was known for the computational revolution, what will the 21st be
known for? Perhaps the recent strides in the nascent fields of molecular programming
and biological computation will help bring about the ‘Coming Era of Nanotechnology’
promised in Drexler’s Engines of Creation [6]. Though there is still far to go, there is
much reason for optimism. This thesis examines the underlying principles needed to
realise the computational aspects of such ‘engines’ in a performant way. Its main body
focusses on the ways in which thermodynamics constrains the operation and design of
such systems, and it ends with the proposal of a model of computation appropriate for
exploiting these constraints.

These thermodynamic constraints are approached from three different directions. The
first considers the maximum possible aggregate performance of a system of computers
of given volume, V , with a given supply of free energy. From this perspective, reversible
computing is imperative in order to circumvent the Landauer limit [7, 8]. A result of
Frank [9] is refined and strengthened, showing that the adiabatic regime reversible
computer performance is the best possible for any computer—quantum or classical.
This therefore shows a universal scaling law governing the performance of compact
computers of ∼ V 5/6, compared to ∼ V 2/3 for conventional computers. For the case
of molecular computers, it is shown how to attain this bound. The second direction
extends this performance analysis to the case where individual computational particles
or sub-units can interact with one another. The third extends it to interactions with
shared, non-computational parts of the system. It is found that accommodating these
interactions in molecular computers imposes a performance penalty that undermines
the earlier scaling result. Nonetheless, scaling superior to that of irreversible computers
can be preserved, and appropriate mitigations and considerations are discussed. These
analyses are framed in a context of molecular computation, but where possible more
general computational systems are considered.

The proposed model, the ℵ-calculus, is appropriate for programming reversible mo-
lecular computers taking into account these constraints. A variety of examples and
mathematical analyses accompany it. Moreover, abstract sketches of potential molecu-
lar implementations are provided. Developing these into viable schemes suitable for
experimental validation will be a focus of future work.
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I. Introduction
In recent years, unconventional forms of computing ranging from molecular computers
made out of DNA to quantum computers have started to be realised. Not only that, but
they are becoming increasingly sophisticated and have a lot of potential to influence
the future of computing. In this work, we will look at the intersection of molecular
computing and another interesting class of unconventional computer: that of reversible
computers.

Figure I.1: An illustration of Adleman’s DNA
scheme for solving the Hamiltonian path prob-
lem.

Molecular Computation The field of
Molecular Computation began in 1994
with Len Adleman’s proof-of-concept use
of DNA [10] in the solution of the clas-
sic Hamiltonian path problem, as illus-
trated in Figure I.1. DNA and other nuc-
leic acids proved an apt choice for build-
ing molecular/chemical computers, due
to its information bearing capacity and
the strong preference that single strands
show for binding to complementary se-
quences, not to mention the low cost with
which it can be synthesised and analysed
as well as the large body of knowledge
available from decades of biochemical re-
search. Inspired by Adleman’s paper, a
community of researchers designing and
building DNA computers arose in concert
with the DNAX (and shortly thereafter,
the complementary FNANOX) series of
conferences1.

DNA, or deoxyribonucleic acid, is a
family of polymeric molecules that is employed by all known organisms to store their
genomic information, amongst other uses. Each molecule can be characterised by its
sequence: a string of the monomers adenine (A), cytosine (C), guanine (G) and thymine
(T). These monomers are each bound to a deoxyribose sugar molecule, which are joined
together by phosphodiester bonds. Whilst this ability to store information through the
arbitrary combination of these monomers is advantageous, the key to its success is the

1https://isnsce.org/conferences/
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I. Introduction

special hydrogen-bonding properties that these monomers possess. When two DNA
strands are aligned adjacently, if adenine and thymine are opposite each other they will
be perfectly positioned to form two favourable hydrogen bonds; similarly, if cytosine
and guanine are opposite each other they will be perfectly positioned to form three
favourable hydrogen bonds. Whilst other combinations may also form hydrogen bonds,
the positions are suboptimal and thermodynamically unfavourable when compared to
the pairs A-T and C-G. In nature, DNA is found almost exclusively in double-stranded
form, whereby each strand has a sequence complementary to the other: if one strand
has sequence GGCACAACGT then the other will have sequence CCGTGTTGCA. These com-
plementary strands then hybridise to one another. In fact, this is an oversimplification:
in addition to their information content, DNA molecules have an intrinsic orientation,
conventionally notated via the free 5’ phosphoryl and 3’ hydroxy groups on the terminal
ribose sugars. DNA strands bind anti-parallel, and so the sequences should be written
5’-GGCACAACGT-3’ and 5’-ACGTTGTGCC-3’. Schematically, this looks like

5’

3’

G

C

G

C

C

G

A

T

C

G

A

T

A

T

C

G

G

C

T

A

3’

5’

but in reality the strands twist together into a double helix, the structure of which was
found by Rosalind Franklin, James Watson and Francis Crick [11]. Eponymously, the
characteristic complementary ‘base pairing’ is known as Watson-Crick base pairing. The
DNA computing motifs designed by Adleman and others make use of this Watson-Crick
base pairing, but exploit partial hybridisation and the dynamics and interactions of
single-stranded DNA.

Whilst Adleman’s proof of concept required manual actuation of each step of the com-
putation, and was limited to NP-complete problems, schemes demonstrating universal
computation and autonomous operation were soon developed. An example from the
first of the DNAX series is the proposed DNA and restriction enzyme implementation
of a Turing Machine of Rothemund [16]. Whilst universal in principle, it was still not
autonomous and has never been experimentally realised due to its complexity. Nev-
ertheless, successful approaches and motifs employing both DNA and enzymes have
been developed, such as the PEN toolbox of Yannick Rondelez’s group [17] and the PER
reaction of Jocelyn Kishi [18]. Arguably the most popular approaches in the field are
enzyme-free approaches. Two famous examples are given by the Tile-Assembly Model
(TAM), introduced by Erik Winfree [13], and DNA-strand displacement (DSD) schemes,
first popularised by Georg Seelig et al [19]. These are illustrated in Figure I.2.

Some impressive feats have been achieved, from neural networks [20, 21] to cargo
sorting robots [22] to reprogrammable iterative binary logic circuits [23]. Neverthe-
less, DNA computing is not without its challenges. For example, DSD systems often
exhibit spurious ‘leak’ reactions, and optimisation and tricks are required to mitigate
this [24]. Moreover, traditional DSD systems occupy the entire reaction volume, which
can therefore only perform a single computation. Strictly speaking, one could perform
multiple computations by using orthogonal DNA sequences such that a set of DNA

2



(a) The canonical embodiment of the Tile Assembly Model: in the abstract, square ‘tiles’ are designed
with four sticky edges. The edges are assigned colours such that only edges of the same colour will
stick to one another. By choosing the tile set, different patterns can be assembled, both deterministic and
non-deterministic. In fact, it was shown by Hao Wang in the ‘60s [12] that appropriately chosen tile sets can
simulate a Turing Machine, and so arbitrary computation is possible. During his PhD, Erik Winfree showed
how to realise these tilesets using DNA [13], per the illustration above. Although in practice the tiles adopt
a non-square shape, the same general properties of Wang Tiles are observed. In fact, not only is the TAM
Turing complete, but there even exists a universal tile set that can simulate any other [14].

(b) DNA-strand displacement schemes rely on the primitive illustrated here of branch migration, in which
an incumbent strand B (purple) is displaced by an incident strand A (blue). We start with B hybridised
to a gate strand (green), except that the gate strand is slightly longer and has an exposed single-stranded
‘toehold’ domain. This toehold is complementary to part of A, whereby A is reversibly recruited to the gate
strand. Moreover, the remainder of A is complementary to much of the gate strand that B is bound to, and
so can compete with A for hybridisation. In a thermal context, then, B may transiently ‘fray’ away from the
gate strand at its ends, providing an opportunity for A to partially hybridise in its place. A random walk
ensues, in which the junction between A and B may migrate in either direction with roughly equal chance.
If the branch fully migrates to the other end, then B is left bound by only a short region: another toehold.
As with A, B can then reversibly attach or detach from the gate strand. If A was slightly longer and bound
the entirety of the gate strand, then the reaction could be (and routinely is) made effectively irreversible.
Sophisticated cascades can then be prepared whereby B may interact with downstream gates, or where a
gate may bind multiple strands. Other sophisticated behaviours can be realised, for example, by the use
of common or orthogonal toeholds and other sequence domains. The culmination of this is that, up to a
tunable probability of error, DSD supports universal computation [15].

Figure I.2: Illustrations of the principles underlying two common schemes of DNA computation.

3
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species performing one computation doesn’t interact with another performing a differ-
ent computation; however, toeholds typically can’t be much longer than 6 nucleotides
in length to ensure reversibility of association, limiting the set of distinct toeholds to
46 = 4096. Worse still, it transpires that DNA’s sequence specificity is not absolute,
and so only a fraction of this design space is useful: in fact, as a single mismatch or
two does not prevent hybridisation but does affect the rate of hybridisation, it is often
exploited for tuning kinetics [25, 26, 27, 28]. We have not even mentioned the influence
of palindromic sequences and other motifs manifesting non-trivial secondary structures.
This seriously limits the complexity that can be realised in these systems, because the
CRNs that are compiled into DSD schemes (using, e.g., VisualDSD [29]) do not make use
of complexation of CRN species, and therefore each sub-module in a program requires a
fresh set of CRN species with their own unique DNA sequences—even if the sub-module
is identical to another, just used in a different place in the program. Additionally, these
DNA computers are analogue which significantly limits their computational complexity
if one wants to be certain of the result [30], although if one is comfortable with slightly
less certainty then better complexity is possible [15]. They are also very slow, taking on
the order of several hours or even days to progress. The tour-de-force examples of neural
networks [20] and (4-bit) square rooting [31], for example, took on the order of 10 hours
to converge to an answer.

If instead one makes use of localisation, as with the TAM, then much of these issues
with DSD can be avoided [32]: localising DSD species to a surface allows ‘circuits’ to
be constructed which are fast, modular, and can reuse sequence domains. The problem
is that constructing these is substantially more difficult than free-solution DSD, and
that gate strands are ‘consumed’ during computation making these one-shot reactions.
Free-solution DSD also consumes its gate strands, but at least in this case it is possible
(if non-trivial) to continually supply fresh gate and fuel species and remove waste
complexes. The TAM does not get off completely unscathed either, and methods to
suppress errors to mitigate its share of problems have also been developed [33].

This is not to say that computing with molecules such as DNA is intrinsically flawed,
but the difficulties in overcoming these issues has left many in the field pessimistic about
initial beliefs that DNA could be used to perform arbitrary computation in an effective
manner. Instead, the general consensus is that DNA computing may be best used to
perform small logical calculations as part of a synthetic biological system. My view is
more optimistic, in that I believe that an as-yet undiscovered DNA computing motif
exists that will solve all these problems simultaneously. Whilst perhaps the existence
of such a panacea is wishful thinking, I believe that the abstract molecular schemes
discussed in Sections IV.4 and V.2 lend evidence to this view, and developing these
further will be the subject of future work.

Reversible Computation As mentioned, the other class of unconventional computer
we shall consider is that of reversible computers. Reversible computers impose the
requirement that all state transitions be invertible, and therefore conserve information.

4



Figure I.3: Maxwell’s Dæmon (1867) is a thought experiment which, if valid, would offer a
method to violate the second law of thermodynamics. Consider a box divided in two; to the left
of the divider is a red gas, and to the right a blue gas. If the divider is removed, then mechanical
work can be extracted as the gases mix and equilibrate. Now suppose the divider is re-inserted,
and endowed with a small window whose hinge is frictionless and can therefore be opened
and closed without energetic cost. Imagine that a dæmon or other such entity, with particularly
keen eyesight and nimble fingers, is positioned at the window. If she observes a red particle in
the right compartment moving towards the window, or a blue particle in the left compartment
moving towards the window, she briefly opens it to allow the particle’s passage; otherwise she
leaves the window closed. Over time, this process will bring the box back to its initial state,
thereby apparently reducing its entropy.

The problem is that this process requires the dæmon to learn information about the state of
the gas particles. In effect, the entropy has simply moved from the state of the particles to the
state of the dæmon’s memory. No entropy reduction has occurred. Moreover, eventually her
memory will be filled up, and she will likely want to ‘erase’ it to continue her task. Forgetting
all this information will correspond to moving the entropy into the state of another system.
If this entropy now manifests as heat, then Landauer showed that discarding a quantity of
information ∆I requires the production of heat ∆Q ≥ kT∆I where k is Boltzmann’s constant, T
the temperature, and with equality only in the limit of a thermodynamically reversible process
(i.e. taking infinite time).

5
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The reason for this restriction is that the laws of physics, as far as is currently known2,
are fundamentally reversible. In contrast, conventional computers are irreversible in
the sense that they do not conserve information and that it is not generally possible to
deterministically wind back the state of computation. This has surprising consequences:
from a thermodynamic perspective, it transpires that this loss of information manifests
as a commensurate increase in entropy, whilst from a quantum perspective, the loss of
information of some quantum state necessarily results in decoherence of any quantum
state entangled with said state. This quantum mechanical behaviour is not of great
concern in classical computers, but is untenable for quantum computers and hence they
must necessarily be programmed reversibly.

(a) NAND and FANOUT gates

(b) Fredkin and Toffoli gates

Dθ =

(
i cos θ sin θ
sin θ i cos θ

)

(c) Deutsch Gate

Figure I.4: Three sets of universal gates. (a) Two
gates which can be used to synthesise any
Boolean function Bm → Bn. (b) Two reversible
logic gates, each of which can simulate NAND and
FANOUT gates given suitable ancillary bits (inputs
fixed to either 0 or 1). (c) An example gate that is
universal for quantum computation: that is, any
quantum circuit can be constructed from a series
of Deutsch gates (parameterised by the angle θ).

Expanding more on the entropic mani-
festation of information loss, simulating
the ability to discard information in a re-
versible setting touches deeply on the con-
nection between thermodynamics and in-
formation theory, and was formalised by
Szilard [8] and Landauer [7] in the twenti-
eth century in order to resolve Maxwell’s
eponymous thought experiment, the Max-
well Dæmon (Figure I.3). For every bit of
information discarded, a commensurate
entropy increase of at least k log 2 is pro-
duced elsewhere, where k is Boltzmann’s
constant. Physically, the information is
encoded into environmental degrees of
freedom, and this information promptly
decorrelates with the original computa-
tional system. This decorrelation is ef-
fectively irreversible, and hence the in-
formation becomes entropic. More gener-
ally, whenever a quantity of information
I bits is discarded, an entropy increase
of ∆S ≥ kI log 2 manifests, with equal-
ity only in the limit of thermodynamic re-
versibility in which the discarding process
takes infinitely long. If this entropy were

allowed to remain in the computational system, it would eventually accumulate to such
an extent that it would interfere with the well ordered operation of the computational
mechanism. As a visceral example, should the entropy take the form of heat, ∆Q = T∆S

2This includes quantum mechanics; the Schrödinger equation specifies that the time evolution operator
is unitary and hence invertible. Furthermore, it seems that even the supposedly irreversible process
of wavefunction collapse is in fact a reversible one of progressive decoherence, as espoused by the
Many-Worlds Interpretation [34].
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where T is the system temperature, the system will eventually transmute into a form
incompatible with its function—such as melting or turning into a plasma—as the tem-
perature becomes too great. Even if the system is physically heat-resistant, the increased
entropy will result in errors so frequent that almost all the computational capacity is
directed to error correction, slowing productive computation to a crawl.

At room temperature, this heat generation will be on the order of ∼ 1 × 10−21 J ∼
1 × 10−2 eV per bit discarded. Conventional computers typically expend a factor of
around 1×108 times this much for reasons relating to reliability, speed, and the relat-
ively large size of their transistors in comparison to the atomic scale. It is somewhat
challenging to precisely quantify this overhead as the information processing capacity
of a modern consumer processor is difficult to ascertain, due to the extensive use of
pipelining, vectorisation and multiple-instruction dispatch. Nevertheless, we can ob-
tain a reasonable estimate. arm’s processors are well known for emphasising power
efficiency, and are used extensively in mobile electronics as well as some laptops and
desktops (notably, three of Apple’s new device lineup). Considering arm’s A-78 pro-
cessor micro-architecture [35], we find numbers of around 1 W/core, with each core
running at a clock speed of 3 GHz and executing up to 6 (macro)instructions per clock
cycle with a width of up to 128 bit. Taken together, these give an energy dissipation
of roughly 1.5×10−13 J bit−1. In contrast, at a temperature of around 300 K, Landauer’s
bound gives just 2.9×10−21 J bit−1, a 5×107 overhead for the arm processor. Intel’s chips
have thermal design powers typically exceeding 100 W, but have compensatingly greater
vectorisation widths of some instructions, such that a similar Landauer overhead can be
achieved when fully exploiting the processor’s capabilities.

The origin of irreversibility in conventional computers can be subtle, but it is in fact
ubiquitous. This may be considered to ultimately originate in early mathematical models
of computations such as the Turing Machine and Lambda Calculus in which overwriting
and discarding, respectively, are implicit to the primitive operations of the models. At
the lowest levels of abstraction of modern computers, semiconductor logic gates and
buses are operated in an irreversible manner: somewhat oversimplifying, traditional
CMOS-style logic dissipates energy every time the transistor states switch, and during
each clock cycle an equilibration process occurs in which the nodes of the circuit are
connected to bus lanes at various reference voltages and any transient voltage disparity
is eliminated. Both of these processes are capable of discarding information in the
system, although exactly where in these processes the information erasure should be
attributed is a non-trivial matter. In fact it is possible to drive CMOS-style logic gates
adiabatically [36, 37, 38], achieving asymptotically zero dissipation in the limit of infinitely
slow switching. This is assuming that the instructions are logically invertible, perhaps
subject to certain pre- and post-conditions in which case it is sometimes referred to
as conditionally reversible. Reintroducing irreversibility is possible, but dissipation of
information should be performed separately to maintain adiabaticity in the operation of
the logic gates. The idea of using reversible logic gates in irreversible computation may
seem counter-productive, but it is a useful potential way to make substantial gains in
energy efficiency and to get closer to the Landauer bound.
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I. Introduction

At higher levels of abstraction potential sources of information erasure include the
obvious, such as overwriting/mutating a variable, to the less obvious such as variables
going out of scope or ignoring a function’s return value. Even more subtly, any iteration
or recursion which does not maintain a record of its initiation condition as well as its
termination condition is in fact irreversible, as shall later become clear.

With such ubiquitous application of information-destructive primitives, it is hard
to see how algorithms can be rewritten reversibly. Indeed, whilst Landauer could en-
visage what logically reversible logic gates might look like, even describing [7] what
would eventually become known as the Toffoli or CCNOT gate (see Figure I.4), he came
to the conclusion that one would end up having to manually keep track of the lost
information thus rapidly filling the computer’s memory with useless ‘garbage’ or ‘his-
tory’ data. 12 years later, Charles Bennett—often considered the ‘Father of Reversible
Computing’—developed a remarkably simple algorithm [39] (Figure I.5a) for embedding
any irreversible function x 7→ f(x) as the reversible injection x ↔ (x, f(x)) without
producing any net garbage. Later, he extended this algorithm [40] to reduce the amount
of interim garbage data produced via a recursive application of the original algorithm,
the general principle of which is illustrated in Figure I.5b.

With the viability of reversible computing proven, the stage was then set for more
faithful programming of reversible computers to be demonstrated beyond simple in-
jective embedding of irreversible programs. Whilst Bennett did introduce the idea of
a Reversible Turing Machine, arguably the first description of a reversible computer
that might be physically realisable was given by Fredkin and Toffoli [42]. Fredkin and
Toffoli introduced conservative logic, in which the number of 1 bits (and optionally
also the number of 0 bits) is conserved; they proceeded to show that this logic could
be implemented by a system of ideal elastic ‘billiard balls’, projected across an ideal
frictionless surface decorated with ideally rigid walls. The motivation for this construc-
tion was that it is precisely the sort of system considered by classical mechanics. If
one could build such a billiard-ball computer, then aside from the initial kinetic energy
supplied to the system, there would be no need to supply additional energy nor any
dissipation; moreover, one could recover the kinetic energy at the end for amortised-free
computation. To illustrate the principles of billiard-ball computation, Andrew Ressler’s
implementation of a Fredkin gate is shown in Figure I.6. Going further, Ressler designed
an entire reversible computer processor—complete with arithmetic logic unit—within
the billiard-ball scheme for his Master’s thesis [41], demonstrating that not only were
reversible computers theoretically as capable as irreversible ones from a Turing univer-
sality perspective, but that they were also practically as capable.

Unfortunately, Bennett’s analysis of the billiard-ball model showed it to be impractic-
able as a fully dissipationless model of reversible computation:

“Even if classical balls could be shot with perfect accuracy into a perfect ap-
paratus, fluctuating tidal forces from turbulence in the atmospheres of nearby
stars would be enough to randomise their motion within a few hundred
collisions. Needless to say, the trajectory would be spoiled much sooner if
stronger nearby noise sources (e.g., thermal radiation and conduction) were
not eliminated.” — Bennett [43]
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(a) (b)

Figure I.5: Two of Bennett’s algorithms for reversibly simulating irreversible programs.
(a) Bennett’s initial algorithm [39] for reversibly simulating an irreversible program with no

net garbage data, except for a retained copy of the original input. In the same paper, Bennett
described a reversibilised analogue of the Turing Machine (TM), the Reversible Turing Machine
(RTM), whose every operation is logically invertible and which could simulate any Turing
Machine by placing the garbage data on a separate tape instead of erasing it. Bennett’s algorithm
makes use of the reversibility of this process: after first running the simulated TM forwards, we
peek at the output and make a copy onto a third tape; we then forget about the third tape and
reverse the simulation on the first two tapes, consuming the garbage and output and yielding
the original input. Copying can be performed reversibly by, for example, using the output as a
one-time pad to encrypt the contents of the third tape (if the RTM alphabet is binary, this is just
the XOR operation). If the third tape is empty, then this will result in a copy; if it is not, then the
result will generally be garbled.

(b) A reproduced figure of Bennett’s ‘pebbling’ algorithm [40], illustrating the general principle.
The pebbling algorithm runs the algorithm of Figure I.5a partially forwards and backwards,
making and un-making partial copies of the intermediate states of the computation. This yields
a spatial overhead logarithmic in the total computation time, instead of linear as with the
original algorithm. The overhead in the time complexity is more significant however, but Bennett
presented even more sophisticated algorithms to render the exponent arbitrarily small.
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I. Introduction

Figure I.6: A billiard-ball implementation of a Fredkin gate due to Ressler [41]. As primitives, it
makes use of eight ‘switch’ gates, one ‘cross-over’ gate (middle), and five lone walls for simple
redirection. The implementation differs slightly from the canonical Fredkin gate in that the
second and third outputs are swapped. Note that not all the ball positions depicted necessarily
occur for each possible combination of inputs; an input is given by the presence or absence of
a ball for each of a, b and c, and these balls are synchronised in that at any given time they are
aligned vertically, as shown in the below gate instantiations:

We shall have more to say about this in Chapter II, but since then a number of adiabatic
designs of classical reversible computers have been developed and experimentally veri-
fied, not to mention the recent progress in building quantum computers. We highlight
the Pendulum Instruction-Set Architecture (PISA), first introduced by Vieri [44] and later
refined by Frank [9] and Vieri [45]. This architecture was successfully realised adiabatic-
ally with semiconductors by employing the ‘Split-Level Charge Recovery Logic’ (SCRL)
motif [37], as shown in Figure I.8. Adiabatic reversible computers achieve far lower
dissipation than irreversible computers, but still dissipate energy at a rate inversely
proportional to the time per operation. Questions of whether or not lower energy dis-
sipation, or even the ‘holy grail’ of fully dissipationless computation, are achievable
have continued to be asked3, and we believe we have answered these in the negative in

3Such as at the recent 2020 Physics and Engineering Issues in Adiabatic/Reversible Classical Computing Visioning
Workshop.
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Chapter II.

(a) TICK (b) FLATTOP and its unit cell (c) PENDULUM

Figure I.8: Three iterations of experimentally realised reversible processor between 1996 and
1999 by Frank, Ammer, Love, Rixner and Vieri. TICK (1996) was an 8-bit subset of PISA, but was
non-adiabatic. FLATTOP (1996) was an adiabatic programmable gate array implementing the
Billiard Ball-Model Cellular Automaton (BBMCA) of Margolus [46]. PENDULUM (1999 [45]) was the
culmination of Vieri’s work for his graduate thesis, and a 12-bit implementation of PISA.

Programming Reversibly With such ubiquitous application of information-destructive
primitives, it is hard to see how algorithms and programs can be rewritten reversibly.
In Chapter V we shall introduce a model of reversible computation appropriate for
Brownian computers such as the molecular computers discussed earlier, in addition to
many examples illustrating the principles of programming reversibly. Learning to do
so requires a paradigm shift in one’s thought process, in much the same way as an im-
perative/procedural programmer undergoes when learning a functional programming
language for the first time. Reversibility as a concept is orthogonal to other language
paradigms such as imperative/procedural, functional, and declarative, and indeed
examples of reversible languages exist for each of these (we believe the ℵ-calculus and
alethe, introduced in Chapter V, constitute the first example of a reversible declarative
language).

To program reversibly takes some care. At a high level, one must ensure that each
block (whether a function, a subroutine, a loop, a conditional branch, a statement, etc) is
information preserving: that is, there must be a bijective map between the set of legal
inputs and legal outputs. We say legal, because it is possible for some inputs to not
map to outputs and vice-versa, instead producing a logical error during execution or
entering an infinite loop. For example, consider Bennett’s embedding protocol applied
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I. Introduction

(a) The logical state transition diagram for the reversible addition. This is a reversible embedding of the
Peano-axiomatic definition of natural number addition, and therefore assumes as primitives that we can
increment/decrement and check whether or not a number is zero.

(3, 4)↔ (3, 4, 0)
c=0=0←→
b=4̸=0

(4, 3, 1)
c=1 ̸=0←→
b=3̸=0

(5, 2, 2)
c=2̸=0←→
b=2̸=0

(6, 1, 3)
c=3̸=0←→
b=1̸=0

(7, 0, 4)
c=4̸=0←→
b=0=0

(7, 0, 4)↔ (7, 4)

(b) An example execution path of the program shown in (a). Seen in the forward direction, we are adding 3
and 4 to get 7; seen in the reverse, we are subtracting 4 from 7 to get 3.

Figure I.10: An example of the reversible control flow for a possible reversible implementation
of addition of two natural numbers, a and b. In order to be reversible, there must be a bijection
between legal inputs and legal outputs and one such way is to retain one of the inputs—here
b. This differs from the Bennett-style embedding, which would retain both inputs i.e. (a, b)↔
(a, b, a+ b), and by being more parsimonious in our use of information we obtain the converse
operation—subtraction—for free.

to the factorial function. This would produce a reversible program performing the map
(n)↔ (n, n!), e.g. (4)↔ (4, 24). If, however, one attempted to feed in the output (4, 30)
and run this program backwards then an error4 would occur because there is no input
mapping to this output. Once one has ensured that a block is information preserving, the
next step is to try to decompose it into smaller information-preserving blocks, just as with
regular programming. Expertise with this comes with practice, and my experience with
reversible programming leads me to believe that it is possible to become just as proficient
with reversible programming as with irreversible. Whilst programming reversibly is
to be preferred where practicable, a useful ‘trick’ for implementing a difficult bijection
f can be achieved by first writing irreversible programs for f : x 7→ y and f−1 : y 7→ x,
embedding these using Bennett’s algorithm as f ′ : x ↔ (x, y) and (f−1)′ : y ↔ (x, y),
and then constructing the composition ((f−1)′)−1 ◦ f ′ : x↔ y.

Arguably the most challenging concepts to learn are those of reversible control flow:
conditional branching and loops. Provided the information used to discriminate the
different cases in a branch is available before and after, then this branching is clearly
reversible. The problem comes when merging these branches later: in irreversible
languages this merging of control flow is implicit, but in a reversible language we must

4If we assume this is implemented on an RTM, then the error occurs when reversing the copy step: tapes 1
and 3 are initialised to 4 and 30 respectively, then the irreversible factorial TM is run forwards on tapes 1
and 2 to obtain 24 and some entropic garbage; the RTM then attempts to consume the copy of 24 on tape
3, but 30 ̸= 24 and so the machine will either stall or its state may become corrupt and meaningless.
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ensure that we are able to tell from which branch we came immediately after merging
and so merging must be made explicit. In fact, reversibility provides an elegantly
symmetric solution to this without introducing a new primitive for merging. The idea is
that merging is simply branching in reverse, and so one reuses the branching primitive
and supplies a set of orthogonal conditions that must be satisfied by each branch of the
computation before control is merged. If the information used to perform the original
branch is preserved, then the original conditions can be reused; it is not necessary that
the final conditions be the same as the initial, however, and this can often be used
for good effect when data is transformed to a different—but provably isomorphic—
representation. A loop is similar to a two-branch conditional, except that instead of
the execution direction on both sides being in the same direction, they are in opposite
directions in order to produce a loop. The consequence is that effectively the entry to a
loop is a merge of control flow: one must know whether a loop iteration is being entered
for the first time, or as a continuation, so that on reversal it is possible to ‘un-enter’ the
loop. The termination condition remains the same as in the irreversible case: at the end
of each iteration, it is checked whether we should continue looping or exit the loop.
These principles are illustrated abstractly in Figure I.9, more concretely in Figure I.10,
and more extensively in Chapter V.

Figure I.9: An illustration of the principles of
reversible control flow in the form an abstract
state transition diagram. The meanings of the
variables are not important. Arrow direction
specifies the ‘forwards’ direction of the program,
and can be reversed to obtain the reversed pro-
gram.

We conclude with a brief review5 of
some (classical) reversible programming
languages.

(Janus) To our knowledge, the first
such programming language—Janus—
was designed by Lutz and Derby [47] in
1982 for a Caltech class project, and later
formalised by Yokoyama and Glück [48].
It is an imperative procedural language,
and is named after the Roman god asso-
ciated with duality and time. Listing I.11
illustrates most of its syntax through three
increasingly sophisticated examples, or
see Definition I.1 for a more detailed ex-
position.

The first example (due to Yokoyama
and Glück [48]), fib, is a recursive proced-
ure which computes the nth and n + 1th

Fibonacci numbers into x0 and x1 respect-
ively, consuming n in the process. The second (due to us), fac, is an iterative procedure
that replaces n with n! (providing n > 0), using k as a ‘scratch’ variables for implement-
ingm↔ m ·n andm to hold the burgeoning factorial as n is consumed. The third (due to
Lutz and Derby [47]), sort, performs a bubble sort on the list ℓ of length n < 100, and sets

5In some code snippets, notation of some arithmetic expressions and operators has been slightly modified
where it is thought that the medium of mathematical typesetting provides greater clarity than the ASCII
source.
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n x[2]

procedure fib
if n = 0

then x0 += 1

x1 += 1

else n−= 1

call fib
x0 += x1

x0 ⇔ x1

fi x0 = x1

n m k

procedure fac
m+= 1

fromm = 1

loopm⇔ k

fromm = 0

loopm+= n

k −= 1

until k = 0

n−= 1

until n = 1

n−= 1

m⇔ n

n ℓ[99] σ[99] i j

procedure sort
from i = 0

loop j += n− 2

from j = n− 2

loop if ℓj > ℓj+1

then ℓj ⇔ ℓj+1

σj ⇔ σj+1

fi σj > σj+1

j −= 1

until j = i− 1

j −= i− 1

i+= 1

until i = n− 1

i−= n− 1

Listing I.11: Three select examples of Janus programs.

σ to the permutation mapping between the original and sorted lists (as a precondition,
σ must be set to the identity permutation (1 2 · · · 99)). The absence of dynamic-length
arrays or memory allocation (and hence use of 99 as a fixed buffer size in the above)
shows a limitation of Janus, though the augmentation of Janus to support such features
would be a straightforward extension.

Definition I.1 (Syntax and semantics of Janus). A program consists of a series of (global)
variable declarations and procedure declarations. Variables are either machine-precision
integers, initialised to 0, or fixed-length arrays thereof as indicated by the square brackets.
Variables are modified by in-place updates, or can be swapped with⇔. There are three
possible in-place operators, +=, −= and ⊕= (in-place bit-wise XOR), and the right-hand
side of a statement can be any compound expression making use of the unary operators
− (arithmetic negation), ¬ (bit-wise negation); the arithmetical binary operators +, ×, −,
/ (quotient), % (remainder); the bit-wise binary operators ⊕, ∧, ∨; or the Boolean binary
operators <, ≤, >, ≥, =, ̸= where FALSE is represented by 0 and TRUE by −1. These
expressions need not be information-preserving, as the semantics make use of a Bennett
embedding: computing in the forward direction the value, performing the modification,
and then uncomputing the value. As a result, it is illegal for the variable being modified
to appear in the expression modifying it.

Procedures can be called in their forward direction by the aptly-named call statement,
and in their reverse direction by uncall. Janus also supports conditionals and looping,
per the aforementioned principles. Conditionals are represented by if p [then σ] [else σ′]
fi q. They consist of a branch and unbranch condition, respectively p and q, and optional
statements to be executed in the TRUE (then) and FALSE (else) cases. If p evaluates to
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TRUE before the branch, then q must evaluate to TRUE afterwards, and similarly for the
converse, or else a run-time error occurs. Loops are similarly defined, represented by
from p [do σ] [loop σ′] until q. Upon reaching a loop, p must evaluate to TRUE. The
statement(s) σ, if any, are then executed. Then q is tested; if it evaluates to FALSE then
the statement(s) σ′ are executed, else the loop exits. Otherwise, p is evaluated once again
(and must this time evaluate to FALSE), and execution continues from σ. Not described
here are the rudimentary I/O operations and Janus run-time system.

(Ψ-Lisp) A little while later, in 1992, Henry Baker introduced two Lisp variants:
Linear Lisp [49] and Ψ-Lisp [50]. The former employs linear logic [51], in which every
value must be consumed precisely once (usage optional), in order to do away with ex-
pensive garbage collection in functional languages. This idea is seeing a resurgence, with
support in recent updates to languages like Haskell [52]. Whilst linear logic shares some
properties with reversible computation, indeed quantum logic is often contextualised
as a subset of linear logic, it is not restrictive enough to guarantee reversibility. Baker’s
etymologically-palindromic Ψ-Lisp, however, does guarantee injectivity of its primitives
and is therefore reversible. It is itself a variant of Linear Lisp appropriately modified.
The most conspicuous modification is that of the if -expression. Baker introduces the
merge condition in an asymmetrical way, as the return value is not necessarily named:
the first two sub-expressions are, respectively, a Boolean expression indicating which
branch to take, and a Boolean predicate to be applied to the result. These predicates are
handled specially, in comparison to the rest of the language, in that they are permitted
to be non-invertible. As with expressions in Janus, these predicates are run forwards to
select a branch, and then backwards to erase the garbage. Unfortunately the paper is
somewhat lacking in precise detail of the language design, and so it is not clear how one
defines new predicates (other than the mention of an implicitly instantiated history stack
created when these predicates are evaluated), nor is it clear what happens if a predicate
is called outside of such a scope.

(defun fact (n)
(assert (and (integerp n) (> n 0)))

(if (onep n) #′onep
n

(× n (fact (1− n)))))

Listing I.12: The (erroneous) reference implementation of the factorial function in Ψ-Lisp

To showcase the syntax and semantics of Ψ-Lisp, Baker [50] provides a reference
implementation of the factorial function (reproduced in Listing I.12). Unfortunately, this
definition is not reversible as it is not possible, given output 24, to mechanically invert
the expression (× n (fact (1− n))) to obtain n = 4. In fact this is not a failure of the
reversibility of Ψ-Lisp, but rather a failure to adhere to the principles of linearity: n is
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used twice in this expression! Moreover, the presumed definition of × is not invertible
or possible. This demonstrates the ease with which one can introduce a bug when
programming reversibly, although were an interpreter/compiler for Ψ-Lisp available it
would surely not accept the proposed program.

(defun first-onep (car · cdr) (discard cdr) (onep car))
(defun fac (n d)
(assert (and (integerp n) (> n 0)))

(if (onep n) #′first-onep
(list n d)

(let ((n′ d′) (fac (1− n) (1+ d))

(n′′ d′′) (× n′ d′))
(list n′′ (1− d′′)))))

(defun fact (n) (let ((m 1) (fac n 1))m))

Listing I.13: A corrected implementation of the factorial function in Ψ-Lisp

In Listing I.13, we attempt to provide a corrected Ψ-Lisp implementation of the
factorial. This implementation is an iterative loop disguised in recursive form, as it
does not appear that tail-recursion is possible in a reversible context due to the loss of
information pertaining to recursion depth. The original paper is somewhat light on
details, and so this definition is somewhat speculative, particularly with regard to user-
defined predicates: here we define an auxiliary function first-onep which returns whether
its first argument is 1 or not, and assume the existence of a discard primitive to access
the implicit history stack. We also (reasonably) assume an invertible implementation of
× in which (× x y) evaluates to (list xy y), although the linearity restrictions in Ψ-Lisp
mean we must refer to the output y by a different name than the input y. The parameter
d tracks recursion depth, increasing from an initial value of 1 to a maximum of n0, whilst
n is simultaneously decremented from n0 to 1. As we retrace our steps, we multiply n
by the depth counter d, and then decrement d, such that when we finally return from fac
the depth counter has been restored to its initial value (e.g. 1). The wrapper function fact
handles supplying and consuming this depth counter, and assumes that Ψ-Lisp permits
pattern matching on constants or some other way to consume a known constant.

( RR) Another language with Lisp-like syntax, RR (“yar”), was introduced in 1997 by
Frank [53]. However, unlike Ψ-Lisp, the language is procedural and C-like—using the
Lisp-like syntax for convenience of implementation (which is written in Common Lisp).
To the best of our knowledge, this is the first, and perhaps only, (classical) language for
which a compiler targeting a reversible processor exists; namely, the aforementioned
Pendulum Instruction-Set Architecture (PISA). Indeed, the example program in Listing I.14
was compiled to PISA assembly and executed on an emulator (though, to our knowledge,
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not on a physical PISA implementation such as PENDULUM).

(defsub pfunc (ψ′ψ i α/s ε)
((ψ′ i) += ((α/s i)×/ (ψ i)))

((ψ′ i)−= (ε×/ (ψ ((i+ 1) ∧ 127))))

((ψ′ i)−= (ε×/ (ψ ((i− 1) ∧ 127)))))

(defsub schstep (ψR ψI α/s ε)
(for i = 0 to 127 (call pfunc ψR ψI i α/s ε))
(for i = 0 to 127 (rcall pfunc ψI ψR i α/s ε)))

Listing I.14: A RR implementation of the discretised one-dimensional Schrödinger wave equation

Semantically, RR is not dissimilar to Janus, but it does support local variable scoping
which makes it more powerful as a structured programming language. On the other
hand, it does not (as of 1999) possess the ability to have different conditions on entry
and exit for conditionals and loops, nor does it appear to support unbounded for loops.
Nonetheless, such features can be simulated and so this is not a fundamental limitation
of the language.

The example in Listing I.14 begs some further discussion. The Schrödinger equation
was first discretised in a reversible way by Fredkin [54]. It has the remarkable prop-
erty that, although its update rule is in some sense inexact, it nevertheless conserves
amplitude (observed by Fredkin and proved by Feynman). To understand the example,
we first briefly sketch how the Schrödinger equation, iℏ ∂

∂tψ = Ĥψ which describes
the time evolution of the wavefunction ψ under the action of the Hamiltonian Ĥ , may
be discretised. This equation has the formal solution ψ(t) = exp(−iĤt/ℏ)ψ(0); this is
formal in the sense that Ĥ is an operator, which in common formulations takes the
form of a Hermitian matrix or a partial differential operator, and so some care must
be taken when manipulating it. Supposing we wish to use a timestep δt, we can write
ψ(t + δt) = exp(−iĤδt/ℏ)ψ(t) for any value of t. It may be more convenient to sup-
ply the program with Û ≡ exp(−iĤδt/ℏ), having also pre-discretised ψ such that Û is
a matrix and ψ a vector, in which case the simulation can be performed exactly and
reversibly6. Here, however, the program receives Ĥ . Specifically, we are considering
a one-dimensional cyclic potential well in which Ĥ = − ℏ2

2m
∂2

∂x2 + V , and the value of
the potential V is supplied at each discretised point. Expanding Û for small δt and
discretising space, we find

ψ(x, t+ δt)− ψ(x, t) = i
ℏδt

2mδx2
[ψ(x+ δx, t)− 2ψ(x, t) + ψ(x− δx, t)]− iV (x)δt

ℏ
ψ(x).

6It may be observed that matrix multiplication for non-singular Û (which Û is, being unitary) may be
performed reversibly using Gaussian-elimination. Specifically, applying the row reduction algorithm
to [Û−1|1|ψ⃗] yields [1|Û |Û ψ⃗] where 1 is the identity matrix. As Û is unitary, computing its inverse is
trivial (the inverse of a unitary matrix is its conjugate transpose).
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Here the approaches of Fredkin and Frank differ; Frank identifies that the real part of the
wavefunction at the next timestep is only informed by the imaginary part of the wave-
function at the previous and vice-versa, in order to use this directly. In contrast, Fredkin
seeks a more symmetric approach, transforming this to a form ψ(x, t+ δt)− ψ(x, t− δt):
in this form the reversible implementation is more obvious without needing the observa-
tion of real-imaginary orthogonality, but one must retain copies of the wavefunction at
two timepoints instead of the one in Frank’s version. With the discretised Schrödinger
equation thus derived, Frank’s program is a simple transcription of this (after perform-
ing the routine algebra to discriminate the real and imaginary parts) with the array α/s
corresponding to V δt/ℏ and ε to the coefficient ℏδt/mδx2 (twice the phase rotation per
time-step due to the particle’s kinetic energy). It also assumes space has been discretised
128-fold. Finally we comment on the operator which indexes into an array, and the
operator ×/, peculiar to RR, which returns the upper 32 bits of the 64-bit product of
two 32-bit signed integers (the purpose being to implement the rounded product of an
integer with a fixed point number in [−1, 1)).

(Kayak) Perhaps marking the debut of reversible programming into public perception,
Ben Rudiak-Gould introduced Kayak in 2002 as an entry [55] for the second instance of
the Esoteric Awards (‘Essies’). The Essies are an annual competition in design and use of
esoteric programming languages. Esoteric programming languages are not targeted for
real-world use but instead are experiments in designing languages that may, for example,
be intentionally difficult to program in or are very minimal whilst remaining Turing
complete. The most well-known esoteric language is Brainfuck (BF), created in 1993
by Müller [56]. As well as being known for being hard to program in (though certainly
not the most difficult, the honour of which arguably goes to Malbolge [57]), its syntactic
minimalism and semantic simplicity make BF attractive for proving Turing-completeness
of new languages and indeed the original distribution of Kayak included a BF-to-Kayak
compiler (as does our language, alethe, introduced in Chapter V).

Definition I.2 (Syntax and semantics of Kayak). Kayak has very few primitives. A
program is a series of procedures, each consisting of a bipartite name (e.g. swap()paws),
an input and output set of |-delimited variables (these sets should be of equal length),
and a body. Procedure bodies can contain one of four ‘commands’: variable invocation,
temporary register negation, conditional execution and procedure invocation. Variables
are infinite stacks of bits, and invoking a variable will pop the top-most bit and place it
in the ‘temporary’ register if this register is empty, otherwise it will empty the temporary
register onto the top of the named stack. The temporary register is local to procedure
bodies and conditional blocks. Variables not named in the inputs/outputs are also local
to procedure bodies (but not conditionals), and are initialised to an infinite number of
0s (and should be restored as such upon procedure exit). If the temporary register is
occupied, then the | command will negate its bit. The [ · · · ] command is a conditional
block, which will run the nested commands if and only if the temporary register is
occupied and set to 1. Finally, a procedure can be invoked by calling its bipartite name
with some variables; for example, swap(x|y)paws will swap the contents of the stacks
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x and y. Procedures can be run in reverse by reversing their names; for example, a
factorial calculated using the program in Listing I.15 can be un-calculated by calling
lairo(n!)tcaf. Of course, if a name is palindromic then its reverse is inaccessible, and so it
is recommend that only self-inverse procedures have palindromic names. A fascinating
property of this syntax is that inverting a program is as simple as reversing the characters
of its file and mirroring the characters {([<>])}.

swap(a|b) {} (a|b)paws

add(a|b) {a[ add(a|b)bus z|b ]a} (a|b)bus

less-than(a|b|p) {a
[b[ less-than(a|b|p)or-equal ]b] | [ p|p ]

|a} (a|b|p)or-equal

remquo(n|d|q) {
less-than(d|n|p)or-equal
p[ sub(n|d)dda remquo(n|d|q)ddalum ]q

} (n|d|q)ddalum

fact(n|d) {n[n[
z|n z|d
fact(n|d)orial’
muladd(n|d|z)ouqmer
swap(n|z)paws
d|z n|z n|z

]n]n} (n|d)orial’

fact(n) {z|d
fact(n|d)orial’

d|z} (n)orial

Listing I.15: Our Kayak implementation of the factorial function

s(a|b) {} (a|b).
t(a|b) {a[t(a|b). z|b]a} (a|b).
u(a|b|p) {a[b[u(a|b|p).]b] | [p|p]|a} (a|b|p).
v(n|d|q) {u(d|n|p). p[.(n|d)t v(n|d|q).]q} (n|d|q).
w(n|d) {n[n[z|n z|d w(n|d). .(n|d|z)v s(n|z). d|z n|z n|z]n]n} (n|d).
x(n) {z|d w(n|d). d|z} (n).

Listing I.16: Our Kayak implementation of the factorial function, ‘golfed’ and obfuscated

Kayak seems inspired by BF in terms of its syntactic obscurity, as may be gleaned
from Definition I.2. Nevertheless, it is possible to write useful programs in it as we
demonstrate in Listing I.15 with an implementation of the factorial function. In fact,
the algorithm employed is much the same as that we used in Listing I.13. Moreover,
we also provide7 convenience routines for the reading and writing of base-10 ASCII
representations of numbers, thus showing that the presence of modular abstractions—
even in a language as cryptic as Kayak—permits arbitrarily complex programs to be

7https://github.com/hannah-earley/kayak/blob/master/arith.kayak
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readily written. In keeping with its obscure intention, we also provide a ‘golfed’ variant
in Listing I.16.

(‘YAG’) Whilst Ψ-Lisp went some way towards the construction of a functional re-
versible programming language, its incomplete definition leaves it unclear whether
this was achieved—not to mention that Lisp-esque languages are not deemed to be
‘pure’ functional languages. In 2012, Yokoyama, Axelsen and Glück [58] introduced a
language—hereafter referred to as ‘YAG’—which seems to meet the criterion of being a
functional language. The example of computing Fibonacci numbers from the paper is
reproduced in Listing I.17, and the semantics are summarised in Definition I.3.

plus ⟨x, y⟩ △
= case y of

Z → ⌊⟨x⟩⌋

S(u)→ let ⟨x′, u′⟩ = plus ⟨x, u⟩ in ⟨x′,S(u′)⟩

fib n △
= case n of

Z → ⟨S(Z),S(Z)⟩

S(m)→ let ⟨x, y⟩ = fib n in

let z = plus ⟨y, x⟩ in z

Listing I.17: A ‘YAG’ implementation of the Fibonacci numbers

Definition I.3 (Syntax and semantics of ‘YAG’). Like most functional languages, ‘YAG’
is expression oriented. A primary difference, however, is that function application
may only occur in let and rlet expressions; this increased indirection helps enforce
the reversibility of the semantics. These expressions take the form (r)let p = f q in e
where p and q are what we shall call8 patterns, f is a function name, and e an expression
in which to substitute the bindings of p. The let form runs f forwards with input q,
and the rlet runs f backwards with output q. A pattern is either a variable, e.g. x, a
constructor applied to some number of sub-patterns, e.g. the Peano numbers would be
encoded inductively by the forms Z ≡ Z() and S(n), or the special ‘duplication’ pattern
⌊⟨x⟩⌋ (where ⟨x⟩, ⟨x, y⟩, etc are syntactic sugar for the tuple constructors Tuple1(x),
Tuple2(x, y), etc). The ‘duplication’ pattern is unique9 to ‘YAG’; for a full explanation,
the paper [58] is the best source, but essentially ⌊⟨x⟩⌋ reduces to ⟨x, x⟩ whilst ⌊⟨x, y⟩⌋
reduces to ⟨x⟩ if x = y, else to ⟨x, y⟩, and thus by matching on these two forms via

8In the original paper, these are called left-expressions by analogy to the common understanding of
left-expressions in language syntaxes, however the occurence of left-expressions on the right-hand side
of the equals sign is somewhat confusing.

9Duplication and equality testing as concepts are of course not unique to ‘YAG’, but the particular place
this concept holds in the syntax and semantics is a seemingly novel feature.
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a case expression, equality can be tested (and exploited to un-copy in a safe way).
The remaining expression form is given by case p of {qi → ei}mi=1, where the body
defines some number of branches m. Here also ‘YAG’ takes a slightly different approach
from other languages in this space. Whilst most languages require that the potential
matching patterns qi be orthogonal, in ‘YAG’ this is not the case; instead, the first pattern
qj matching the input p selects the branch taken. Similarly, once the branch returns an
output from ej , this must be unique only amongst the expressions i = 1 . . . j in contrast to
most other languages where it must be unique amongst all the expressions. Finally, a
program is a series of function definitions of the form f p

△
= e.

type a+ b = InL a | InR b

type a× b = (a, b)

type N = Z | S N

trace :: f :(a+ b↔ a+ c)→ b↔ c∣∣∣ -- definition omitted

addSub :: N + N↔ N + N∣∣∣∣∣∣∣
InL (S n)↔ InL n

InL Z ↔ InR Z

InR n ↔ InR (S n)

add1 :: N↔ N :: sub1∣∣∣ n↔ trace f̃ :addSub n

add :: N× N↔ N× N :: sub∣∣∣∣∣∣∣
a, b ↔ iter $ a,Z, b

iter $ S a, a′, b↔ iter $ a,S a′, add1 b
iter $ Z, a, b ↔ a, b

where iter :: N× N× N

cantorUnpair :: N↔ N× N :: cantorPair∣∣∣∣∣∣∣∣∣∣
n ↔ iter $ n, (Z,Z)

iter $ S n, (Z, b) ↔ iter $ n, (S b,Z)

iter $ S n, (S a, b)↔ iter $ n, (a,S b)

iter $ Z, (a, b) ↔ (a, b)

where iter :: N× (N× N)

fib′ :: (N× N) + N↔ (N× N) + (N× N)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

InR n ↔ iter $ (n, (Z,Z))

iter $ (S n, (a, b))↔ iter’ $ (n, add (b, a))
iter $ (Z, (a, b)) ↔ InR (add1 a, add1 b)
iter’ $ (n, (a, b)) ↔ iter $ (n, (a,S b))

InL (n, (S a)) ↔ iter $ (n, (S a,Z))

InL (n,Z) ↔ InL (cantorUnpair n)
where iter :: N× (N× N)

iter’ :: N× (N× N)

fib :: N↔ N× N∣∣∣ n↔ trace f̃ :fib’ n

Listing I.18: A Theseus implementation of the Fibonacci numbers

(Theseus) The last language we will review is Theseus, whose name is inspired by
the legendary Ship of Theseus in that its computation ‘[replaces] values by apparently
equal values’. Based on the family of point-free10 combinator calculi Π introduced by

10Point-free languages do not support explicit variable binding, instead modelling computation as ‘flow
through pipelines’; a point-free approach can often be used to elegant effect, and in languages supporting
a mixed approach such as Haskell this is encouraged. Honourable mentions in this space are the
languages Inv and Fun of Mu, Hu and Takeichi [59], whose motivation was in developing a language for
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Roshan James for his graduate thesis [60], James and Sabry [61] introduced an equivalent
higher level language. The motivation for Π is to provide a Category-Theoretic under-
pinning of reversible programming: specifically, Π0 corresponds to dagger symmetric
traced bimonoidal categories. Category Theory has long been a source of fruitful cross-
fertilisation between the realms of mathematics and computer science, with monadic
effects in Haskell a prime example. The typical direction is to attempt to find a category
that models an existing programming language, such as HASK11 for Haskell; Theseus
goes the other direction, deriving a language from a category. The objective of this is
as an aid to reasoning about categorical constructions rather than to produce a useful
language as such, nevertheless a reference interpreter exists12.

Definition I.4 (Syntax and semantics of Theseus). Theseus is based on type isomorph-
isms, and has the strongest and most developed type system of those reviewed here. A
Theseus program is a series of type definitions and isomorphism (‘map’) definitions,
and its syntax largely resembles a subset of Haskell’s. A map is defined by a name,
a type isomorphism, an optional name for its inverse, and a series of pattern clauses.
Unlike in Haskell, either side of a pattern clause may invoke an isomorphism; if an
invocation occurs on a ‘target’ side then it will be called and its return value substituted,
as expected, if it occurs on the ‘matching’ side, however, then its inverse will be called
and the result then matched. There are two further extensions to maps. Firstly, maps
may be parameterised in order to simulate higher-order isomorphisms (this is just a
simulation, as maps are not first-class values in Theseus). Secondly, maps may have
typed ‘labels’, syntactically represented by label $ v where v is its appropriately typed
argument. The function of labels is as a sort of ‘go-to’ operator. Implicitly a map with
type a↔ b and label types ℓ1 and ℓ2 is transformed to a map (ℓ1+ ℓ2)+ a↔ (ℓ1+ ℓ2)+ b.
Then, the map is called repeatedly (‘traced’) until it returns a value of type b and can
thus be used to implement looping. For example, if such a labelled map f yields a loop
of 3 iterations, then we would call the modified map f ′ four times on InR x and then
match on the output, i.e. InR y = f4(InR x). A core difference between this language
and the others reviewed here is that the clauses of a map must not only be orthogonal,
but also exhaustive. This complicates definitions of even something as simple as adding 1
to a natural number, because the output of add1 cannot be 0; to circumvent this, explicit
divergence of these cases must be employed, i.e. introducing an infinite loop.

The semantics of Theseus are summarised in Definition I.4 and illustrated in the
example implementation of Fibonacci numbers in Listing I.18. In Listing I.18, the
definitions of trace, addSub, add1 and add are due to James and Sabry [61] whilst the
remaining definitions, cantorUnpair, fib’ and fib, are due to us13. The aforementioned

bi-directional transformations. Bi-directional transformations are another thread in the field of reversible
computation, useful for such applications as editors in which there is an isomorphism between the
(editable) document description and the resultant document view.

11The familiar reader will object that HASK is not, strictly speaking, a category due to the interaction of the
primitive seq with bottom values.

12Mirrored at https://github.com/hannah-earley/theseus
13The original paper also supplies a definition of fib, but as a Bennett-esque embedding.
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exhaustivity requirement makes this substantially more complicated than, e.g., that in
Listing I.17 because we must manufacture an exhaustive handling of the error condition.
In fib this is very prominent because the subset of N×N corresponding to valid Fibonacci
pairs has vanishing measure. Additionally, we attempt to reduce the extraneous cases by
internally operating on (Fn−1, Fn+1−1). James and Sabry do suggest at the end of their
paper that it may be possible to extend Theseus with more conventional error handling,
which we believe would be the more optimal choice for a programming language.
Explicit divergence has a number of downsides in our opinion: from a programmer
perspective, coding up divergence conditions is quite cumbersome14, and there is no
‘correct’ choice of how to do so as these cases are meaningless, thus making it more of
an art than a science. Furthermore, from a user’s perspective this divergence behaviour
is sub-optimal as one cannot distinguish a long-running/intentionally non-halting
computation from an error condition or bug, not to mention the excessive resultant CPU
utilisation. Of course, these objections are besides the point of Theseus, but would serve
as a small modification with disproportionate benefit for adoption of Theseus as a viable
typed functional language for reversible computation.

We will revisit the matter of reversible programming languages in Chapter V, but for
the next three chapters we shall return to the physics of reversible computation.

14We would estimate it occupied 95% of our time in constructing the fib example!
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In this chapter we will consider the maximum sustained computational
performance—in terms of operations per second—that can be extracted from

a given region of space, under fairly general assumptions. Namely, we as-
sume the known laws of physics, and that one will need to supply the system

with energy over time in order to keep it going. We show, similarly to early
work by Frank [9], that for any realisable computer reversible computers are

strictly better than irreversible computers at any size. We also derive uni-
versal scaling laws describing just how much better a reversible computer
could be compared to an irreversible computer, proving that the adiabatic

Time-Proportionally Reversible Architectures (TPRAs) of Frank are the best pos-
sible, and suggest a path to achieving this bound with molecular computers.

To illustrate these results, summarised in Figure II.1, suppose we wish
to build the most powerful computer we can within some spherical re-

gion of space, of radius R. If the computer is irreversible, such as conven-
tional silicon-based processors, then it is found that essentially only the

surface of this sphere can be used for computation and the interior must
be empty or inert. This clearly limits the rate of computation proportional

to 4πR2. The reason for this restriction is thermodynamic, arising from
constraints on both supply of power and rejection of heat. If R is very big,

such that the computer threatens to collapse into a black hole, then it is
found that the computational rate can now only scale proportional to R.

For a reversible computer the situation is substantially improved. In prin-
ciple, a reversible computer can operate without producing an increase in

entropy and without requiring any input of energy, and so the rate of com-
putation could scale with the volume. Unfortunately in practice this is not

possible, and a more careful consideration of the system’s entropy is required.
The rate of computation is found to scale proportional to 4√

3
πR5/2, geomet-

rically between the area and volume. For large R, general relativistic effects
become significant and this falls to the more restrictive bound R3/2. For even

larger R this eventually falls to proportional to R, coinciding with the irre-
versible computer. The reason for this additional threshold between scaling

laws is that the sub-relativistic reversible computers—where gravitational
effects on spacetime are negligible—are not taking full computational ad-

vantage of their volume due to thermodynamic constraints; as the system
gets larger beyond the collapse threshold (when the geometry transitions

to a thick shell rather than a sphere) the thermodynamic constraints gradu-
ally relax, allowing a scaling that ‘temporarily’ exceeds the limit value of R.

Therefore we see that at almost all scales, reversible com-
puters substantially outperform irreversible ones, whilst

at extremely small—typically sub-nanometer—and large—
order of the visible universe in size—scales they coincide.



II. Limits on Computational Rates in
Physical Systems

Figure II.1: An illustration of the primary results of this chapter. Consider a spherical region
of computational matter with radius R, convex surface area A and enclosed volume V . The
expressions indicate how the computational rate of each architecture scales, proportionally. From
left to right, these regimes are:

V : reversible computers at absolute zero;√
AV : reversible computers at finite temperature;
A : irreversible/canonical computers;√

RA : critical density (thick shell on the cusp of gravitational collapse);
R : critical density (thin shell on the cusp of gravitational collapse).

II.1. Introduction
The ubiquity of computer technology—and the increasing demands set upon it by in-
tensive algorithms from fields such as machine learning, physics simulations, and cloud
computing, among others—render the question of computer performance of consid-
erable interest. Perhaps the most well known observation on computer performance
was published by Moore [63], who noticed the trend of microchip component density
doubling every 18 months, later dubbed ‘Moore’s law’ in his honour. This law seemed
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(a) (b)

Figure II.2: An illustration of the three dominant physical constraints that apply to computa-
tional systems. Constraints (a) and (b) are described in Section II.1 and (c) in Section II.5. (a)
The quantum mechanical constraint bounding the minimum time for a state transition for a
system of given average mass-energy ⟨E⟩ where E0 = 0. This illustration includes example
energy levels of the eigenstates and a cyclic sequence of orthogonal states {1, . . . , N} which
are each a superposition of the eigenstates, with the same average energy ⟨E⟩. (b) A combina-
tion geometric-thermodynamic constraint. Thermodynamically, each computational operation
generates entropy (generally heat) and this is bounded from below in the case of irreversible
computation, but still non-zero in the reversible case. Geometrically, we can only dissipate this
entropy at a rate scaling with the convex bounding surface, (II). The surface (III), whilst larger
than (II), is not useful as the entropy flux must still pass through surface (II). Surface (I) is also
larger, but the flux must first pass through surface (II). The green region is the computational
system proper. At steady state there is an amortised balance between the entropy dissipation
flux and input power flux. (continued on next page)

to apply to many quantities in computing, including clock speed, FLOPS1 of the top 500
supercomputers combined, and inverse storage cost. A popular debate arose over when,
if ever, Moore’s law would stagnate; for clock speed, this point has come and gone, with
consumer processor clock speeds frozen around 3 GHz to 4 GHz.

Whilst it is not surprising that contemporary technology may pose limits on compu-
tational performance, it is pertinent to ask whether the laws of physics impose hard
bounds on performance. Indeed, our knowledge of quantum physics, thermodynamics
and relativity reveals the answer to be affirmative, as hinted at in the introduction
chapter. For a brief overview of some of these constraints see, for example, Lloyd’s
analysis [64].

In this chapter, we investigate how these bounds vary as a given computational sys-
tem is scaled up. The results we find apply, with different constants of proportionality,
for any given computational architecture. A computer constructed from a mix of ar-
chitectures can be treated as a linear combination, and therefore these scaling results
apply to any computer. This builds upon the work of Frank [9], proving that his notion

1FLOPS, or FLoating point Operations Per Second, is a common measure of supercomputer performance.
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(c)

Figure II.2: (continued) (c) The (general) relativistic constraint which informs the optimal mass
distribution of the system. Each example computational system is shown as a space time
diagram, with the horizontal axis corresponding to space and the vertical to time. The above-
right circles are cross-sections showing the mass distribution. Cones are light-cones showing the
local causal structure and indicating spacetime curvature due to the stress-energy tensor. The
emanating light waves correspond to the output of the computer. For small computers such as
(i), general relativistic effects are negligible. For larger computers such as (ii), space is noticeably
curved within the vicinity of the system and so the frequency of emitted photons is red-shifted,
meaning that the computer appears slower to a distant observer. For computers on the cusp
of gravitational collapse such as (iii)—even if the density is lowered to keep the Schwarzschild
radius small, as indicated by the lighter shade of the system—light takes a very long time to
escape, diverging to infinity as the system radius approaches 9

8 of the Schwarzschild radius. The
factor 9

8 comes from the Chandrasekhar limit [62] and is explained in Section II.5. In fact, this is
an ideal case; in practice the computational rate will vanish and the system will spontaneously
collapse at even larger radii depending on the heat capacity ratio. To avoid this while keeping
the same total mass and radius, the system should be reconfigured into a spherical shell of the
same density as (i,ii), as depicted in (iv). The geometry can then be optimised to minimise the
effect of time dilation to at most a threefold slowdown, thus retaining our qualitative power-law
scaling.

of adiabatic Time-Proportionally Reversible Architectures (TPRAs) are the best possible,
confirming the relevant scaling results in the mesoscopic regime (as well as analysing
scaling in very small and very large regimes in more detail), and excluding the possib-
ility of architectures of lower dissipation. Moreover, the detailed calculations herein
yield specific constants of proportionality for broad classes of reversible computational
architectures.

There are many metrics by which one may wish to measure computational perform-
ance. In this chapter, we shall investigate ‘speed’ as defined by the rate of state transitions
the computer is able to execute. As we are more concerned with the general form of scal-
ing law rather than the specific constants for a specific architecture, the exact definition of
‘state’ and ‘transition’ are not too important. In general the most ‘obvious’ definitions can
be assumed, for example a conventional silicon-based computer would have as its states
each possible value of all its registers, memory and any attached storage device, and as
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its transitions a single machine instruction2. More rigorous definitions can be found in
quantum mechanics, wherein a state would be an eigenstate of the computational basis
Hamiltonian, and a transition would correspond to the complete evolution of the state
between orthogonal eigenstates.

Other performance metrics of interest might concern synchronisation between distinct
computational elements within a parallel system, and interaction with some arbitrary
non-equilibrium system such as a supply of additional memory resources. These shall
be covered in Chapters III and IV, respectively.

Quantum Constraint on Computer Performance As a first approach to bounding
computational performance, we turn to quantum mechanics. Bremermann [65] gave a
back of the envelope calculation in 1962, subsequently refined and elaborated upon by
Margolus and Levitin [66] and summarised in Figure II.2a, to show that a system with
energyE can change state at a maximum rate of ν ≤ E/hP where hP is Planck’s constant.
Assuming this energy is due primarily to rest mass, this gives ν ≤ 1.36× 1050Hzkg−1.
Restricting our attention to a specific architecture as defined earlier, we assume a fixed
density—or at least that the density is bounded from above—such that ν ≤ V ρc2/hP .
This immediately implies that the maximum rate of computation scales with volume.

Thermodynamic and Geometric Constraint on Computer Performance This
quantum limit assumes a closed computational system, requiring no external power
source. As we saw earlier this is not possible for conventional computing architectures,
being irreversible and hence subject to the Landauer bound [7, 8]. To recall, the Landauer
bound quantifies the increase in entropy that occurs whenever information is irrevers-
ibly discarded into the environment (as must occur when trying to overwrite data or
otherwise reset some arbitrary state to a known state). Explicitly, whenever a quantity of
information I bits is discarded, an entropy increase of ∆S ≥ kI log 2 manifests where k
is Boltzmann’s constant, with equality only in the limit of thermodynamic reversibility
in which the discarding process takes an infinite period of time.

In order to sustain computation then, it is necessary to remove the additional entropy
at the same amortised rate as its production. In the case of heat, this is achieved by
cooling the system; this process can be generalised to other forms of entropy, such as
disorder in a spin bath [67], but we shall restrict out attention to heat for conceptual
convenience. We must thus enact a flow of work into the system and heat out in order
to sustain computation, but here we encounter a geometric constraint. This energy
flow applies at every bounding surface, assuming that the heat is ultimately rejected to
infinity. Consider a convex bounding surface of area A, and assume our technology of
choice is capable of transporting energy up to a certain flux ϕ, then the maximal power
that can be exchanged with the system is given by P ≤ ϕA. As has been established,
however, the rate of heat generation scales with the rate of computational transitions for
an irreversible computer, and therefore the rate of computation is ultimately bounded by

2To be specific, we refer to the combination of a single op-code and its parameters.
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the system’s convex surface area, rather than its volume as contended by the quantum
mechanical limit. See Figure II.2b for an illustration.

This is far more restrictive than the volumetric upper bound derived earlier, and
suggests that for large computers only a subvolume equivalent to the outermost shell
of the volume can perform useful computation with the remaining bulk relegated to
dormant inactivity3. That is, we take the more restrictive of the two bounds, which
for small systems is the volumetric bound and for larger (irreversible) systems is this
areametric bound.

Ballistic Computation Does this areametric thermodynamic bound render the volu-
metric quantum bound inaccessible? A trivial exception is found at small scales, where
the surface area to volume ratio becomes so large that the volumetric bound is in fact
more restrictive than the areametric bound, and thus takes priority. To more robustly im-
prove on the rate of computation, however, we must reduce the entropic cost associated
with a computational transition. As was elaborated upon in the introduction chapter,
this necessitates conserving information during computation by using the concept of
reversible computation. Whilst the utility of reversible computation was initially contro-
versial, with Landauer initially [7] believing it to not be useful, it was soon shown by
Bennett [39] that reversible computation was viable. Moreover, he showed how any irre-
versible program could be efficiently simulated on such a reversible computer without
excessive memory overhead, thus proving that reversible computing was equipotent
with conventional computing. For a brief exposition of reversible programming, refer
back to Chapter I.

An idealised reversible computer would produce no entropy in its transitions. Fredkin
and Toffoli [42] described such an idealised system, a physical model of reversible
computing that could operate without being actively powered. This model consisted
of a frictionless table upon which hard elastic billiard balls were projected. The balls
would bounce off of each other and some strategically placed walls, with the precise
configuration describing the resultant computation. As a testament to its capability,
Fredkin’s student, Ressler [41], proposed the design of a fully programmable billiard
ball computer, complete with arithmetic logic unit. See Figure I.6 for an illustration of
the general principles of the billiard ball model. Given that such a computer would be
powered solely by its initial kinetic energy, the volumetric quantum bound would be
attainable. Unfortunately, Bennett [43] calculated that such a design would ultimately be
infeasible as even the most distant and subtle influences would be sufficient to rapidly
and completely thermalise the motions of the system. Such influences could in principle
be suppressed by error correction mechanisms, but error correction corresponds to the
discarding of excess entropy, and would seem to reconstitute the very issues we were
trying to avoid.

Our last refuge against unwarranted entropic influences is in quantum ground state

3The remaining bulk need not be entirely devoid of purpose. It may, for example, be used for storage and
memory. It must however have negligible entropy generation, such as that resulting from structural
deterioration due to cosmic rays, spontaneous tautomerisation, etc.
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condensates. Phenomena such as superfluidity and superconductivity arise in a suffi-
ciently cooled system, wherein a macroscopic fraction of particles are found to inhabit
their ground state, manifesting macroscopic quantum behaviours and a subsystem with
vanishing entropy and temperature. The utility of such systems is manifold, but unfor-
tunately it is doubtful that they can be exploited for dissipationless computation; the
reason is that, in order to enact transitions to orthogonal quantum states, the Schrödinger
equation requires us to prepare a superposition of (distinct) energy states which then
rotates under the action of the Hamiltonian. The presence of non-ground eigenstates
will necessarily result in a renewed vulnerability to thermodynamic perturbations. Nev-
ertheless, such cold temperatures are not altogether useless, as unwanted fluctuations
would still be significantly suppressed.

Brownian Dynamics The fluctuations and dissipation that result from these thermo-
dynamic perturbations lead to diffusion of the distribution in phase space, and hence
loss of absolute control over it. Consequently there will be some level of unpredictability
to the state of the system and its (generalised) velocities. In the limit of negligible control,
the dynamics are (mostly) dominated by the noise source; this regime is referred to
variously as Brownian or Langevin dynamics. In Section II.4 it shall be shown how to
leverage the minimal extant control over the system to make net progress, and to even
robustly surpass irreversible computers in performance.

Summary Whilst fully dissipationless computation is all but impossible, it is still
possible in principle to tune the system so as to bring the entropic transition cost as close
to zero as desired. In exchange, the rate of computation may itself be diminished. In the
chapter that follows, this compromise is evaluated across the range of known physics—
from quantum to classical, non-relativistic to relativistic—covering the full spectrum of
feasible computational architectures. In so doing, a universal scaling limit is discovered,
exceeding that of irreversible computers yet still falling short of the volumetric quantum
bound.

II.2. Quantum Ballistic Architectures and the Quantum Zeno
Effect

We first consider a quantum architecture. A viable quantum architecture must be ballistic
in the sense of following an exact prescribed trajectory in phase space, as to do otherwise
would lead to decoherence undermining the computational state. Of course we have
established that a ballistic quantum system cannot truly be isolated from entropic effects;
in particular, the third law of thermodynamics precludes lowering the temperature of
any system to absolute zero, and so we must incorporate a heat bath into our analysis.

Suppose the ballistic Hamiltonian is given byH0 and the perturbative effect of the heat
bath by V (t), such that the true Hamiltonian isH = H0+V . Further, let the initial density
be ρ and introduce the projector P corresponding to the subspace of valid states, such

30



II.2. Quantum Ballistic Architectures and the Quantum Zeno Effect

that Pρ = ρP = ρ. To ensure processive computation, we must therefore periodically
correct errors introduced by the perturbation. The cost of such error correction will be
bounded from below by the entropy increase due to V , which can be expressed in terms
of the probability of an error δp corresponding to the erroneous subspace P⊥ = 1− P .

If corrections are to be made at intervals δt, then this error will be found to be δp(t) =
tr
[
P⊥ρ(t+ δt)

]
. For a time-dependent Hamiltonian, the quantum Liouville equation

tells us that ρ̇ = i[ρ,H/ℏP ] where ℏP is Planck’s constant. We can expand ρ as

ρ(t+ δt) = ρ+ δt
∂ρ

∂t
+ 1

2δt
2∂

2ρ

∂t2
+O

(
δt3

)
= ρ+ i[ρ, ε] + 1

2(iδt[ρ, ε̇]− (ε2ρ− 2ερε+ ρε2)) +O
(
δt3

)
where we have omitted explicit time dependence for brevity and written ε ≡ Hδt/ℏP .
We then find

δp = tr
[
P⊥(ρ+ i[ρ, ε+ 1

2δtε̇]−
1
2(ε

2ρ− 2ερε+ ρε2))
]
+O

(
ε3
)

= tr
[
P⊥ερε

]
+O

(
ε3
)
≡ tr

[
ρεP⊥ε

]
+O

(
ε3
)

where the last line uses the fact that P⊥ρ = ρP⊥ = 0. Note that if the ρεP⊥ε term
vanishes, then so do all higher terms, and therefore this term is always the leading order
approximant.

In order to evaluate this trace, we first write H0 and V as block matrices in the basis
(P, P⊥), yielding

H0 =

(
h00 0
0 h11

)
, V =

(
v00 v01
v10 v11

)
.

Using the idempotence of projectors, i.e. P⊥ ≡ P⊥P⊥, and the fact ρ ≡ Pρ, we can see
that ρHP⊥H ≡ ρV P⊥V = ρ(V 2 − V PV ). Therefore, we have

δp =
( δt
ℏP

)2

(⟨V 2⟩ − ⟨V PV ⟩) .

The first thing to notice about this expression is that it varies with the square of δt. This
is characteristic of the Quantum Zeno Effect (QZE [68])—that is, in the limit of constant
measurement (i.e. δt→ 0), we can freeze dynamical evolution. Here, we are performing
a partial measurement by projecting onto the subspace of either valid or erroneous
computational states, thus allowing computational evolution to continue. Of course,
the Zeno rate itself is subject to the Margolus-Levitin limit [66] and so such constant
measurement is not possible.

To proceed in further determining δp, and thereby δh, it is important to elaborate on
certain architectural details. Margolus and Levitin’s analysis shows that one gets the
same E/hP total rate regardless of whether one considers transitions of the system as
a whole (‘serial’) or the combined transitions of a system partitioned into subsystems
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(‘parallel’). For a physically realistic system, measuring large subsystems as a whole is
impractical and so a more fine-grained architecture is likely preferable. Nevertheless,
we shall proceed generally, finding the result is independent of this detail.

Let the subsystems be indexed by i ∈ I. For a fully serial system, |I| = 1. We allow
each subsystem to evolve independently, assuming that interaction events are negligibly
frequent relative to our Zeno corrections. Specialising our above result for δp, we have

δpi =
(δti
ℏP

)2

(⟨V 2
i ⟩ − ⟨ViPiVi⟩)

The strength of the perturbations Vi will be controlled by an effective temperature
for that subsystem, Ti. Suppose the subsystem has ni degrees of freedom4, hereafter
referred to as computational primitives. By the equipartition theorem, the energies of each
primitive will be individually perturbed. For an uncorrelated perturbation, we expect
that ⟨V ⟩ = 0 where x is the time-average value of x. Therefore, ⟨V 2⟩ ≡ var⟨̄·⟩ V . The
expected aggregate perturbation over all primitives, then, is ni(kTi)2 assuming V is
Gaussian and where k ≡ kB is Boltzmann’s constant.

As for the second term, V PV , we expect that on average V will mix (near-)degenerate
states indiscriminately. V PV represents the probability that the perturbation stays
within the intended computational subspace. The state space can be divided into disjoint
computational subspaces, within which the dynamics perform a reversible cycle over
computational states. Let the total state space have cardinality Ωi, and the number of
microstates associated with each subspace be ωij where j indexes the different subspaces
such that Ωi =

∑
j ωij . Assuming similar energy distributions between subspaces, the

chance of remaining within the original subspace is ωij/Ωi. We further approximate this
by ωi/Ωi where ωi = ⟨ωij⟩j is the average subspace cardinality. Equivalently, we can
define Ωi/ωi ≡ Wi, the number of distinct programs that the subsystem is capable of
executing. Therefore,

δpi = ni

(
δti
kTi
ℏP

)2

(1− 1/Wi)

In fact, we may wish to correct the second term errors in which we jump within the
same subspace, as this may interfere with synchronisation between different subsystems
(or it may be difficult to ascertain whether we have jumped within the same subspace).
In this case, the expression reduces to

δpi = ni

(
δti
kTi
ℏP

)2

(1− 1/Ωi)

In any case, 1 − 1/Wi is always finite and ∈ [12 , 1) for any useful subsystem; that is, a
useful subsystem should have Wi ≥ 2. For composite/non-primitive subsystems, we
would like the number of useful programs to scale exponentially with the number of
primitives, i.e. Wi = gni

i for some gi (typically on the order of unity but greater than 1).

4Excluding any frozen out by low temperatures.
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For a composite subsystem of even moderate size, this exponential scaling will render
the 1− 1/Wi term effectively unity.

We are now able to determine the entropy increase between Zeno cycles. The indis-
criminate mixing of the perturbation means that, in the event of an error, the entropy
attains its maximum value. This yields the following expression for the information
entropy5,

δhi = [−(1− δpi) log(1− δpi)− δpi log δpi + (1− δpi) logωi + δpi log Ωi]− [logωi]

= δpi(1 + log Ωi
ωi
− log δpi)−O

(
δp2i

)
≡ δpi(logWi + 1− log δpi)−O

(
δp2i

)
≥ niδpi log gi −O

(
δp2i

)
.

This expression assumes ignorance of states within the current computational subspace;
again, we may wish to correct these errors too, in which case we may simply substitute
ωi = 1. This would effectively lead to taking Wi = Ωi = g′ni

i where g′i ≥ gi, and so the
inequality remains valid.

Putting these together, we get

ḣi ≥
n2i
rZ,i

ζi

(kTi
ℏP

)2

log gi︸ ︷︷ ︸
≡γi

where rZ,i ≡ 1/δti is the Zeno measurement rate for the subsystem and ζi = 1− 1/Wi ∈
[12 , 1). The aggregate rate of entropy generation is given by Ḣ =

∑
i ḣi and is subject to

the constraint kT̂ Ḣ ≤ P where T̂ is the system temperature that governs the Landauer
bound and P = ϕA is the heat dissipation power, proportional to the system’s surface
area. It may seem surprising that ḣi ∝ n2i . In fact, this only applies for sufficiently small
δpi; when δpi becomes significantly large, ḣi approaches its maximum of nirZ,i log gi.

We wish to maximise the computational rate, subject to this constrained entropy
production. Per Margolus and Levitin, this rate depends on the combined energy of
the computational primitives. If the average energy per primitive in subsystem i is εi,
then the energy available for computation is EC =

∑
i εini and the computational rate is

subject to RC ≤ EC/hP .
Introducing the Lagrangian multiplier α, we wish to maximise Λ with respect to ni;

Λ =
∑
i

εini −
1

2α

∑
i

n2i
rZ,i

γi =⇒ 0 = εi −
1

α

ni
rZ,i

γi .

This gives ḣi ≥ αεini and so

Ḣ ≥ αEC ;

5We use H to refer to the information theoretical entropy, connected to the thermodynamical entropy
as S = kBH . Furthermore, we use the lowercase quantity h to refer to the entropy of a subsystem or
particle.
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solving for α and summing over i,

αrZ,i =
niγi
εi
≡ niεiγi
ECε2i

EC

αRZ = EC

〈γi
ε2i

〉
EC,i

.

where the average is taken over the computational energy distribution and RZ gives the
net Zeno rate of the system as a whole. Substituting into the Ḣ constraint and making
use of the fact that RZ ≤ EZ/hP ,

P

kT̂
≥ Ḣ ≥

E2
C

RZ

〈 γ
ε2

〉
P

kT̂

EZ

hP

〈 γ
ε2

〉−1
≥ E2

C

where T̂ can be called the ‘Szilard’ temperature: the temperature of the system in which
entropy is generated and must be subsequently erased. Finally, we obtain an expression
for the net computational rate RC ,

RC ≤

√
P

kT̂

EZ

hP

〈
ζi

(
2πkT

ε

)2

log g

〉−1

=
1

2π

〈
ζi log g

β2ε2

〉−1/2√ P

kT̂

EZ

hP
.

Now, as the upper bound of P is proportional to the bounding surface area, and the
upper bound of EZ is proportional to the system’s volume, we get the scaling law

RC ≲
√
AV ∼ V 5/6 ,

consistent with the scaling law for adiabatic architectures found by Frank [9] and show-
ing it to be an upper bound.

We note that Levitin and Toffoli [69] derive a related expression for the rate of energy
dissipation/heat production within a quantum harmonic oscillator (QHO),

P =
εhPR

2
C

(1− ε)N
,

where ε is the probability of error per state transition and N is the number of QHO
energy levels. Given that their analysis assumes maximal RC , however, this simplifies to

P =
ε∆E

1− ε
RC

where ∆E is the separation of energy levels. Given that ε is assumed constant in
the analysis, this then yields an areametric bound on RC . Our analysis permits ε to
vary, and its optimum value as a function of system parameters is obtained. We also
remain general in the systems studied, and thus confirm the conjecture that for a fixed
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error probability the energy-dissipation rate increases quadratically with the rate of
computation.

We also note the recent results6 of Pidaparthi and Lent [70] on the Landau-Zener
effect (LZE) [71, 72]. In a closed quantum system, with no thermal coupling to the
external environment, the Landau-Zener effect predicts that the energy dissipation
decays exponentially with the switching time of the system (the inverse of the computation
rate). That this is non-zero even in the absence of an external environment shows
the difficulty in achieving ballistic computation even in ‘idealised’ conditions, but it
certainly points towards a route to achieving near-ballistic computation in regimes
in which thermal coupling is negligible. As expected, once thermal coupling is re-
introduced to the system Pidaparthi and Lent show how the adiabatic behaviour is
recovered. Moreover, their numerical results indicate that the LZE does not appear to be
a practicable approach to achieving super-adiabaticity, except perhaps in a very narrow
region of system conditions and size. Moreover, the results of Pidaparthi and Lent show
the occurrence of a local minimum of dissipation with respect to switching time that
would lead to engineering difficulties in increasing computer size for this parameter
range. In any case, our asymptotic results stand, although it would be instructive to
characterise the parameter range in which the LZE is exploitable and in which the
aforementioned engineering difficulties arise.

II.3. Classical Architectures I: A General Lagrangian
Approach

If use of the QZE is not possible, perhaps because of high temperatures or an excessive
Zeno rate, then Fermi’s golden rule applies, giving δp ∝ δt. Consequently ḣ—and thus
Ḣ—is subject to a finite lower bound. We find ḣ ≥ nṗ log g, yielding Ḣ ≥ EC⟨ṗ log g/ε⟩.
Combining with our constraint Ḣ ≤ β̂P , the inequality in RC becomes

RC ≤
〈
ṗ log g

ε/hP

〉−1 P

kT̂

where hP here is Planck’s constant, and so the scaling law falls to RC ≲ A ∼ V 2/3. That
is, any ballistic system not making use of the QZE will be subject to the same areametric
limit as irreversible computers.

The breakdown of the QZE corresponds to an increase in thermal coupling. By
abandoning the desire to maintain well defined quantum states, we instead enter the
incoherent regime of the classical realm wherein quantum effects are significantly sup-
pressed. Proceeding generally, we adopt a Lagrangian formalism in order to remain
noncommittal in our choice of coordinates q⃗.

We introduce a reasonably general Lagrangian, L = T − V ,

L = [12cij q̇iq̇j ]− [V + wiq̇i +O( ˙⃗q 3)] ≡ 1
2 q̇

⊤Cq̇ − V −Wq̇ +O(q̇3)
6The author gratefully acknowledges Mike Frank for pointing them towards this body of work.
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where the coefficients c, V , w... may depend continuously on the coordinates q⃗, and
Einstein notation is used for repeated indices. We have rewritten the Lagrangian in
matrix form for concision, where C is a matrix, V a scalar, W a row vector, and q a
column vector. We assume the system is (effectively) closed, self-contained, or otherwise
independent of its environment, and thus L will not formally depend on the time
parameter. In addition, this property implies invariance under global translation of
any of its coordinates and thus conservation of all associated momenta. We obtain the
HamiltonianH and generalised momenta thus

H =
∂L
∂q̇i

q̇i − L = 1
2 q̇

⊤Cq̇ + V +O(q̇3)

pi =
∂L
∂q̇i

= Cq̇ −W +O(q̇3)

Notice that the terms of our potential linearly dependent on the velocities drop out of
the Hamiltonian. Those dependent on the cube or higher remain, but will turn out to
be negligible at the velocities optimal for computation (and are typically not physically
relevant in any case).

For brief collisions, the change in coordinates is negligible and so the spatiotemporal
variance in coefficients can be neglected. In this case, we should conserve the Hamilto-
nian and momenta. We introduce superscripts to the coordinates, q(n)i , to represent
different particles. We also introduce notation for the velocities before, u, after, v, and
their change, ∆u = v − u. For a collision between particles m and n,

∆H = [12v
(m)⊤C(m)v(m) − 1

2u
(m)⊤C(m)u(m)] + [12v

(n)⊤C(n)v(n) − 1
2u

(n)⊤C(n)u(n)]

= 1
2(u

(m) + v(m))⊤C(m)∆u(m) + 1
2(u

(n) + v(n))⊤C(n)∆u(n) = 0

∆p = C(m)∆u(m) + C(n)∆u(n) = 0 ,

where we use the fact that C is symmetric. Substituting ∆p into ∆H, we find,

2∆H(m,n) = [(u(m) + v(m))− (u(n) + v(n))]⊤C(m)∆u(m)

0 = [(2u(m) +∆u(m))− (2u(n) +∆u(n))]⊤C(m)∆u(m)

= [2(u(m) − u(n)) + (1 + C(n)−1C(m))∆u(m)]⊤C(m)∆u(m)

= [2(u(m) − u(n)) + (C(m)−1 + C(n)−1)C(m)∆u(m)]⊤C(m)∆u(m)

≡ [2(u(m) − u(n)) + µ(m,n)−1C(m)∆u(m)]⊤C(m)∆u(m)

= [2µ(m,n)+1/2(u(m) − u(n))︸ ︷︷ ︸
−y

+µ(m,n)−1/2C(m)∆u(m)︸ ︷︷ ︸
x

]⊤µ(m,n)−1/2C(m)∆u(m) ,

where µ is the generalised reduced mass of the (m,n) system. We can solve for x, and
thereby ∆u(m), by rewriting thus,

|x− y|2 = |y|2 .
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This form reflects the fact that we lack sufficient constraints to unambiguously solve for
the post-collision picture. In Cartesian coordinates for point particles, this manifests as
an unknown direction of motion afterwards. This is usually resolved by introducing
the constraint that momenta perpendicular to the normal vector between the colliding
bodies are unchanged. In our generalised coordinate system, the appropriate constraint
is unspecified. The general solution is given by

x = y + |y|n̂ = |y|(ŷ + n̂)

where n̂ is a unit vector of unknown direction. We now find an expression for the change
in kinetic energy of our particle of interest, (m),

∆H(m) = (u(m) + 1
2∆u

(m))⊤C(m)∆u(m)

= u(m)⊤µ(m,n)1/2|y|(ŷ + n̂) +O(∆u(m)2)

= η|u(m)⊤µ(m,n)(u(m) − u(n))|+O(∆u(m)2)

where we have introduced a factor η ∈ [−2, 2] to take into account our uncertainty in
the final direction, and where we have assumed |∆u| ≪ u. Being more careful, we can
determine ∆u(m) thus,

∆u(m) = C(m)−1µ(m,n)+1/2|µ(m,n)+1/2(u(n) − u(m))|(ŷ + n̂)

|∆u(m)| = η′|C(m)−1µ(m,n)(u(n) − u(m))|
= η′|(C(m) + C(n))−1(C(n)u(n) + C(m)u(m))− u(m)|
= η′|ũ(m,n) − u(m)|

where ũ(m,n) is the average of prior velocities, weighted by their generalised masses C(·),
and η′ ∈ [0, 2] is another uncertainty factor related to η. When u(m) is large compared
to u(n), (u(m) +∆u(m)) ≈ u(m). When it is small, (u(m) +∆u(m)) ≈ u(n). Thus a better
approximation to ∆H is given by

∆H(m) ≈ η|ũ(m,n)⊤µ(m,n)(u(m) − u(n))| .

∆H gives the energy lost from the computational particle (m) to some environmental
particle (n), and thus is the amount of energy that must be supplied to the computational
system and dissipated from the thermal system. In order to proceed we must determine
the rate of this energy transfer; if we assume that the kinetic dynamics of the system are
significantly faster than the computational transitions, as suggested by our inability to
sufficiently control the quantum state, then we can assume negligible extant correlations
between the positions and velocities of different particles. Thus we can employ a kinetic
theory approach to determine this rate.

We first determine the mean free path ℓ, the average distance a particle travels between
collisions. Given the vanishing correlations, we are able to treat collisions between
different species of particle separately. For spherically symmetric particles, we find
π(r(α) + r(β))2ℓ(α;β) = 1/n(β) for the mean free path of α particles between collisions
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with β particles, where n(β) = N (β)/V (β) is the number density of β particles. More
generally, we can replace π(r(α) + r(β))2 with A(α,β), the effective collision cross-section
for arbitrarily shaped particles averaged over impact orientation. We also need to
determine the average relative speed between α and β particles,

v̄
(α,β)2
rel = ⟨(v(α) − v(β))2⟩

= ⟨v(α)2⟩+ ⟨v(β)2⟩ − 2⟨v(α) · v(β)⟩ ,

v̄
(α,β)
rel =

√
v̄(α)2 + v̄(β)2 ,

ν(α;β) = v̄
(α,β)
rel /ℓ(α;β)

= A(α,β)n(β)
√
v̄(α)2 + v̄(β)2 ,

where we have used the fact that the velocities are uncorrelated to cancel the cross term.
Summing over these rates for each class, we can find the rate of loss of kinetic energy for
α particles,

Ḣ(α) =
∑
β

η(α;β)|ũ(α,β)⊤µ(α,β)(u(β) − u(α))|A(α,β)n(β)
√
ū(α)2 + ū(β)2 .

When α particles are heavy and fast, this reduces to

Ḣ(α) =
∑
β

η(α;β)|u(α)⊤C(β)u(α)|A(α)n(β)ū(α)

=
∑
β

η(α;β)ρ(β)A(α)ū(α)3

where ρ = n|C| is the generalised density. Notice that this takes the same form as
the equation for hydrodynamic drag, taking the drag coefficient to be 2η. Assuming
there exists some correspondence between the generalised velocity u(α) and the rate of
computation, we find

P ≥
∑
α

N (α)A(α)

(
ℓ(α)

R(α)

N (α)

)3∑
β

η(α;β)ρ(β)

where α ranges over computational particles and ℓ is the characteristic generalised
displacement corresponding to a single computational transition. To maximise the net
computational rate R =

∑
αR

(α), we find that we need to let ū(α) → 0, but this violates
our assumption that α particles are fast. For finite velocity computational particles, we
thus find that our net computational rate scales as R ≲ A ∼ V 2/3.

In the limit of slow α particles, |u(α)| ≪ |u(β)|, Ḣ instead reduces to

Ḣ(α) =
∑
β

η(α;β)|ũ(α,β)⊤C(β)u(α)|A(α)n(β)ū(β)
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where we have taken ⟨u(β) − u(α)⟩ = ū(α). If the generalised mass of the α particles is
not significantly heavier than the β particles, then ũ(a,b) will have a strong dependence
on u(β) and this will lead to the same scaling limit of R ≲ A. In order to improve on this,
we must let the α particles be significantly heavier. In this limit, ũ(α,β) ≈ u(α) and we get

Ḣ(α) =
∑
β

η(α;β)|u(α)⊤C(β)u(α)|A(α)n(β)ū(β) ,

P ≥
∑
α

N (α)A(α)

(
ℓ(α)

R(α)

N (α)

)2∑
β

η(α;β)ρ(β)ū(β)

≥
∑
α

R(α)2

N (α)
A(α)ℓ(α)2

∑
β

η(α;β)ρ(β)ū(β)

︸ ︷︷ ︸
γ(α)

.

To proceed, we maximise the rate subject to this power constraint,

Λ =
∑
α

R(α) − 1

2λ

∑
α

R(α)2γ(α)

N (α)
=⇒ 0 = 1− R(α)γ(α)

λN (α)

R

λ
=

∑
α

n(α)

Nγ(α)
N = N

〈
1

γ(α)

〉
P ≥

∑
α

λR(α) = λR =
R2

N

〈
1

γ(α)

〉−1

R ≤

√
PN

〈
1

γ

〉

where N =
∑

αN
(α) is the total number of computational particles. To maximise the

computational rate R, then, we let N scale with the volume of the system, leading once
again to the scaling law

R ≲
√
AV ∼ V 5/6 .

II.4. Classical Architectures II: Brownian Machines
Whilst the previous two sections should suffice to cover all physical computational
systems, the high mass-low speed limit of the classical system is not ideal from an
engineering perspective. For improved practicality, we reformulate this limit in terms of
an abstract chemical reaction network (CRN) near equilibrium, and show that we obtain
the same result. This result is thus more robust in terms of its attainability.

39



II. Limits on Computational Rates in Physical Systems

Entropy generation rate We first seek a general expression for the rate of entropy
generation for a chemical reaction network. Consider any such dynamical system
consisting of a set of species {Cj : j} and a set of reversible reactions Γ = {νijXj ←→γi

ν ′ijXj : i}, where we sum over j and the νij are stoichiometries. By the convergence
theorem for reversible Markov systems, the system will converge to a unique steady
state/equilibrium distribution for any initial conditions. As the reactions are reversible,
the steady state will also satisfy detailed balance such that the forward and backward
rates coincide separately for each reaction, i.e. Ri = Ri, where R is a rate of the whole
system rather than per unit volume.

Let us look for a quantity H that measures progress towards equilibrium and satisfies
the following properties:

1. H is a state function of the system7, depending only on its instantaneous descrip-
tion;

2. H increases monotonically with time;

3. H is additive, i.e. H(∪iVi) =
∑

iH(Vi) for any set of disjoint regions Vi.

By properties 1 and 2 and the convergence theorem,H will approach a unique maximum
at equilibrium. Microscopically, reactions occur discretely and so the rate of change of H
can be written

Ḣi = Ri∆hi +Ri∆hi = (Ri −Ri)(hreactants − hproducts)

for any reaction i, where we have used reversibility to identify ∆hi = −∆hi = hreactants−
hproducts and where h(

∑
j νijXj) is the entropy of the region associated with precisely

νij particles of each species Xj . In order to satisfy property 2, the sign of ∆hi must equal
that of Ri −Ri.

Now, consider fixing hproducts and Ri, and varying Ri; this is possible unless the
reaction is trivial with νij = ν ′ij for all species Xj , i.e. it does nothing. To maintain
property 2, it must therefore be the case that ∆hi = h(Ri)− h(Ri). To satisfy property 3,
we require h(αRi)− h(αRi) = h(Ri)− h(Ri) where α is some arbitrary scaling factor of
the system. We can therefore infer the functional form h(x) = logb ax for some constants
a and b.

We have therefore derived an entropy-like quantity, unique up to choice of logarithmic
unit via b and entropy at T = 0 via a. Without loss of generality we choose a = 1 and
b = e, and therefore find that

Ḣ =
∑
i

(Ri −Ri) log
Ri

Ri

≡ 2
∑
i

Riβi arctanhβi

where βi = (Ri −Ri)/(Ri +Ri) is the effective bias of reaction i and Ri = Ri +Ri is its
gross reaction rate.

7More accurately, on the joint state of an ensemble of iid systems.
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Entropy generation rate for elementary chemical reactions We now calculate our
entropy quantity for elementary chemical reactions and compare against the expected
value. The rates for elementary chemical reactions are given by collision theory as

ri = ki
∏
j

[Xj ]
νij ri = ki

∏
j

[Xj ]
νij

where ki and ki are rate constants and r are rates per unit volume. Assuming no inter-
particle interactions, the canonical entropy is given by the Sackur-Tetrode equation
which can be obtained simply by considering the spatial distribution of the particles
along with any other degrees of freedom. For species Xi, consider an arbitrary volume
Vi available to it; if the thermal volume of the particles is Vi = Λ3 where Λ is the thermal
de Broglie wavelength, then there will be Vi/Vi loci available to the particle, and so the
associated entropy within the volume will be

Nih(Xi) = Ni log
Vi
Vi
− logNi!︸ ︷︷ ︸
Gibb’s factor

+Ni(εi − 1)

h(Xi) = εi − log[Xi]Vi +O
(
logNi

Ni

)
where Ni = [Xi]Vi is the number of particles in the volume, and [Xi] the concentration.
We have also taken into account indistinguishability of the particles with the Gibb’s factor,
and allowed for additional degrees of freedom with the εi term. Strictly speaking the
spatial distribution should be calculated combinatorially via the multinomial coefficient

log
(V/V)!

((V/V −
∑
Ni))!

∏
Ni!

where we have assumed all the particles inhabit the same region and have the same
wavelength. Applying Stirling’s approximation and assuming that

∑
Ni ≪ V/V , this

reduces to
∑
Ni(1− log[Xi]V) however, so our simplistic derivation is valid.

Therefore we find the canonical entropy change due to reaction i is given by

∆hi =
∑
j

(νij − νij)h(Xj) =
∑
j

(νij − νij)(εj − logVj)−
∑
j

(νij − νij) log[Xj ]

using a slight abuse of notation (the logarithmands are not unitless, but their combination
is). Comparing with our quantity ∆h = log r/r, we find

∆hi = log
ki

ki
−
∑
j

(νij − νij) log[Xj ]

ki

ki
=

(∏
j

Vνij−νij
j

)(
exp

∑
j

(νij − νij)εj
)
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which should be compared to the Arrhenius equation. Indeed, the Vi terms confer the
appropriate units to the pre-exponential factor and, by expanding the enthalpy term in
terms of kBT as εi = ε

(0)
i + 1

kBT ε
(1)
i +O( 1

kBT )
2, we can group the roughly constant terms

of the enthalpy into the pre-exponential factor, leaving the exponential term in the form
e−∆E/kBT .

Maximising performance in Brownian machines We wish to maximise the net
reaction rate of the system by selecting the biases βi of each individual reaction, subject
to bounded total entropy production. If R =

∑
Ri is the total gross reaction rate, then

the total net rate is Rc =
∑
Riβi = R⟨β⟩ where the expectation value is with respect

to the fractional contribution of each reaction, i.e. weighted by Ri/R. We denote this
by Rc assuming that each reaction contributes to computational progress; if this is
not true then Rc will be less than this value. The entropy rate is similarly given by
Ḣ = 2R⟨β arctanhβ⟩. We use a Lagrange multiplier approach as usual,

Λ = R⟨β⟩ − λR⟨β arctanhβ⟩ =⇒ Ri = λRi∂βi
βi arctanhβi;

that is, the optimum is achieved by setting all the βi equal to a constant, β. This gives
Ḣ = 2Rβ arctanhβ = 2R2

c
R +O(R

4
c

R3 ) and hence

Rc ≤
√
PR

2kT
,

leading once again to the scaling limit Rc ≲
√
AV ∼ V 5/6, as the power P scales

with area and the gross computation rate R with volume. Here we have presented a
constructive proof of this scaling limit, as any valid reversible CRN implementation will
yield this scaling limit.

II.5. Relativistic Effects at Scale
At different scales, from the microscopic to the cosmic, different constraints predominate
in the analysis of maximum computation rate. For macroscopic systems at worldly scales,
the aforementioned thermodynamic constraints are most directly relevant, yielding an
upper bound of RC ≲

√
AV . At sufficiently small scales, however, the surface area to

volume ratio will be great enough that this thermodynamic constraint will no longer
be limiting, with the volumetric Margolus-Levitin bound instead dominating. This
reflects the fact that there is simply insufficient energy enclosed in the system for the
resultant rate of computation to saturate the heat dissipation capacity at the boundary.
If one were to use a denser computational architecture, the computational capacity of
the region could be increased to the point that the power-flux bound is saturated, and
thus recovering the more restrictive

√
AV bound.

It transpires that there are two further regimes. As our systems approach cosmic
scales, the threat of gravitational collapse becomes pertinent. In order to avoid this fate,
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we must lower the average density such that the system’s radius always exceeds its
Schwarzschild radius8. As the Schwarzschild radius is proportional to the mass of the
system, this implies that the computational rate of such large systems varies linearly
in radius. In fact, there is an intermediate regime: as we have not been utilising the
full computational potential of our mass due to the thermodynamic constraint, we can
gradually increase said utilisation whilst simultaneously reducing our overall density
until the Margolus-Levitin limit is attained, at which point we default to the linear
regime. This intermediate regime is thus still described by the RC ≲

√
PM limit, which

in this post-Schwarzschild realm equates to RC ≲ V 1/2. In summary, the scaling laws of
these four regimes go as V , V 5/6, V 1/2 and V 1/3, in order of increasing scale.

A more detailed analysis reveals that these large systems are subject to a further
consideration. So far we have assumed a Galilean invariance worldview. At small and
medium scales, this approximation is very good. At larger scales, however, relativistic
effects threaten to reduce our overall computation rate via time dilation, and at even
larger scales they can constrain the amount of mass we can fit within a volume lest
the system undergo gravitational collapse as mentioned earlier. Special relativistic
time dilation is easily avoided by minimising relative motion within the computational
parts of the system (this implies that message packets will have reduced computational
capacity compared to the static computational background, but message packets can
generally be assumed static anyway).

Gravitational time dilation is a more serious issue, which cannot be eluded at large
scales. In the case of a hypothetical supermassive computational system, local compu-
tation proceeds unabated, but distant users interfacing with the system will observe
slower than expected operation, as depicted in Figure II.2c. To calculate this slowdown
factor, we shall proceed by modelling the system as spherically symmetric. This is not
unreasonable at these scales, where a body’s self-gravitation makes maintaining other
geometries unstable and impractical. We will not consider rotational systems which
could allow for an ellipsoidal shape, as the requisite angular velocities would almost
certainly abrogate nearly all computational progress solely due to special relativistic
effects.

The metric9 of an isotropic and spherically symmetric body in hydrostatic equilibrium
can be obtained via the Tolman-Oppenheimer-Volkoff (TOV) equation [73],

dP

dr
= −Gm

r2
ρ
(
1 +

P

ρc2

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

dν

dr
= −

( 2

P + ρc2

)dP
dr

=
2Gm

r2c2

(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

ds2 = eνc2dt2 −
(
1− 2Gm

rc2

)−1

dr2 − r2dΩ2 ,

(II.1)

8In reality, the threshold radius for gravitational collapse exceeds the Schwarzschild radius by a factor not
less than 9

8
. The reasons for this shall be discussed in due course.

9We use a (+−−−) signature.
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where P is the pressure, m(r) is the mass enclosed by the concentric spherical shell of
radius r, and ρ is the local mass-energy density. All masses are as observed by a distant
observer.

The rate of dynamics of a point P as observed from a point Q is well known to be

R(Q)

R(P )
=

√
g00(P )

g00(Q)
,

where gµν is the metric tensor. We assume our distant observer to be moving slowly
(relative to the computer) in approximately flat space, and thus that g00(Q) = 1. This
yields a slowdown factor of f(P ) =

√
g00(P ). The total slowdown for an extended body

is hence found to be

f =
1

M

∫
V
dV ρ
√
g00

=
1

M

∫ r1

0
dr

dm

dr
eν/2 , (spherically symmetric)

where M is the total mass and r1 is the least upper bound of its radial extent.
In order to maximise f , we must clearly maximise ν throughout the body. It can

be seen that dν
dr ≥ 0, and in fact within solid regions where ρ > 0 this inequality is

strict. Furthermore, in empty space the TOV equation breaks down; instead, we use our
Schwarzschild matching conditions to find

dν

dr
=

2Gm

r2c2

(
1− 2Gm

rc2

)−1

∆ν = ∆ log
(
1− 2Gm

rc2

)
,

which shows that this inequality is always strict whenever m > 0. ν at the surface is
fixed by the Schwarzschild metric, in accordance with Birkhoff’s theorem, and thus
for a fixed extent our only control over ν is the distribution m between the surface
and core. Approaching the core from the surface, ν strictly decreases until m vanishes.
Furthermore dν/dr is at least as great as in empty space, being strictly greater in massive
regions. Therefore it is desirable to concentrate mass towards the surface.

We assume that the density of our architecture of choice is bounded from above, thus
limiting the degree to which we can concentrate mass towards the surface. The optimum
is then achieved by a thick shell of limiting density from the surface inwards. The two
extreme cases of a thin shell and a solid sphere can be treated exactly, but an arbitrarily
thick spherical shell must be treated numerically.

Solid Sphere A solid sphere coincides with the Schwarzschild geometry. The usual
Schwarzschild metric corresponds to the exterior of the object, instead we must use the
interior solution which can be derived from the TOV equation (II.1), yielding

√
g00 =

3

2

√
1− rs

r1
− 1

2

√
1−

( r
r1

)2 rs
r1
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where rs = 2GM/c2 is the Schwarzschild radius. Before computing f , note that g00
vanishes when rs = 8

9r1. This limit is in fact of great importance; whilst an object of
size r1 = 9

8rs would exceed the Schwarzschild radius and be presumed stable against
gravitational collapse, this is not the case. At this point, such an object is unstable
towards spontaneous oscillations, its core pressure diverges, and it readily collapses
to a black hole [74]. Furthermore, depending on its heat capacity ratio γ, a gaseous
hydrostatic sphere may be unstable at even larger radii as tabulated by Chandrasekhar
[62]. This r1 ≥ 9

8rs threshold is thus a stronger bound on the size of massive objects.
Integrating

√
g00 over the mass of this solid sphere, we find

fsolid =
3

16vs
((1 + 6vs)

√
1− vs − v−1/2

s arcsin
√
vs)

where we have introduced the normalised coordinate v = r/r1. At the vs = 8
9 threshold,

we get fsolid ≈ 0.1699.

Thin Shell For a thin shell, we first identify that the pressure on the outer boundary
vanishes. Let the inner radius be r0 and the thickness be δr = r1 − r0 such that M ≈
4πρr21δr and δv ≪ 1. We also introduce the unitless variable u = P/ρc2,

du

dr
= −4πρrG

c2
(1 + u)

(r − r0
r

+ u
)(

1− 2Gm

rc2

)−1

du

dv
= −4πρrr1G

c2
(1 + u)

(r − r0
r

+ u
)(

1− 2GM

c2
r − r0
rδr

)−1

≈ − vs
2δv

(u+ 1)(u+ βδv)(1− βvs)−1

∆u ≈ −1
2vs(u+ 1)(u+ βδv)(1− βvs)−1 ,

where β = r−r0
r1−r0

∈ [0, 1]. Integrating from the surface inwards, we have u1 = 0 and
β = 1, yielding

u0 =
δv

2

vs
1− vs

+O
(
δv2

)
.

Therefore in the limit δv → 0, the pressure throughout the thin shell vanishes. As a
result, we also have that ν is constant for all v ∈ [0, 1], taking the value 1− vs and giving

fthin =
√
1− vs .

At the threshold, we get fthin = 1
3 .

Thick Shell For general δv, we integrate numerically. We rewrite the TOV equations in
normalised and unitless form thus

d log g

dv
=
vvs
2

µ+ 3u

µ1 − v2vsµ
,

du

dv
= −(1 + u)

d log g

dv
,

df

dv
= −3v2g

µ1
,

where µ = 1− (v0/v)
3, µ1 = 1− v30 and g ≡ √g00. We integrate the system from v = 1

down to v = v0, with initial conditions u1 = 0, g1 =
√
1− vs and f1 = 0. Our slowdown

factor is given by f0, and explicit results are given in the following section.
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Quantum
Thermo (Rev.)

Thermo (Irrev.)
Grav. Threshold.

(a) (b)

Figure II.3: A series of idealised examples of the relevant bounds on computation rate. In all
plots, the vertical axis represents rate of computation ν in arbitrary logarithmic units, and the
horizontal axis the radius r of the system in arbitrary logarithmic units. The axes have the same
scaling, so that a 45° slope corresponds to a ν ∝ r power law.

(a) If power supply and heat/entropy dissipation is not limiting, then the rate of computation
is proportional to the mass of the system. In these examples, the ‘technology’ is fixed so that
the computational systems have uniform density. Therefore we expect a power law ν ∝ r3. Up
to a certain threshold radius this is indeed what we see. The Quantum line corresponds to the
Margolus-Levitin quantum constraint on computational performance, ν ≤ mc2/hP . The Thermo
(Rev.) line takes into account that a realistic computer might not achieve this upper bound. The
Thermo (Irrev.) line takes into account that the computational components of an irreversible
computer can be no faster than those of a reversible one, and typically they will be slower as
it takes time to erase the excess information. Often this erasure will be via a damping process.
At the threshold (marked with a vertical dotted line), the system is on the cusp of gravitational
collapse as its radius coincides with its Schwarzschild radius. Beyond this point, the mass scales
linearly with radius, hence the power laws all fall to ν ∝ r beyond this point.

(b) In this example we assume the reversible and irreversible architectures saturate the
quantum bound at the microscopic level. A realistic computer will be constrained by the
rate at which free energy can be supplied and entropy removed. This scales with r2, and for an
irreversible computer this leads to a power law ν ∝ r2 because the rate of entropy generation
and free consumption per unit computational mass is bounded from below. At sufficiently small
scales, the quantum bound is more limiting and so the power law switches to ν ∝ r3; similarly, at
sufficiently large scales the quantum bound is again more limiting and the power law switches
to ν ∝ r. The case for reversible computers is more complicated, as analysed in this chapter. The
power laws are ν ∝ r5/2 below the threshold and ν ∝ r3/2 above. (continued on next page)
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(c) (d) (e)

Figure II.3: (continued) The reversible architecture will always be at least as fast as the irreversible
architecture.

(c) This example combines the differing rates of proportionality of (a) with the thermodynamic
constraints of (b). The dashed lines show the case where thermodynamics is not limiting.

(d) This example corresponds to (c) except that the density has been increased by a factor 100.
The dashed lines are the same as the solid lines of (c). Below the threshold, the Margolus-Levitin
limit and reversible computers are faster (by a factor 100 and a factor 10, respectively). The
irreversible computer is only faster in the thermodynamically non-limiting range, otherwise the
thermodynamic constraint eliminates the benefit of additional computational matter. A second
consequence of the increased density is that the Schwarzschild threshold is reached sooner.
Nevertheless, for all architectures the computational rate is at least as great as for the lower
density case. Therefore increasing density is always helpful at small scales, and not unhelpful at
large scales.

(e) This example corresponds to (b) except that gravitational time dilation has been taken into
account∗. The dashed lines are the same as the solid lines of (b). The orange asymptotically-
vertical dashed line shows what happens when the geometry of the computer is maintained as a
sphere of uniform density, even as the density is reduced to avoid gravitational collapse. Namely,
gravitational time dilation abrogates all computational performance from the perspective of a
distant observer. The solid lines optimise the geometry of the system to maximise the observed
computational performance from the perspective of a distant observer. Whilst these are reduced
in comparison to (b), it is only by a constant factor of at most 3.

∗Time dilation corrections were computed by integrating the thick shell system of differential equations using dopri5, and
the shell thickness was optimised to maximise the rate using a golden section search. The code was written in Haskell
and is available, complete with integration and optimisation routines, at https://github.com/hannah-earley/
revcomp-relativistic-limits.
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II.6. Variance in Performance at Different Scales
In order to calculate the maximum performance of a system at different sizes, we
compute the optimum speed within each constraint—thermodynamic and Margolus-
Levitin—with relativistic corrections, and then pick the least of these upper bounds.
To apply the relativistic constraint, we substitute M = 1

2rsc
2/G for mass where rs is

the Schwarzschild radius, and then multiply by our slowdown factor f . For better
parametericity, we actually use rs = vsℓ where ℓ is the system’s radius/linear dimension.
This yields the two bounds,

Rthermo. = α
√
ℓ3vsf(vs, v0) , Rmarg.lev. = βℓvsf(vs, v0) ,

where α and β are constants of proportionality that depend on the system architecture.
Notice that there is in fact some choice available in system geometry; we can pick any
constant density thick shell solution, with parameters (v0, vs). As we increase vs, the
factor f will decrease, and so there will be an optimum pair (v0, vs) maximising the
given bound. The maximum density constraint is equivalent to setting a maximum
value to the mass and hence vs,

vs =
1

ℓ

2GM

c2
= ℓ2

8πρG

3c2
(1− v30)

≤ vm ≡ ℓ2
8πρG

3c2

≤ 8

9
,

where the last constraint is to avoid gravitational collapse. For a given vm then, we have
v0 =

3
√
1− vs/vm and we maximise the two R bounds in 0 < vs ≤ min(89 , vm).

An illustrative example of these regimes is depicted in Figure II.3. Notice how the solid
sphere, though maximising usable computational matter and thus its local computational
rate, has its observable computational rate abrogated as it approaches the point of
gravitational self-collapse. This demonstrates how reducing the available matter can
enable the observable computational rate to increase, though the difference between
the dashed and solid lines shows that there remains a relativistic penalty in the form of
gravitational time dilation. We also see that an irreversible system underperforms with
respect to a reversible system across a large range of length scales, otherwise matching it
at the extremes. The exact range again depends on system architecture specifics, and for
some architectures the irreversible system may give transient superior performance at
certain scales.

II.7. Discussion
Additional Entropic Sources The preceding analysis has been restricted to dissipating
entropy arising in the course of the computation itself. However, a physical computer
will be subject to other sources of entropy in addition to this. As mentioned in the
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introduction, Bennett calculated that the influence of turbulence in the atmospheres
of nearby stars would be sufficient to thermalise a billiard ball computer within a
few hundred collisions. Thus, in general, we must aim to shield our computer from
such external influences, for example by error correction procedures. Fortunately, the
influences of such external sources may only interact with our system via the same
boundary through which we dissipate computational entropy, and as such their rate is
at most proportional to this surface area10. Thus, as long as the external sources are not
overwhelmingly strong we should be able to suppress them at all scales with equal ease.

A more challenging source of errors and entropy comes from within. Assuming a non-
vanishing system temperature, the entire system volume will generate thermodynamic
fluctuations at a commensurate rate. These fluctuations can manifest in a variety of ways,
perhaps the most damaging of which are nuclear transitions. Some nuclear transitions,
such as radioactive decay leading to the production of damaging radicals, are not of
great concern over long timescales as the proportion of unstable isotopes will decay
to zero exponentially fast. More problematic is the tendency of all nuclei to decay to
the baryonic ground state11, 62Ni [75] (either by fission or fusion); except for systems
composed purely of 62Ni, these spontaneous transitions must be reversed in order to
maintain the intended structure. Every event leading to a change in computational
state or requiring repair invokes an entropic cost, and given that these events occur with
a rate proportional to the computationally active volume, this ultimately recovers an
areametric bound to our computational rate,

V ≤ P

kT

1

η̇int.fluc.
.

This does not necessarily render our reversible computation performance gains unat-
tainable, however. Providing η̇int.fluc. is sufficiently small, we can outperform irreversible
computers at scales up to

ℓ ≤

√
P

kT

1

η̇int.fluc.

1

δr

where δr is the thickness of the irreversible computational shell that can be supported
by such an architecture. If this threshold size is sufficiently large as to coincide with
the Schwarzschild threshold of Figure II.3 then such a reversible architecture would
in fact outperform its irreversible analogue at all scales. Furthermore, it is likely that
η̇int.fluc. is smaller than it would be in an irreversible system as they have one fewer

10Even though such external influences may indeed permeate the entire volume, such as gravitational
waves or neutrinos, the rate of incidence of these interaction will necessarily scale areametrically.
Moreover, gravitational waves and neutrinos only penetrate the entire volume because they are so
weakly interacting. A more strongly coupled interaction such as ultraviolet light or particulate matter
will primarily affect only the ‘skin’ of the system, and thus illustrates how such external influences are
genuinely only areametric in strength.

11In fact, the ground state of nuclear matter depends on density, and at higher densities the equilibrium
state may be as high as 118Kr; beyond this, various forms of degenerate matter may dominate [76].
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source of fluctuations to combat; namely, irreversible computers expend significant
quantities of energy to ensure unidirectional operation, and any deviation from this
is a potentially fatal error. In contrast, a reversible computer is intrinsically robust to
such ‘errors’, particularly the Brownian architecture described, which actively exploits
this. Expending less energy has the added advantage of permitting lower operating
temperatures, further reducing η̇int.fluc..

Mixed Architectures Because of the generality of the R ≲
√
AV scaling law, systems

of maximal computational rate can be constructed using any desired mix of architectures
in order to meet the requirements of a given problem. Providing entropy and input
power can be efficiently transported between the surface and the computational bulk,
the entropy generation and power constraints superpose linearly. Thus in principle it is
possible to have a mix of quantum and Brownian architectures within a single system.
A caveat is that these two architectures may need to operate at different temperatures,
and a temperature gradient introduces an additional source of entropy. Thus, the area of
the boundary between these subsystems must be at most proportional to the system’s
bounding area in order that the entropy generated can be effectively countered.

This principle is more general: any non-equilibrium inhomogeneity in the system’s
structure will result in entropy generation. To quantify this, we assume that such
inhomogeneities equilibrate via an uncorrelated diffusive process, and we proceed via a
Fokker-Planck approach.

The Fokker-Planck equation (see Section III.2.2 for a more detailed exploration) de-
scribes the evolution of a probability distribution in space due to stochastic dynamics.
Specifically, it pertains to the influence of a Langevin force with rapidly decaying correl-
ations in time. In this limit, Brownian particles will exhibit a combination of drift and
diffusion depending on the properties of the system. The evolution of the probability
distribution φ is found [77] to obey12

φ̇ = −∇ · [µφ−D∇φ]

where µ is a drift vector and D is a diffusion matrix. We also identify the probability
current µφ−D∇φ. In order to establish the rate of entropy generation, we must first
determine the steady state distribution. We make the assumption that the steady state
probability current is everywhere zero, i.e. there are no persistent current flows or
vortices, and therefore find that

∇φ0

φ0
= D−1µ .

Now we obtain an expression for the entropy of the system. As there are many
particles, we can reinterpret φ as a concentration of particles (as the Fokker-Planck equa-
tion does not impose any normalisation), and so each particle will have an associated

12In Risken [77], the convention is φ̇ = −∂iµiφ + ∂i∂jDijφ. We use a different convention here for
convenience, wherein µ′

i = µi − ∂jDij .
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entropy of 1+ ε− log λ where λ ∝ φ. This yields intensional entropy η = φ(1+ ε− log λ)
and η̇ = φ̇(ε − log λ). At equilibrium, η̇ cannot have a leading order linear term in φ,
and so ε = log λ0 which gives

η = φ
(
1− log

φ

φ0

)
H =

∫
dV φ

(
1− log

φ

φ0

)
Ḣ = −

∫
dV φ̇ log

φ

φ0
.

We now substitute the Fokker-Planck equation for φ̇, obtaining

Ḣ =

∫
dS · (µφ−D∇φ) log φ

φ0
−
∫

dV (µφ−D∇φ) · ∇ log
φ

φ0

=

∫
dV (D∇φ− µφ) · ∇ log

φ

φ0

=

∫
dV Dφ

(∇φ
φ
−D−1µ

)
· ∇ log

φ

φ0

=

∫
dV Dφ

(∇φ
φ
− ∇φ0

φ0

)
· ∇ log

φ

φ0

=

∫
dV φ

(
D∇ log

φ

φ0

)
· ∇ log

φ

φ0

Ḣ =
∑
i

Ni

〈 ∣∣∣D1/2
i ∇ log

φi

φi,0

∣∣∣2〉 ,
where Ni is the number of particles of diffusive species i. In the second line we have
assumed that the probability current across the system boundary vanishes and in the
last line we have generalised to multiple diffusive species.

The consequence is that a system may only sustain the use of spatial variation in its
architecture if at least one of the following three conditions holds for each such species,

1. The region of variation scales with the system’s surface area, such as if the gradient
is localised to a hemispheric plane,

2. The diffusion rate D is vanishingly small,

3. The average relative strength of the gradient,∇ log(φ/φ0), has scaling no greater
than ℓ−1/2 ∼ V −1/6.

These conditions may be violated only to the extent that another condition is exploited
to achieve a commensurate reduction in the entropy rate.

Modes of Computation The quantum Zeno architecture is inherently processive,
meaning that every transition it makes is useful. This is in contrast to the Brownian
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architecture, in which only a vanishingly small fraction of transitions lead to a net
advance in computational state. There are a number of consequences to this distinction
that make the quantum architecture preferable.

Firstly, a quantum architecture equivalent to a given Brownian architecture will only
use NQZE. ∼

√
AV active computational elements compared to NBrown. ∼ V , which

significantly reduces the risk of errors due to internal fluctuation. In addition, the
properties of the QZE mean that the fluctuations within the computational subvolume of
the quantum architecture can be rectified at all scales in contrast to the classical system.
Of course, fluctuations in the remaining bulk of the volume are still problematic, but
their rectification is less critical.

Secondly, whilst the two systems would have the same net rate of computation, the
computational elements of the quantum system operate at the same maximum speed
regardless of scale, and the degree of parallelism can be tuned between maximally
parallel (N ∼

√
AV ) and fully serial (N = 1). This means that the quantum architecture

can operate equally well for parallel and serial problems. One caveat is that the maximal
attainable parallelism of the quantum system, ∼

√
AV , is lower than for the Brownian,

∼ V . In practice this is not too problematic as parallel problems can be simulated serially,
and because the total computation rate is independent of the degree of parallelism,
the quantum system experiences no penalty for this choice. For the Brownian system,
however, even a problem maximally exploiting the available parallelism will be limited
by the time for each element to perform a single net operation. In addition, whilst the
quantum system has fewer computational foci than the Brownian system, the remaining
bulk can be used for ‘cold’ computation such as data storage.

Thirdly, almost all parallel problems will involve inter-element communication and
synchronisation. As will be discussed in Chapter III, these processes present significant
challenges in the Brownian architecture that in the worst case would throttle the system
down to R ∼ A. This arises because synchronisation processes map to constrictions in
phase space, and Brownian diffusion through such a constriction is very slow. As the
quantum architecture evolves processively, it is less subject to this effect and thus its
computational elements can communicate much more freely.

Fourthly, the quantum architecture permits quantum computation whereas the Brown-
ian architecture is unlikely to be capable of supporting quantum computation. The
reason for this is that the average time for each computational transition in the Brownian
system is typically large, increasing as the system size does, whereas the decoherence
timescale for a quantum state is fixed and typically small. Furthermore, the decoherence
timescale is likely significantly smaller than for the QZE architecture as the Brownian
system probably operates at a higher temperature. Altogether, these factors make it
incredibly unlikely that a quantum state can be reliably maintained through a quantum
computation within such an environment.

Despite all these disadvantages, the Brownian architecture is perhaps of more interest
as it is ostensibly easier and cheaper to construct with current technology. The most
exciting avenue for this may lie in the fields of biological and molecular computing,
in which molecules such as DNA are constructed in such a way that their resulting
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dynamics encode a computational process [13, 78]. Chemical systems are a natural
substrate for Brownian dynamics, and the manipulation of DNA is becoming ever
cheaper and more sophisticated. With improvements in synthetic biology, we may even
be able to readily prepare self-repairing DNA computers in the near future.

We finish by discussing the timestep for a net computational transition in the Brownian
architecture. This timestep is controlled by the biases, bi. To maximise the system’s
computation rate, we take bi = β ∝ 1/

√
ℓ. If, at operating reactant concentrations, the

time for any computational step (forwards or backwards) is t0, then the net timestep is
given by

τ =
t0
β
∝ ℓ1/2 ∼ V 1/6

which can be seen to get larger as the system gets larger. Fortunately this scaling is
sublinear, and so depending on the available power, the achievable bias may be signi-
ficant. For example, assuming a 500 W m−2 radiative capacity and a 1 m radius system
consisting of fairly conservative computational particles of size (10 nm)3 operating at a
gross rate of 1 Hz, a bias as high as β ∼ 0.4 is possible.

Another approach to managing modes of computation in a Brownian computer is
to institute a hierarchy of bias levels at different concentrations. For example, a viable
system may consist of the following tuples ∼ (N, b;RC),

{(V, ℓ−1/2;V 5/6), (V 14/15, ℓ−2/5;V 4/5), (V 5/6, ℓ−1/4;V 3/4), (V 2/3, 1;V 2/3)}

and computations requiring faster steps may use higher biases at the expense of less
computational capacity. Additionally, the highest bias level admits irreversible compu-
tation, and so we may enclose our computer with a thin irreversible shell, whilst the
internal bulk consists of reversible computations at various bias levels. Going further,
we could have a hot inner Brownian core, a cold outer quantum core, and an enveloping
irreversible silicon shell. Additionally, a hierarchical Brownian system need not employ
spatial variation; by using different species for each bias, the subsystems can be mixed
homogeneously.

II.8. Conclusion
We have shown that, subject to reasonable geometric constraints on power delivery
and heat dissipation, the rate of computation of a given convex region is subject to a
universal bound, scaling as RC ≲

√
AV ∼ V 5/6, and that this can only be achieved with

reversible computation. For irreversible computation, this bound falls to A ∼ V 2/3. The
scaling laws persist at all practical scales, only breaking down when the system size
approaches the Schwarzschild scale. For typical densities (∼ 1000 kgm−3), this threshold
scale is 4 × 1011m ≈ 2.7AU. Recall that we are considering systems of fixed uniform
density; building and maintaining a structure of this density at such sizes may not be
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practical without some combination of high tensile-strength materials, orbital motion13,
and propulsion. Beyond this scale, the maximum computational rate is attained by
localising mass into as thin a shell as possible, reminiscent of megastructures such as
Dyson spheres from the world of science fiction. At very small scales, the rate scales with
V as the surface area to volume ratio is negligible. The scaling then falls to V 5/6, to V 1/2,
and finally to V 1/3 as the system increases in size. At the Schwarzschild regime and
beyond, the computation rate is suppressed by a factor of order unity due to gravitational
time dilation.

This analysis has assumed that each computational element acts independently. In our
next two chapters we shall investigate the constraints affecting cooperative reversible
architectures, in particular the thermodynamic cost of synchronisation processes, such
as communication and resource sharing. These costs turn out to be quite significant,
even prohibitive.

13Orbital motion near the Schwarzschild regime is not sufficient. For such an object, stable circular orbits
only exist for r > 3

2
rs at which point the orbital velocity approaches the speed of light.

54





In Chapter II, the limits on the sustained performance of large reversible
computers were investigated and found to scale as

√
AV where A is the con-

vex bounding surface area of the system and V its internal volume, verify-
ing and strengthening a result of Frank [9], compared to A for an irrevers-
ible computer. This analysis neglected, however, to consider interactions

between subunits of these computers. In particular, a large computer will
be composed of many small computational subunits. Each of these sub-

units will perform independent computation, but for useful programs one
often wishes to combine the results of these independent computations. To
do so, the subunits must communicate—they must synchronise their indi-
vidual states. In an irreversible computer with ample free energy density,

this is a non-issue. In contrast, when free energy is limiting, the hidden en-
tropic cost of synchronisation is made manifest and must be considered.

To illustrate, consider two reversible Brownian computers which would
like to communicate with one another. A reversible Brownian computer
is free to wander back and forth along its configuration space, the set of

possible computational states it can take, and we can illustrate this by
the analogy of two wagons on intersecting train tracks as shown in Fig-

ure III.1. In order to synchronise their states, and progress past the inter-
section, both wagons need to arrive simultaneously. If one wagon arrives
before the other, however, then it is almost certain to wander backwards

instead of waiting for the other to arrive. If the probability of moving for-
ward is p and backward is q, then the system is said to have ‘computational

bias’ b = p − q ≪ 1, and the probability that a wagon is at the intersec-
tion point is b/p. The rate of synchronisation can then be found approxim-

ately by the probability that both are there simultaneously, ∼ b2 ≪ 1.

Already the rate of independent computation for each subunit is vanishingly
small in the limit of large system sizes, and so synchronisation and commu-

nication events in Brownian computers are seen to progress even more slowly
and appear to ‘freeze out’ as free energy gets sparser and sparser. In this

chapter, we show that there is indeed no way to design a better system for
synchronisation of Brownian computers, evaluating the ‘time penalty’ for
a synchronisation event across a broad range of possible designs. We also

briefly consider the applicability to non-Brownian reversible computers,
conjecturing that all reversible computers whose computational elements
evolve independently are subject to the same penalty. We conclude with a

discussion of design approaches and mitigations to circumvent the synchron-
isation time penalty in those reversible computers subject to such a penalty.



III. Performance Trade-offs for
Communicating Reversible Computers

Figure III.1: This chapter concerns synchronisation interactions between reversible Brownian
computational particles, which can walk backwards and forwards through phase space. This
is illustrated here as two wagons on intersecting train tracks, where there is a barrier at the
intersection. Each wagon controls the other’s barrier, and so both must be present simultaneously
in order to pass through the intersection.

III.1. Introduction
In Chapter II, we investigated how the laws of physics constrain the maximum rate
of sustained computation within a given region of space. In fact, this performance
measure of operations per unit time is not the only one of interest. As we are considering
computers of arbitrary size, interaction between different subvolumes will often be of
considerable import. In this chapter and Chapter IV, we evaluate performance within
this context. Chapter III concerns the statistical dynamics of communication between two
or more distinct computational units, whilst Chapter IV concerns the statistical dynamics
of computational units interacting with resources or chemical species, of which there may
be a variable number of identical units or particles. Within these analyses we shall work
with Brownian computers as our canonical computational system. Nevertheless, we
believe our results are more general, and in the conclusion of this chapter we conjecture
upon the classes of reversible computational systems to which our results do and do not
apply.

57



III. Performance Trade-offs for Communicating Reversible Computers

To proceed we must define what we mean by a ‘Brownian computer’. We already
introduced a notion of Brownian computer in Section II.4 in which we used the form-
alism of Chemical Reaction Networks (CRNs), but the analyses of Chapters III and IV
shall require some elaboration. First, it will be helpful to introduce some terminology
to distinguish the unique properties of computational particles from those of more
traditional chemical species:

Definition III.1 (Mona and Klona). A chemical system is generally comprised of a
number of species. Each of these species is present at some count; that is, there is some
number of particles of this species in the system, and these are identical copies of each
other. The study of chemical thermodynamics and statistical mechanics then builds
atop this. In contrast, chemical and Brownian computational particles are typically
unique within the system: each particle represents the state of some computer, and each
evolves independently of one another. It may be that occasionally two or more such
particles are transiently identical, but this is a coincidental occasion. An alternative
instance of effectively unique computational particles arises in fixed lattices of simple
elements, such as in amorphous computers. Here, the elements at each lattice point may
not be globally unique, but as they are uniquely addressable by their lattice location they
take on much the same properties. We refer to particles which are generally uniquely
distinguishable or addressable mona (sg. monon), after the Greek for unique, μοναδικός.
Similarly, we will call indistinct particles belonging to a species klona (sg. klonon).

To get a feel for mona, consider the example of a 150 mL solution containing a
1 mmol dm−3 concentration of random nucleic acids of length 80 nucleotides. As ex-
plained in the introduction, DNA molecules are polymers formed from an arbitrary
sequence of four nucleotide monomers. Random nucleic acids are easily obtained from
DNA synthesis companies. There are 480 ≈ 1.5× 1048 possible distinct 80-mers (nucleic
acid of length 80), and the birthday paradox says that we need 1.4×1024 of these random
molecules before it is likely that there are duplicates present. Our 150 mL, 1 mmol dm−3

solution contains just shy of 1× 1020 such molecules, and it can be calculated that the
probability that there are any duplicates in the solution is less than 1 in 350 million.
Therefore, it is almost certain that every nucleic acid in said solution is a monon.

We can therefore say that Chapter III studies mona-mona interactions, and Chapter IV
mona-klona interactions. We do not cover klona-klona interactions as these are well
understood within the domains of chemistry and statistical physics.

Informally, Brownian computers are the sorts of systems embodied by the examples
of the DNA-Strand Displacement (DSD) and Tile-Assembly Model (TAM) computer
paradigms illustrated in the introduction and shown in Figure I.2. Those DNA computers
using DSD as their mechanism have a klonal representation of their computational state,
whereas those using the TAM have a monal representation. This is made clearer in
Definition III.2 below:

Definition III.2 (Brownian Computers). A Brownian computer is a region of space
(typically bounded or otherwise confined) containing particles. The definitions of
particles and space are not important, and they may be complex macromolecules or
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simple elementary particles or even abstract entities in an abstract topological space.
These particles are generally static in isolation, but when two or more particles collide
they may alter their states during the interaction, in much the same way as a molecule of
ATP and a molecule of H2O may collide, react, and beget the products ADP, Pi and H+

(particle number need not be conserved). These interactions must be reversible, such that
the products may collide and reform the reactants. To enable these interactions, particles
must be endowed with velocities, and these velocities are assumed to follow a thermal
distribution.

A Brownian computer is characterised by being able to interpret the current state
of the particles as a computational state: perhaps some particles are ‘computers’ in
their own right, and thus the evolution of their state over time is isomorphic to some
model of computation, or perhaps the joint state of a number of particles must be
considered. The former, wherein the computational particles are mona, is more powerful,
whereas the latter approach, representing computational state with klona, typically
results in the entire reaction volume being dedicated to a single program and thus
limits the computational power. Multiple programs can be run if their components are
orthogonal in the sense that they don’t interact with components of a different program,
but designing orthogonal klona is challenging and limited. An alternative mitigation
approach is to use multiple bounded sub-volumes containing just the klona for that
particular program; these sub-volumes may then be considered as abstract ‘particles’ or
mona, as can the combination of orthogonal sub-klona (forming a virtual sub-volume, if
you will). Computational mona can be driven forward in computational phase space by
a computational bias (Definition III.3, below).

Definition III.3 (Computational Bias). Recall from Chapter II that in a Brownian com-
puter, transitions are mediated by systems of klona representing ‘positive’ and ‘negative’
bias. Physically, such klona act as a source of free energy and a real world example is
given by ATP and ADP+ Pi in biochemical systems. In the simplest case, there are ⊕
and ⊖ klona such that ∀n. |n⟩ + ⊕ −−⇀↽−− |n+ 1⟩ + ⊖ where |n⟩ is the nth state of some
monon, and this is positively biased when the concentration of ⊕ exceeds that of ⊖. We
define the bias in this case to be b = ([⊕]− [⊖])/([⊕] + [⊖]).

To take full advantage of these molecular computers we need to let them communicate
and interact. Each interaction event will be between specific mona. If these mona diffuse
freely throughout the volume, then communicating with a specific monon will be
impracticable except in the case of very small (effective) volumes. On average, the time
between collisions of n such mona in a system of volume V will scale as ∼ O(V n−1).
Moreover, we shall see that a significant problem in reversible communication is that
even after mona meet they can go backwards in phase space at which point we must
wait for them to collide again; clearly in the freely diffusive case this is untenable. To
improve upon this scaling, we are forced to introduce a lattice-like structure into the
system. This lattice should be endowed with a coordinate system and the coordinates
should be logically chosen so that it is ‘easy’ to deterministically compute a unique
path between any pair of reachable coordinates. Interacting mona should bind to this
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lattice, and couple their movement along it to their computational bias (Definition III.3).
In so doing, translocation along the lattice becomes just another part of the monon’s
computational state—the information content of the monon that may be transformed in
the course of computation.

In order for two or more mona to communicate, or more generally to synchronise
their joint state, we must arrange for their states to coincide at some point. Moreover, no
monon will be able to proceed past this synchronisation point without the other(s). In the
irreversible limit of computing, this problem is inconsequential as each computational
entity can simply wait for the others. In reality, ‘waiting’ is not a physically reversible
process: If the dynamics were reversed it would not be possible for the entity to ‘know’
how long to wait before going backwards. In an irreversible system, waiting can be
simulated by raising the entropy of the environment; for example, the system could
continually ‘forget’ how long it has been since it arrived by resetting some internal state
using the Landauer-Szilard principle [8, 7], or the system could transfer its generalised
computational ‘momentum’ to some other computational entity. In the reversible com-
puters we are considering, there is a dearth of free energy1 as we are distributing the free
energy supplied at the computer’s surface throughout its entire volume, and so these
approaches are not generally possible.

Instead, the simplest approach is to let the mona ‘bounce off’ the synchronisation point
until the other arrives, relying on the (weak) computational bias to drive them towards
this. That is, upon reaching the synchronisation point the monon cannot proceed and has
a high chance of walking backwards, but the weak bias will keep it within a loose vicinity
of the synchronisation point. Some initial estimates (Section III.3.1) will show that, in
addition to the time for each monon to reach the synchronisation point independently,
there is a ‘penalty’ term. For computational bias b, each net computational step for
lone mona takes time (bλ)−1 where λ is the rate at which mona collide with bias klona.
If each participating monon starts at a phase distance ni from the synchronisation
point, then the expected time for all to have briefly reached the synchronisation point
is τ0 = (bλ)−1maxi ni. The penalty depends on the joint probability distribution of
the mona, and how often they are all found at the synchronisation point. Analysing
this in detail turns out to be surprisingly difficult, but we will succeed in showing a
range of approximate, empirical and exact results, confirming the initial estimate of a
penalty ∆τ ≳ (bdλ)−1 for d mona. As b≪ 1 generally, this will be very large compared
to the timescales of independent computation by individual mona, and thus potentially
rendering reversible communication impracticable.

In this chapter, we shall study this problem in detail for general shapes of synchronisa-
tion phase spaces and illustrate with examples of the forms of phase space that would
be commonly found in reversibly communicating mona. We divide approaches to syn-
chronisation in two: Section III.3 will concern the ‘constrictive’ case in which there is a
constriction in phase space, as illustrated in Figure III.3. Section III.4 will concern the
‘recessive’ case in which the phase space is not restricted, and therefore other methods

1Free energy is the ability of the system to drive an entropically unfavourable reaction, by increasing the
entropy of the environment at least as much as the reaction reduces the local entropy.
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must be used to synchronise the joint state of the mona as illustrated in Figure III.4.
In fact, there are two more related cases, dilatory and processive, which are in a sense
complementary to the constrictive and recessive cases respectively. In the dilatory case,
the phase space widens towards the synchronisation point rather than shrinking, whilst
in the processive case the boundary of the post-synchronisation subspace (green quad-
rant in Figure III.4) is concave rather than convex. In both of these, the penalty will be
negligibly small, zero, or even negative as the phase coordinate is pushed entropically
towards larger regions of phase space. Nevertheless, they are not desirable because such
asymmetry implies an increase in entropy and hence irreversibility. We can therefore
make a stronger and more accurate statement: rather than forbidding dilatory cases, we
require synchronisation phase spaces to be symmetric in the synchronisation point or
subspace.

III.2. Methodology
Isolated Mona To formalise the problem statement, we begin by considering com-
putation by isolated mona in more detail. A monon’s evolution is best understood by
considering the state space of the computation it is simulating as depicted in Figure III.2.
Ignoring any possible intermediate states, there will be an isomorphism between the
states of the monon and the states of its underlying computation. As was made apparent
in the previous chapter, we will want to drive computation forward by coupling the
monon’s state transitions to some non-equilibrium system of klona, which we term a
bias source. Each transition may be coupled to a different bias source, and the strengths
of the bias sources may vary over time. The definition of bias sources and their strengths
is recalled in Definition III.3. Where possible, we will remain general in our analysis;
however, Section II.4 showed that optimal performance is achieved for bias constant in
time and uniform in space, and our illustrative examples will reflect this fact.

The dynamics of this system can therefore be seen to be a walk in a 1-dimensional
phase space where at any point, there are at most two transitions available: one to
the successor state, and one to the predecessor state, should they exist. Depending on
whether we use a model with discrete or continuous time2, these transitions will be
labelled with probabilities or rates that depend on the strength of the bias source(s).
We note that we expect the strength of the bias sources to be very small, such that
the timescale of making one step of net progress is very large compared to that of a
single transition. As a result, the monon will experience a time-averaged bias, and
any correlations in the system will be expected to have been exponentially suppressed
by diffusive processes. Therefore, we can model the monon’s dynamics as a Markov
process or chain; namely, the dynamics of the system depend only on its current state,
rather than its history.

2Continuous time is the more apt model, however for generating function approaches discrete time must
be employed. Fortunately, when the bias rates are uniform, it is easy to convert between the two by
simply dividing the times by the gross bias rate, λ = λ⊕ + λ⊖.
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(a) Examples of irreversible state spaces

(b) Examples of reversible state spaces

Figure III.2: These figures show some examples of the state spaces of (a) irreversible and (b) re-
versible computers. The blue nodes represent distinct computational states, and arcs represent
computational transitions or operations. Terminal arcs, represented by ⊢, indicate that compu-
tation either begins or ends here; that is, no predecessor or successor states (respectively) exist.
Recall that the dynamics of the system are free to wander forwards and backwards in state space,
including away from a terminal state.

The distinction between irreversible and reversible computers is that an irreversible state may
(and often does) have more than one predecessor state. For example, if two Boolean variables are
consumed and replaced with their logical conjunction, (a, b) 7→ a ∧ b, and if this is FALSE, then
there are three possible predecessors: (FALSE, FALSE), (FALSE, TRUE), and (TRUE, FALSE). This
is loss of information, and it is impossible to determine which path was taken to reach the current
state. Where an irreversible computer completely forgets or discards a variable—such as of type
uint32—it may have a very large number of predecessor states—for uint32, 232 ≈ 4× 109. For
abstract models of computation such as a Register Machine (see, e.g., Johnstone [79]), there can
even be a countable infinity of predecessors in the case of the ‘clear-to-zero’ operation.

In contrast, a reversible state may have at most one predecessor and one successor state. We
can classify reversible computers into four classes; (I) finite cyclic programs with no termini, (II)
bi-infinite programs with no termini, (III) infinite programs with one terminus (comparable to
non-halting programs in computability theory), (IV) bi-terminating programs with two termini
(i.e. finite linear chains). Bear in mind that the form of this state space is separate from that of the
program logic: a reversible program may well contain loops and conditional branching, but for a
given program and input or output, evolution is deterministic both forwards and backwards.
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(a)

(b) (c) (d) (e)

(f) (g)

Figure III.3: A range of examples of constrictive synchronisation problems, represented in different
ways. Figure (a) shows a state diagram for two bound mona α and β; each monon is free to walk
back and forth along their state space (Z) independently except for at their synchronisation point,
|00⟩, through which they must pass together. Figures (b–e) show a range of increasingly complex
examples from two perspectives; the top diagrams are abstract state diagrams reminiscent of
Feynman diagrams, whilst the bottom diagrams show the joint phase space of the mona. Dashed
lines in state space, or ‘artefacts’, represent static/non-evolving mona; for example, in (d) monon
α leaves an artefact A—which may contain some informational payload or data packet—that is
then absorbed by monon β, and vice-versa for B. More specifically, an artefact is a packet of data
left on the lattice by a computational monon after it departs, ready to be absorbed by another
computational monon.

Figure (b) is an asymmetric fusion/fission synchronisation, depending on the direction of
time. Figure (c) is symmetric, and equivalent to (a). Figure (d) shows an approach to ‘widen the
constriction point’ of (c) using artefacts, thus making synchronisation easier. Figure (e) shows
how two synchronisations close in phase space lead to an apparent ‘tunnel’. Finally, figures (f–g)
show some more complicated examples suggestive of what a real reversible communicating
system might look like.
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Xm ↽−−−−⇀ Xm+1 (COMPUTE∗) Xm
−0 +Yn

−0 ↽−−−−⇀ Xm
+0 +Yn

+0 (SYNC)

X−1 ↽−−−−⇀ X0
−0 (SYNC–BEGIN) X0

+0 ↽−−−−⇀ X+1 (SYNC–END)

Xn
−0 ↽−−−−⇀ Xn+1

−0 (SYNC–UP) Xn+1
+0 ↽−−−−⇀ Xn

+0 (SYNC–DOWN)

(a) Example recessive ‘reaction scheme’. N.B. In the (COMPUTE) rule, m ≤ −2 or m ≥ 1.

· · · A−3 ↽−−−⇀ A−2 ↽−−−⇀ A−1 ↽−−−⇀ A0
−0 ↽−−−⇀ A1

−0 ↽−−−⇀ A2
−0 ↽−−−⇀ A3

−0

· · · B−3 ↽−−−⇀ B−2 ↽−−−⇀ B−1 ↽−−−⇀ B0
−0

}
A3

−0 +B0
−0 ↽−−−⇀ A3

+0 +B0
+0{

A3
+0 ↽−−−⇀ A2

+0 ↽−−−⇀ A1
+0 ↽−−−⇀ A0

+0 ↽−−−⇀ A+1 ↽−−−⇀ A+2 ↽−−−⇀ A+3 · · ·
B0

+0 ↽−−−⇀ B+1 ↽−−−⇀ B+2 ↽−−−⇀ B+3 · · ·

(b) An example use of the above reaction scheme between two mona, A and B.

(c) (d) (e)

Figure III.4: An example of a recessive synchronisation problem. In a recessive system, there can
be no disallowed transitions. This means that if a monon X reaches the synchronisation point
prematurely, then it must continue to do ‘work’ whilst waiting to synchronise. The simplest
approach is for X to start counting the net number of steps that it has been waiting to synchronise.
When the other monon Y arrives the synchronisation can complete, but the counter must be sub-
sequently consumed. (a) An example reaction scheme implementing recessive synchronisation.
For computation prior to synchronisation the states are labelled . . . ,X−3,X−2,X−1, and post
synchronisation they are labelled X+1,X+2,X+3, . . .. Transitions between these states are imple-
mented by the rule (COMPUTE). A special Xn

±0 state is used for the synchronisation-competent
state, where ± represents whether or not synchronisation has yet occurred and n the number
of steps counted. The four rules (SYNC–BEGIN,UP,DOWN,END) implement the counter. Finally
the rule (SYNC) implements the synchronisation interaction proper. This reaction should be
assumed much faster than the counter reactions so that only one monon counts. (b) An example
instantiation of the reaction scheme between two mona, A and B. Here, A arrives first and counts
for 3 steps. After synchronising, it counts back down. A key feature of this system is that it does
not retain a memory of n = 3; upon reversal, a higher or lower value of n may be reached or it
may even be the case that B counts up instead of A. This effectively sidesteps the issue of ‘erasing’
the value of n. (c,d) Regions of phase space corresponding to the cases of A (resp. B) reaching the
synchronisation point first. The horizontal axis corresponds to the states of A and the vertical to
those of B. Therefore, in (c), the yellow quadrant corresponds to A counting up whilst awaiting
B’s arrival, and the orange quadrant to it counting down. The green quadrant corresponds to
both A and B having resumed independent computation. In (d) the yellow quadrant corresponds
to B counting up and the orange to it counting down. Note that the bias switches direction; in
(c), the bias points NE in the blue and yellow quadrants, and NW in the orange and green. In
(d) the bias points NE in the blue and yellow quadrants, and SE in the orange and green. (e) A
representation of the entire phase space, consisting of the six ‘quadrants’ stitched together.
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As mentioned in the introduction, we shall incorporate spatial position as just another
part of our computational state, such that translocation along a lattice (or indeed any
other environmental interaction) can be treated as just another computational transition.
This abstraction allows us to greatly simplify our analysis, as we need only track position
in phase space; the exact meaning of different phase coordinates is irrelevant, and so our
results will remain general in a large class of synchronisation processes.

Interacting Mona For a system of multiple particles, the state of the system is given by
a coordinate in their joint phase space. In a classical physical system of N particles, this
manifests as a 6N -dimensional phase space as each particle has six degrees of freedom:
three for the particle’s position, and three for its momentum vector. Similarly, our system
ofN mona has as states coordinates in anN -dimensional phase space. When these mona
do not interact, the phase space naturally decomposes into a tensor product of each
monon’s individual phase space. If, however, n of these mona happen to interact with
one another, then the subspace formed from their degrees of freedom is irreducible: it
cannot be further decomposed into a tensor product. The reason is that a synchronisation
manifests as a constraint on the joint state.

To make this more concrete, suppose three mona are to share some information.
Let their individual states be indexed by Z, such that their joint phase space is given
by a subset of Z3. Suppose the interaction occurs when each monon is in state 0, i.e.
the coordinate at which they interact is (0, 0, 0). As the future state of each monon
depends on this interaction/communication/synchronisation event, we observe that
some coordinates are causally impossible. For example, (3,−4, 5) would imply that the
first and third mona have received information from the second, despite the second
having never given them this information. In fact, we find that the only valid states
are given by {(−a,−b,−c) : a, b, c ∈ N} ∪ {(a, b, c) : a, b, c ∈ N} ≡ (−N)3 ∪ N3. This
corresponds to the negative and positive octants of Z3, and the system must pass through
the origin. The equivalent case of two mona is depicted in Figures III.3a and III.3c.

This is not the only way for mona to interact as illustrated by other examples in
Figure III.3. The common factor is that a synchronisation event between mona with
individual phase spaces Ri corresponds to their joint state R being a strict subset of
R′ =

⊗
iRi. Our aim is to analyse the mean time to get from some region of phase space

to another, and for this we shall need to specify some regions: I will be the initial region
of phase space (or more generally, a distribution over phase space), P will be the region
‘before’ synchronisation, P ′ the region ‘after’, and S the interfacial region corresponding
to the process of synchronisation. These phase regions must satisfy the relations I ⊂ P ,
P ∩ P ′ = S, and P ∪ P ′ = R. It should be noted that the synchronisation region S is
arbitrary, although in practice there is usually a natural choice.

The question naturally arises of what happens at the boundaries of this phase space.
Quite simply, transitions which would take the mona outside of the valid phase region
are blocked; that is, there is no reaction with reactants |0⟩ and ⊕ if the other mona are
not all receptive to synchronisation. A more abstract but more general answer is that the
boundaries ofR are reflective: the probability flux/current normal to them vanishes.
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We now introduce a canonical slicing of P into hypersurfaces {Ps : s ∈ N}. The hyper-
surface Ps is given by the locus of nodes whose shortest path (i.e. the minimum number
of transitions) to S is s. By definition, P0 ≡ S , and it can be shown that to get from a node
in Ps+k to Ps, one must pass through the hypersurfaces {Ps+k−1,Ps+k−2, . . . ,Ps+1} in
turn. We will usually take I ⊆ Ps for some ‘distance’ s.

These definitions allow us to categorise the forms of synchronisation events. If
|Ps+1| ≥ |Ps| for all s within an appropriate vicinity of S where |Ps| is the number
of nodes in said hypersurface, then we call this a constrictive synchronisation. If in-
stead |Ps+1| ≤ |Ps| we call it dilatory. These categories intersect in the special case
of |Ps| constant; this can be likened to a tube, and has zero penalty. For uniformly
positive bias, a dilatory synchronisation problem does not present an impediment to
synchronisation and in fact may even aid the process, as the reflective boundary serves
to ‘push’ probability density towards S . In practice, dilatory synchronisations only occur
in contrived scenarios, if at all, and synchronisations can be assumed constrictive. If a
synchronisation geometry does not fit into either of these categories, then it may need
to be partitioned into constrictive and dilatory regions, each of which can be analysed
separately. Alternatively, if the geometry is ‘on average’ constrictive then one should be
able to cautiously apply the relevant results.

Locally Unconstrained Synchronisation As alluded to in the introduction and Fig-
ure III.4, a synchronisation problem can be modified to ‘fill in’ the missing regions
of phase space. This is achieved by introducing a ‘dummy’ counter for each monon.
Whenever a monon reaches the synchronisation subspace (i.e. it is receptive to syn-
chronisation) it begins counting the time it has waited. This is not quite accurate, as
the counter is just another part of the monon’s computational state and so it can go
down as well as up; nevertheless, on average it counts up. The consequence is that every
monon can continue to evolve unimpeded. Once the last monon becomes receptive
to synchronisation, the mona finally synchronise. At this point, the latent mona begin
to decrement their counters. When a monon reaches zero, it may resume its original
computation. Though a subtle point, this is indeed a reversible computation despite
appearing to erase information, and is made clearer in Figure III.4.

In return for the elimination of phase space boundaries, the phase space becomes
effectively larger, and control over the state of the mona is more limited. In particular,
with a weak bias the mona are free to wander into these dummy regions. We will analyse
this case in Section III.4 in order to compare its performance to the constrictive case. As
with the constrictive/dilatory cases, we can classify these problems into recessive and
processive cases. Recessive cases correspond to P ′ being convex, and processive to it
being concave. Again, it is not obvious how a processive case could be constructed, if
indeed it can be. Moreover, it is unclear how to analyse a case that does not fall into
these categories.

Problem Statement With the synchronisation phase space well defined, we are now
in a position to formulate a question. Our goal is to determine the mean time to get from
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I to S , and to compare this to the unsynchronised systemR′. For homogeneous constant
bias b, it is straightforward to show that unconstrained evolution from Ps to P0 = S
takes mean time τ = s/bλ. That is, the computational ’speed’ is 1/bλ. More generally,
we can define this quantity by τ = inf{t : ∀u > 0.⟨x(t+ u)⟩ ∈ P ′}. That is, it is the least
time for which the mean position in phase space never leaves the post-synchronisation
domain. For many systems, this can be identified with the first time at which the mean
position in phase space enters the post-synchronisation domain, τ = inf{t : ⟨x(t)⟩ ∈ P ′}.

To compute this latter quantity τ in general cases, we consider the evolution of the
phase space probability distribution, W (t) =W (x⃗; t). This quantity τ is well known in
the literature, and is termed the Mean First-Passage Time, or MFPT. We will generally
follow the approach of Risken [77], in particular Chapter 8. The first observation we
can make is that we need not track particles that cross the boundary between the
two domains; that is, we can place an absorbing boundary at S. The total extant
probability, G(t) =

∫
P\S dx⃗W (t), can then be interpreted as a survival probability,

P(τ > t). Introducing a probability density ϱ(t) for the MFPT, such that τ =
∫∞
0 dt tϱ(t),

we can see that G(t) = P(τ > t) =
∫∞
t dt′ ϱ(t′) and hence τ = −

∫∞
0 dt tdGdt =

∫∞
0 dtG(t).

We proceed by reducing the dimension of the problem. Surprisingly, it transpires that
we can in fact eliminate the time variable. We recall the standard approach from Risken
[77]. The nth moment of τ is found to be

⟨τn⟩ = −
∫ ∞

0
dt tn

∂

∂t

∫
P
dx⃗W (x⃗; t) =

∫
P
dx⃗

(
−
∫ ∞

0
dt tn

∂

∂t
W (x⃗; t)

)
︸ ︷︷ ︸

wn(x⃗)

.

Let L = L(x⃗) be an operator describing the time evolution of the phase distribution,
i.e. Ẇ = LW . Here we require that L not depend on time, and so we will not consider
time-variable biases from here on. Integrating by parts and then applying L, we can
relate the wn to each other:

wn+1(x⃗) = n

∫ ∞

0
dt tnW (x⃗; t),

Lwn+1(x⃗) = n

∫ ∞

0
dt tnLW (x⃗; t)

= n

∫ ∞

0
dt tn

∂

∂t
W (x⃗; t)

= −nwn(x⃗).

Evaluating the base case, w0(x⃗) =W (x⃗; 0), we thus have an inductive definition of the
wn, from which we can obtain each moment of τ . As these turn out to be non-trivial to
evaluate, we will focus on the first moment—the mean—in this chapter, i.e. τ =

∫
P dx⃗ w1

with Lw1 = −W (0) where W (0) is the initial distribution on I. That is, we merely need
to compute the steady state distribution of the system P with absorbing boundary at S ,
subject to forcing W (0). Note that, whilst W (0) is a normalised probability distribution
with total density 1, w is not. In fact, its total density is precisely the MFPT.
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A useful observation is that phase density is conserved by the operator L. This
means we can write L = −∆⃗ · S⃗ for discrete phase space, where ∆⃗ is the discrete vector
derivative (or finite difference) and S⃗ is the phase current. For continuous phase space,
we have instead L = −∇⃗ · S⃗. Current will be very important to our analysis, and is
informed by the sources and sinks due to the W (0) forcing and absorbing boundary
respectively.

III.2.1. Techniques for Discrete Phase Space

Recurrence Relations There are a number of ways to represent the operator L for a
discrete system. The canonical approach to describe a Markov chain is by introducing
a distribution vector with indices corresponding to loci in phase space. For example,
the phase space corresponding to Figure III.3a would be represented by a vector in the
infinite dimensional vector space indexed by the set {(−i,−j) : i, j ∈ N} ∪ {(i, j) : i, j ∈
N}. The operator is then an infinite matrix for this space. Whilst a convenient approach
due to the wealth of techniques built around this representation, in addition to the ability
to solve for the steady state as an eigenvector problem, it is too unwieldy to make much
progress here.

A better representation is given by considering the local structure of L, as alluded to
earlier when we introduced current. For the one-dimensional phase space of a bi-infinite
monon with transition rates λ(i 7→ i+ 1) and λ(i+ 1 7→ i), we can write the system in
the following two convenient ways:

ẋi = −[λ(i 7→ i+ 1) + λ(i 7→ i− 1)]xi

+ λ(i− 1 7→ i)xi−1 + λ(i+ 1 7→ i)xi+1,

S(i 7→ i+ 1) = λ(i 7→ i+ 1)xi − λ(i+ 1 7→ i)xi+1.

Note how ẋi ≡ −S(i 7→ i+ 1) + S(i− 1 7→ i), as expected. Also keep in mind that the
expression for ẋi needs to be modified to incorporate sources and sinks. These repres-
entations are just recurrence relations, and methods to solve these include elimination,
induction, and generating functions. To demonstrate, we solve for the MFPT from |−s⟩
to |0⟩.

To set up the problem, we place an absorbing boundary at |0⟩ such that x0 = 0
and we force the system by placing a negative unit-strength source at |−s⟩ such that
S(−s 7→ −s + 1) − S(−s − 1 7→ −s) = 1. The boundary condition at −∞ is x−∞ = 0,
as is the current. Therefore, we find that S(−s − k − 1 7→ −s − k) = 0 for k > 0 and
S(−s+ k 7→ −s+ k + 1) = 1 for s > k ≥ 0. That is, the current transports density from

68



III.2. Methodology

the source to the sink. Writing out the current equations,

1 = S(−1 7→ 0) = λ(−1 7→ 0)x−1,

1 = S(−2 7→ −1) = λ(−2 7→ −1)x−2 − λ(−1 7→ −2)x−1,

1 = S(−3 7→ −2) = λ(−3 7→ −2)x−3 − λ(−2 7→ −3)x−2,

...
0 = S(−s− k − 1 7→ −s− k) = λ(−s− k − 1 7→ −s− k)x−s−k−1

− λ(−s− k 7→ −s− k − 1)x−s−k,

...,

we can find the densities in the vicinity of the boundary;

x0 = 0,

x−1 =
1

λ(−1 7→ 0)
,

x−2 =
1

λ(−2 7→ −1)

[
1 +

λ(−1 7→ −2)
λ(−1 7→ 0)

]
,

x−3 =
1

λ(−3 7→ −2)

[
1 +

λ(−2 7→ −3)
λ(−2 7→ −1)

[
1 +

λ(−1 7→ −2)
λ(−1 7→ 0)

]]
,

....

More generally, we can write

x−n =

{
1

λ(−17→0)

(∑n
k=1

∏k
r=2

λ(−r+17→−r)
λ(−r 7→−r+1)

)
, n ≤ s,

1
λ(−17→0)

(∑s
k=1

∏k
r=2

λ(−r+17→−r)
λ(−r 7→−r+1)

)(∏n
r=s+1

λ(−r+17→−r)
λ(−r 7→−r+1)

)
, n > s.

That is, we have exact expressions for the entire steady state distribution. Adding these
up will yield the MFPT, τ =

∑∞
i=0 xi. This expression is not particularly convenient; we

can instead rewrite the recurrence relation as

x−n =
S(−n 7→ −n+ 1)

λ(−n 7→ −n+ 1)
+
λ(−n+ 1 7→ −n)
λ(−n 7→ −n+ 1)

x−n+1,

from which we find

τ =
s∑

n=1

1

λ(−n 7→ −n+ 1)
+ τ

∞∑
n=1

λ(−n+ 1 7→ −n)
λ(−n 7→ −n+ 1)

x−n+1

τ

=
(
1−

〈λ(−n+ 1 7→ −n)
λ(−n 7→ −n+ 1)

〉)−1 s∑
n=1

1

λ(−n 7→ −n+ 1)
,

where the expectation value is taken over the steady state probability distribution. Even
if the steady state distribution is unknown, we can nevertheless use this to obtain bounds
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on τ . In the specific case of homogeneous bias, λ(n 7→ n+1) = pλ and λ(n+1 7→ n) = qλ,
the bounds coincide and thus we can obtain an exact expression without knowledge of
the exact distribution (though the distribution also reduces to a reasonably simple form),
finding

τ =
(
1− q

p

)−1 s

pλ
=

s

bλ
,

as expected.

Generating Functions When the values of λ take on a particularly nice form, such
as constant uniform, generating functions provide a tempting approach. A generating
function is used to represent a series as coefficients of a power series. For example,
the series {0, 1, 2, 3, . . .} has generating function t(1− t)−2 because its series expansion
is t + 2t2 + 3t3 + 4t4 + · · · . Using multiple variables, complicated structures such as
walks can be encoded in a generating function3. We will seek a generating function,
W , whose terms correspond to walks starting at each position |s⟩, and end when they
reach |0⟩ for the first time. For convenience, we are walking down towards 0 from
positive states, rather than up from negative states. It turns out that the easiest way to
construct these walks is in reverse: we start from |0⟩ and add either an ‘up’ step or a
‘down’ step, providing we never go down to |−1⟩. Stated another way, a walk is either
the empty walk (with generating function 1), another walk w followed by an ‘up’ step
(wu), or another (positive) walk w+ followed by a ‘down’ step (w+d). This way, the
walks described are only those right up to the point they cross the origin.

To get meaningful statistical information, we label each step with its probability. In
the reversed walk, an ‘up’ step has probability p and a ‘down’ step q. This leads to the
implicit functional equation

W = 1 + pxtW + qx̄t(W −W |x=0)

where x̄ ≡ 1/x, x is a variable that records the final position of the walk, and t is a
variable that records the number of steps in the walk. To prevent a downward step at
|0⟩, we ignore these walks when constructing the next step. Expanding W , we can see
that it has the terms we expect:

W = t0(x0) + t1(px1) + t2(ppx2 + pqx0) + t3(pppx3 + ppqx1 + pqpx1) + · · ·

To proceed, we seek a closed form expression. Rewriting, we have (x− t(px2 + q))W =
x − qtW |x=0. It would appear that we are now stuck, as there is an unknown W |x=0

which depends on the complete generating function W . Fortunately there is a powerful
technique that can be used here, the Kernel method [83]. We require that W have no
negative powers of x, and therefore the kernel, x − t(px2 + q), must be a factor of the

3For introductions to generating functions and enumerative combinatorics, see Wilf [80] and Stanley [81].
For a review of techniques used to analyse walks in two or more dimensions with generating functions,
see Bousquet-Mélou and Mishna [82].
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right hand side of the equation. Among other things, this means that when the kernel
vanishes, so must the right hand side. The kernel has two roots, X±, although only one
of these turns out to be appropriate (in the sense of not containing negative powers of t):

X± =
1±

√
1− 4pqt2

2pt
, 0 = X− − qtW |x=0.

Substituting into our functional equation, we obtain

W =
1− x̄X−

1− (px+ qx̄)t
.

In fact, this is not quite the generating function we want. We want the final step to be into
an absorbing boundary, so we define the ‘true’ generating function to be V = pxtW . A
little thought shows that the coefficient of xs in V is the probability generating function
of the first passage time; that is, the coefficient of tnxs is the probability that a walk
starting at |s⟩ takes n steps to reach |0⟩. In order to find the MFPT, we want to calculate∑∞

n=0 n[t
nxs]V where [tnxs]V is the coefficient of tnxs in V. In fact, we can obtain a

generating function encoding this information by taking the t-derivative of V , exploiting
the fact that ∂ttn = ntn−1. If we then set t = 1, we sum up all the t coefficients and
therefore obtain the generating function for the MFPTs, parametrised by s. That is, V̇ |t=1.
Evaluating this gives

V̇ |t=1 =
1

b

x

(1− x)2
=

∞∑
s=0

s

b
xs,

i.e. the MFPT for |s⟩ is s/b as expected for discrete time. Converting to continuous time
recovers s/bλ.

Unfortunately, these techniques do not extend easily to multiple dimensions. Nev-
ertheless, there is a growing selection of techniques applicable to two-dimensional
quadrant walks. See Bousquet-Mélou and Mishna [82] for a review. We had partial
success in applying these techniques, and some of our results are summarised in Sec-
tion III.5, but ultimately we were unable to use these to obtain expressions for the MFPT.
Instead, we focussed on obtaining lower and upper bounds by making use of the recur-
rence relations and properties such as detailed balance; these results are presented in
Section III.3.2.

III.2.2. Techniques for Continuous Phase Space
Fokker-Planck Equation The phase spaces we are interested in are discrete, but for
completeness we shall also consider continuous phase spaces. Many of the definitions
for discrete phase space generalise naturally such as the phase regionsR′,R, P , P ′, I,
and S. The distribution W is to be interpreted as a density, but otherwise W , G, wn, ϱ,
etc. generalise as expected. The boundaries of R are enforced by a no-flux boundary
condition. The hypersurface slicing is less obvious, and will require us to first define the
dynamics of the system.
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Being stochastic, the dynamics are conventionally described by a Langevin stochastic
differential equation. If ξ⃗(t) is the phase coordinate, then we can write d

dt ξ⃗(t) = η⃗(ξ⃗; t)

where η⃗(ξ⃗; t) is the noise term, a family of vectors of random variables indexed by the
time coordinate. It is standard to use the decomposition η⃗ = h⃗ + θ⃗ where h⃗ = ⟨η⃗⟩ is a
deterministic ‘forcing’ term, and θ⃗ = η⃗ − ⟨η⃗⟩ is a noise term with zero mean. Moreover,
we expect the noise term to be uncorrelated in time, i.e. our dynamics should have the
Markov property. Following the approach of Risken [77] in Chapter 3.4, we find we
can write θ⃗(ξ⃗; t) = g(ξ⃗; t)Γ⃗(t) where Γ⃗ is a vector of independent unit-variance zero-
mean Gaussian variables, and g is a noise strength matrix. Using the Kramers-Moyal
expansion, we can derive an equation for the evolution of the probability density W ,

Ẇ = −∇⃗ · (µ⃗− ∇⃗ ·D)W︸ ︷︷ ︸
S⃗

,

where µ⃗ is the drift coefficient and D the diffusion matrix, both deriving from h⃗ and g.
This equation is known as the Fokker-Planck equation (FPE).

We can now define hypersurface slicing for continuous phase space, remaining robust
against coordinate transforms. Geodesic paths can be found by integrating the drift
coefficient, ˙⃗x = µ⃗(x⃗), from some initial coordinate x⃗0. A hypersurface Ps is defined by
the locus of points which take the same time t to reach S . The label s is arbitrary as long
as it increases monotonically with t; typically s will be chosen to correspond to geodesic
path lengths in the ‘physically relevant’ coordinate system, e.g. s = bλt in the case of
uniform constant bias.

To relate the drift coefficient and diffusion matrix to the computational bias, we need
to compare the statistical properties of the two systems. For constant bias, this will be
straightforward and will result in a constant drift coefficient and diffusion matrix. Where
the bias varies, more care is required to ensure the desired properties are replicated in
the continuous case.

We match the statistical properties for a single degree of freedom. In the discrete case,
the relevant distribution is given by the difference between two Poisson distributions.
One Poisson distribution represents the number of ⊕ tokens received, and the other the
number of ⊖ tokens. This is known as the Skellam distribution, and our parameters are
pλt and qλt, yielding mean bλt and variance λt. In the continuous case, the FPE is given
by Ẇ = −µW ′ +DW ′′ and its exact solution can be obtained by a routine application of
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Fourier transforms:

˙̃
W = −ikµW̃ − k2DW̃

∂t log W̃ = −(k2D + ikµ)

W =
1√
2π
W0 ∗

1√
2π

∫
R
dk exp

(
ikx− (k2D + ikµ)t

)
=

1√
2π
W0 ∗

1√
2π

∫
R
dk exp

(
−Dt

(
k +

i(x− µt)
2Dt

)2

− (x− µt)2

4Dt

)
=W0 ∗

1√
4πDt

exp
(
−(x− µt)2

4Dt

)
.

That is, the initial distribution W0 is convolved with a Gaussian of mean µt and variance
2Dt. Comparing with the Skellam distribution, we identify µ = bλ and D = 1

2λ.

III.3. Constrictive Case
Using these techniques, we will be able to obtain a variety of exact, approximate, and
numeric results for the constrictive case for general geometries. In practice, we are more
interested in truncated simplicial geometries (Definition III.4) as their construction is
more ‘natural’. The construction is natural because it comprises d mona which evolve
independently at all times except for the moment of synchronisation.

Definition III.4 (Truncated Simplex). We refer to our primary geometry of interest as a
‘truncated simplex’. A simplex is a generalisation of the concept of a triangle to arbitrary
dimensions. That is, in dimension one it is a line segment, and in dimension three it is
a tetrahedron. The pre-synchronisation subspace P of Figure III.3c can be considered
to be a right simplex in two dimensions, i.e. a right triangle, of infinite extent. It is
defined by the set {(x, y) : x ≤ 0 ∧ y ≤ 0} (restricted to Z2 for the discrete case or R2 for
the continuous). The pre-synchronisation subspace P of Figure III.3d, meanwhile, is a
truncated simplex in two dimensions. Its set definition is {(x, y) : x ≤ 0∧y ≤ 0∧|x+y| ≥
w}where w is the side-length of the constriction surface S. In d dimensions, the set is
given by {

x⃗ :
d∧

i=1

xi ≤ 0 ∧
∣∣∣∣ d∑
i=1

xi

∣∣∣∣ ≥ w}.
It will be useful to determine the sizes of hypersurfaces |Pn| for truncated simplices.

These hypersurfaces are in fact regular d− 1 simplices, which in Rd have hypervolume
√
d

(d− 1)!

(
n+ w√

2

)d−1

.

In Zd we can use generating functions. The size of |Pn| is equivalent to the number of
ways n+ w − 1 can be made from the sum of d natural numbers. This is conveniently
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given by the coefficient of xn+w−1 in (1− x)−d,(
d+ n+ w − 2
n+ w − 1

)
.

III.3.1. Initial Estimates
Information Erasure Model We shall begin first with some quick initial estimates in
order to better understand the qualitative behaviour of our results. Consider the lateral
evolution of some initial distribution I ; whilst this initial distribution can in principle be
chosen arbitrarily, it will tend to diffuse to fill the entire hypersurface. Moreover, the
timescale of this lateral diffusion will be much shorter than that of the approach of the
mean position towards the interfacial region S in the case of vanishing bias. To clarify,
the bias between two adjacent nodes x and y is given by

b(x 7→ y) =
λ(x 7→ y)− λ(y 7→ x)

λ(x 7→ y) + λ(y 7→ x)
.

Therefore, without significant loss of generality, we assume a substantially delocalised
initial distribution. This distribution need not be uniform, but it will have an entropy that
scales roughly proportional to log |Ps|, where |Ps| is the size of the initial hypersurface.
In order for an interaction to occur, the distribution must pass through the interfacial
hypersurface S ≡ P0 whereupon it will have a distributional entropy proportional to
log |P0|. As the geometry is constrictive, |P0| ≤ |Ps| and therefore this process requires
an erasure of information. For constant bias b, information can be erased (see Chapter II)
at a maximum rate 2b2λ where λ is the gross transition rate. We can therefore bound the
synchronisation time from below by

1

2db2λ
log
|Ps|
|P0|

which, for a truncated simplex, is

1

2db2λ

d−2∑
k=0

log
(
1 +

s

w + k

)
=

1

4b2λ
log

(
1 +

s

w

)
︸ ︷︷ ︸

d=2

.

Note the factor d in the denominator which arises because each monon is able to inde-
pendently erase information at the given rate.

This neglects the time for the individual mona to reach the synchronisation surface,
which is s/bλ. For s ≲ 1/b, the erasure time will dominate and so the MFPT can be
approximated as

s

bλ
+

1

4b2λ
log

(
1 +

s

w

)
,

which shows that there is a ‘penalty’ term for synchronisation. When s ≳ 1/b it is less
clear as it is possible that the mona could perform some or all of the erasure along their
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journey leading to no penalty at all. From a practical point of view, any penalty in this
case is negligible as the journey time will be larger, but it is instructive to understand
what occurs in this case in order to understand how the system erases information. If the
penalty were eliminated, then it would suggest that the lateral distribution of the mona
should collimate into a narrow ‘beam’ in anticipation of the synchronisation surface.
This is clearly nonsensical, as the tendency is for the mona to diffuse laterally. A simple
way to model the interaction is to divide the d mona into 1 ‘latent’ monon and d − 1
‘precocious’ mona. The latent monon is identified as the last monon to arrive, and as
such the precocious mona can be assumed to have reached a steady state distribution.
For uniform constant bias, each monon’s steady state distribution is geometric with
P(Pn) = b

p(
q
p)

n and entropy log p
b + 1 +O( bq ). For the latent monon to pass through the

constriction point, each of the precocious mona’s distributions must be erased. As these
erasures could in principle occur simultaneously, this gives a lower bound for such a
penalty as

d− 1

2db2λ
log

p

bw
.

Putting the two results together, we see that the lower bound on the penalty should
increase logarithmically with distance before reaching a plateau as s ≳ 1/b.

Quasi-Steady State Approximation Whilst the above is reasonable from an inform-
ation theory perspective, it does not provide a mechanism for information erasure. A
simple mechanistic model for synchronisation can be given by the Quasi-Steady State
Approximation. This approximation consists of two phases; first, the initial distribution
I evolves and approaches the interfacial surface S, which is taken to be reflective. We
then assume the distribution to have roughly attained its steady state form, at which
point the second phase begins. In the second phase, there is a steady leak of density
through S per the transition rates of the system which is assumed to not significantly
affect the form of the distribution in P .

For constant uniform bias, the steady state is given by P(Pn) = |Pn|( qp)
n/

∑∞
k=0 |Pk|(

q
p)

k.
Evaluating the normalisation constant is non-trivial for arbitrary |Pk|, but we find approx-
imately that P(P0) ∼ bdwd−1. The leak rate is pλP(P0), and therefore the Quasi-Steady
State approximation gives an exponential decay process with half life ∼ b−dw1−dλ−1.
This is the approximate penalty term, giving an overall MFPT

τ ∼ s

bλ
+

1

bdwd−1λ

and showing that, whilst in principle an order 1/b2 penalty term is possible via inform-
ation erasure, in practice a d-dimensional synchronisation will incur a substantially
greater penalty for d > 2 (as b≪ 1). Fortunately this can be mitigated, either by repla-
cing the synchronisation with a series of 2-dimensional interactions or by making the
information erasure explicit. Explicating the information erasure in such a case can be
achieved using the ‘naive’ approach of making the interfacial hypersurface sticky at the
cost of erasing at least 1 bit of information (representing the state mononIsMoving).
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III.3.2. Discrete Phase Spaces
Whilst the preceding approximations are reasonable, they make significant simplifica-
tions that neglect much of the specific dynamics of the system. In order to be more con-
fident in their conclusions, we shall proceed by making use of the analytical techniques
discussed in Section III.2. We begin with the discrete case, being that this corresponds to
the underlying geometry of the phase spaces of interest.

III.3.2.1. Exact results
Recall that the MFPT can be obtained as the total phase density at steady state of the
modified system, wherein the initial distribution I is instead supplied as a constant
forcing term. Equivalently, this modified system can be understood as the ‘teleporta-
tion’ of density absorbed at S back into the system according to I. This is because, at
steady state, the rate of density loss at the absorbing boundary must exactly balance
the rate of the forcing term. Observe now that, if s = 1 (i.e. I ⊆ P1), then the ‘tele-
portation’ of density from S to I resembles a reflective boundary. An unforced system
with reflecting boundaries and whose underlying Markov chain is reversible has the
convenient property that the current is everywhere vanishing. Such a reversible Markov
system with vanishing current permits us to readily obtain the steady state using the
principle of detailed balance: the densities of each pair of states x and y are such that
[x]λ(x 7→ y) = [y]λ(y 7→ x).

Before continuing, we must first clarify the constraint on I. We begin by introducing
a labelling for the states in each hypersurface Pn as {(n, c) : c ∈ Pn}. It is important to
note that the steady state densities in the initial hypersurface, [(s, c)], do not generally
correspond in a simple way to the initial distribution [(s, c)]0 ∼ I. In the reflective
system, the effective forcing term is given simply by the reflection rates,

[(1, c)]0 =
∑
c′∈S

[(0, c′)]λ((0, c′) 7→ (1, c))

≡ [(1, c)]
∑
c′∈S

λ((1, c) 7→ (0, c′)).

That is, the only permissible initial distribution is prescribed by the steady state distribu-
tion of P1 and is in proportion to the forward transition rates. As shall be seen shortly,
for the example geometry shown in Figure III.3d this yields the initial distribution

[(1, c)]0 =
1

w

{
1
2 , c on boundary,
1, otherwise,

which, for large w, is effectively uniform. Finally, to ensure that the density sum yields
the MFPT, we pick the normalisation such that [I] =

∑
cc′ [(1, c)]λ((1, c) 7→ (0, c′)) =∑

cc′ [(0, c
′)]λ((0, c′) 7→ (1, c)) = 1. Bear also in mind that the reflecting boundary is

an artefact of this representation, with its density in the original system being zero;
therefore, in computing the MFPT, we must remember to neglect its contribution.
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Truncated Simplices In addition to being a relatively simple geometry, the truncated
simplex systems have constant uniform bias. This property gives rise to a particularly
simple steady state. Suppose the forward and backward rates are given by pλ/d and
qλ/d respectively where p− q = b and d is the dimension of the simplex. More precisely,
given that each non-boundary state (n, c) is adjacent to d states (n− 1, c′i) in the forward
direction and d states (n+ 1, c′i) in the backward direction for i = 1 . . . d, the rates may
be written as λ((n, c) 7→ (n − 1, c′i)) = pλ/d and λ((n, c) 7→ (n + 1, c′i)) = qλ/d. Using
detailed balance, we can deduce therefore that [(n, c)] = q

p [(n− 1, c′i)] for any i = 1 . . . d

and hence [(n− 1, c′i)] =
p
q [(n, c)]. As each pair of adjacent hypersurfaces in a truncated

simplex forms a connected subgraph, one can show inductively that [(n, c)] = [(n, c′)]
for all c, c′ ∈ Pn (including boundary states). Combining the results thus far, we obtain
[(n + m, c)] = ( qp)

m[(n, c′)]. Finally, we find the normalisation as ∀c. 1 = [(0, c)]|S|qλ
which leads to the complete description of the steady state distribution and hence the
MFPT,

[(n, c)] =
( qp)

n

qλ|S|
, τ =

∞∑
n=1

( qp)
n

qλ

|Pn|
|S|

,

where we have neglected the contribution of the reflective boundary density, [S] as this
is just an artefact of our representation.

Using the expression for the hypersurface sizes, we can compute the MFPT for an
arbitrary dimension d. The factor |Pn|/|S| reduces to

∏d−2
k=0(1 +

n
w+k ) and therefore the

MFPT is given by 1
qλ

∑∞
n=1(

q
p)

n
∏d−2

k=0(1 +
n

w+k ). Enumerating for dimensions d = 1, 2, 3,
we find the d-dimensional MFPTs τd,

τ1 =
1

qλ

∞∑
n=1

(q
p

)n
=

1

bλ
,

τ2 =
1

qλ

∞∑
n=1

(q
p

)n(
1 +

n

w

)
=

1

bλ
+

1

w

p

b2λ
,

τ3 =
1

qλ

∞∑
n=1

(q
p

)n(
1 +

n

w

)(
1 +

n

w + 1

)
=

1

bλ
+

2w + 1

w(w + 1)

p

b2λ
+

1

w(w + 1)

p

b3λ
.

(III.1)

Obtaining an expression for general d is non-trivial, but we can see that the leading
order term will be ∼ b−dw1−dλ−1 whenever w ≲ 1/b. When d ≲ w, we can also obtain
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an approximate expression,

τd ≈
1

qλ

∞∑
n=1

(q
p

)n(
1 +

n

w

)d−1

=
1

qλ

d−1∑
k=0

(d− 1
k

)[( t
w

∂

∂t

)k 1

1− t

]
t= q

p

≈ 1

qλ

d−1∑
k=0

(d− 1
k

)[(
− 1

w

∂

∂s

)k 1

s

]
s=2b

≈
d−1∑
k=0

( d

2w

)k 1

bk+1λ
.

General Geometries Other geometries can be evaluated in the same way as for
truncated simplices. We will now generalise the preceding argument as far as possible.
First, we use detailed balance to compute the average state density for each hypersurface,

[Pn]
|Pn|

=
1

|Pn|
∑
c∈Pn

[(n− 1, c′)]
λ((n− 1, c′) 7→ (n, c))

λ((n, c) 7→ (n− 1, c′))

=
[Pn−1]

|Pn−1|
1

|Pn|
∑
c∈Pn

[(n− 1, c′)]

[Pn−1]/|Pn−1|
λ((n− 1, c′) 7→ (n, c))

λ((n, c) 7→ (n− 1, c′))︸ ︷︷ ︸
t̂n

,

where for each c ∈ Pn, c′ ∈ Pn−1 is any node adjacent to c (i.e. such that the transition
rates between them are non-zero). In so doing, we have generalised the factor t = q

p ,
used for constant uniform bias, to t̂n. These densities can then be summed to obtain an
expression for the MFPT,

τ = [S]
∞∑
n=1

|Pn|
|S|

n∏
k=1

t̂k

=
〈∑

c′

λ((0, c) 7→ (1, c′))
〉−1

c∈S

∞∑
n=1

|Pn|
|S|

n∏
k=1

t̂k,

where we have used the normalisation condition to solve for [S].
We can now try to extract general scaling behaviour for a broad class of systems. As

we are considering constrictive geometries, |Pn| is a monotonically increasing function
as n→∞. Therefore, we must have

∏n t̂k → 0 as n→∞ or else the MFPT will diverge
(the physical reason being that t̂k > 1 implies negative bias). Moreover, the

∏n t̂k must,
in the limit, decrease faster than |Pn| grows. Provided that (most) of the t̂k are less than
1 this is usually true as it ensures exponential decay whereas we expect |Pn| to grow
only polynomially. It is reasonable to assume that regions of t̂k > 1 (negative bias) are
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brief and rare. Given this assumption, the
∏n t̂k can be characterised by a decay length

ℓn = min{m : −
∑n+m

k=n log t̂k ≥ 1}, i.e. the distance from n over which it decays by a
factor e. This decay length is an estimator of the bias, ℓn ∼ 1/2b.

Consider the function np−1tn for p, n > 0 and 0 < t < 1; the function increases
monotonically until its one turning point, before decaying inexorably towards zero. The
turning point can be shown to occur at n = (p−1)ℓwhere ℓ = −1/ log t; consequently, the
integral under the curve is dominated by the range [0, (p− 1 +O(1))ℓ). The integral can
therefore be approximated as ∼ ((p− 1 +O(1))ℓ)p/p ∼ p!ℓp by assumption that within
this range tn ∼ O(1). Returning to our general MFPT expression, and using the fact
that |Pn| is monotonic, we can come to the same approximate conclusion. Interpolating
quantities to be continuous in n, the turning point occurs when ∂n log |Pn| = − log t̂n.
Expanding |Pn| as a polynomial in n over this range, we can approximate it by its
leading order term as |Pn| = anp−1 + O(np−2), and therefore obtain the same range
∼ [0, pℓ). Finally then, the MFPT can be approximated to leading order (up to a constant
multiplicative factor of order unity) as

τ ∼ a
〈∑

c′

λ((0, c) 7→ (1, c′))
〉−1

c∈S

p!

2p
1

bp

and we identify p as the effective dimensionality d of the system.

III.3.2.2. Bounded Results

To extend to the case of s > 1 we proceed inductively. The MFPT from a node x is given
by the recurrence relation τ(x 7→ S) = (

∑
x′ λ(x 7→ x′))−1 +

∑
x′ λ(x 7→ x′)τ(x′ 7→ S)

where the x′ are adjacent to x. To rewrite this inductively, first pick a contiguous
hypersurface X lying between I and S such that all paths from I to S pass through
X at least once. It can then be seen that τ(i 7→ S) where i ∈ I can be written as τ(i 7→
X ) +

∑
x∈X px|iτ(x 7→ S) where

∑
x∈X px|i = 1. This itself can be proven inductively by

assumption that any node in the region before X can be written thus and using the trivial
base case of τ(x 7→ X ) = 0 where x ∈ X . We then introduce the distributional quantity
τ(I 7→ S) =

∑
i∈I P(i|I)τ(i 7→ S) to write this as τ(I 7→ S) = τ(I 7→ XI) + τ(XI 7→ S)

where XI is the unique distribution of states in X as they are first reached from I.

Using this inductive form, we can rewrite the MFPT as the sum of a series of s = 1
MFPTs, τ(Is 7→ S) =

∑s−1
k=0 τ(Ik+1 7→ Ik) where Ik is the unique distribution over

Pk as first reached from Ik+1. This immediately yields a first approximation to the
MFPT for arbitrary s by assuming that Ik is similar to the reflective distribution used
in Section III.3.2.1. Calculating for the general geometry restricted to uniform constant
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bias, we find

τ ≈
s∑

k=1

1

qλ

∞∑
n=1

|Pk+n|
|Pk−1|

(q
p

)n

=
1

pλ

∞∑
n=0

(q
p

)n
s−1∑
k=0

Pk+n+1

Pk

≡ 1

pλ
Z
{s−1∑
k=0

Pk+n+1

Pk

}[p
q

]
(III.2)

where Z is the unilateral Z-transform.
Unfortunately we have been unable to generally determine In−1 from In, but we can

extract sufficient information to be able to bound the MFPT from above and below. In
the reflective approach for s = 1, recall that the steady state distribution is given by
[(n+m, c)] = ( qp)

m[(n, c′)] for all c, c′. Notice also that the transitions to S are precisely
those that are to be ‘absorbed’, and those from S are precisely those to be ‘teleported’. The
consequence is that the distribution on S is the unique distribution I0 as earlier defined,
induced by I = I1. Consider then the case s = 2 where the initial distribution I is this
‘reflective’ distribution. The MFPT can be decomposed into τ(I2 7→ I1) + τ(I1 7→ S); we
know the first term as it is just that given by our s = 1 calculation, but the second term
requires us to know the s = 1 MFPT for a uniform initial distribution.

The ‘reflective’ distribution is defined by [(n, c)] ∝ number of forward transitions;
for example, the distribution for the Truncated 2-Simplex is given ratiometrically as
1 : 2 : 2 : · · · : 2 : 1. The uniform 1 : 1 : 1 : · · · : 1 : 1 distribution can thus be
considered as a normalised superposition of the reflective distribution and a pure-
boundary distribution 1 : 0 : 0 : · · · : 0 : 1. This is useful because the MFPT is linear, and
therefore we can apply the principle of linear superposition. Now, for uniform constant
bias in a constrictive geometry, the boundary nodes within a given hypersurface Pn
must have maximal MFPT because the expected transition direction from the boundary
nodes is backwards whereas for all other nodes it is forwards. As a result, the MFPT
for a uniform distribution is greater than for a reflective distribution. This applies for
each subsequently induced hypersurface distribution, as the effective negativity of the
boundary transitions causes it to be ‘sticky’ and attract density to itself.

Lower Bound Therefore, for an initially reflective distribution, the estimate of the
MFPT given by Equation (III.2) is in fact a lower bound. Moreover, it is a lower bound
for any distribution lying between the reflective distribution and the limiting distribution
induced by the aforementioned boundary attraction phenomenon.

Upper Bound A trivial upper bound is given by the sum of the MFPTs for pure-
boundary distributions, but this is needlessly loose. To obtain a tighter upper bound, we
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appeal to the distributional superposition,

τ(Irefl.
n ) = τ(Irefl.

n 7→ Iunif.
n−1 ) + ατ(Irefl.

n−1) + (1− α)τ(Ibound.
m−1 )

=
1

pλ

∞∑
r=0

|Pn+r|
|Pn−1|

(q
p

)r
+ ατ(Irefl.

n−1) + (1− α)τ(Ibound.
m−1 ).

The value of α can be found by taking the ratiometric vector for the reflective distribution,
say 1 : 2 : · · · : 2 : 1, and then finding the boundary distribution which makes this up to
uniform, i.e. 1 : 0 : · · · : 0 : 1. The uniform distribution would then be 2 : 2 : · · · : 2 : 2,
and so the proportion of density in the reflective component is (1 + 2 + · · ·+ 2 + 1)/(2 +
2 + · · · + 2 + 2), or the normalised average ⟨fx⟩/maxx fx where fx is the number of
forward transitions for node x.

The boundary MFPT is harder to find, but we can bound it from above. First consider
the exact s = 1 MFPT when w = 1; in this case, P1 is formed entirely from boundary
nodes and therefore its MFPT is precisely the boundary MFPT. In fact, this boundary
MFPT is an upper bound on all the other boundary MFPTs as it corresponds to the
special case of no interior nodes; when interior nodes do exist, they will have lower
MFPTs than the boundary and density in the boundary will diffuse into these interior
nodes, thus reducing the boundary MFPT. These definitions of α and boundary MFPTs
will become clearer with a concrete example.

Truncated Simplices Specialising to truncated simplices, we can quantify these lower
and upper bounds. The s = 1 MFPTs have already been obtained earlier for d = 1, 2, 3
in Equation (III.1), and so the MFPT lower bounds can be obtained thus,

τ1 =
s

bλ
,

τ2 ≥
s

bλ
+

p

b2λ
∆ψ,

τ3 ≥
s

bλ
+

p

b2λ

(
2∆ψ +

1

s+ w
− 1

w

)
+

p

b3λ

( 1

w
− 1

s+ w

)
,

where ∆ψ =
∑w+s−1

k=w
1
k = ψ(s+ w)− ψ(w) ≈ log

(
1 + s

w

)
with ψ the digamma function.

The factor ∆ψ closely resembles the information loss in the synchronisation interaction
for 2-simplices, and the coefficient of p/b2λ in τ3 resembles that for 3-simplices, as
expected. Notice that these lower bounds do not plateau as s→ 1/b as conjectured in
Section III.3.1; whilst it is in principle possible from an information theoretic perspective
to reach this plateau penalty, the passive dynamics of these interactions preclude this
possibility. Nevertheless, at the point where the plateau becomes relevant, the penalty
becomes insignificant in comparison to the s/bλ for τ2 and therefore this is of little
concern. For τ3 and above, penalties of order O(b−3) and above are present and remain
significant beyond s/bλ.

For the upper bound, we first obtain the upper bound on the boundary MFPT as
s
bλ +

ps
b2λ

for d = 2 and s
bλ +

3
2

ps
b2λ

+ 1
2

ps
b3λ

for d = 3. One needs to be particularly careful for
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Figure III.5: An illustration of a series of hypersurfaces in the d = 3 simplex to demonstrate
the different classes of boundary nodes. The top row shows the hypersurfaces on their own,
whilst the bottom row shows adjacent hypersurfaces superimposed and the forward transitions
between them.

d = 3 and above as there are different ‘classes’ of boundary nodes: for d = 3 (as shown in
Figure III.5), there are ‘vertex’ boundary nodes which have only one forward transition,
and ‘edge’ boundary nodes which have two forward transitions, whilst interior nodes
have three. More generally, in dimension d there are d− 1 classes of boundary nodes
with 1, 2, . . . , d− 1 forward transitions respectively (and interior nodes with d forward
transitions). The vertex nodes will have the highest MFPTs and correspond precisely to
the w = s = 1 MFPT, and are therefore what we shall use for MFPT bounds in higher
dimensions. The values of α can be found by counting transitions, and are α1 = 1,
α2 = 1− (n+ w − 1)−2 and α3 = 1− 2(n+ w)−1.

Using these values of the boundary MFPTs and superposition fractions, we can write
a recurrence relation for each dimension in τd(n),

τ1(w + k + 1) =
1

bλ
+ 1 · τ1(w + k) + 0 ·

( k
bλ

)
,

τ2(w + k + 1) ≤ 1

bλ
+
w + k − 1

w + k
· τ2(w + k) +

1

w + k
·
( k
bλ

+
pk

b2λ

)
,

τ3(w + k + 1) ≤ 1

bλ
+
w + k − 1

w + k + 1
· τ3(w + k) +

2

w + k
·
( k
bλ

+
3

2

pk

b2λ
+

1

2

pk

b3λ

)
,

with initial conditions

τ1(w + 1) =
1

bλ
,

τ2(w + 1) =
1

bλ
+

1

w

p

b2λ
,

τ3(w + 1) =
1

bλ
+

2w + 1

w(w + 1)

p

b2λ
+

1

w(w + 1)

p

b3λ
.
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These can finally be solved to yield

τ1 =
s

bλ
,

τ2 ≤
s

bλ
+

1
2s(s+ 1)

s+ w − 1

p

b2λ
,

τ3 ≤
s

bλ
+

1
2s[2s

2 + (3s+ 1)(w + 1)− 4s]

(w + s)(w + s− 1)

p

b2λ
+

1
6s(2s

2 + 3(s− 1)(w − 1) + 4)

(w + s)(w + s− 1)

p

b3λ
,

and, in the limit of large s, these simplify to

τ1 =
s

bλ
, τ2 ≤

s

bλ
+
s+ 1

2b2λ
, τ3 ≤

s

bλ
+

2s+ 3w

2b2λ
+

2s+ 3w

6b3λ
.

In summary, the MFPT penalties for d = 1, 2, 3 truncated simplices are bounded above
and below by

∆τ1 = 0,

p

b2λ
∆I2 ≤ ∆τ2 ≤

p

b2λ

1
2s(s+ 1)

s+ w − 1
,

p

b2λ
∆I3 +

p

b3λ

s

w(s+ w)
≤ ∆τ3 ≤

p

b2λ

1
2s[2s

2 + (3s+ 1)(w + 1)− 4s]

(w + s)(w + s− 1)

+
p

b3λ

1
6s(2s

2 + 3(s− 1)(w − 1) + 4)

(w + s)(w + s− 1)
,

where ∆I2 = ψ(s + w) − ψ(w) and ∆I3 = 2∆I2 +
1

s+w −
1
w . Expressions for higher

dimensions can be obtained using the same approach, but the key point to note is that
the terms in each order of b−1 are present and significant in both the lower and upper
bounds and therefore a synchronisation interaction in dimension d will be subject to a
penalty of order O(b−d), with the coefficient of the O(b−2) penalty term bounded below
by the information loss in the interaction.

III.3.2.3. Numerical Simulation
In the course of investigating this synchronisation problem, a suite of tools4 for comput-
ing MFPTs was developed, as well as an assortment of other tools56. Computing MFPTs
in regimes of low bias and unbounded state space is challenging because the probability
density tends to diffuse very far from S. Attempting to compute it in a deterministic
way via the explicit steady state distribution has a high spatial complexity as one must
make sure not to prematurely truncate the state space, or else risk underestimating the
MFPT. A rough estimate gives a spatial complexity of O(1/b2 + (s+ w)/b), and the time

4https://github.com/hannah-earley/revcomp-synch-rw-mfpt
5https://github.com/hannah-earley/revcomp-synch-rw-distribution
6https://github.com/hannah-earley/revcomp-synch-rw-distribution-2
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Figure III.6: Simulation results for the d = 2 truncated simplex case, as depicted in Figure III.3d,
with varying initial hyperplane distances s and constriction widths w, and subject to a uniform
bias b ∈ {0.1, 0.01}. The Normalised MFPT Penalty corresponds to (τ − s

bλ )/(
p

b2λ∆I2), i.e. it is
the MFPT penalty divided by the lower bound as computed in Section III.3.2. As a result, the
horizontal axis corresponds to the lower bound. The plotted points show simulation data with
(negligible) error bars, the solid lines show the (normalised) upper bound, and the dashed lines
show the empirical approximation given by Equation (III.3).
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complexity will be the product of this spatial complexity and the number of simulation
steps to convergence, which will be at least O(1/b) to allow particles from the initial
distribution to explore the entire state space.

The alternative is to exploit the Markov property of the system in order to use a
stochastic Markov-Chain Monte-Carlo simulation approach, or MCMC. In an MCMC
approach we essentially apply the stochastic dynamics of the system to an ensemble
of instances of the system. In this case, each instance is a single phase particle, whose
coordinate represents the joint state of the underlying mona. Therefore, for an ensemble
of size m, the spatial complexity will be O(m). Again, the goal is to obtain the steady
state distribution of the forced absorbing-boundary system; to ensure conservation of
density, we use the teleporting form in which there is a one-to-one correspondence
between each particle incident on the absorbing boundary and a particle injected into
the initial distribution.

The naive approach is to record the number of time-steps between injection and
absorption for each particle. Unfortunately this approach is not robust enough here
as the high-diffusion negligible-drift regime leads to substantial variance in the FPT
distribution such that a significant proportion of particles in the ensemble will get
‘lost’ in the phase space for an unboundedly long time. Therefore the mean of the
particles’ injection-absorption times will typically be divergent, or the program will run
indefinitely as it waits for each particle to be absorbed. A possible solution is to exclude
particles which have not returned after some predefined number of time-steps, but this
will lead to an underestimate of the MFPT.

The correct solution, it transpires, is to instead record the absorption current: that
is, within some time-step window ∆t, count the number of particles n incident on the
absorbing boundary in order to obtain an unbiased estimate of the current S = n/m∆t
where m is the ensemble size. This process can be repeated as many times as one likes to
obtain a series of measurements of the current, from which basic statistics can be used to
find an improved estimate of the mean current and its standard error.

There remains, however, a caveat common to all MCMC simulations. Assuming our
particles are distributed according to the desired steady state, then their distribution will
remain so as they evolve under the stochastic dynamics of the system. The problem is in
ensuring that the initial distribution of the system is the steady state, despite not knowing
what that is. To address this, one typically initialises the system to an approximation of
the steady state and then lets the distribution ‘burn in’ by running the simulation for
some number of initial time-steps, after which it is hoped that the approximation will
have converged to the steady state. The poorer the quality of the initial approximation
to the steady state, the longer this burn-in phase will take. Moreover, the length of
the burn-in time can be hard to ascertain and so often one must resort to a heuristic
judgement.

Oft forgotten can be the quality of the random number generator used to simulate
the stochastic dynamics. In an earlier iteration of this tool, we neglected to consider
this and as a result used the standard rand function: a linear congruential generator with
period 232. As the simulation times required to obtain good quality MFPT estimates for
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many of our parameters exceeded this period, the data obtained was invalid. It can be
hard to detect this, and we only realised when a debug trace of the intermediate outputs
showed a noticeable and unexpected periodicity. As a result, our MFPT suite now uses
the PCG family of PRNGs [84] which have an internal state space size and period of 264

whilst also being very fast.
Whilst the dynamics of this system are very simple, some several quadrillion time-

steps were required to obtain the data shown in Figure III.6 and so a sophisticated
toolchain was built around the MCMC routine to improve robustness and automatability.
The core program, ./walk, is written in C++ and makes use of OpenMP for parallelisation.
Simulating an ensemble of random walkers is an embarrassingly parallel problem, meaning
that performance can generally scale linearly with the number of available CPUs due
to the minimal amount of inter-thread synchronisation necessary. Unfortunately the
GCC and LLVM compilers7 were not able to fully optimise the inner loop responsible for
executing the stochastic dynamics, and so some hand tuning was necessary to improve
the assembly output and bring down the iteration time to ≲ 5 ns on the machines used.
To ensure resumable operation and cooperation with cluster scheduling systems such
as slurm, the program supports checkpointing (both intermittent and in response to
trappable signals). The program is also reasonably modular, making it straightforward
to adapt to new random walk systems.

To coordinate simulating the large number of parameters across different topologies
of networked systems and to minimise need for manual intervention, a batched job
runner was developed in the form of a python script. The job runner has three modes
of operation; it can take a description of a set of jobs and generate specific instructions
for each job, it can connect to a distributed job queue to request and run these jobs, and
it can query the status of all the jobs and job runners (optionally sending updates by
email at regular intervals). A key feature is that it can analyse the output of ./walk to
determine whether the error has converged to a sufficiently small value, whereupon
it will move onto the next job. Finally, a number of tools were created to analyse the
resulting data, including the ability to infer and inspect the approximate steady state
distribution over the phase space.

The results of these simulation tools are shown in Figure III.6. As well as serving as
a sanity check on the derived MFPT bounds, we were also able to obtain an estimated
empirical equation for the true MFPT as

τ =
s

bλ

(
1 + p

3 + s

w + s

)
+

4

3

p

b2λ
∆I2, (III.3)

where the (3 + s)/(w + s) term is inspired by the exact MFPT for b = 1, given by
τ = s(1 + 1

2
3+s
w+s). In particular these tools were very helpful in getting an intuitive

feel for the parametric dependence of the MFPT when analytic approaches seemed
unyielding.

7In our experience, LLVM’s optimisation was far better than that of GCC in this case.
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III.3.3. Continuous Phase Spaces
The approach for continuous phase spaces will largely follow that for discrete, except
that we shall make use of the Fokker-Planck equation as introduced in Section III.2.2. In
order to solve for the reflective steady state, we shall use the fact that its current vanishes.
Recall that the continuous current is given by S⃗ = (µ⃗− ∇⃗ ·D)W where W is the phase
density, µ⃗ the drift coefficient and D the diffusion matrix. When D is non-singular, this
can be rewritten as −D(−D−1µ⃗′ + ∇⃗)W = −De−φ∇⃗eφW where µ⃗′ = µ⃗ − [∇⃗ ·D] and
φ is defined by ∇⃗φ = −D−1µ⃗′. If the current is identically zero, then it immediately
follows that the density is given by W = Ne−φ where N is a normalisation constant.
This is fairly standard, and a similar result is obtained in Chapter 6 of Risken [77].

To connect this reflective-boundary distribution with the absorbing-boundary distri-
bution, we must find the absorption current. We assume that our reflective-boundary
distribution is approximately equivalent to an absorbing-boundary distribution with
forcing applied at the P(−δx) hypersurface, where x is a coordinate orthogonal to the
hypersurfaces; in the limit δx → 0 this becomes exact, in analogy with the discrete
case. The true absorbing-boundary distribution has vanishing density at P(0) = S by
definition, and therefore we can recover our desired distribution by introducing an
appropriate decay from P(−δx) to S. In the limit δx→ 0 any higher order polynomial
terms in this decay will vanish, and therefore the decay can be assumed linear. The
absorption current is then given by

S⃗(0) = µ⃗W |x=0 −
∑
i

D⃗i lim
δxi→0

W |xi −W |xi−δxi

δxi
= D⃗x

W (−δx)
δx

= D⃗x
Ne−φ

δx
.

Using the fact that the current is along the x direction, we can find the normalisa-
tion constant subject to the constraint that the total absorption current is 1 as N =
δx/

∫
S dd−1x⃗Dxxe

−φ. Therefore we find that the MFPT from s = −δx is given by
δτ = δx

∫
P ddx⃗ e−φ/

∫
S dd−1x⃗Dxxe

−φ, from which we find the lower bound for the
MFPT from arbitrary s,

τ(s) ≥
∫ 0

−s
dx

∫ x
−∞ dx′

∫
P(x′) d

d−1x⃗ e−φ∫
P(x) d

d−1x⃗Dxxe−φ
=

∫ ∞

0
dt

∫ 0

−s
dx

[⟨e−φ⟩A]x−t

[⟨Dxxe−φ⟩A]x

where ⟨e−φ⟩ is averaged over the given hypersurface and A =
∫
P(x) d

d−1x⃗ is the area of
that hypersurface. We see that the MFPT for general phase space is easier to express in
the continuum limit, and in the particular case of φ linear in x, i.e. φ = ϕ− µx/D, this
reduces to a Laplace transform:

τ ≥ Lt
{∫ 0

−s
dx

[⟨e−ϕ⟩A]x−t

[⟨Dxxe−ϕ⟩A]x

}( µ
D

)
.

Truncated Simplices For the Truncated Simplex example in d dimensions, the drift
coefficient is constant uniform in the x direction and the diffusion matrix is the constant
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uniform and isotropic D = D1. Therefore, ϕ = 0 and we have from earlier that

A(−n) =
√
d

(d− 1)!

(n+ w√
2

)d−1

.

Hence, the MFPT lower bound for arbitrary d may be obtained thus:

τ ≥ 1

D
Lt

{∫ 0

−s
dx

(w − x+ t

w − x

)d−1}( µ
D

)
≥ 1

D
Lt

{∫ s

0
dx

d−1∑
k=0

(d+ 1
k

)( t

w + x

)k}( µ
D

)
≥ 1

D

d−1∑
k=0

(d+ 1
k

)
Lt

{
tk
}( µ
D

)∫ s

0
dx

( 1

w + x

)k

≥ s

µ
+ (d− 1)

D

µ2
log

(
1 +

s

w

)
+

d−1∑
k=2

Dk

µk+1

1

k − 1

(d− 1)!

(d− 1− k)!

[ 1

wk−1
− 1

(w + s)k−1

]
.

III.4. Recessive Case
We turn now to the recessive case, for which we shall assume a continuous phase
space for simplicity. We shall also restrict our attention to recessive systems whose
diffusion matrices are uniform and isotropic, D = D1, across R = P ∪ P ′ and whose
drift vectors are constant uniform in P ; the condition on µ⃗ in P ′ will become apparent
later, but for now we shall assume it takes the same value as in P . Finally, we adopt an
orthogonal coordinate system (u; v⃗) where u is chosen such that µ⃗ = µû. It may appear
that u indexes the hypersurfaces, but this is in fact not the case; a coordinate transform
that would render u a hypersurface index would apply a shear and therefore make D
anisotropic.

MFPT Approach Unfortunately the reflective steady state approach used for the con-
strictive case is inapplicable here as the unbounded transverse width of the space means
the steady state is everywhere vanishing. Moreover, ignoring the zero normalisation,
the uniform initial distribution is undesirable. For the canonical example shown in
Figure III.4, initial distributions I of interest are typically centered on the line x = y
(corresponding to the white dashed line in the Figure). Nonetheless, we can apply8 the

8Our simulation suite is specialised to the case of walks in a single quadrant (with a possibly truncated
boundary). Whilst it would not be too difficult to handle more general geometries, this particular
three-quadrant example can be easily transformed into a single quadrant walk. First, we identify that
the geometry is symmetric in the line x = y and therefore the three quadrants are mapped to one and a
half, with a reflective boundary placed at x = y. That is, P = {(−x, y) : x ∈ N ∧ y ∈ Z ∧ y > −x}. Next,
we apply a shear (−x, y) 7→ (−x, y + x) to map the region to the top-left quadrant. The transformed
transitions turn out to correspond to those of Gessel walks, a summary of which is presented by
Bousquet-Mélou [85] along with an investigation of their generating function.
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Figure III.7: Simulation results for the d = 2 recessive case, as depicted in Figure III.4, start-
ing on the line x = y and with varying initial distances s, and subject to a uniform bias
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bλ (the coefficient 2 was chosen
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show

√
s
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hence demonstrating an empirical MFPT of 2s

bλ +
√
s

b3/2λ
.
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simulation suite introduced in Section III.3.2.3. The results for an initial delta distribu-
tion on the line x = y and a distance s from S are shown in Figure III.7 and reveal an
empirical MFPT of τ ≈ 2s

bλ +
√
s

b3/2λ
and therefore a penalty of order b−3/2.

This penalty would appear to be a significant improvement over that for the con-
strictive case of b−2. Unfortunately this penalty is invalid because in fact the MFPT
is not an appropriate quantity to use here. The reason is that the time quantity we
are seeking is inf{t : ∀u > 0.⟨n(t+ u)⟩ > 0} where n is a hypersurface index, and
the use of the MFPT is predicated upon the idea that an initial distribution within
P ′ has ⟨n(t)⟩ > 0 for all positive t. It is straightforward to see that this property
does not apply in the recessive case: Consider a simplified view of Figure III.4e as
just the four quadrant domain R = R2 such that P = {(x, y) : x < 0 ∧ y < 0} and
P ′ = {(x, y) : x > 0 ∧ y > 0} and with µ⃗ = µ 1√

2
(x̂ + ŷ); the hypersurfaces are given

by P(
√
2n) = {(n, n + y) : y ∈ R+} ∪ {(n + x, n) : x ∈ R+}, i.e. n(x⃗) =

√
2min(x, y).

Now, the evolution of a phase particle may be decomposed into that along the line
x = y and perpendicular to this line. Calling these coordinates u and v respectively, i.e.
(u, v) = 1√

2
(x + y, x − y) and n = u − |v|, we see that the distribution is given by the

product of two Gaussians, with probability density

1√
4πDt

exp
(
−(u+ s− µt)2

4Dt

)
· 1√

4πDt
exp

(
− v2

4Dt

)
.

Now, the expected hypersurface is given by

⟨n⟩ = ⟨u⟩ − ⟨|v|⟩ = −s+ µt−
√

4Dt

π

and therefore an initial distribution δ(n0, 0) will tend to go backwards in n-space for
a time t = D

πµ2 , retreating as far back as ⟨n⟩ = n0 − D
πµ before it begins to advance; at

time t = 2D
πµ2 it returns to its initial position ⟨n⟩ = n0 whereupon it begins to make net

progress. The consequence is that there is a time penalty for all n0 < + D
πµ , and hence the

appropriate boundary to consider for the MFPT calculation is given by n = + D
πµ .

Of course, in the case of µ⃗ constant uniform acrossRwe are able to use the far simpler
approach of considering the exact probability distribution, as detailed above. We can
also extend easily to arbitrary boundary shape. Unfortunately, as mentioned, µ⃗ may
well differ between P and P ′. For our canonical example in (u, v) coordinates,

µ⃗ =

{
µû, (u, v) ∈ P,
−(sign v)µv̂ (u, v) ∈ P ′.

That is, in P ′ the drift direction is towards the u axis. Recall also that we have ignored the
six-quadrant structure, and so there is in a sense a lot more ‘space’ in P ′. Nevertheless,
we will be able to obtain lower and upper bounds.
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Probability Distribution Approach Ignoring the caveat about µ⃗ for now, we proceed
for a general boundary shape u = f(v). For the canonical example, f(v) = |v|. Without
loss of generality, we pick f(0) = 0 and we note that a recessive geometry implies f
increases monotonically away from v = 0. We then have ⟨n⟩ = ⟨u− f(v)⟩; decomposing
f into its even and odd parts, fe(v) = 1

2 [f(v) + f(−v)] and fo(v) = 1
2 [f(v) − f(−v)]

respectively, we see that ⟨n⟩ ≡ ⟨u− fe(v)⟩ whenever the initial distribution is even
because the transverse dynamics respect evenness. As we are considering the initial
distribution δ(−s, 0), we discard the odd part of f without loss of generality.

If f has a power series expansion about v = 0, it will take the form f(v) =
∑∞

p=1 f2pv
2p.

Series representations do not exist for many boundary shape functions of interest how-
ever, in particular |v| has no such expansion. Consider instead a smooth function g(v)
such that f(v) = g(|v|); if g exists, it has series expansion

∑∞
p=1 fpv

p and hence f will
have series expansion

∑∞
p=1 fp|v|p. We can then compute ⟨f⟩ as

∑∞
p=0 αpfp(2Dt)

p/2

where α2p = (2p − 1)!! and α2p+1 =
√

2/π(2p)!!, and n!! = n(n − 2)(n − 4) · · · is the
double factorial.

For the case f = f1|v|, ⟨n⟩ = −s+ µt− 2f1
√
Dt/π and we will find a penalty of order

1/µ2 as earlier. If instead f is quadratic, then ⟨n⟩ = −s+ (µ− 2f2D)t and there are two
subcases: if µ > 2f2D then the rate of computation is reduced to µ− 2f2D within a large
vicinity of the synchronisation interaction; if µ ≤ 2f2D then computation halts or goes
backwards, and the synchronisation never9 occurs. As we are considering systems with
arbitrarily low bias, and hence µ, this effectively means that quadratic boundaries are
untenable. For f cubic and above, ⟨n⟩ briefly increases before decreasing forever. From
these, we can deduce that f should ideally be (absolute) linear, though it is admissible
to also have a small quadratic component if µ is bounded from below by 2f2D.

We now show how to find lower and upper bounds for µ⃗ per our canonical example,
that is µ⃗(P) = µû and µ⃗(P ′) = −(sign v)µv̂. In both regions, the action of the drift
vector alone is to increase n. The direction of µ⃗ in P ′ acts to pull the distribution further
away from P than would be the case if µ⃗ pointed u-wards; therefore, picking constant
uniform µ⃗ will retard the process of synchronisation and thereby result in an upper
bound. Alternatively we can advance the process by picking a uniform superposition
of the two, µ⃗ = µ(û − (sign v)v̂), letting the extra ‘space’ in the v axis apply to P too.
This extra ‘space’ would appear to complicate matters further, but we can avoid this
complication by realising that the action of this v-wards drift is simply to increase the
value of n and therefore it is equivalent to setting µ⃗ = 2µû. Solving for the bounds finally
yields

τ ≥ s

2µ− 2f2D
+

2f21D

π(2µ− 2f2D)2

[
1 +

√
1 +

πs

f21D(2µ− 2f2D)

]
≤ s

µ− 2f2D
+

2f21D

π(µ− 2f2D)2

[
1 +

√
1 +

πs

f21D(µ− 2f2D)

]
,

9It is possible to escape if the phase geometry eventually changes to a permissible form, but the penalty
will be substantial.
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which for our canonical example reduces to

s

2µ
+

D

2πµ2

[
1 +

√
1 +

πs

2µD

]
≤ τ ≤ s

µ
+

2D

πµ2

[
1 +

√
1 +

πs

µD

]
.

This shows that the penalty is at least of order µ−2 and, for small s, is as high as µ−5/2.
In other words, the penalty is worse than for the constrictive case. Interestingly however,
the penalty is almost exactly the same for higher dimensions if the boundary is replaced
by a hypersurface of revolution of f ; in fact, in dimension d we find

αp =
(p+ d− 3)!!

(d− 3)!!


1 p, d even√
2
π p odd
2
π p even, d odd

but otherwise the form of the synchronisation times remains the same. As a result, using
a recessive synchronisation geometry is an alternative way of efficiently synchronising
in dimensions d = 3 and above. Of course, a sequence of d = 2 constrictive synchronisa-
tions will limit the penalty to order µ−2 and so constrictive synchronisation geometries
remain the most effective approach.

III.5. Constrictive Generating Functions
Finally, we present some limited successes towards generating functions for the MFPT
for arbitrary initial distribution. We shall consider the truncated simplex for d = 2 and
w = 1, as shown in Figure III.3c. To do so, we must construct a function to enumerate
all possible walks from each initial position and weight them by their probabilities. A
walk starts at some initial position (for convenience we use the upper right quadrant),
takes a number of up, down, left and right steps, and terminates at the origin. It is also
subject to the constraint that it must not reach the origin until its final step, and if the
walker is on a reflective boundary then a forbidden step (left or down, depending on
which boundary) is replaced by a null step with the same probability but which leaves
its position unchanged.

Constructing a generating function subject to these constraints is easier in reverse. Let
the variables of the generating function be x, y and t, such that a term ρxmynts indicates
that a walk starting at (m,n) reaches the origin in s steps with probability ρ ≡ P(s|m,n).
As all walks almost surely reach the origin in a finite time,

∑∞
s=0 P(s|m,n) = 1 and

so if W (x, y; t) =
∑

mns P(s|m,n)xmynts then W (x, y; 1) =
∑

mn x
myn ≡ 1

1−x
1

1−y . To
construct such a W from walks in reverse, we start from the origin and walk anywhere
in the plane for any number of steps. As we shall be handling the origin specially,
we start with the last step which must be from either (0, 1) or (1, 0). The probability
that the next step from either of these reaches the origin is 1

2p, and therefore these two
particular walks are given by the initial term 1

2pt(x + y). Given a walk w of length s
starting at (m,n), we can construct a walk of length s+ 1 by prepending it with each of
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the four possible steps. Ignoring the boundary conditions, this means we can generate a
longer walk as 1

2pt(x+ y)w + 1
2qt(x̄+ ȳ)w where x̄ ≡ x−1. Note that 1

2ptyw corresponds
to prepending a downward step with probability 1

2p, but we increase the power of y
because the power of y is the starting position. If w is of the form ρxmts or ρynts, then
we replace respectively the steps 1

2qtȳ or 1
2qtx̄ with 1

2pt (this is not a typo; to see that p is
correct it is helpful to work through an example walk). Lastly we must ensure walks
avoid the origin, or at least that we ignore those walks which prematurely reach the
origin. We do so by ‘trapping’ such walks so that they get stuck there by excluding these
walks from the 1

2pt(x + y)w transitions. Assembling these, we obtain the functional
equation

W (x, y; t) = 1
2pt(x+ y) (last step)

+ 1
2qtx̄[W (x, y; t)−W (0, y; t)] + 1

2ptW (0, y; t) (right step)
+ 1

2qtȳ[W (x, y; t)−W (x, 0; t)] + 1
2ptW (x, 0; t) (up step)

+ 1
2pt(x+ y)[W (x, y; t)−W (0, 0; t)], (left/down step)

(III.4)

which can be written more usefully in the form

2
p t̄KW = (x+ y)(1− S) + (1− rȳ)X(x) + (1− rx̄)X(y) (III.5)

K = 1− 1
2pt(x+ rx̄+ y + rȳ)

where r = q
p , S = W (0, 0; t), X(x) = W (x, 0; t) ≡ W (0, x; t), and K ≡ K(x, y; t) is

known as the kernel.

Orbital Sum Approach We now apply the orbital sum approach as detailed by
Bousquet-Mélou and Mishna [82]. The group of the kernel is defined to be the set
of maps (x, y) 7→ (x′, y′) that leave the kernel unchanged, with the group operation
taken to be function composition, ◦. For this kernel it is generated by the orthogonal
involutions χ : (x, y) 7→ (rx̄, y) and υ : (x, y) 7→ (x, rȳ), and hence is finite with order 4.
Explicitly, the elements of the group are G = {1, χ, χυ, υ}. We also define the ‘sign’ of
each element, σγ , as σ1 = σχυ = +1 and σχ = συ = −1. When finite, this group has the
interesting property that the ‘orbital sum’ of a function of just x or y under this group
vanishes, i.e.

∑
γ∈G σγγ(f(x)) =

∑
γ∈G σγγ(f(y)) = 0.

Looking at our functional equation III.5, all of the terms on the right hand side are
functions of both x and y. However, by dividing through by (1 − rx̄)(1 − rȳ) we can
make two of these terms functions of only one of x and y. We need to be careful however,
as generating functions have ring structure but don’t generally admit an operation
corresponding to division. Moreover, we are dividing through by series in negative
powers of x and y, and so we need to consider the Laurent series structure. Specifically
our series belong to the ring R(x, y)JtK of formal power series in t whose coefficients
are Laurent polynomials in x and y, and the series W belongs to the ring R[x, y]JtK of
formal power series in t whose coefficients are polynomials in x and y. To perform the
division, we observe that the series −r̄x(1− r̄x)−1 = −

∑∞
n=1(r̄x)

n annihilates (1− rx̄)
under multiplication and therefore is an appropriate multiplicative inverse to use.
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Multiplying through then and taking the orbital sum, we find∑
γ∈G

σγγ
( r̄x

1− r̄x
r̄y

1− r̄y
2
p t̄KW

)
= (1− S)

∑
γ∈G

σγγ
(
(x+ y)

r̄x

1− r̄x
r̄y

1− r̄y

)
.

Recalling that K is invariant with respect to the group, we can rewrite as∑
γ∈G

σγγ
( r̄x

1− r̄x
r̄y

1− r̄y
W

)
= 1

2pt(1− S)
1

K

∑
γ∈G

σγγ
(
(x+ y)

r̄x

1− r̄x
r̄y

1− r̄y

)
︸ ︷︷ ︸

R(x,y;t)

.

To proceed, observe that r̄x
1−r̄x

r̄y
1−r̄yW remains part of the ring R[x, y]JtK. Moreover, every

term has a positive power in x and y. Therefore, the orbital sum yields the sum of series
in the rings R[x, y]JtK, R[x̄, y]JtK, R[x, ȳ]JtK and R[x̄, ȳ]JtK, and so if we extract the positive
part consisting of only the terms with positive powers of x and y, then we can find an
expression for W

r̄x

1− r̄x
r̄y

1− r̄y
W = 1

2pt(1− S)[x
>y>]R

W = 1
2pt(1− rx̄)(1− rȳ)(1− S)R

>

where [x>y>]R ≡ R> is the positive part of R. There is a limitation here: if W can
be written as f(x, y; t) + g(t) 1

1−x
1

1−y then the orbital sum of the g term in this scheme
will vanish because 1

1−x
r̄x

1−r̄x is invariant under the group, as is the y part. Moreover,
any other functions which vanish under the orbital sum will also be excluded from
our apparent W . This means, for example, that evaluating the above expression for
W (x, y; 1) will yield 0 because W (x, y; 1) is in fact 1

1−x
1

1−y .
The MFPT starting from (m,n) is given by

∑
s sP(s|m,n), and its generating function

is T (x, y) =
∑

mns sP(s|m,n)xmyn. It is easy to show, therefore, that T (x, y) = Ẇ (x, y; 1)
and so we find

T (x, y) = 1
2p(1− rx̄)(1− rȳ)(−Ṡ(1))R

>(x, y; 1),

assuming that T has no terms which vanish under the orbital sum. It remains to find S,
and to determine whether or not T has any such terms.

Obstinate Kernel Method Another approach is given by the obstinate kernel method,
wherein we exploit roots of the kernel. A pair of such roots is given by (x, Y±(x)) where
Y± = B ±

√
B2 − r, B = 1

pt −
1
2z, and z = x + rx̄ is a symmetric function of x and

χ(x) ≡ rx̄. It will be helpful to note the elementary symmetric polynomials of Y± as
1
2(Y+ + Y−) = B and Y+Y− = r. Only one of these roots, Y−, is a power series in
t; the other includes a term in t−1, and so we shall substitute Y− into the functional
equation III.5 to get

0 = (x+ Y−)(1− S) + (1− Y+)X(x) + (1− rx̄)X(Y−).
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To solve forX(x), and thenceW (x, y), we eliminateX(Y−) by making use of the kernel’s
group; in particular applying χ yields a second equation in X(Y−),

0 = (rx̄+ Y−)(1− S) + (1− Y+)X(rx̄) + (1− x)X(Y−),

from which we find

Q(x)−Q(rx̄) = (1− S)(rx̄− x)
(1− Y− − z

1− Y+

)
with Q(x) ≡ (1− x)X(x). Extracting the positive part then gives

Q(x)− S = (1− S)[x>](rx̄− x)
(1− Y− − z

1− Y+

)
.

From Q, X can be obtained and thereby W and T = Ẇ |t=1. Alternatively, the MFPTs for
arbitrary positions can be computed using the recurrence relations and the boundary
MFPTs Ẋ|t=1. In order to do so, we shall need to obtain an expression for S. Letting
U(t) = [x1]X(x; t), we see that [x1](Q − S) = U − S and we compute [x0y0]W using
Equation (III.4) to find (1− pt)S = qtU . Therefore we can obtain an expression for S,

S

1− S
=

qt

1− t
[x1](rx̄− x)

(1− Y− − z
1− Y+

)
.

Using the symmetric variable x helps to evaluate the positive parts of the antisymmetric
series

(
rx̄− x

)(1−Y−−z
1−Y+

)
, but we were unable to proceed beyond this point.

III.6. Applicability to Other Architectures
Finally, we comment on the applicability of these results to non-Brownian reversible
computers in the limit of vanishing free energy density. The concepts of mona and
synchronisation phase space can be readily extended to other models of communicating
reversible computer, but the time evolution of the phase space distribution may differ. In
many architectures, the probability of a backward transition approaches 0. Nevertheless,
it is still possible for the joint distribution of mona in phase space to expand over time.
In particular, if the eigenstates of the Hamiltonian change over time due to thermal
fluctuations, then the rate of computation at different independent loci will fluctuate and
so synchronisation will be lost. Moreover, universal phenomena such as the Heisenberg
uncertainty principle and general relativistic time dilation effects suggest that even a
system at absolute zero would experience desynchronisation.

An important assumption in the above, and indeed this chapter, was that the mona
evolve independently except during synchronisation events. As argued by Frank [86]
in a thought experiment, however, it is possible to couple the mona in a system with a
potential that increases with increasing desynchronisation. In particular he imagined
a lattice of clockwork computational units driven by a series of motors, with adjacent
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axles connected by bicycle chains. At low speeds |v|, the power supplied to counter
frictional losses in the system would scale with ∼ N |v|2 where N is the number of mona,
which recovers the V 5/6 scaling law. Any tension due to desynchronisation between
adjacent mona would not substantially increase this power requirement, not least be-
cause adjacent axles experience equal and opposite tensions. Therefore the introduction
of such potentials may be used to constrain the size of the joint phase distribution of
adjacent mona; that is, mona remain locally in approximate synchronisation. Globally,
remote mona may accumulate more significant desynchronisation, scaling with

√
RT

where R is linear dimension of the system and T the temperature, but this would not
pose any problems to long-distance communication as long as message packets remain
in local synchronisation at all points along their routes.

As a corollary, we extend Frank’s thought experiment to a general conjecture about
which classes of reversible computer are and are not subject to a synchronisation penalty:

Conjecture III.5 (Inter-monon synchronisation potentials are a necessary condition for
cheap communication). By the above arguments, we conjecture that the joint phase space
of independently evolving mona cannot remain localised, and hence that the synchronisation
penalties derived in this chapter apply for all such reversible computer architectures. Conversely,
mona whose evolution is coupled by a potential that increases with increasing desynchronisation
will remain localised, and therefore can in principle pass through synchronisation windows with
arbitrarily low penalty. If the distribution can be constrained to be compact, then the penalty
may be eliminated.

However, this is predicated on communicating mona being carefully programmed.
Communicating mona must anticipate each other’s computational states, such that they
are both simultaneously (up to the width of the synchronisation window) receptive
to communication. If a monon A attempts to send information to another monon
B that is not expecting to receive such information, then this will incur an entropic
synchronisation penalty by the mechanisms discussed in this chapter. Alternatively, a
radically different approach to eliminating communication penalties is given by fully
serial architectures, such as is theoretically permitted by a Quantum Zeno architecture
(Section II.2).

An interesting example of an architecture where careful ordering is intrinsic to the
computation itself is the BARC10 (Ballistic Asynchronous Reversible Computing) model
of Frank [87]. BARC systems consist of devices with an internal state, and wires between
them along which pulses can travel. Devices are designed to interact with at most one
pulse at a given time, the effect of which may be to change the device’s internal state
and to re-emit the pulse along a different wire. As the order of signals is important to
the computation, any well-designed BARC computer will satisfy the synchronisation
simultaneity condition. In this case, the synchronisation window depends on pulse
spacing. Additionally it is an architecture without backwards transitions. However, the
architecture—as presented—does not couple pulses to each other with a synchronisation
potential, and so it is subject to the conclusions of this chapter as the ordering between

10BARC was historically referred to as ABRC, the Asynchronous Ballistic Reversible Computing model.
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free signals is subject to change. Nevertheless, this desynchronisation can be kept
impressively minimal through the high efficiencies and engineering tolerances afforded
by superconducting circuits (see Frank et al. [88] for progress towards a Single Flux
Quanta implementation of the BARC model).

Petri Nets Another model of asynchronous concurrency that is quite popular is that
of Petri Nets (see [89] for a review). A Petri Net is a weighted directed graph with two
types of nodes, ‘places’ and ‘transitions’. A place contains tokens, and the configuration
of tokens in all places—a ‘marking’—represents the state of the system. Tokens can
be consumed, generated, and moved by the activation of a transition. A transition
node consumes some tokens from each place connected to it by an incoming edge, and
deposits some tokens to each place connected by an outgoing edge. Edges may only be
drawn between a transition and a place, and the weight of the edge dictates the number
of tokens involved in the transition. A transition may only activate if there are enough
input tokens.

Whilst a Petri Net is not necessarily reversible in the sense of having a corresponding
inverse transition for every transition, it is always possible to construct an ‘inverse Petri
Net’ by inverting each edge’s direction. From this perspective, a Petri Net along with
its sequence of transitions form a logically reversible system. It is not immediately
obvious where entropy costs manifest in a Petri Net, and so it may appear that they
offer a route to avoid the conclusions of this chapter. In order to accommodate entropy
costs, the sequence of transitions needs closer attention. Without loss of generality,
assume discrete time where at each time step a single11 transition is attempted. If every
transition is always successful, then there is no entropy increase. If, however, a trans-
ition may fail, then reversibility requires us to record a binary outcome of success or
failure. That is, the input is a stream of symbols—each corresponding to a particular
transition—and the output is a stream of symbol-outcome pairs. This is where entropy
may increase, and is another example of a breakdown of simultaneity in synchronisation.
Moreover, such a system—in which the transition order is sequential—does not allow
for separate independent entities, let alone spatial structure. Therefore the notion of
synchronisation/communication is not particularly relevant. To accommodate this,
multiple transition streams can be introduced. For avoidance of conflict, the streams
must satisfy the constraint that no two transitions sharing a place fire at the same time.
Now the issues of synchronicity of signals and events become manifest: if these trans-
ition streams can be coupled to each other to maintain some local synchronisation then
low cost communication can be supported, otherwise there will be a synchronisation
penalty. Therefore, whilst Petri Nets are a convenient framework for modelling asyn-
chronous systems, they are not particularly convenient for modelling the possibility of
desynchronisation and the resultant resynchronisation entropy costs.

11Multiple transitions can occur simultaneously only if they do not share any places, but then they can
always be assigned an arbitrary order and treated as sequential.
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III.7. Conclusion
The primary result of this chapter is that communication between distinct reversible
computers in a Brownian system (and arguably any reversible architecture whose mona
evolve independently) with a limiting supply of free energy is very expensive in com-
parison to independent computation. A single computational step takes time 1/bλ for
gross computational rate λ and bias b = (Ġ/kBTλN)1/2, where Ġ is the rate of supply of
free energy, N is the number of mona, kB is Boltzmann’s constant, and T is the system’s
average temperature. In contrast, an interaction event such as communication takes at
least a time ∼ 1/b2λ. As the bias scales as ∼

√
A/V ∼ R−1/2 for a system of convex

bounding surface area A, internal volume V and radius R, communication will tend
to ‘freeze’ out as the system gets bigger. This cost is unavoidable as it is due to the im-
plicit erasure of information involved in synchronising divergent computational states;
however, if synchronisation is rare then the temporal cost can be reduced. Suppose that
the average proportion of mona wishing to communicate at a given time is ν ≪ 1, then
the free energy can be divided into two supplies: Ġindep. and Ġsynch. for independent
computation and synchronisation events respectively, as intimated in Section II.7. A
separate set of bias klona can then be introduced for the synchronising mona,

bindep. =

√
Ġindep.

kBT

1

λN
, bsynch. =

√
Ġsynch.

kBT

1

λνN
.

In order for the synchronisation to be viable we therefore require 1/b2synch. ≲ 1/bindep.

and hence find

ν ≲
Ġsynch.

kBT

√
kBT

Ġindep.

1

λN
.

If we want to maintain our asymptotic independent computation rate of∼
√
AV , then we

will have Ġsynch. ∼ Ġindep. ∼ A and N ∼ V , giving ν ≲
√
A/V ∼ b. That is, the number

of synchronising mona νN can be as high as∼
√
AV . In fact, this subpopulation of mona

are also permitted to perform arbitrary operations subject to entropic costs, with the
proviso that their individual net transition rates will be bλ ∼ R−1/2. The consequence is
that, for a very large reversible Brownian computer, any parallel computation should be
structured to minimise the need to synchronise the joint state of the system. Equivalently,
the proportion of computational steps that are permitted to synchronise is ≲ b. If one
wishes to increase the proportion of synchronising mona, then the total computational
rate must necessarily be reduced or an architecture satisfying Conjecture III.5 must be
employed.

Impact on Algorithms The consequence of this ‘freezing’ out of synchronisation is
that the most natural computational problems for these computers are those which are
‘embarrasingly parallel’. An embarrasingly parallel problem is one which can be easily
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divided into many tasks with very infrequent synchronisations between them. Some
examples of such problems are Monte Carlo algorithms, brute force searches, and ray
tracing. In contrast, highly serial problems, or parallel problems involving significant
synchronisation, are not well accommodated. Serial programs suffer because the rate of
computation by individual mona is asymptotically vanishing. Highly synchronous par-
allel programs suffer because of the time penalty for synchronisations. In limiting cases
where no parallelisation is possible or where synchronisation cannot be made arbitrarily
infrequent, the rate of these computations will fall to ∼ A as with irreversible computers.
Nevertheless, as discussed in Section II.7, hybrid computational systems supporting
both high-bias and low-bias subsystems can be constructed. Therefore serial/highly
synchronous problems can be executed on a thin outer shell of the computer, and em-
barrassingly parallel problems can make use of the inner bulk of the computational
matter.

A common example of highly synchronous parallel problems is that of simulating
systems involving local interactions on a lattice, such as cellular automata, Ising models,
and molecular dynamics simulations. Indeed, in Frank [9] (Section 6.3.2.1), he examines
local computation by a three dimensional array of computing elements. For the class
of non-Brownian computers under consideration, he finds an asymptotic benefit for
reversible architectures over irreversible architectures. Unfortunately the results of this
chapter show that problems like these are not well-supported by Brownian architectures,
and so this asymptotic benefit is not seen in this case. However, the thought experiment
of Frank [86] and Conjecture III.5 do support the realisation of such asymptotic benefit
in architectures in which the computing elements are appropriately coupled.
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This chapter concludes our analysis of the limits the laws of physics place
on the sustained performance of reversible computers. Chapter II con-

cerned aggregate performance in terms of computational operations per
unit time, but neglected to consider interactions among computational

sub-units or between computational sub-units and shared resources such
as memory or chemical species. Chapter III extended the analysis to con-

sider the former set of interactions. In this chapter we extend the analysis
to consider the latter set, which in general will be governed by the laws

of thermodynamics and statistical mechanics. When the free energy avail-
able to the computational subunits is limiting, this becomes a challen-

ging endeavour as perturbations to these subsystems may have a corres-
ponding entropy cost for which our available free energy is insufficient.

In the first half we pay particular attention to resource distribution: Our
Brownian computational subunits—themselves being small and particulate—

will likely lack adequate internal memory for many programs of interest; as
such, it can be expected that a realistic Brownian system will make heavy
use of a shared pool of memory resources that can be dynamically distrib-

uted amongst the computational subunits according to their need. It is
found that most schemes imaginable fail to function effectively in the limit

of vanishing ‘computational bias’ b, which measures the net fraction of
transitions which are successful and which falls as the system grows in size.

Driving thermodynamically unfavourable reactions, such as resource dis-
tribution, is a very general problem for such systems and can be solved by

supplying a sufficient excess of free energy. In order to make these inter-
actions viable, we propose an abstract chemical scheme to dynamically in-
fer how much free energy is needed, and to supply it by accumulating just

enough from the (weak) ambient free energy. The scheme takes any reaction,
arbitrarily far from equilibrium, and sequesters some of the reactants and

products such that the extant reactants and products are in equilibrium. The
scheme rapidly adjusts to changes in the equilibrium position, and makes

use of molecular computation for its inference algorithm. Unfortunately
there is a cost in applying this scheme: the reaction is slowed by a factor

inversely proportional to the ‘computational bias’, b ≪ 1 (the net propor-
tion of computational transitions that are successful). In fact, this overhead
is comparable to that found for synchronisation interactions in Chapter III.



IV. Performance Trade-offs for Reversible
Computers Sharing Resources

Figure IV.1: This chapter concerns interactions between reversible Brownian computational
particles and populations of other particles such as species involved in chemical reactions
or shared memory resources. Populations of particles are subject to well known statistical
mechanical laws, and these laws can cause problems when computational particles attempt to
interact with these populations.

IV.1. Introduction
This is the final chapter investigating the influence of the laws of physics on computation,
particularly as they apply to large reversible Brownian computers (see Definition III.2).
As discussed in Chapter III, the net computational rate (in terms of primitive compu-
tational operations per unit time) studied in Chapter II is not the only performance
metric of interest. Therefore, in Chapter III we evaluated computational performance
of reversible Brownian computers (and argued for the applicability of the results to
other reversible computers whose computational units evolve independently) whose
individual computational components were permitted to interact with one another,
i.e. to communicate and to perform concurrent/parallel computation. A key property
of these interactions is that computational ‘particles’ can be uniquely referenced, and
therefore the traditional thermodynamic principles that apply to chemical systems were
inapplicable. In this chapter, we now consider the interface between traditional chemical
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species, of which there may be a variable number of identical units or particles, and
the computational particles. See Figure IV.1 for an illustration. For convenience, we
shall refer to these as klona and mona respectively, following the formulation introduced
in Definition III.1. Recalling the definitions, we call particles which are uniquely dis-
tinguishable or addressable mona (sg. monon), after the Greek for unique, μοναδικός.
Similarly, we call indistinct particles belonging to a species klona (sg. klonon). Klona may
be likened to traditional chemical species such as glucose and ATP. Mona are less obvi-
ous; an example would be a 150 mL solution containing a 1 mmol dm−3 concentration of
random nucleic acids of length 80 nucleotides.

Interactions between mona and klona are of great practical importance for Brownian
computers; whilst mona by themselves may be capable of arbitrary computation, this
computation only becomes useful when used to actuate some other system or when
it otherwise produces some observable output. Examples may include the activation
of a fluorophore upon reaching some logical condition, or directing the translation of
a particular messenger RNA into a protein. Moreover, interaction with klona may be
essential for computation: general computation requires access to an unbounded amount
of memory, but by their very nature mona are limited in size and thus memory. Therefore
it is important for mona to be able to recruit more memory as required, and release it
for use by other mona when the need passes. Resources other than memory may also
be considered, such as structural monomers for use in constructing and deconstructing
molecular machines or computers.

In this chapter we shall be most interested in the case of resource distribution, and will
consider various such schemes in Section IV.2. One approach is a centralised store which
mona can access, either by travelling there themselves or by sending a ‘courier’ monon
on their behalf to fetch and retrieve (or carry and return) a resource. This approach is
undesirable. If the couriers float freely in solution, then reaching the central store and
returning will both take a time ∼ O(V ); if on the other hand we introduce a lattice as in
Chapter III, then the average distance will be proportional to the radius R and, given
b ∼ R−1/2, the average time will be ∼ O(b−3). As the time for a single net computational
step is ∼ O(b−1), both of these are untenable. Instead we shall seek a decentralised
approach by making use of klona; intuitively it must become harder to access a resource
as its scarcity increases, but we would like the timescale to do so to not be substantially
more costly than ∼ (b[X])−1 where [X] is the available concentration of the resource.

We will unfortunately find that the reactions involved in all possible schemes are
unfavourable except in a very limited range of resource availability. In Section IV.3 we
shall return to considering general mona-klona interactions, and demonstrate how mona
can dynamically drive any unfavourable reaction with klona by inferring the number of
bias tokens required to balance the entropic cost of the reaction. Alas, there will turn
out to be an overhead in achieving this even in the case when the driven reaction is at
equilibrium and hence cost-free.
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IV.2. Resource Distribution Schemes
A resource distribution scheme for a resource X is a set of klona from which X can be
extracted and into which it can be deposited. Formally, resources are conserved discrete
quantities analogous to charges in physics. Letting the set of resource species be indexed
by R and the set of resource klona by Σ, then to each klonon σ ∈ Σ is associated a
resource charge q⃗σ ∈ NR: a vector over the field of naturals and indexed by the resource
species. In any reaction, the net resource charge must be conserved; for example, for the
reaction |n⟩+

∑
σ∈Σ νσσ −−⇀↽−− |n+ 1⟩+

∑
σ∈Σ ν

′
σσ involving the transition of a monon

between states |n⟩ and |n+ 1⟩ and the interaction of said monon with resource klona
according to the stoichiometries ν⃗ −−⇀↽−− ν⃗ ′, this conservation law can be expressed as
q⃗|n+1⟩ − q⃗|n⟩ =

∑
σ∈Σ(νσ − ν ′σ)q⃗σ.

Free Klona The simplest possible scheme is that in which the resource is freely present
in solution, as shown in Figure IV.2b. That is, a system with R = {X}, Σ = {X} and
(q⃗X)X = 1. This system will be a viable resource pool so long as the free energy change
involved in both extraction and deposition of X is less than the available computational
free energy, log p

q = 2arctanh b. Note that our notion of ‘free energy’ uses a different
convention than is normally taken, namely we are giving the change in information
entropy of the universe ∆h, whereas normally the free energy change is expressed as
∆G = −kT∆h. The free energy change vanishes when the system is in equilibrium,
which for X an ideal gas can be calculated (via the Sackur-Tetrode equation) to occur at
a concentration

[X](eq.) = e5/2
(4πmu

3h2P

)3/2

,

where hP is Planck’s constant, m is the mass of X, and u is its average internal energy. As
we interact with the system, the concentration will be drawn away from this equilibrium
position and as a result the absolute free energy difference will increase. For this scheme,
the free energy difference corresponds to that due to adding or removing a particle of X
and can therefore be identified with the Chemical Potential, µX. In units of information,
this can be expressed as µX = log [X]γX

[X]γX|(eq.)
where γX is the activity coefficient of X that

quantifies the deviation of the properties of X from an ‘ideal’ substance. If Q is the
concentration of resource X (here trivially equal to [X]) then we can now determine how
far from equilibrium the resource system can be brought, and therefore how much of
the resource Q is accessible to the computational mona. For a small change δQ, we find∣∣∣δQ

Q

∣∣∣ < 2b
∣∣∣1 + ∂ log γX

∂ logQ

∣∣∣−1

+O
(
b2
)
.

We don’t expect the activity coefficient to depend strongly on Q, and certainly not to the
extent of ∂ log γ

∂ logQ = −1, which would imply a range of isentropic equilibria, and therefore
we can only usefully access a proportionO(b)≪ 1 of the available resource X under this
scheme.
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(a) A possible state diagram for a monon interacting with a resource pool; the particular resource distribution
scheme is left abstract.

(b) An illustration of the statistical states and reactions for the Free Klona resource distribution scheme.

Figure IV.2: An assortment of illustrative examples of some of the resource distribution schemes
for a Brownian amorphous computer as considered in this chapter.
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IV.2. Resource Distribution Schemes

(c) An illustration of the statistical states and reactions for the Bounded Carrier resource distribution scheme.

(d) An illustration of the statistical states and reactions for the Isobaric Compartment resource distribution
scheme. The question marks serve to indicate that the apparent isergonicity of the resource reactions is in
question, and as we find, is unfortunately not the case.

Figure IV.2: (continued) An assortment of illustrative examples of some of the resource distribu-
tion schemes for a Brownian amorphous computer as considered in this chapter.
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Bounded Carriers Perhaps the primary issue with free klona is that there is a change
in particle number, implying a substantial entropy change when resources are traded
with the pool. A possible improvement is suggested in ensuring total particle number
remains constant by binding the resource to carrier klona, as shown in Figure IV.2c. This
may manifest, for example, as Σ = {X0, X1} with (q⃗X0)X = 0 and (q⃗X1)X = 1. More
generally, we have polymeric klona Σ = {Xk : k ∈ [0, n] ∩ N} with (q⃗Xk)X = k for
some integer n > 1. Once again, we shall consider a perturbation to the equilibrium
distribution of the pool; it will be convenient to introduce a partition function Z(β)
where the thermodynamic variable β correlates with the amount of resource stored by
the pool. The partition function will take the form Z =

∑n
k=0 e

−εk−βk where εk contains
all the thermodynamically pertinent information about Xk klona, such as its energy and
internal degrees of freedom. In fact, we will take εk = 0 as any k-dependence of the εk
would only serve to reduce the effective value of n by narrowing the distribution1.

The free energy change for a reaction is given by the logarithm of the ratios of reaction
rates (see, e.g., Section II.4 for a derivation). Therefore in this case it is given by ∆h =
log

∑n
k=1 e

−βk − log
∑n−1

k=0 e
−βk, and so at equilibrium (when ∆h = 0) we find β = 0.

For a perturbation from equilibrium, this reduces (exactly) to δ∆h = −δβ. Now, the
average X-charge of each klonon is given by k̄ = −∂β logZ , and the charge density by
Q =

∑n
k=0 k[X

k] ≡ k̄[X]. The proportional resource accessibility is then given by

∣∣∣δQ
Q

∣∣∣ = ∣∣∣−δβ var k
k̄

∣∣∣ < 1
3b(n+ 2)

using k̄ = 1
2n and var k = 1

12n(n + 2). This suggests taking n ≳ b−1 to ensure full
resource availability. Unfortunately, doing so would mean the total system charge scales
as V/b ∼ V 7/6 which clearly cannot be sustained in the limit of large systems. One
potential resolution is to reduce the carrier concentration to [X] ∼ b1/2 and then take
n ∼ b−1/2 so that the total charge scales with V ; whilst this would slow down resource
reactions commensurately, mona could use this additional time to accumulate ∼ b−1/2

tokens in order to raise their free energy budget to ∆h ≲ b1/2, thereby obtaining a
resource accessibility of |δQ/Q| ∼ 1 at a time penalty of ∼ b−3/2.

Unbounded Carriers It is also possible to consider polymeric klona of unbounded
size, i.e. the limit n→∞, in which case the partition function is given byZ = (1−e−β)−1.
It should be noted that in this limit there is no equilibrium distribution of the resources,
as Z diverges as β → 0. In fact, distributions only exist for β > 0 whilst the free energy
constraint bounds it from above and hence 0 < β < 2b. This range corresponds to
k̄ > (2b)−2 −O(1) and therefore a total enclosed charge ≳ V 4/3; for lower densities, the
only favourable reaction is resource deposition. Therefore, whilst conceptually simpler,
unbounded carriers are to be avoided.

1Assuming that the equilibrium distribution is unimodal, this corresponds to a reduction in variance. If
the distribution is multimodal then instead there is a reduced ‘local’ variance about each mode.
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IV.2. Resource Distribution Schemes

Isobaric Compartments The problem inherent to seemingly all schemes is that a
resource reaction must necessarily reduce the quantity of reactants and increase the
quantity of products, and this will in turn bias the resource reactions in the opposite
direction per Le Chatelier’s principle. As our last attempt to circumvent these issues,
we introduce a scheme exploiting varying partial volumes in order to maintain equal
concentrations of reactants and products. This ‘Isobaric Compartment’ scheme is il-
lustrated in Figure IV.2d and consists of dividing the system into two compartments
by means of a massless and infinitely flexible membrane, impermeable to the carrier
species X0 and X1. Referring to the two compartments by Γ⊕ and Γ⊖, we then establish
the invariants that Γ⊕ only contains X1 and Γ⊖ only contains X0. A monon wishing to
exchange resources with the pool must first bind to the membrane, and then to maintain
the invariant it will translocate the carrier species between the two compartments. At
equilibrium, the concentrations of carrier species in each compartment must be equal
and thus it would appear that we have been successful in eliminating the free energy
cost for this mona-klona interaction.

Unfortunately, whilst the carrier species concentrations are equal, concentration is
not the correct quantity for determining the reaction rates and thence the free energy
difference. From a collision theory perspective, the reaction rates are given by the fre-
quency with which mona and klona collide (in the correct orientation and conformation).
Consider the case where all but one carrier reside within Γ⊕: if the total number of
carriers is N then the mean volume of Γ⊖ will be V/N and the mean concentration
1/(V/N) = N/V . This would suggest that a monon bound to the interfacial membrane
will encounter the X0 klonon as often as it does an X1 klonon, but this clearly cannot
be the case. If we imagine the X0 klonon as residing within a small bubble of volume
V/N , then whilst its local concentration is indeed the same as for the X1 klona, the
bubble itself is free to migrate anywhere along the membrane. Consequently, in a system
in which particles can bind to the boundary of the system in addition to exploring
their volume, the effective concentration becomes N/(α + γ) where α is the effective
‘volume’ of the boundary (proportional to its area) and γ is the enclosed conventional
volume. For our isobaric system, γ⊕ = N⊕γ0 (and similarly for γ⊖) where the con-
stant γ0 = V/(N⊕ + N⊖) is the volume available to each particle. We can therefore
write [X0]eff. = [X0]/(α/V + [X0]γ0) where [X0] = N(X0)/V is the ‘true’ concentration;
redefining terms, we let [X0]eff. = [X0]/(α+ [X0]γ).

The system can be generalised to carriers for n > 1 by letting the membrane be semi-
permeable to {Xk : 0 < k < n}, as these klona can participate as both reactants and
products in either reaction. We can then write Z⊖ =

∑n−1
k=0 e

−β⊖k for the partition func-
tion of Γ⊖ and similarly for Γ⊕. The effective concentrations of Xk in each compartment
must be equal for 0 < k < n, i.e. (e−β⊖k/Z⊖)[X]⊖eff. = (e−β⊕k/Z⊕)[X]⊕eff.. As this must
apply for each 0 < k < n, (β⊕ − β⊖)k must be constant with respect to k and therefore
β⊕ = β⊖ = β. Moreover, [X]⊕eff./[X]⊖eff. = Z⊕/Z⊖ = e−β . Equilibrium occurs once
again for β = 0 with corresponding ‘true’ concentrations [X]⊕ = [X]⊖ = 1

2 [X]total. The
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IV. Performance Trade-offs for Reversible Computers Sharing Resources

free energy difference is then given by

δ∆h = −δβ =
δ[X]⊕
1
2 [X]

2α

α+ 1
2γ[X]

.

Finally, the resource charge is Q = k̄⊕[X]⊕ + k̄⊖[X]⊖ and hence the proportional availab-
ility is given by ∣∣∣δQ

Q

∣∣∣ = ∣∣∣−δβ 1
2 [X](var⊕ k + var⊖ k) + δ[X]⊕

1
2n[X]

∣∣∣
< 2b

( 1
6(n

2 − 1)

n
+
α+ 1

2γ[X]

2αn

)
< b(13n+ 1

6n + 1
4αn),

recalling that γ ≡ 1/[X].
As with the Bounded Carrier scheme we can let n ∼ 1/b to ensure full resource

availability, but we can also choose to let α ∼ bwith n = 1. The constant α is proportional
to the ratio of the membrane area to the system volume. A naive implementation would
of course have α ∼ b2 which, whilst ensuring full resource availability, would limit the
number of mona able to interact with the resource scheme proportional to A. Instead,
consider replacing the system’s volume with a space-filling tubule (or perhaps a tubule-
lattice) and partitioning the tubule along its length; this system is still an instance of
the Isobaric Compartment scheme, but allows an α as large as ∼ 1 (if we wanted to
allow all mona to interact with the resource system simultaneously). By making the
tubule diameter ∼ b−1, a value of α ∼ b can be achieved in which case the proportion of
mona able to simultaneously interact with the resource system will be ∼ V 5/6. This is,
however, a time penalty of ∼ b−2 and hence is strictly worse than the Bounded Carrier
scheme.

IV.3. Driving Unfavourable Reactions
We conjecture that the results in the previous section are general; that is, no resource
scheme can achieve better resource availability under the same constraints. In order to
make use of a greater proportion of the resource pool, more free energy must be supplied
and, ideally, the amount of free energy supplied should be the minimum necessary to
avoid wasting the supply of negentropy. As alluded to in the introduction, we shall now
consider general mona-klona interactions of arbitrary free energy cost.

Reactions of Known or Bounded Cost Consider an arbitrary reaction
∑

i νiXi −−⇀↽−−∑
i ν

′
iXi with forward reaction rate α and backward rate β. Recalling that the free

energy change for the forward reaction is given by ∆h = log α
β , it can be seen that

n > −∆h/2 arctanh b computational bias tokens are needed to drive the reaction forward
in the case ∆h < 0; similarly, if ∆h > 0 then n > ∆h/2 arctanh b tokens are needed to
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drive the reaction backward. In addition, if we wish to couple such an unfavourable
reaction to our computational mona then we should ensure by some means that the
reaction does not occur in uncoupled isolation, such as raising the activation energy of
the reaction or by employing a reaction mechanism that requires interaction with the
mona. This kind of coupling abounds in nature, wherein a variety of bias systems are
exploited. In fact, the ATP : ADP + Pi bias system is itself generated from a number of
other bias sources. One particular example involves the conversion of the free energy of
a transmembrane proton gradient for which n ≳ 4; the molecular machine responsible
for this coupling, ATP synthase, is a molecular motor which translocates 11 protons2

across the membrane per revolution, in the process converting 3 molecules of ADP to
ATP, an entropically unfavourable process.

When n is known and fixed (or, at least, bounded from above) an optimal approach is
provided by the simple scheme that performs n transitions between each unfavourable
reaction. Indexing the mona states, Mk, modulo n+ 1, the scheme can be written thus

M0 ↽−−
qλ

pλ−−−⇀ · · · ↽−−
qλ

pλ−−−⇀ Mk ↽−−
qλ

pλ−−−⇀ · · · ↽−−
qλ

pλ−−−⇀ Mn,

Mn +
∑
i

νiXi ↽−
β′

α′
−−−⇀ M0 +

∑
i

ν ′iXi.

The reactions between Mk and Mk+1 serve to increase the ratio [Mn]/[M0] such that it
counteracts the ratio α′/β′ = α/β < 1. To solve for the steady state dynamics of this
system, we write the currents

S(Mk 7→ Mk+1) = pλ[Mk]− qλ[Mk+1]

S(Mn 7→ M0) = α′[Mn]− β′[M0]

and use the fact that, at steady state, the currents must be equal. Moreover, the current
will correspond to the net rate at which the target reaction is driven, and therefore we can
find the optimal choice of n > |∆h/2 arctanh b| to maximise this rate (as for excessively
large n, the chain of intermediate monon states will dilute the proportion of transitions
performing the desired reaction).

We first show that the system makes optimal use of the consumed bias tokens by calcu-
lating the value of n for which the current vanishes, and hence for which the reaction is
exactly balanced. For vanishing current, the principle of detailed balance applies and the
steady state distribution is obtained simply by [Mk]/[M0] = (pq )

k and [M0]/[Mn] = α/β.
This yields n = log β

α/ log
p
q = −∆h/2 arctanh b, precisely the threshold value of n. The

attentive reader may point out that this value of n is not necessarily integral, and there-
fore a cyclic chain of length n + 1 may not exist; this is true, but we shall be seeking
larger values of n to increase the rate of the reaction and for which picking the nearest
integral value shall be acceptable. Alternatively, one could consider the superposition of
two such chains for ⌊n⌋ and ⌈n⌉ in the appropriate proportions.

2The exact number varies between species, and even between different organelles of the same species, but
is typically between 10 and 14.
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To solve for non-vanishing current, we perform two telescopic sums

nS =

n−1∑
k=0

S(Mk 7→ Mk+1)
1

p
S

n−1∑
k=0

t−k =

n−1∑
k=0

(t−kλ[Mk]− t−k−1λ[Mk+1])

= bλ[M] + qλ[M0]− pλ[Mn], S
pn − qn

p− q
= pnλ[M0]− qnλ[Mn],

where t ≡ p
q , and then substitute S(Mn 7→ M0) for the current:

bλ[M] = (pλ+ nα′)[Mn]− (qλ+ nβ′)[M0],(
qnλ+

pn − qn

p− q
α′
)
[Mn] =

(
pnλ+

pn − qn

p− q
β′
)
[M0].

Hence, solving for [M0] and [Mn], we can obtain the steady state current thus:

S = bλ[M]
qnβ′ − pnα′

(qn+1 − pn+1)λ+ n(qnβ′ − pnα′) + (qα′ − pβ′)1b (pn − qn)
.

After some rearrangement, we find that the current is maximised when

(tn/2 − t−n/2γ)2 =
q log t

b
(γ − 1)(tγ − 1) +

qλ log t

α
(tγ + 1)

where γ ≡ β/α. For small bias, this reduces to n = 2n0+O(b) where n0 = |∆h|/2 arctanh b
is the threshold value. When n is large, this gives a current S → [M]min(2b2λα

β , 2bα).
This assumes that the intermediate monon transitions are not useful; if the intermediate
transitions in fact perform useful work then this current can be multiplied by n and, in
the limit of large n, the current tends to bλ: the net transition rate for uncoupled mona.

Reactions of Unknown or Unbounded Cost The preceding scheme suffers from
a number of shortcomings due to the fact that n is fixed; when n0 is lower than that
designed for, the system expends more bias tokens than necessary, whereas when it
is greater the system will stall. Moreover the system is asymmetric with respect to
direction of the driven reaction: if β > α then the forward reaction should be driven with
n tokens whilst the reverse reaction needs no additional bias, but this complicates the act
of running a subroutine in reverse as each bias chain for the forward reaction must be
removed, and a bias chain must be introduced for each instance of the reverse reaction.
This is further complicated if the intermediate transitions along the chain perform useful
computation. Whilst these problems are not insurmountable, it is possible to solve them
all with a revised scheme in which n is permitted to vary.

A scheme with variable n is incompatible with the specific implementation of that
for fixed n, and so we first migrate the mona chains into a distinct system of klona
consisting of the species {X(n)

k : n, k ∈ N ∧ 0 ≤ k ≤ n} ∪ {X(−n)
−k : n, k ∈ N ∧ 0 ≤ k ≤ n}

and subject to reactions X
(n)
k ↽−q

p−−−⇀ X
(n)
k+1, with steady state [X

(n)
k ]/[X

(n)
0 ] = (pq )

k. To
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demonstrate practicability, an abstract molecular realisation is provided in Section IV.4.
The idea is to sequester some of the reactants and products in an inactive state, with
those remaining in an active state being at equilibrium (for an isenthalpic reaction, this
manifests as equal concentrations). Representing the reactants by A and the products by
B, this effective sequestration behaviour is achieved by the reaction Mi +A:X

(n0)
n0 ↽−q

p−−−⇀

Mi+1 + B:X
(n0)
0 with n0 = −∆h/2 arctanh b. For fixed n0, this scheme already solves

all the aforementioned problems as the complexed system A:X
(n0)
n0
−−⇀↽−− B:X

(n0)
0 is an

equilibrated abstraction over the underlying A −−⇀↽−− B reaction, and hence can be
coupled directly to the computational mona system.

In the course of system operation, the value of n0 will almost certainly vary. In-
troducing the sequestration klona for all values of n ∈ Z, and letting α′ ≡ α

∑
[X

(n)
n ]

and β′ ≡ β
∑

[X
(n)
0 ], we see that the desired equilibrium condition is given by α′ = β′.

Therefore, if the values of α′ and β′ deviate from equilibrium then we should coun-
teract this deviation by perturbing the n-distribution of the sequestration klona. Ideal
kinetics are attained if this n-distribution converges to α′ = β′ exponentially fast, i.e.
ṅ ∝ β′ − α′. This target kinetics arises because [X

(n)
n ] = (pq )

n[X
(n)
0 ] and p

q > 1, hence
increasing n increases α′/β′. A first attempt at implementation might be given by
∀n ∈ Z.Mi +A:X

(n)
n ↽−q

p−−−⇀ Mi+1 + B:X
(n−1)
0 , but this doesn’t quite replicate the desired

kinetics. Instead we separate the concerns of the computational bias and the reaction
coupling thus:

Mi
p−−−⇀↽−−−p Mi+ 1

3

Mi ↽−q
p−−−⇀ Mi+ 1

3

 Mi+ 1
3
+A:X

(n)
n
−−⇀↽−− Mi+ 2

3
+B:X

(n−1)
0

 Mi+ 2
3

q−−−⇀↽−−−q Mi+1

Mi+ 2
3
↽−q
p−−−⇀ Mi+1

(IV.1)
Assuming that at steady state [Mi+ 1

3
] = [Mi+ 2

3
] ≡ µ, the coupled reaction then replicates

the kinetics ṅ = kµ(β′ − α′). For symmetry, we have introduced two intermediate mona
with their inter-monon transitions used for coupling to the computational bias. In order
to ensure that only a single token’s worth of bias is consumed in the reaction, we also
introduce two leak reactions such that the total free energy change is precisely that for a
single token: ∆h = log p+p

q+p + log p+q
q+q = 2arctanh b.

To verify that this system has the desired properties, we now solve for the steady state
distribution. Employing detailed balance, we find for each n that [X(n)

n ]/[X
(n)
n ]

[X
(n)
n ]

[X
(n−1)
0 ]

=
β

α
≡

(p
q

)n0

=⇒ [X
(n)
0 ]

[X
(0)
0 ]

=
(p
q

)− 1
2
(n+ 1

2
−n0)2+

1
2
( 1
2
−n0)2

,

where we have used the intra-X(n)
k steady state distribution, [X(n)

k ]/[X
(n)
0 ] = (pq )

k. This
steady state distribution resembles a discrete Gaussian in n, and hence is relatively
tightly centered about n0; this is important to ensure good control over the distribution
and that perturbing its mean value is practicable. As a sanity check, we can show that
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this distribution indeed gives β′ = α′:

β′

α′ =
(p
q

)n0

∑
n∈Z(

p
q )

− 1
2
(n+ 1

2
−n0)2+

1
2
( 1
2
−n0)2∑

n∈Z(
p
q )

n(pq )
− 1

2
(n+ 1

2
−n0)2+

1
2
( 1
2
−n0)2

=

∑
n∈Z(

p
q )

− 1
2
(n+ 1

2
−n0)2+

1
2
( 1
2
+n0)2∑

n∈Z(
p
q )

− 1
2
(n− 1

2
−n0)2+

1
2
( 1
2
+n0)2

= 1.

Finally we seek to characterise the rates for the coupled reaction; first, we shall require
the weight for each of the {X(n)

k : k} subsystems:

n∑
k=0

[X
(n)
k ] =

[X
(n)
0 ]

t− 1

{
tn+1 − 1 n ≥ 0

t− tn n ≤ 0

where t = p
q . Next, we use tnt−

1
2
(n+ 1

2
−n0)2+

1
2
( 1
2
−n0)2 = t−

1
2
(n− 1

2
−n0)2+

1
2
( 1
2
+n0)2 to find the

normalisation,

[X
(0)
0 ]−1 = 1 + 1

t−1 [t
∑

n<0−
∑

n>0 ]t
− 1

2
(n+ 1

2
−n0)2+

1
2
( 1
2
−n0)2

+ 1
t−1 [t

∑
n>0−

∑
n<0 ]t

− 1
2
(n− 1

2
−n0)2+

1
2
( 1
2
+n0)2 .

This is non-trivial for general n0, so we restrict to the two limiting cases of n0 = 0

and |n0| ≫ 1. In the former case, the normalisation simplifies to [X
(0)
0 ] = b

1+b and

so we have β′ = α′ = αb
1+b

∑
n∈Z t

1
8
− 1

2
(n− 1

2
)2 . The sum is bounded from below by the

integral 2
∫∞
0 t−

1
2
(s+ 1

2
)2 ds, and from above by 2

∫∞
0 t−

1
2
(s− 1

2
)2 ds, from which we obtain

α′ = α
√
πb + O(b). In the latter case, suppose n0 ≫ 1 is positive (i.e. β ≫ α). The

normalisation will then be dominated by the sums over n > 0 and so has asymptotically
exact approximation

[X
(0)
0 ]−1 = t

t−1

∑
n∈Z t

− 1
2
(n− 1

2
−n0)2+

1
2
( 1
2
+n0)2 − 1

t−1

∑
n∈Z t

− 1
2
(n+ 1

2
−n0)2+

1
2
( 1
2
−n0)2

= 1
b [pt

1
2
( 1
2
+n0)2 − qt

1
2
( 1
2
−n0)2 ]

∑
n∈Z t

− 1
2
(n+ 1

2
−n0)2 ,

hence α′ reduces to 2bα + O(b2) in the case of β ≫ α, or 2bβ + O(b2) in the case of
α ≫ β. In the ideal case, in which only the excess B (when β > α) is sequestered, we
should have α′ = β′ = α. The consequence of the factor (

√
πb, 2b) is to further suppress

the current through the coupled transition. As the uncoupled monon transitions have
current ∝ b, this results in an overhead of ∼ b−3/2 in the best case and ∼ b−2 in the worst.
This overhead is comparable to the time penalties we found for communication and
synchronisation interactions in Chapter III, as for the coupled reaction to proceed both
the monon and the complexed klonon must be in receptive states. Drawing further from
the analogy, one may wonder whether reactions involving multiple klona are subject to
even greater overheads; fortunately, this is not the case: provided only one sequestration
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Jσ ·>◦ σ ′K ↽−q
p−−−⇀ Jσ ◦ ·>σ ′K (INTRA–BIAS)

Mi+ 1
3
+A:Jσ ◦ ◦−|>K −−−⇀↽−−− Jσ ◦−|<K:B +Mi+ 2

3
(POS–STEP)

Mi+ 1
3
+A:J◦−|>K −−−⇀↽−−− J ◦<>K:B +Mi+ 2

3
(POS–BASE)

Mi+ 1
3
+A:J ◦<>K −−−⇀↽−−− J−<◦ K:B +Mi+ 2

3
(NEG–BASE)

Mi+ 1
3
+A:J−>◦ σ K −−−⇀↽−−− J−<◦ ◦ σ K:B +Mi+ 2

3
(NEG–STEP)

Listing IV.3: The abstract molecular reaction scheme implementing X
(n)
k
−−⇀↽−− X

(n)
k+1 and X

(n)
n
−−⇀↽−−

X
(n−1)
0 for the unary representation case. As described in Section IV.4, the species X

(n)
k is

represented by a polymer of n copies of the ◦ monomer. These polymers are delimited by J and
K, and are intercalated with a ‘marker’ monomer, −|> or −>. The position of the marker monomer
corresponds to the value of k as explained in the text, and the (INTRA–BIAS) reaction tends to
push it in the direction of its arrow. Note that ·> represents either marker monomer and σ, σ′

represent arbitrary strings of ◦ monomers.

klonon participates, by choosing a single representative from each of the reactant klona
and product klona to engage in complexation with the sequestration klona, then the
results stand.

IV.4. Molecular Counter Implementation

Here we present example implementations of the counter klona X
(n)
k used in Section IV.3.

These implementations are abstract, but point towards a viable molecular realisation.

Unary Representation The simplest implementation of counters is given by rep-
resenting numbers in unary, i.e. a Peano axiomatic approach. For a natural integer
n ∈ N, we propose a polymeric representation consisting of n repeated ◦ monomers
and represented thus,

J◦ ◦ · · · ◦ ◦︸ ︷︷ ︸
n

K.

We can then introduce a subcounter 0 ≤ k ≤ n by incorporating a marker monomer,
−|>, placed between the monomers and which can migrate between the n + 1 possible
positions. Moreover, we can handle non-positive values of n and k via the alternative
marker −>. Whilst not strictly necessary, we also differentiate the case n = k = 0 with a
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third marker monomer, ◦<>. Example polymers are given for n = −4, 0, 4:

X
(4)
0 = J−|>◦ ◦ ◦ ◦ K, X

(−4)
0 = J◦ ◦ ◦ ◦−>K,

X
(4)
1 = J◦−|>◦ ◦ ◦ K, X

(−4)
−1 = J◦ ◦ ◦−>◦ K,

X
(4)
2 = J◦ ◦−|>◦ ◦ K, X

(0)
0 = J ◦<>K, X

(−4)
−2 = J◦ ◦−>◦ ◦ K,

X
(4)
3 = J◦ ◦ ◦−|>◦ K, X

(−4)
−3 = J◦−>◦ ◦ ◦ K,

X
(4)
4 = J◦ ◦ ◦ ◦−|>K, X

(−4)
−4 = J−>◦ ◦ ◦ ◦ K.

Notice the mirrored interpretation of marker positions as values of k for positive and
negative values of n; this is intentional and serves to simplify the implementation of the
intra-n biasing reactions. It should also be noted that these polymers are achiral and so
their mirror images, e.g. X(4)

1 = J◦ ◦ ◦−|<◦ K, are equivalent representations of the same
polymer. This property greatly simplifies the implementation of the X

(n)
n
−−⇀↽−− X

(n−1)
0

reactions. Altogether, this implementation can be achieved with five reactions as listed
in Listing IV.3. In fact, this scheme can be implemented with just four reactions by
replacing ◦<> with −|> and combining reactions (POS-STEP) and (POS-BASE), but we prefer
the given implementation for its symmetry. More concretely, these reactions engender
the following bi-infinite Markov chain:

· · · −⇀↽− J−|>◦ ◦ K ↽−−⇀ J◦−|>◦ K ↽−−⇀ J◦ ◦−|>K −⇀↽− J−|>◦ K ↽−−⇀ J◦−|>K −⇀↽− J ◦<>K
J ◦<>K −⇀↽− J−<◦ K −⇀↽− J◦−<K −⇀↽− J−<◦ ◦ K −⇀↽− J◦−<◦ K −⇀↽− J◦ ◦−<K −⇀↽− · · · .

Binary Representation Whilst particularly simple, the unary representation is very
space inefficient; worse, incrementing and decrementing n, for the purpose of modulat-
ing access to a sparse resource/disequilibrium reaction, will itself require interaction
with a resource pool in order to acquire and release ◦ monomers. Fortunately an ex-
ponentially more compact representation exists in the form of positional notations
such as binary, with spatial complexity logarithmic in |n| and hence needing far fewer
interactions with its respective monomer pool.

Unlike with the unary case, we cannot exploit the structure of the representation of
n to represent k. Instead we shall need to store both explicitly. We will also require
the ability to recognise the states k = 0 and k = n, both for determining whether the
coupled reaction A −−⇀↽−− B should proceed and for ensuring the reactions that generate
the intra-n distribution do not produce illegal values of k. These two states correspond
respectively to all the digits of k being 0 or being identical to those of n. Since |k| < |n|, its
minimal representation will be no larger than that of n and hence a convenient structure
for encoding the pair (n, k) with the ability to easily check the condition n = k is given
by a ‘zipped’ double-stranded polymer which we denote by J n

k K; for example, in base 2
the pair (11, 6) would be given by

r1 0 1 1
0 1 1 0

z
.
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INCstart HALT

1 7→ 0; left

0 7→ 1

∅ 7→ 1

Figure IV.4: The state diagram for a Turing Machine [90] implementing incrementation of a
natural number in binary positional notation. The alphabet is {∅, 0, 1}, with ∅ indicating a blank
square; numbers may be provided with any number of leading 0s, and the initial position should
be the least significant digit.

INIT CAR INC

END1 END2

END′
1 END′

2

INC′ INC′′ CAR′ CAR′′ TERM
∅

left

1 7→ 0

∅ 7→ 1

0 7→ 1

left

∅

left

0 1

right 1
right

0

∅

INITCARINC

END1END2

END′
1END′

2

INC′INC′′CAR′CAR′′TERM
∅

1←[ 0

right
∅←[ 1

right

0←[ 1

right

∅

01

left1

0

left
∅

Figure IV.5: The state diagram for a Reversible Turing Machine [39] (and its reverse) implement-
ing incrementation (resp. decrementation) of a natural number in binary positional representation.
The alphabet is {∅, 0, 1}, with ∅ indicating a blank square; numbers must be provided in the
described prefix-free form, and the initial position should be the (empty) square to the immediate
right of the least significant digit. The box-shaped ‘subroutine’ is used to handle the case when a
new digit must be prepended; as this is a reversible branch, we must ensure that the converged
state INC′ is able to uniquely determine the branch from whence it came.
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In contrast to the unary case, this representation does have an intrinsic polarity, with
the leftmost digits being the most significant. To ensure logical reversibility of the
forthcoming reaction scheme, the polymer representation must be unique for each (n, k)
pair, but positional representations admit a countably infinite equivalence class for each
integer (e.g. 3 has base-10 representations {3, 03, 003, . . .}). We resolve this ambiguity
by trimming all leading zeros of n and trimming k to the same length. This has the
consequence that (0, 0) has the ‘empty’ representation JK; it is certainly possible to
introduce a special case for (0, 0) of J 0

0 K for æsthetic reasons, but this would significantly
complicate the reaction scheme for no other benefit.

Thus far, we have only considered the representation for non-negative k, n ∈ N; there
are a number of approaches one could take to extend the representation, from simply
incorporating a sign trit, {−, 0,+}, similar to the approach for the unary case, to a two’s
complement approach. The two’s complement approach is particularly attractive as it
would require only minimal adjustments to the non-negative reaction scheme. The two’s
complement representation of negative numbers is realised by taking the equivalence
class for the integer, e.g. {11, 011, 0011, . . .} for 3, and complementing each bit to obtain,
e.g., {00, 100, 1100, . . .}. That is, each negative integer has an infinite prefix of 1s instead
of 0s as for the non-negative case. This approach is used in most conventional CPUs
because no special-casing for negative numbers is necessary: adding a negative number
m, with two’s complementm′, to a positive number n is equivalent to adding the positive
numbers m′ and n. As a simple justification for this, consider decrementing 1000 · · · 000.
We will need to ‘borrow’ a 1 from each digit to the left, eventually obtaining 111 · · · 111.
In the limit of infinitely many 0s, this results in infinitely many 1s. For brevity we shall
restrict our attention to the non-negative case, but extending to the full domain is a
straightforward—if tedious—exercise.

Whilst recognising the cases k = 0 and k = n is not difficult in our representation,
comparing ∼ log n digits each time we wish to execute the coupled reaction is not
ideal. By a slight increase in the complexity of the X

(n)
k ↽−−−⇀ X

(n)
k+1 and X

(n)
n
−−⇀↽−− X

(n−1)
0

algorithms, we can render these checks trivial. In particular, we augment the polymer
with two bits of state for each monomer pair which we call Q, for eQuality, and Z, for
Zero. As biochemical precedent, compare with phosphorylation sites. The function
of these states is best understood by example; for n = 11, the Q-Z states for each of
k = 0, 1, 8, 11 are given by

r1 0 1 1
0 0 0 0

z
,

r1 0 1 1
0 0 0 1

z
,

r1 0 1 1
1 0 0 0

z
,

r1 0 1 1
1 0 1 1

z
.

Namely, a prefix of zeroes is marked by the Z state (bottom lines) and a prefix matching
n is marked by the Q state (middle lines), and these are easily achieved by implementing
two local invariants for each digit pair x

y :

(Q) The Q state is on if and only if y = x and the Q state of the digit pair to its left (if it
exists) is also on.

(Z) The Z state is on if and only if y = 0 and the Q state of the digit pair to its left (if it
exists) is also on.
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IV.4. Molecular Counter Implementation

[] ‵INC‵ [‘1];
[‘0 x · b/s] ‵INC‵ [‘1 x · b/s];
[‘1 · b/s] ‵INC‵ [‘0 · b/s′]:

b/s ‵INC‵ b/s′.

Listing IV.6: A recursive ℵ/alethe (see Chapter V) program implementing incrementation of
a natural number in binary positional representation. Numbers are provided in the described
prefix-free form as a list of digits {0, 1}with the least-significant bit first. The second case pattern
matches on two bits in order to ensure its output pattern is distinct from that of the first case, and
this is where a program will stall should a number be provided which is not in prefix-free form.

It can be seen that these two states are orthogonal as the leading bit of n must be 1, with
the possible exception of (0, 0) where it makes sense to define Q and Z to be both on
despite the lack of lack of monomers on which to mark said states.

Before implementing a reaction scheme, we first require an algorithmic understand-
ing of reversibly incrementing/decrementing integers in positional notation. As it is
possible (and indeed trivial) to do so for integers in unary notation as demonstrated by
Listing IV.3 we should expect it to also be possible for positional notation, and indeed
it is. The irreversible algorithm for incrementing a binary number is very simple (Fig-
ure IV.4): if there are any trailing 1 bits then we carry the 1 (flipping the intermediate 1
bits to 0) until we reach the first 0, which we flip to 1. If we reach the end of the number,
we prepend a new 1 bit. Making this algorithm reversible is conceptually simple, but
expressing it in the form of a Reversible Turing Machine (RTM, as introduced by Bennett
[39]) is somewhat involved. An example implementation is provided in Figure IV.5, and
can be broken down into three stages: (1) carrying; (2) incrementing the least significant
0 bit, or prepending a fresh 1 bit, followed by the logic to reversibly join these two
branches; (3) ‘reverse’ carrying, in which we return to the starting position and use
the fact that the suffix we are processing takes the form 100 · · · 000 to ensure we can
logically reverse this stage. It can be readily checked that this scheme as presented is
reversible, and indeed we provide the mechanical reversal of the RTM which may be
seen to implement the operation of reversibly decrementing a positive natural number.
To demonstrate that the algorithm is in fact conceptually simple, an equivalent recursive
program written in a higher level reversible language is shown in Listing IV.6.

Finally, the reaction schemes for X
(n)
k ↽−−−⇀ X

(n)
k+1 and X

(n)
n
−−⇀↽−− X

(n−1)
0 are made

manifest in Listings IV.7 and IV.8 respectively. In addition to implementing the reversible
incrementation procedure in an abstract molecular sense, these schemes must also
incorporate the relevant logic for ensuring k is appropriately bounded and that the Q
and Z invariants are preserved (although these may be transiently broken within the
intermediate states). Furthermore the logic for the second reaction (which we choose
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to implement in reverse, i.e. X(n)
0
−−⇀↽−− X

(n+1)
n+1 , per the freedom reversibility affords

us) must reversibly copy the value of n into k, and thus the second scheme must read
the entire length of the polymer. As for the case of n ≡ 2p − 1 in n 7→ n + 1 (resp.
n+ 1 7→ n), the scheme recruits (resp. releases) a pair of binary monomers (B2) which
will be provided by some resource pool mediated by its own sequestration klona. An
additional complication is the prevention of multiple initiation events: as the scheme
operates via local rules, it is not possible to tell whether a molecule is in a stable state
X

(n)
k or if it is currently undergoing a transition. To address this, a ‘blocked’ terminus is

used to represent intermediate states. Symbolically, this takes the form J ·•K instead of
J · K.

IV.5. Conclusion
In this chapter we studied the interaction of mona, such as molecular computers, with
klona, shared resources, in a Brownian system with a limiting supply of free energy.
As in Chapter III, we found this to be very expensive in comparison to independent
computation. In general the cost, in terms of transition time, to couple mona to an
arbitrary system of klona is of order O(b−2) (an overhead of O(b−1)) but, in contrast
to the mona-mona interactions of Chapter III, lighter overheads of order O(b−1/2) or
better can be achieved under certain conditions. For example, whilst we found that
all resource distribution schemes we could devise (some particular examples of which
were illustrated in Section IV.2) did not admit a fractional resource availability above
O(b) if time overheads were to be avoided, by allowing a time overhead of O(b−1/2)
(thence a time penalty of ∼ O(b−3/2)) the full resource pool was rendered accessible. We
conjectured that these results are in fact general bounds on the capabilities of any such
system.

To drive a general out-of-equilibrium system of klona, one needs to supply sufficient
free energy to overcome the entropy cost of the reaction. When this cost is known or
bounded, such as in biological systems, the definition of ‘sufficient’ can be precomputed
and built in to the specifications of the system. In general, however, the cost may be un-
known or unbounded, or the favourable direction of the reaction may switch over time.
We proposed a scheme in Section IV.3 to dynamically infer this cost, as well as automat-
ically applying the correct amount of free energy tokens to pay for it, thereby exposing
an equilibrated interface to the disequilibrium reaction. A more detailed specification of
the (abstract) molecular realisation of such a scheme is presented in Section IV.4. This
equilibrated interface can then be readily coupled to our monon transitions, however
the cost must still be paid in terms of transition time overhead and indeed it is, as the
concentration of the interface is commensurately reduced. Unfortunately our proposed
scheme has a minimum overhead of O(b−1/2) even in the case where the underlying
reaction is at or near equilibrium (where it is theoretically possible to achieve zero
overhead). It is unknown whether a better scheme exists, whilst still retaining the ability
to drive reactions that are arbitrarily far from equilibrium.

As any non-zero overhead to a class of interactions will lead to this class ‘freezing out’
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in very large reversible computers, their frequency must be minimised—the proposed
scheme notwithstanding. Once again referencing the conclusions of Chapter III, these
interactions thus minimised can make use of a subpopulation bias klona of greater free
energy to drive these unfavourable interactions more effectively.
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rσ
τ

z
↽−−−−⇀

rσ 〈
τ
•
z

(k–INIT)

rσ x 〈 σ′
τ 1 τ ′

•
z

↽−−−−⇀
rσ 〈 x σ′
τ 0 τ ′

•
z

(k–CARRY)

rσ x 1 〈 σ′
τ x 0 τ ′

•
z

↽−−−−⇀
rσ x 1 〉 σ′
τ x 1 τ ′

•
z

(k–INC1)

rσ x y 〈 σ′
τ 0 0 τ ′

•
z

↽−−−−⇀
rσ x y 〉 σ′
τ 0 1 τ ′

•
z

(k–INC2)

rσ x y 〈 σ′
τ z 0 τ ′

•
z

↽−−−−⇀
rσ x y 〉 σ′
τ z 1 τ ′

•
z

(k–INC3)

r1 〈 σ′
0 τ ′

•
z

↽−−−−⇀
r1 〉 σ′
1 τ ′

•
z

(k–INC4)

rσ x 〉 0 σ′

τ x 0 τ ′
•
z

↽−−−−⇀
rσ x 0 〉 σ′
τ x 0 τ ′

•
z

(k–CARRY′
1)

rσ x 〉 1 σ′

τ x 0 τ ′
•
z

↽−−−−⇀
rσ x 1 〉 σ′
τ x 0 τ ′

•
z

(k–CARRY′
2)

rσ x 〉 z σ′
τ y 0 τ ′

•
z

↽−−−−⇀
rσ x z 〉 σ′
τ y 0 τ ′

•
z

(k–CARRY′
3)

rσ 〉
τ
•
z

↽−−−−⇀
rσ
τ

z
(k–TERM)

Listing IV.7: The abstract molecular reaction scheme implementing X
(n)
k ↽−−−⇀ X

(n)
k+1 for the binary

representation case. To only use a single bias token’s worth of free energy, one can make use
of a similar scheme to that used in Equation (IV.1), and perhaps making some of the reactions
in this scheme unbiased. Alternatively one can accept the use of many tokens, which has the
advantage of increasing the rate of the coupled reaction due to the effectively higher bias, but has
the disadvantage of slower convergence of the sequestration klona to steady state—potentially
interfering with correct operation of the coupled reaction during periods of high flux. In this
scheme, the ⟨ and ⟩ symbols represent klona that mark the current state and progress of the
overall reaction. It is of note that, in the (k–CARRY) rule, there is no provision for Q to be set on
the bit-pair to the left of x

1 , as such a state would imply we are trying to increment k ≥ n and is
thus illegal.
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[ÆB−M] :
rσ }
τ
•
z
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rσ
τ

z
:A +Mi+ 1

3
(n–TERM)

Listing IV.8: The abstract molecular reaction scheme implementing X
(n)
0
−−⇀↽−− X

(n+1)
n+1 for the

binary representation case. This overall reaction is unbiased, which raises the concern that the
sequestration klona could spend an undesirable amount of time in the intermediate states above.
To limit this possibility, the intermediate states should be made more unfavourable and this is
achieved by the complementary biases in the rules (n–INIT) and (n–TERM). These biases need
not be provided by the bias tokens, and in fact that is unideal as the bias is vanishingly small;
instead it can be implemented by introducing an enthalpy change, such that there is a chance of
thermal activation of the reaction, whilst the klona still prefer to exist in the non-intermediate
states. As in the scheme for the intra-n reaction, klona are introduced to mark the state and
progress of the overall reaction; in this case, {, }, (, and ), with the { and } klona corresponding
primarily to incrementation of n and the ( and ) klona to copying of the prefix of n into k.
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Reversible computation is somewhat neglected in the field of molecular
computation. Motivated by a need for a model of reversible computation

appropriate for a Brownian molecular architecture, this chapter intro-
duces the ℵ-calculus as a step towards this goal. This novel model is

declarative, concurrent, and term-based—encapsulating all information
about the program data and state within a single structure in order to ob-
viate the need for a von Neumann-style discrete computational ‘machine’,

a challenge in a molecular environment. The name is inspired by the
Greek for ‘not forgotten’ (ἀλήθεια), due to the emphasis on (reversibly)
learning and un-learning knowledge of different variables. To demon-

strate its utility for this purpose, as well as its elegance as a programming
language, a number of examples are presented; two of these examples,

addition/subtraction and squaring/square-rooting, are furnished with
designs for abstract molecular implementations, although more work

needs to be done in order to realise something resembling ℵ experiment-
ally. The example of addition/subtraction is reproduced in Figure V.1.

A natural by-product of these examples and accompanying syntactic
sugar is the design of a fully-fledged programming language, alethe,

which is also presented along with an interpreter. Efficiently simulating
ℵ on a deterministic computer necessitates some static analysis of pro-
grams within the alethe interpreter in order to render the declarative

programs sequential. Finally, work towards a type system appropriate
for such a reversible, declarative model of computation is presented.



V. The -Calculus
A declarative model of reversible programming with relev-
ance to Brownian computers

Figure V.1: An abstract molecular realisation of an ℵ definition of addition (resp. subtraction),
here reversibly computing the sum of 4 and 3 (resp. the difference between 7 and 4).

V.1. Introduction
In this chapter we present a new model of reversible computing, the ℵ-Calculus, and an
associated programming language alethe together with interpreter, whose properties
we believe to be novel. The name is inspired by the Greek meaning ‘not forgotten’
(ἀλήθεια), as the semantics of ℵ revolve around the transformation of knowledge: ‘un-
learning’ knowledge of one or more variables in order to ‘learn’ knowledge about one or
more other variables, but in a reversible fashion such that nothing is ever truly forgotten.
ℵ is declarative and concurrent and, whilst perhaps a little too abstract and high level for
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this purpose, is motivated by a need for a reversible model for molecular programming
and DNA computing. Crucial to such applications is that almost all information about
not just the program’s data, but the program state too, should be encoded within a com-
putation ‘term’. This is in contrast to the imperative and functional languages reviewed
in the introduction, wherein state information such as the instruction counter (indicating
where in the program the current execution context is) is implicitly stored in a special
register or other hidden state of the processor. In ℵ, the program itself is (reversibly)
mutated during the course of its execution, such that the distinction between ‘program’
and ‘processor’ vanishes. The reason for this design is that a von Neumann-style architec-
ture, in which there is a discrete processing unit that interacts with a memory unit to
execute a program, is unsuitable for a molecular context as it is—in some sense—too
‘bulky’ and difficult to engineer. We assert that the proposed design is far more suitable
to molecular implementation, or at least serves as a step towards this goal, and it is
hoped the reader will be convinced of this by the examples and semantics illustrated
herein.

V.2. by Example
Before expositing the formal semantics of ℵ, it is illuminating to introduce a number of
examples of ℵ in order to gain an intutition for its syntax and features. We begin with a
reversible definition of addition. An immediate obstacle with reversible arithmetic is
that binary operations such as addition are not invertible: it is not possible, given the
answer 7, to infer which two numbers were originally added. As shown in Figure I.5,
one possible resolution of this (due to Bennett [39, 40]) is to embed an irreversible
computation x 7→ f(x) injectively as x 7→ (x, f(x)). For addition, Bennett’s algorithm
would yield + : (x, y)↔ (x, y, x+ y). For example, adding 3 and 4 would give as output
(3, 4, 7). Nevertheless we are not satisfied with this embedding, and wish to better
exploit reversible computational architectures by programming directly with reversible
primitives. The benefits of doing so are that one often finds that far less temporary
information need be generated than Bennett’s algorithms might suggest, and also the
injective embedding, x 7→ (x, f(x)), retains the input which is excessive except in the
trivial case of f being constant; for any other function f having any correlation at all
between its outputs and inputs, only a partial image of x need be preserved. Moreover it
is often the case that one can imagine a suitable and more preferable injective or bijective
embedding. For example, a more useful embedding of addition might take the form
+ : (x, y)↔ (x, x+ y). In defining these injections more carefully, one then often finds
that the residual information of the input can in fact be made use of; for example, a
Peano arithmetic implementation of + : (x, y) ↔ (x, x + y) over the naturals readily
begets the (domain-restricted) injection ∀x > 0.× : (x, y)↔ (x, xy) without generating
any temporary data whatsoever. Furthermore, when redundancy is eliminated as in
these two cases one obtains the converse operation for free: that is, running + : (x, y)↔
(x, x+ y) in reverse yields subtraction, and ∀x > 0.× : (x, y)↔ (x, xy) yields division,
whilst their Bennett embeddings cannot do the same.
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A little thought shows these must fail in certain cases. For the Bennett-style reversible
embedding of addition, we saw that the forward direction of this program maps, e.g.,
(3, 4) to (3, 4, 7), and likewise the reverse direction maps (3, 4, 7) to (3, 4). Clearly the
forward direction is an injection, but what about the reverse? Suppose we attempt
to feed in (3, 4, 5): as 3 + 4 ̸= 5, and as the forward direction is injective, there can
be no pair (a, b) that maps to (3, 4, 5). In fact, even our less redundant embedding
+ : (x, y)↔ (x, x+ y) suffers from non-injectivity of its inverse, for example there is no
value y ∈ N satisfying + : (5, y) ↔ (5, 2). Yet another example occurs for the function
+′ : (x, y) ↔ (x − y, x + y) defined over the integers, in which there is no pair (x, y)
satisfying +′ : (x, y)↔ (3, 6) (there is in Q, however; namely, (92 ,

3
2)). Therefore, whilst

we might expect reversible computers to compute bijective operations, this appears to
be violated in even the simple example of addition. In fact, no violation of reversibility
has occurred, and the ‘primitive’ steps of any reversible computer are bijective. What
we have encountered here is simply a (co)domain error, the same as if we were to ask
a conventional computer to evaluate 1/0. That is, whereas conventional computers
compute partial functions, reversible computers compute partial bijections (or partial
isomorphisms). Exactly what happens when such an error is encountered depends on
both the algorithm and architecture in question; for example, attempting to divide 1 by
0 may cause a computer to immediately complain, or it may enter an infinite loop if the
algorithm is ‘repeatedly subtract the divisor until the dividend vanishes’. We shall have
more to say about how ℵ handles such errors in due course.

Addition Our examples will mostly concern natural numbers because they are par-
ticularly amenable to inductive and recursive definitions of both their structure and
operations over them, such as addition and multiplication. The standard approach to
this is the Peano axiomatic formulation, in which a natural number is defined to either
be Z ≡ 0, or Sn ≡ n + 1 whenever n is a natural number—i.e. the successor of n. For
example, 4 is constructed as S(S(S(SZ))). In fact there are seven more axioms in order to
clarify such subtle points as uniqueness of representation, conditions for equality, and
non-negativity. Addition can then be defined recursively by the base case Z + b = b and
the inductive step Sa+b = S(a+b), and multiplication by a·Z = Z and a·Sb = a+a·b. To
render addition reversible, we write + : (Z, b)↔ (Z, b) and + : (Sa, b)↔ (Sa, S(a+ b)),
realising the proposed embedding + : (x, y)↔ (x, x+ y). Multiplication is embedded
similarly, but there is a domain-restriction imposed in that a must not be zero (or else b
cannot be uniquely recovered); b may, however, be zero. In ℵ, addition is written thus

+ Z b () = () Z b +; (ADD–BASE)

+ (Sa) b () = () (Sa) (Sb′) +: (ADD–STEP)

+ a b () = () a b′ +. (ADD–STEP–SUB)

and is perhaps best understood by example. In Listing V.2, we perform the example
addition of 4 and 3 and, as promised, an example failure mode in which we attempt to
subtract 5 from 2.
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+ Z b () = () Z b +; (ADD–BASE)

+ (Sa) b () = () (Sa) (Sb′) +: (ADD–STEP)

+ a b () = () a b′ +. (ADD–STEP–SUB)

(a) The definition of reversible natural addition in ℵ.

+ 4 3 ()↭ {a : 3, b : 3} {a : 3, b′ : 6}↭ () 4 7 + (ADD–STEP)

(ADD–STEP–SUB)

+ 3 3 ()↭ {a : 2, b : 3} {a : 2, b′ : 5}↭ () 3 6 + (ADD–STEP)

(ADD–STEP–SUB)

+ 2 3 ()↭ {a : 1, b : 3} {a : 1, b′ : 4}↭ () 2 5 + (ADD–STEP)

(ADD–STEP–SUB)

+ 1 3 ()↭ {a : 0, b : 3} {a : 0, b′ : 3}↭ () 1 4 + (ADD–STEP)

(ADD–STEP–SUB)

+ Z 3 ()↭ {b : 3}↭ () Z 3 + (ADD–BASE)

(b) The ℵ execution path when reversibly adding 4 to 3 or, in reverse, subtracting 4 from 7. The↭ arrows
refer to pattern matching/substitution, whilst the solid arrows refer to instantiation/consumption of
‘sub-terms’.

() 5 2 +↭ {a : 4, b′ : 1} (ADD–STEP)

(ADD–STEP–SUB)

() 4 1 +↭ {a : 3, b′ : 0} (ADD–STEP)

(ADD–STEP–SUB)

() 3 Z + ⇝/ no matching rule

(c) The ℵ execution path when attempting to (erroneously) subtract 5 from 2. The recursive algorithm
identifies that 2− 5 ≡ 0− 3, but there is no matching definition for this and therefore computation ‘stalls’
on this sub-term. This is usually addressed in the natural numbers by employing the saturating option of
‘monus’, i.e. 2 ·− 5 = 0, but it is not reversible.

Listing V.2: The definition of, and example applications of, reversible addition in ℵ.
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Figure V.3: An abstract molecular translation of the reversible addition definition given in
Listing V.2a, as well as the example addition of 4 and 3 following Listing V.2b. The abstract
molecular model espoused here is defined by a fixed set of atoms (e.g. {+, S,Z, •}) connected
by two kinds of bond. Atoms joined by single-headed bonds are analogous to ℵ terms, whilst
double-headed bonds corresponds to nesting of composite terms. The bonds are represented by
arrows because there is an intrinsic polarity/directionality to the molecules; this is not necessary,
and can be replaced by auxiliary atoms such as L and R, but it does simplify our representation.
Atoms are rendered by circles, whilst the reaction definitions also use variables written as un-
circled letters. The • ‘atom’ is special in that it is a placeholder for a nested composite term.
Reaction arrows for ‘elementary’ reactions are labelled by rule names, and starred reaction
arrows indicate an effective reaction composed of multiple elementary steps. The arrows are
drawn biased in anticipation of a biasing mechanism to be discussed later on within this section.
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ℵ can thus be seen, in a loose sense, to be a term-rewriting system. It is ‘loose’ in
the sense that its ‘sub-terms’ exist ‘separate’ from their parent term. In the example of
Listing V.2, an addition term is written + a b () and is mapped by the transition rules to
() a c + where c ≡ a + b; here + is an ‘atom’, a, b and c are terms representing natural
numbers (as composite terms formed from nested applications of the atoms S and Z),
and (), or ‘unit’, is the empty term and is used by convention in ℵ to avoid certain
ambiguities. A program corresponds to a series of definitions of transition rules which
pattern match on terms, and then substitute the variables into an output pattern. This
matching process is subject to certain constraints that ensure reversibility. Moreover, a
rule may specify sub-rules that indicate how to transform knowledge of some variable,
e.g. b, to knowledge of another, e.g. b′, and is the primary mechanism of composition in ℵ.
Inherent to the semantics of the calculus is a secondary composition mechanism, which
was the only mechanism available in an earlier iteration of this calculus (see Section V.8):
composite terms at any level are all subject to the same transition rules. This behaviour
is more reminiscent of functional programming languages, but is somewhat clumsy in
practice; nevertheless it is not without utility in ℵ—in particular, it is well suited for
when a continuation-passing style approach is favoured. The sub-rule mechanism, on
the other hand, is more reminiscent of declarative programming languages.

When there is no matched rule, such as in Listing V.2c, this simply means that there
is no successor state and so computation cannot continue. It is in fact very similar in
nature to the case when computation succeeds, as then we obtain a term which has
a predecessor state via some rule, but lacks a rule to generate a successor state. To
properly distinguish these two conditions, we must explicitly mark ‘true’ halting states;
for addition, this is written as

! + (); ! () +;

where ! (‘bang’) indicates that any term of the specified forms is a valid computational
output. The former corresponds to the output of a subtraction, and the latter to the
output of an addition. This subtlety is further contextualised by Figure III.2.

We conclude this first example by alluding to a possible molecular implementation,
as depicted in Figure V.3. Here we see the importance of ℵ being interpretable as a
term-rewriting system, as the entirety of the state of the computation must be encoded
within a single macromolecule (or molecular complex). Strictly speaking, this is not a
requirement as DNA Strand Displacement systems [19] achieve computation without
this requirement; in payment for this, though, the entire reaction volume is dedicated
to the same (typically analogue) program. The precise mechanism of the reactions is
omitted from the figure, instead expressing the model as an abstract chemical reaction
network. Finding possible reaction mechanisms to implement ℵ, or similar calculi, in
real chemical systems will be the subject of future work. Whilst the abstract molecular
formalism is attractive form an explanatory perspective, ℵ provides a more concise
formalism that is also easier to manipulate and to explicate its semantics.
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Squaring Eliminating redundancy in the definition of addition yielded its inverse
for free, but one may still object that the additional output is ‘garbage’ and not of any
utility. What will happen if one uses this addition subroutine many times in a larger
program? Naively we may expect this garbage to accumulate, requiring either active
dissipation of the additional entropy or the application of Bennett’s algorithm to clean
it up. In fact, by retraining one’s thought process from the irreversible programming
paradigm to the reversible paradigm, it is often possible to make use of this garbage
data. We demonstrate this with the example of finding the square of a natural number.
The candidate function, □ : n↔ n2, is an injection and so clearly meets our requirement
of partial bijection. Therefore, we have good reason to believe that it is possible to
implement it. The obvious approach of using multiplication will not work because its
reversible embedding will take a form not dissimilar to × : (m,n)↔ (m,m · n), and so
would yield □ : n↔ (n, n2). Whilst this suffices for realising the square of a number, it
retains too much redundancy in its outputs.

Often a helpful tactic is to consider an inductive approach. For the square numbers
this is encapsulated by (n+ 1)2 − n2 = 2n+ 1, from which can be obtained the identity
n2 ≡

∑n−1
k=0 2k + 1. Again, we need to be clever: in order to achieve our desired (partial)

bijection, we need to completely consume our input value of n. This can be done by
evaluating the sum in reverse. Instantiate a new variable, m = 0; as m is set to a known
value, this is reversible. Then, perform the following loop until n reaches 0: decrement n,
add 2n+1 to m, repeat. At the end of this loop, n will have reached a unique value (and
can thus be reversibly destroyed) and m will have been set to the square of the original
value of n. In addition, this can be implemented with our addition subroutine in two
steps, by adding n twice to m (retaining the value of n) and finally incrementing m. This
is implemented in ℵ in Listing V.4, and the example of squaring 3 (equivalently, taking
the square root of 9) is presented in Listing V.5.

V.3. by Example 2: Parallelism & Concurrency
Having introduced the essence of ℵ in the previous section, we now dive deeper into
some more advanced features and examples of ℵ.

Sugar To reduce boilerplate and increase clarity in longer programs, it is helpful to
introduce some syntactic sugar (shorthands). More sugar will be introduced later for the
definition of the programming language alethe (which is really just sugared ℵ), but for
now only a light sprinkling is required.

Many rules take the rote form

! f x1 x2 · · · xm (); ! () y1 y2 · · · yn f ;
f x1 x2 · · · xm () = () y1 y2 · · · yn f :

· · ·
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! □ (); ! () □;

□ n () = □ n Z □; (SQUARE–INIT)

□ Z m □ = ()m □; (SQUARE–TERM)

□ (Sn)m □ = □ n (Sm′′) □: (SQUARE–STEP)

+ n m () = () n m′ +. (SQUARE–STEP–SUB1)

+ n m′ () = () n m′′ +. (SQUARE–STEP–SUB2)

(a) The definition of □ in ℵ.

(b) The definition of □ in the abstract molecular formalism introduced in Figure V.3. The dashed lines
indicate that there exists a term matching both patterns, and this is characteristic of conditionals and looping
in ℵ. Note that computation remains unambiguous and deterministic: by Figure III.2, each intermediate
state has both a predecessor and a successor, and of the two matching patterns one will correspond to the
reverse direction and one to the forward direction. For example, in the middle of a loop one may encounter
the intermediate species □ 2 5 □ and this term matches both the patterns □ (Sn)m □ and □ n (Sm′′) □,
but if it matches the former the computation will proceed forward whilst if the latter the computation will
proceed backward. It will be shown later how the semantics keep track of this, and how we ensure the
program really is unambiguous.

Listing V.4: A reversible definition of squaring of natural numbers, □ : n↔ n2, both in ℵ and in
an abstract molecular formalism.

130



V.3. ℵ by Example 2: Parallelism & Concurrency

! □ 3 ()↭ {n : 3}↭□ 3 Z □ · · · (SQUARE–INIT)

· · · □ 3 Z □↭ {n : 2,m : Z} (SQUARE–STEP)

+ 2 Z ()↔ () 2 2 + (SQUARE–STEP–SUB1)

{n : 2,m′ : 2} checkpoint

+ 2 2 ()↔ () 2 4 + (SQUARE–STEP–SUB2)

{n : 2,m′′ : 4}↭□ 2 5 □ · · · (SQUARE–STEP)

· · · □ 2 5 □↭ {n : 1,m : 5} (SQUARE–STEP)

+ 1 5 ()↔ () 1 6 + (SQUARE–STEP–SUB1)

{n : 1,m′ : 6} checkpoint

+ 1 6 ()↔ () 1 7 + (SQUARE–STEP–SUB2)

{n : 1,m′′ : 7}↭□ 1 8 □ · · · (SQUARE–STEP)

· · · □ 1 8 □↭ {n : Z,m : 8} (SQUARE–STEP)

+ Z 8 ()↔ () Z 8 + (SQUARE–STEP–SUB1)

{n : Z,m′ : 8} checkpoint

+ Z 8 ()↔ () Z 8 + (SQUARE–STEP–SUB2)

{n : Z,m′′ : 8}↭□ Z 9 □ · · · (SQUARE–STEP)

· · · □ Z 9 □↭ {m : 9}↭ () 9 □ ! (SQUARE–TERM)

! □ 3 ()↔ □ 3 Z □↔ □ 2 5 □↔ □ 1 8 □↔ □ Z 9 □↔ () 9 □ !

Listing V.5: An example application of the □ definition from Listing V.4.

131



V. The ℵ-Calculus

which we can abbreviate with an infix form as

x1 x2 · · · xm ‵f ‵ y1 y2 · · · yn:
· · ·

where the halting patterns are implied. In the special case of f a single symbol, such as
+, × or □, we omit the backticks and write, e.g., 4 3 + 4 7. Note that, if f is a composite
term, then we additionally assert ! f .

We have already seen sugar for numeric data, e.g. 4 ≡ S(S(S(SZ))). Another com-
mon data type is that of lists. As is standard in the functional world, we opt for
singly linked lists implemented as composite pairs. If CONS x y represents the pair
(x, y) and NIL the empty list, then the list [5 2 4 3] has corresponding representation
CONS 5 (CONS 2 (CONS 4 (CONS 3 NIL))). We also introduce sugar for matching on a
partial prefix of a list, i.e. [x y · z/s] corresponds to CONS x (CONS y z/s).

Parallelism With this sugar thus defined, we can rewrite the somewhat clumsy defini-
tion of recursively mapping a function f over a list,

! MAP ; ! (MAP ) (); ! () (MAP );

(MAP f) NIL () = () NIL (MAP f);

(MAP f) (CONS x x/s) () = () (CONS y y/s) (MAP f):

f x () = () y f.

(MAP f) x/s () = () y/s (MAP f).

more concisely and clearly as

[] ‵MAP f ‵ [];

[x · x/s] ‵MAP f ‵ [y · y/s]:
x ‵f ‵ y.

x/s ‵MAP f ‵ y/s.

Notice that the order in which the sub-rules are executed does not make a difference
to the final result, due to referential transparency; in fact ℵ, being declarative, does not
ascribe any importance to the ordering of the statements. Moreover, should a rule not be
necessary for the final computation (or if there are multiple routes to the answer) then
that rule will not necessarily be executed. A rule may even be evaluated more than once;
for example, Bennett’s algorithm may be implemented as

x ‵BENNETT f ‵ x y:

x ‵f ‵ garbage y.

wherein the function f will be evaluated once in the forward direction, its output y
will be copied, and then f will be evaluated again in the reverse direction to consume
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the garbage. This arbitrarity in rule ordering and execution is important to its ability
to operate in a stochastic system such as a molecular context, although in practice a
compilation pass that chooses and enforces an optimal execution plan is important for
efficiency.

The implicit duplication of variables that may occur means that one possible interpret-
ation of MAP is

[] ‵MAP f ‵ [];

[x · x/s] ‵MAP f ‵ [y · y/s]:
‵DUP f ‵ f ′.

x ‵f ‵ y.

x/s ‵MAP f ′‵ y/s.

from which we can see that not only is the order of the sub-rules arbitrary, but that they
can be evaluated in parallel as the following example makes clear:

! (MAP □) [3 5 8] ()↭ {f : □, x : 3, f ′ : □, x/s : [5 8]}

□ 3 () = () 9 □ (MAP □) [5 8] () = () [25 64] (MAP □)

{f : □, y : 9, f ′ : □, y/s : [25 64]}↭ () [9 25 64] (MAP □) !

There remains a subtle point to be made: variables can be implicitly duplicated if
they are used by multiple rules, but there is then a contract made with these rules that
they really do return the variable unchanged. It is not possible to ensure this statically,
however, and so it is entirely possible that the copies of some variable may diverge.
In this case, running DUP in reverse will fail, and hence computation will stall. If
duplication is not used, then computation will occur linearly and the changed value may
be fed into subsequent rules unnoticed. In this case, computation may run to completion
but yield an incorrect result due to the logic error.

Sorting A larger example program, which is capable of sorting a list using an arbitrary
comparison function, is presented in Listing V.6. Whilst of poor algorithmic complexity,
insertion sort is employed for simplicity. A more efficient implementation using merge
sort is available in the accompanying standard library1. Clearly sorting is an irreversible
process, as its purpose is to discard information regarding the original ordering of the
list. The presented sorting algorithm puts a little effort towards increasing the utility
of the garbage, in that the garbage data is a list saying where the original list item was
placed into the sorted list at the moment of insertion. The insertion sort included in the
standard library (Listing V.7) applies some additional processing to make this garbage
data correspond to the permutation that maps the original list to the sorted list.

1https://github.com/hannah-earley/alethe-examples.
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FALSE ‵NOT‵ TRUE;

TRUE ‵NOT‵ FALSE;

‵< m Z‵ FALSE;
‵< Z (S n)‵ TRUE;
‵< (S m) (S n)‵ b:

‵< m n‵ b.

‵≤m n‵ b′:
‵< n m‵ b. b ‵NOT‵ b′.

‵> m n‵ b:
‵< n m‵ b.

‵≥m n‵ b′:
‵< m n‵ b. b ‵NOT‵ b′.

! ‵INSERTIONSORT p‵ ;

(INSERTIONSORT p) x/s () = IS p x/s [] [] IS;

IS p [x · x/s] n/s y/s IS = IS p x/s [n · n/s] z/s IS:

x y/s ‵INSERT p‵ n z/s.
IS p [] n/s y/s IS = () n/s y/s (INSERTIONSORT p);

x [] ‵INSERT p‵ Z [x];

x [y · y/s] ‵INSERT p‵ n [z z′ · z/s]:
‵p x y‵ b.

x [y · y/s] b ‵INSERT’ p‵ n [z z′ · z/s].

x [y · y/s] TRUE ‵INSERT’ p‵ Z [x y · y/s];
x [y · y/s] FALSE ‵INSERT’ p‵ (S n) [y · z/s]:

x y/s ‵INSERT p‵ n z/s.

[3 2 0 7 6 4 5 1] ‵INSERTIONSORT <‵ [1 4 3 3 3 0 0 0] [0 1 2 3 4 5 6 7].

[3 2 0 7 6 4 5 1] ‵INSERTIONSORT ≥‵ ︸ ︷︷ ︸
garbage

[6 2 2 1 0 2 1 0] [7 6 5 4 3 2 1 0].

Listing V.6: An ℵ implementation of the comparison operators <, ≤, > and ≥, and of insertion
sort that can make use of these comparison operators. Lastly, the list [3 2 0 7 6 4 5 1] is sorted into
both ascending and descending order.

x/s ‵INSERTIONSORT p‵ n/s′ y/s:
n/s ‵REVERSE‵ n/s′. -- list reversal

! ∼GO p x/s [] [] = ∼GO p x/s [n · n/s] y/s′.
∼GO p [x · x/s] n/s y/s = ∼GO p x/s [n · n/s′] y/s′:

x y/s ‵INSERT p‵ n y/s′.
n/s ‵MAP (IS1 n)

‵ n/s′.

m ‵IS1 n
‵ m′:

‵< m n‵ b.
‵< m′ n‵ b.

m ‵IS2 b
‵ m′.

m ‵IS2 TRUE‵ m;

m ‵IS2 FALSE‵ (Sm);

[77 2 42 68 41 36 8 36] ‵INSERTIONSORT <‵ [7 0 5 6 4 2 1 3] [2 8 36 36 41 42 68 77].

Listing V.7: The alethe implementation of insertion sort from the standard library. In contrast to
the implementation in Listing V.6, this definition yields more useful ‘garbage’ data in that n/s′
contains the permutation which maps x/s to y/s, as shown in the boxed example. Specifically, this
corresponds to the following permutation (in standard notation):( 0 1 2 3 4 5 6 7

7 0 5 6 4 2 1 3

)
.
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Concurrency In addition to automatic parallelisation of independent sub-rules, ℵ also
supports defining transitions between separate terms. The motivation for this is for ℵ to
be able to fully exploit molecular architectures, but its utility is general and it is intended
that a future version of the alethe interpreter will support concurrency.

Biasing Computation In Figure V.3 and Listing V.4b, abstract molecular implement-
ations of addition and squaring were introduced respectively. Notably, the reaction
arrows—whilst reversible—were biased in the forward direction. From a thermody-
namic perspective, the direction in which a reaction occurs cannot be specified in an
absolute sense, and depends on the conditions of the reaction volume at a given point in
time. Moreover, at equilibrium the net direction of each reaction is null: they make no
net progress. These concerns were discussed in more detail in Chapter II, but suffice it
to say that trying to arrange the conditions of the system such that the computational
terms themselves are inherently biased is impracticable, and will also limit the number
of transition steps that can be executed. Moreover, it makes it difficult to run sub-rules
in a reverse direction (such as is needed for Bennett’s algorithm).

The solution is to separate the concerns of computation and biasing said computation.
In biochemical systems, this is (mostly) achieved by using a common free energy carrier
in the form of ATP and ADP + Pi, which are held in disequilibrium such that the
favourable reaction direction is ATP + H2O ↽−−−⇀ ADP + Pi + H+. Other biochemical
reactions are then coupled to one or more copies of this hydrolysis reaction. For our
purposes, we generalise this to assume that free energy is available in the form of two
terms ⊕ and ⊖, where the concentration of ⊕ in the reaction volume is greater than that
of ⊖. The ‘computational bias’ quantifying the average net proportion of computational
transitions that are successful is found to be b = ([⊕]− [⊖])/([⊕] + [⊖]).

With a bias system thus defined, we can couple any computational transition to it by
simply having the input side consume a ⊕ term and the output side release a ⊖ term.
The more transitions that couple to the bias source, the faster and more robustly the
computation proceeds. For example, the square definition can be amended like so:

! □ (); ! () □;{⊕
□ n ()

}
=

{⊖
□ n Z □

}
; (SQUARE–INIT)

{⊕
□ Z m □

}
=

{⊖
()m □

}
; (SQUARE–TERM)

{⊕
□ (Sn)m □

}
=

{⊖
□ n (Sm′′) □

}
: (SQUARE–STEP)

+ n m () = () n m′ +. (SQUARE–STEP–SUB1)

+ n m′ () = () n m′′ +. (SQUARE–STEP–SUB2)

The braces indicate that these definitions are concurrent, in that the transition will draw
(release) two terms from (into) the reaction volume. As written above, the scheme is
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fairly basic in that it only drives computation in one direction. An improved scheme
may make use of a hidden variable in each term to indicate its preferred direction of
computation. If this direction is reversed, then the transition will instead draw a ⊖ term
and release a ⊕ term. If a sub-rule then needs to be run in the opposite direction to its
parent, then the hidden variable need simply be inverted. This scheme can be made even
more sophisticated by allowing the hidden variable to refer to alternate bias sources in
case there are multiple to which the transition could couple (as was recommended in
Chapters III and IV).

Communication A more canonical application of concurrency is that of communication
between different computers. There are many possible communication schemes, and an
overview and analysis of schemes appropriate for Brownian computers was presented
in Chapter III, but we shall consider the simple example of an open communication
channel between two computers, ALICE and BOB. ALICE has a list, the contents of which
she wishes to send to BOB. A naive approach to this may resemble the ℵ definition

ALICE [x · x/s] =
{ALICE x/s

COURIER x

}
;

{BOB y/s
COURIER y

}
= BOB [y · y/s];

where the COURIER terms are used to convey list items between the two computers.
Unfortunately, this does not quite realise the desired behaviour in a Brownian con-
text: Suppose ALICE starts with the list [1 2 3 4 5]. She will generate the courier terms
(COURIER 1), (COURIER 2), . . . , (COURIER 5), as expected, but these terms will be de-
lievered to BOB via a diffusive approach. Except for the case of a one-dimensional
system, BOB will almost certainly receive these couriers in a random order, completely
uncorrelated from the original order. This may be avoided if delivery over the channel
is substantially faster than the rates of term fission/fusion reactions, but this is not likely
in a chemical system. Moreover, this being a reversible Brownian system, ALICE will
from time to time re-absorb a courier that she previously dispatched, thereby increasing
the opportunity for the list order to be shuffled.

The take-home message, here, is that whilst the local dynamics of a concurrent re-
versible computation system—such as ℵ—may well be reversible, the global dynamics
are not necessarily reversible. In fact, this is a common property of microscopically
reversibly systems, and is the basis of thermodynamics: the manifestation of macroscop-
ically irreversible dynamics from microscopically reversible physics. It is doubtful that
a model of concurrent reversible programming could preclude the possibility of such
increases in entropy without severely restricting the system: likely any attempt to do so
would effectively prevent the use of concurrency. Nevertheless, the programmer has a
high degree of control here and so can, in principle, avoid entropy generation except
where desired. In the above case of sending an ordered list, one could for example
explicitly sequence the couriers. This suggests that a system of reversible molecular
computers could have exceptionally low entropy generation and could realise very
strange behaviours by getting as close to the implementation of a Maxwell Dæmon as
physics allows. Conversely, one is also free to exploit the thermodynamic properties of
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the system; for example, one could realise (to the extent the laws of physics permit) a
true random number generator.

Resources Our last example of concurrency concerns the distribution of conserved
resources amongst computers. If our computers are to respect the reversibility of the
laws of physics, they should also respect mass conservation and so will need to contend
with their finity. Amorphous computing presents one approach to achieving powerful
computation from limited computational subunits, but it does so by making extensive
use of communication which precludes the ability to perform meaningfully reversible
computation. We instead suppose that the computers can exchange resources, such as
memory units and structural building blocks, with the environment. Whilst this also has
thermodynamic consequences, as shown in Chapter IV, it at least separates the concerns
of computation from resource access and thus preserves the ability to perform reversible
computation.

A host of resource distribution schemes, and thermodynamic analyses thereof, were
presented in Chapter IV, but we content ourselves here with demonstrating how com-
puters may interact with resources free in solution. In particular, we amend the definition
of addition to be mass-conserving:

+ Z b () = () Z b +; (ADD–BASE){S

+ (Sa) b ()

}
= () (Sa) (Sb′) +: (ADD–STEP)

+ a b () = () a b′ +. (ADD–STEP–SUB)

Effects and Contexts As briefly mentioned, composite terms are subject to the same
transition rules. Suppose LENA is learning ℵ and experiments with this, creating the
following trivial wrapper around □:

! ‵MYSQUARE‵ ;

MYSQUARE n () = MYSQUARE (□ n ()) MYSQUARE;

MYSQUARE (()m □) MYSQUARE = MYSQUARE m ();

This definition, if a little contrived, will function as intended. Suppose, now, that she
wants to inspect what happens within the loop of □, and so writes the following:

! ‵MYSQUARE’‵ ;

MYSQUARE’ n m () = MYSQUARE’ (□ n m □) MYSQUARE’;

MYSQUARE’ (□ n′ m′ □) MYSQUARE’ = MYSQUARE’ n′ m′ ();

Now, what happens if we instantiate the term MYSQUARE’ 3 Z ()? Well, the final term
could be any of () 3 Z MYSQUARE’, () 2 5 MYSQUARE’, () 1 8 MYSQUARE’ or () Z 9 MYSQUARE’.
Whilst this arguably achieves LENA’s aim of inspecting the execution of □, there is a
problem in that ℵ claims all of these terms are halting states yet Figure III.2 asserts there
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should be a maximum of two halting states. Despite being contrived, this example
shows that we need to introduce another constraint into ℵ to prevent unexpected en-
tropy generation: Any composite term or sub-term can only be created in a halting state,
and can only be consumed in a halting state. Moreover, the creation and consumption
patterns must be unambiguous as to which of the term’s two halting states they refer (if,
indeed, there are two). Otherwise, each instance of this ambiguity would multiply the
state space and thus there would be an exponential increase in the size of the state space
over time.

With the constraint on composite terms clarified, one can then ask whether all terms
must follow the same set of rules. It turns out there is an important case where distin-
guishing between composite terms and top-level terms is useful; specifically, some cases
of effectful computation. Suppose that the reaction volume has been endowed with a
spatial lattice along which terms can travel, and imagine a term (CONS CHARLIE DAN)
with such a wanderlust. If the composite terms CHARLIE and DAN want to travel to
different locations, then where will the term end up? It is likely that a tug-of-war will
occur, and so it makes sense to restrict the effecting of translocation to top-level terms.

This distinction is achieved by introducing term contexts: a top-level term has a
top-level context, which is some label (itself a term) that may contain information, whilst
composite terms have ‘one-hole contexts’. For example, a term attached to a lattice may
have context LATTICE while a term free in solution might have context FREE. Concretely,
the aforementioned tug-of-war may be resolved by giving CHARLIE control by making
him the top-level term, rendered as LATTICE : CHARLIE (DAN). Meanwhile, DAN is
rendered as (LATTICE : (CHARLIE •)) : DAN where • indicates that this is a one-hole
context. One-hole contexts can be defined for many data structures, but for a tree they
correspond to removing some sub-tree of interest, replacing it with a ‘hole’; see McBride
[91] for some interesting properties of one-hole contexts. Rules may pattern match on
top-level contexts and thus consume the information held within, or even create and
destroy top-level terms, but they cannot match on one-hole contexts as this would risk
altering their structure; instead, one-hole contexts can only be matched by ‘opaque
variables’. An opaque variable is a special variable found only in context patterns, which
can match against a top-level context or a one-hole context, whilst regular variables in
a context pattern can only match against top-level contexts. That is, the following are
allowed {

LATTICE : CHARLIE x
}
=

{LATTICE : CHARLIE ()

FREE : x

}
;

{
γ : DAN [DAN’S STUFF]

}
=

{ γ : DAN

LATTICE : [DAN’S STUFF]

}
;

whilst this is not{
(LATTICE : (c •)) : DAN

}
=

{
(LATTICE : (• DAN)) : c

}
;

This is not too onerous a restriction, as if one wishes to manipulate the structure of the
one-hole context one can simply match against a higher level context.
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In the earlier ℵ definitions, contexts were missing from the rule patterns. This can be
seen as another example of syntactic sugar, with a missing context implying an opaque
variable context (i.e. γ :) such that the rule can match against any term at any level.
For concurrent definitions, however, all participating terms must be contextualised as
otherwise it is unclear how to assign the results to the bound one-hole contexts.

It is as yet unclear how translocation along a lattice, or other effects, is actually
achieved. Typically effects will be introduced as additional computational primitives, as
by definition their actions are not ‘computational’. As these computational primitives
must be instantiated as top-level terms, we require a way to interface between computa-
tional terms and effector terms and this warrants a continuation-passing-style approach.
For example, walking along a lattice from coordinate α to coordinate β may be realised
thus:

! CHARLIE′ ; ! CHARLIE′′ ;{
LATT : CHARLIE β x

}
=

{
LATT : WALK β (CHARLIE′ x)

}
;

(primitive)
{

LATT : WALK β c
}
↔

{
LATT : WALK′ α c

}
;{

LATT : WALK′ α (CHARLIE′′ x)
}
=

{
LATT : CHARLIE′′′ α x

}
;

That is, WALK is given a coordinate to travel to as well as a continuation (which is free
to perform additional computation during the walk, if desired). WALK then replaces
the destination coordinate with the origin coordinate to ensure reversibility. Finally, we
define a transition from WALK′ in order to return control to the continuation. This reveals
a subtle point, that the effectful primitives are intentionally not marked as halting so
that control can be transferred to and fro’ them.

V.4. The Calculus
The ℵ-calculus thus introduced has a very simple definition. In BNF notation, it is

(PATTERN TERM) τ ::= ATOM | VAR | ( τ∗ )
(PARTY) π ::= τ : τ∗ | VAR′ : τ∗

(DEFINITION) δ ::= {π∗} = {π∗} : π.∗ | ! τ

where ATOM is an infinite set of atomic symbols (conventionally starting with an upper-
case letter or a symbol), VAR an infinite set of variables (conventionally starting with
a lowercase letter), and VAR′ is an orthogonal infinite set of variables (conventionally
rendered in Greek) used for opaquely matching one-hole-contexts. A program is a series
of definitions, δ∗, and a physical term is simply a pattern term without variables. Notice
that the form of the sub-rules differs from the examples: a sub-rule can be separated
into the instantiation of a term according to an input pattern, the evolution of that term,
followed finally by the consumption of its final halting state according to the output
pattern. In this view, these sub-terms are identified by one-hole-contexts—specifically,
opaque variables. This formulation not only allows the semantics to represent automatic
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parallelisation and a non-deterministic sub-rule ordering, but also begets an additional
feature whereby sub-rules can instantiate top-level terms. The sub-rule forms in the
examples can then be seen as sugar, i.e. s = t. is equivalent to λ : s. λ : t. where λ ∈ VAR′

is a fresh opaque variable. To illustrate, recall the definition of natural addition from
Listing V.2a; desugared, this takes the form

1. ! + a b ();

2. ! () a b +;

3. {α : + Z b ()} = {α : () Z b +}; (ADD–BASE)

4. {α : + (Sa) b ()} = {α : () (Sa) (Sb′) +}: (ADD–STEP)

4a.

4b.

β : + a b ().

β : () a b′ +.
(ADD–STEP–SUB)

That is, there are four definitions: two ‘halting’, and two ‘computational’. On the left side
of definition 4, we have a bag of one party. This party has as context pattern the opaque
variable α, and its pattern term is a composite pattern term of length 4, consisting of the
atom +, the composite pattern term of length 2 consisting of the atom S and the variable
a, the variable b, and the empty composite pattern term (‘unit’). There is also an opaque
variable β, confined to the inner scope of definition 4. During execution of the sub-rule
in the forward direction, the variables a and b will first be consumed in order to generate
the sub-term + a b (), which will be bound to the opaque variable β. This sub-term will
then evolve to its other halting state, whereupon it will match sub-rule 4b and thus β
will be consumed and the variables a and b′ obtained.

Semantics To formalise the semantics embodied in the preceding examples, we define
a transition relation↔ that maps a bag of terms to another bag of terms according to the
rules defined for the current program. By a bag of terms, we aim to evoke the notion
of a concoction of computational molecules in solution; a bag is a multiset, which can
contain multiple copies of elements, but unlike a physical solution it lacks a concept
of space. If desired, spatial locations can be readily simulated by appropriately chosen
top-level contexts. Recalling that the global dynamics of the system are irreversible, we
should expect that↔ is a non-deterministic relation. That is, application of the relation
to a set of possible bags of terms may increase the size of this set, and the logarithm of
the set size is identified with the entropy of the system. Concretely, the set of bags is the
macrostate of the system, and each bag within the set is a microstate.

The calculus being reversible, the relation should share properties with equivalence
relations. Namely, if S, T, U are bags of terms, then we have

S ↔ S (REFL)

S ↔ T =⇒ T ↔ S (SYMM)

S ↔ T ∧ T ↔ U =⇒ S ↔ U (TRANS)

but we also make clear that these transitions can occur within an environment of other
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non-participating terms, Γ,

S ↔ T =⇒ ∀Γ. Γ ∪ S ↔ Γ ∪ T (EXT)

s↔ t =⇒ ∀Γ. Γ ∪ {s} ↔ Γ ∪ {t} (EXT′)

where the second rule, in which s and t are single terms rather than bags of terms, is
introduced as a convenient abuse of notation for later definitions.

In order to physically effect rule transitions, we introduce ‘mediator terms’ delimited
by angle brackets, which interact with computational terms and can represent each of
the intermediate states. If the program is given by P , then the mechanism by which
these mediator terms come into and out of existence is as follows,

P ⊢ (I = O : R) =⇒ {} ↔ {⟨I∅∅R∅O⟩} (INST–COMP)

P ⊢ (! τ) =⇒ {} ↔ {⟨τ⟩} (INST–HALT)

from which we see that the environment can contain an arbitrary number of copies of
each2. The mediator terms for computational rules are sextuples ⟨II ′BRΓO⟩ consisting
of, respectively, the bag of unmatched input patterns I , the bag of matched input patterns
I ′, the bag of resultant bindings B, the bag of sub-rules R, the local environment for
internal sub-rules Γ, and the bag of output patterns O. The mediator terms for halting
rules are trivial singletons ⟨τ⟩ containing the relevant pattern, τ .

To assist rules in binding composite terms, we permit the current focus of a term to
vary over time,

c : (⃗l t r⃗)↔ (c : (⃗l • r⃗)) : t (OHC1)

c : [⃗l t r⃗]↔ (c : [⃗l • r⃗]) : t (OHC2)

where l⃗ and r⃗ are (possibly empty) strings of terms and t is the term focus. The bracketed
terms in the second rule will be explained shortly. Note that these one-hole-context rules
may not be needed for all architectures, being implicitly true in a molecular architecture
for example.

The action of halting mediators is simply to mark terms which are in a known halting
state,

∃b′. t τ∼ b′ =⇒ {x : t, ⟨τ⟩} ↔ {x : [t], ⟨τ⟩} (TERM)

with [t] serving as an indicator of a halting state and where t τ∼ b′ means that t unifies
against τ with bindings b′ (see Listing V.9).

Computational mediators are somewhat more complicated. We first render their
temporal symmetry manifest by two reversibility rules,

⟨I∅∅R∅O⟩ ↔ ⟨O∅∅R∅I⟩ (REV1)

⟨∅IBRΓO⟩ ↔ ⟨∅OBRΓI⟩ (REV2)

2This complicates the aforementioned entropic interpretation of sets of term-bags, as the entropy will tend
to diverge as the number of mediator terms tends to infinity. A more realistic implementation would
leave the mean number of extant mediator terms finite and bounded, and perhaps even fix the number.
This would have a further consequence on the kinetics and thermodynamics of the system, with the
well-characterised Michælis-Menten kinetics a good starting point to the analysis thereof.
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where these rules will be seen to be necessary even for computation in a single direction.
Applying a computational rule consists first of binding against a matching term for each
input pattern, followed by substituting the bindings into sub-terms per the sub-rules.
The sub-terms may either be top-level or local. These transitions may all occur in parallel,
i.e. a sub-term may be instantiated if all of its requisite variables are bound, even if not
all the input patterns have matched a term.

x : t
π∼ b =⇒ (INP)

{x : t, ⟨(I ∪ {π})I ′BRΓO⟩ ↔ {⟨I(I ′ ∪ {π})(B ∪ b)RΓO⟩}

π ∈ R ∧ x : t
π∼ b =⇒ (SUB1)

⟨II ′(B ∪ b)RΓO⟩ ↔ ⟨II ′BR(Γ ∪ {x : [t]})O⟩
x /∈ VAR′ =⇒ (SUB2)

{⟨II ′BR(Γ ∪ {x : [t]})O⟩} ↔ {x : [t], ⟨II ′BSΓO⟩}

where x is a context. The (SUB2) transition enables top-level terms to escape the loc-
ally scoped environment. Completion of computation occurs by application of (REV2)
followed by the (INP) and (SUB1,2) in reverse; clearly if there is no route from the set of
input variables to the set of output variables then the computation will stall. It may be
desirable to augment the transition rules with implicit variable duplication,

⟨II ′(B ∪ {b})RΓO⟩ ↔ ⟨II ′(B ∪ {b, b})RΓO⟩ (DUP)

otherwise rules which wish to increase their parallelisability should explicitly duplicate
variables as needed. We shall also need to enable the sub-environment to evolve,

Γ↔ Γ′ =⇒ ⟨II ′BRΓO⟩ ↔ ⟨II ′BRΓ′O⟩ (SUB3)

These semantics, encapsulated by the↔ transition rule, are summarised in Listing V.8.
An example of their application is provided in Listing V.10. It remains to describe the
operation of binding/unification. This operation is defined as one would expect: a
pattern matches if it is a variable, if it is an atom and the term is the same atom, or if it is
a composite pattern and the term is a halting composite term of the same length and if
the pattern and term match pair-wise. This is summarised in Listing V.9.

Reversibility The (SYMM) transition renders the semantics trivially reversible, but this
is fairly weak. We conclude the discussion of the semantics of ℵ by proving that the
semantics are microscopically reversible.

Definition V.1 (Microscopic Reversibility). A transition is primitively microscopically
reversible if it is a uniquely invertible structural rearrangement. A transition is micro-
scopically reversible if it is decomposable into a series of primitively microscopically
reversible transitions.

Theorem V.2. The semantics of ℵ are microscopically reversible.
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Proof. The rules (REFL,SYMM,TRANS,EXT,EXT′,TERM,REV1,REV2,SUB3) are microscopically
reversible either trivially or inductively.

The instantiation rules (INST–COMP,INST–HALT) are less obvious, but can be realised in
a microscopically reversible fashion in much the same way that cells translate an mRNA
template to a polypeptide product. We shall first need a microscopically reversible
way to duplicate a term, for which we assume that the environment contains an excess
of structural building blocks (i.e. free atoms, variables, units (), etc). A term t to be
duplicated is first marked as such i.e. t 7→ t. These modified terms deviate from the
definitions introduced at the beginning of this section, and are instead intermediate
transitional structures used for the small-step microscopically reversible semantics
described here. This marking is then propagated throughout the structure to all atoms,
variables, and units by the following two microscopically reversible transitions:

γ : t↔ γ : t (DUP–PROP1)

(x x⃗/s)↔ (x̂ x⃗/s) (DUP–PROP2)

(x⃗/s x̂ y y⃗/s)↔ (x⃗/s x ŷ y⃗/s) (DUP–PROP3)

where rules (DUP–PROP2,3) are used to distribute the marking throughout composite
terms. Note the use of the auxiliary ‘hat’ marker ·̂ to sequence this propagation in a
microscopically reversible manner. Elementary terms thus marked recruit fresh copies
of themselves from the free structural building blocks,

a
↔ a

a u
↔ u

u v
↔ v

v ()
↔ ()

()
(DUP–FRESH)

where a ∈ ATOM, u ∈ VAR and v ∈ VAR′, and where the drawing of a fresh copy from the
environment is implicit. These are then ligated together (in a prescribed right-to-left
order to ensure microscopic reversibility), and the composite structure disentangled,(

s⃗
t

t

u⃗

u⃗

)
↔

(
s⃗
t u⃗

t u⃗

)
(DUP–LIG1)

( t⃗
t⃗

)
↔ (⃗t)

(⃗t)
(DUP–TOPO1){

s⃗
t

t

u⃗

u⃗

}
↔

{
s⃗
t u⃗

t u⃗

}
(DUP–LIG2)

{ π⃗
π⃗

}
↔ {π⃗}
{π⃗}

(DUP–TOPO2)

γ

γ
:
t

t
↔ γ : t

γ : t
(DUP–TOPO3)

finally resulting in a fully duplicated and disentangled structure t
t from t for t any

term, party, or party-bag. Finally, the instantiation rules can be realised microscopically
reversibly thus,

(I = O : S)↔ (I = O : S) (INST–COMP1){(I
I
=
O

O
:
S

S

)}
↔ {(I = O : S), ⟨I∅∅S∅O⟩} (INST–COMP2)

(! τ)↔ (! τ) (INST–HALT1){(
!
τ

τ

)}
↔ {(! τ), ⟨τ⟩} (INST–HALT2)
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S ↔ S (REFL)

S ↔ T =⇒ T ↔ S (SYMM)

S ↔ T ∧ T ↔ U =⇒ S ↔ U (TRANS)

S ↔ T =⇒ ∀Γ. Γ ∪ S ↔ Γ ∪ T (EXT)

s↔ t =⇒ ∀Γ. Γ ∪ {s} ↔ Γ ∪ {t} (EXT′)

P ⊢ (I = O : R) =⇒ {} ↔ {⟨I∅∅R∅O⟩} (INST–COMP)

P ⊢ (! τ) =⇒ {} ↔ {⟨τ⟩} (INST–HALT)

c : (⃗l t r⃗)↔ (c : (⃗l • r⃗)) : t (OHC1)

c : [⃗l t r⃗]↔ (c : [⃗l • r⃗]) : t (OHC2)

∃b′. t τ∼ b′ =⇒ {x : t, ⟨τ⟩} ↔ {x : [t], ⟨τ⟩} (TERM)

⟨I∅∅R∅O⟩ ↔ ⟨O∅∅R∅I⟩ (REV1)

⟨∅IBRΓO⟩ ↔ ⟨∅OBRΓI⟩ (REV2)

x : t
π∼ b =⇒ (INP)

{x : t, ⟨(I ∪ {π})I ′BRΓO⟩} ↔ {⟨I(I ′ ∪ {π})(B ∪ b)RΓO⟩}
π ∈ R ∧ x : t

π∼ b =⇒ (SUB1)

⟨II ′(B ∪ b)RΓO⟩ ↔ ⟨II ′BR(Γ ∪ {x : [t]})O⟩
x /∈ VAR′ =⇒ (SUB2)

{⟨II ′BR(Γ ∪ {x : [t]})O⟩ ↔ {x : [t], ⟨II ′BRΓO⟩}
Γ↔ Γ′ =⇒ ⟨II ′BRΓO⟩ ↔ ⟨II ′BRΓ′O⟩ (SUB3)

Listing V.8: Summary of ℵ semantics.

α ∈ ATOM

α
α∼ ∅

(UNIF–ATOM)
v ∈ VAR

t
v∼ {v 7→ t}

(UNIF–VAR)∧
i ti

πi∼ bi
[t1 · · · tn]

π1···πn∼
⋃

i bi
(UNIF–SUB)

λ ∈ VAR′ t
π∼ b

γ : t
λ:π∼ {λ 7→ γ} ∪ b

(UNIF–CTXT1)

γ
π1∼ b1 t

π2∼ b2

γ : t
π1:π2∼ b1 ∪ b2

(UNIF–CTXT2)

Listing V.9: Summary of unification semantics for ℵ.
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1. ! + a b ();

2. ! () a b +;

3. {α : + Z b ()} = {α : () Z b +}; (ADD–BASE)

4. {α : + (Sa) b ()} = {α : () (Sa) (Sb′) +}: (ADD–STEP)

4a.

4b.

β : + a b ().

β : () a b′ +.
(ADD–STEP–SUB)

(a) Desugared definition of reversible natural addition in ℵ. It will be convenient to make the definitions
I4 = {α : + (Sa) b ()}, O4 = {α : () (Sa) (Sb′) +} and R4 = {β : + a b (), β : () a b′ +}.

{():[+34()]}
P ⊢ !+ab() =⇒ ↔ {⟨+ab()⟩, ():[+34()]} (INST–HALT)

↔ {⟨+ab()⟩, ():(+34())} (TERM)

P ⊢ !+ab() =⇒ ↔ {():(+34())} (INST–HALT)

P ⊢ (I4 = O4 : R4) =⇒ ↔ {⟨I4∅∅R4∅O4⟩, ():(+34())} (INST–COMP)

():(+34())
α:+(Sa)b()∼ {· · ·} =⇒ ↔ {⟨∅I4{α 7→(), a7→2, b7→4}R4∅O4⟩} (INP)

· · · =⇒ ↔ {∅I4{α 7→()}R4{β:[+24()]}O4} (SUB1)

{β:[+24()]} ↔ {β:[()26+]} =⇒ ↔ {∅I4{α 7→()}R4{β:[()26+]}O4} (SUB3)

· · · =⇒ ↔ {⟨∅I4{α 7→(), a7→2, b′ 7→6}R4∅O4⟩} (SUB1)

↔ {⟨∅O4{α 7→(), a7→2, b′ 7→6}R4∅I4⟩} (REV2)

():(()37+)
α:()(Sa)(Sb′)+∼ {· · ·} =⇒ ↔ {⟨O4∅∅R4∅I4⟩, ():(()37+)} (INP)

↔ {⟨I4∅∅R4∅O4⟩, ():(()37+)} (REV1)

P ⊢ (I4 = O4 : R4) =⇒ ↔ {():(()37+)} (INST–COMP)

P ⊢ !()ab+ =⇒ ↔ {⟨()ab+⟩, ():(()37+)} (INST–HALT)

↔ {⟨()ab+⟩, ():[()37+]} (TERM)

P ⊢ !()ab+ =⇒ ↔ {():[()37+]} (INST–HALT)

(b) One possible derivation of () : [+ 3 4 ()] ↔ () : [() 3 7 +] using the semantics for ℵ.

Listing V.10: ℵ semantics as applied to the example of natural addition.
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The one-hole-context rules are nearly trivially microscopically reversible, except for
the choice of partition. This can be achieved by a movable marker like so,

c : (x x⃗/s)↔ c : Lx
ˆ
x⃗/sM (OHC11) c : [x x⃗/s]↔ c : Jx

ˆ
x⃗/sK (OHC21)

c : Lx⃗/s x
ˆ
y y⃗/sM↔ c : Lx⃗/s x y

ˆ
y⃗/sM (OHC12) c : Jx⃗/s x

ˆ
y y⃗/sK↔ c : Jx⃗/s x y

ˆ
y⃗/sK (OHC22)

c : Lℓ⃗ t
ˆ
r⃗M↔ (c : (ℓ⃗ • r⃗)) : t (OHC13) c : Jℓ⃗ t

ˆ
r⃗K↔ (c : [ℓ⃗ • r⃗]) : t (OHC23)

The rules (INP,SUB1,SUB2) require a microscopically reversible realisation of a bag
with random draws. In order to be microscopically reversible, the draw needs to be
deterministic at any given time, even if draws at different times are uncorrelated. This is
achieved by representing a bag as a string that can be shuffled via swap operations, i.e.

{x⃗/s · x y⃗/s} ↔ {x⃗/s x · y⃗/s} (BAG–SHUFF1)

{x⃗/s x · y y⃗/s} ↔ {x⃗/s y · x y⃗/s} (BAG–SHUFF2)

where · is the focus of the swap operation, required for microscopic reversibility. Random
draws are then implemented by simply picking the first element of the string.

The last rules to demonstrate microscopic reversibility for are the unification semantics.
We leave this as an exercise for the reader, with the hint that its realisation is similar to
that of the instantiation rules.

Computability The earlier examples give reasonable assurance that ℵ is Turing com-
plete and that programming in it is ‘easy’ in the sense that programs can be readily
composed. For avoidance of doubt, however, we prove that ℵ is Turing complete in two
ways: the first proves a stronger claim, that ℵ is Reversible-Turing complete, meaning
that it can efficiently and faithfully simulate a Reversible Turing Machine without gener-
ating garbage; the second proves Turing completeness in a more conventional fashion in
order to demonstrate its high level of composability.

Theorem V.3. The ℵ-calculus is Reversible-Turing Complete, i.e. it can simulate any Reversible
Turing Machine (RTM) as defined by Bennett [39].

Proof. An RTM is a collection of one or more bi-infinite tapes divided into squares, each
of which can be blank or can contain a symbol, as well as a machine head with an
internal state. Symbols are drawn from a finite alphabet, and internal states from a
distinct finite alphabet. At any time, the RTM head looks at a single square on each
tape and executes one of a finite set of reversible rules. The rule chosen is uniquely
determined by the current state of the system. Each rule depends on the current internal
state of the machine head, which it may alter, and for each tape it can either ignore its
value, possibly moving the tape one square to the left or right, or it can depend on the
square taking a certain value u, which it can replace with a certain other value v.

For example, a 6-tape RTM with symbol alphabet {A,B,C,D,E, F} and state alphabet
{START, S1, S2, STOP}might have a rule S1 C ∅ / D / / → B A − F 0 + S2. This rule
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[BLANK x · x/s] ‵POP‵ BLANK [x · x/s];
[(SYM x) · x/s] ‵POP‵ BLANK x/s;
[] ‵POP‵ BLANK [];

(TAPE ℓ x r) ‵LEFT‵ (TAPE ℓ′ x′ r′):

ℓ ‵POP‵ x′ ℓ′.

r′ ‵POP‵ x r.

! TAPE ℓ x r;

! SYM x;

! BLANK;

t ‵RIGHT‵ t′:

t′ ‵LEFT‵ t.

Listing V.11: This ℵ program defines all the ingredients necessary to simulate any Reversible
Turing Machine. We represent a bi-infinite tape as its one-hole-context; that is, a tape is given by
the square in the current position, x, as well as ‘all’ the squares to the left of it, ℓ, and ‘all’ the
squares to the right of it, r. Obviously we can’t actually represent all the squares to the left and
the right. Instead we make use of the fact that, at any one time, only a finite bounded region of
the tape is non-blank. As such, ℓ contains all the squares to the left up to the last symbol, and
similarly for r. If we keep going left, past the final symbol, then ℓ will be the empty list, and
BLANK squares will be created as needed. The rules LEFT and RIGHT are convenience functions
for changing the focus of a tape.

applies if and only if the current internal state is S1, the values of tapes 1 and 4 are the
symbols C and D respectively, and tape 2 is blank. If so, it will change the internal state
to S2, replace the values of tapes 1, 2 and 4 with the symbols B, A and F respectively,
and move tapes 3 and 6 one square to the left and right respectively, leaving tape 5 alone.
The reverse of the rule is given by S2 B A / F / / → C ∅ + D 0 − S1. The necessary
conditions for the ruleset to be deterministic and reversible are that all the domains of
the forward rules are mutually exclusive, as are all the domains of the reversed rules.
Of course, the domains of the forward and reverse rules will intersect in any useful
program.

It is easy to translate any description of an RTM into ℵ. Bi-infinite tapes can be easily
represented and manipulated, per the program in Listing V.11, and any rule (such as the
above) can be mechanically translated as so,

S1 (TAPE ℓ1 (SYM C) r1) (TAPE ℓ2 BLANK r2) t3 (TAPE ℓ4 (SYM D) r4) t5 t6

= S2 (TAPE ℓ1 (SYM B) r1) (TAPE ℓ2 (SYM A) r2) t
′
3 (TAPE ℓ4 (SYM F ) r4) t5 t

′
6:

t3
‵LEFT‵ t′3.

t6
‵RIGHT‵ t′6.

whilst the special START and STOP states are marked thus,

! START t1 t2 t3 t4 t5 t6;

! STOP t1 t2 t3 t4 t5 t6;

That this translation faithfully reproduces the operation of the RTM is obvious from the
high level semantics of ℵ.
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x/s ‵MU (CONST n)‵ n′ (GARBAGE x/s):
‵DUP n‵ n′.

[x] ‵MU SUCC‵ (Sx) (GARBAGE);

x/s ‵MU (PROJ i)‵ y (GARBAGE y/s z/s):
‵DUP i‵ i′.

! ∼GO i′ [] x/s = ∼GO Z [y · y/s] z/s.
∼GO (Sn) y/s [x · x/s] = ∼GO n [y · y/s] x/s;

x/s ‵MU (SUB g fs)‵ z (GARBAGE x/s h h/s):
y/s ‵MU g‵ z h.
‵∼GO fs x/s‵ y/s h/s.
‵∼GO [] x/s‵ [] [];
‵∼GO [f · fs x/s]‵ [y · y/s] [h · h/s]:

‵DUP x/s‵ x/s′.
x/s′ ‵MU f ‵ y h.
‵∼∼GO fs x/s‵ y/s h/s.

[n · x/s] ‵MU (REC f g)‵ y (GARBAGE n′ x/s h/s):
‵DUP x/s‵ x/s′.
x/s′ ‵MU f ‵ x h.

! ∼GO n Z g x x/s [h] = ∼GO Z n′ g y x/s h/s.
∼GO (Sn)m g x x/s hs = ∼GO n (Sm) g y x/s [h · h/s]:

‵DUP m‵ m′. ‵DUP x/s‵ x/s′.
[m′ x · x/s′] ‵MU g‵ y h.

x/s ‵MU (MINIM f)‵ i (GARBAGE x/s h/s):
! ∼GO f Z x/s (SZ) [] = ∼GO f (Si) x/s Z h/s.
∼GO f i x/s (Sn) h/s = ∼GO f (Si) x/s y [n h · h/s]:

‵DUP i‵ i′. ‵DUP x/s‵ x/s′.
[i′ · x/s′] ‵MU f ‵ y h.

data CONST n;
-- Cn(x⃗/s) = n

data SUCC;
-- S(x) = x+ 1

data PROJ i;
-- Pi(x⃗/s) = xi
-- N.B: x⃗/s is 1-indexed.

data SUB g fs;
-- (g ◦ f⃗s)(x⃗/s) =
-- g(f1(x⃗/s) · · · fn(x⃗/s))
data REC f g;
-- ρ(f, g)(0, x⃗/s) = f(x⃗/s)
-- ρ(f, g)(n+ 1, x⃗/s) =
-- g(n, ρ(f, g)(n, x⃗/s), x⃗/s)
data MINIM f ;
-- µ(f)(x⃗/s) =
-- min{n : f(n, x⃗/s) = 0}

Listing V.12: An ℵ program∗ implementing the µ-recursive functions. The µ-recursive functions
are generated by the three functions, Cn, S and Pi, and the three operators, ◦, ρ and µ, whose
definitions are given in the comments above. The ℵ values corresponding to these functions can
be directly composed using the operators (e.g. (REC (CONST 0) (PROJ 1))), and then evaluated
with the MU atom.

∗Some additional sugar has been used in this program, mainly in the form of nested definitions and the more concise
expression of looping constructs. See Section V.6 for an in-depth definition of these sugared forms.

148



V.5. Implementation Concerns

Corollary V.4. The ℵ-calculus is Turing Complete.

Proof. Bennett [39] proved that a Reversible Turing Machine can simulate any Turing
Machine (and vice-versa), and so the corollary follows immediately from ℵ’s Reversible-
Turing completeness. To drive the point home, however, we also implement the µ-
Recursive Functions (Listing V.12)—three functions, and three composition operators,
which together are capable of representing any computable function over the naturals
and hence are Turing complete. For example, addition, multiplication and factorials can
be defined in terms of each other (in our ℵ realisation) as

add 7→ (REC (PROJ 1) (SUB SUCC [(PROJ 2)]))

mul 7→ (REC (CONST 0) (SUB add [(PROJ 2) (PROJ 3)]))

fac 7→ (REC (CONST 1) (SUB mul [(PROJ 2) (SUB SUCC [(PROJ 1)])]))

and then one can evaluate, e.g., (MU fac) [7] (), obtaining () 5040 garbage (MU fac).

V.5. Implementation Concerns
Although the ℵ-calculus is microscopically reversible by Theorem V.2, ℵ has many
degrees of freedom wherein macroscopic reversibility can be violated. There are two
sources of entropy generation; the first is ambiguity in rule application, and the second
is intrinsic to any useful implementation of concurrency. We already saw in Section V.3
how concurrency leads to entropy generation, but in this section we will expand on the
other mechanism of entropy generation and how it can be avoided at the compiler-level.
This is important because the primary motivation for reversible programming is to avoid
unexpected entropy leaks, and so generally the appearance of ambiguity is a bug rather
than intentional. In addition to ambiguity, we will also discuss other aspects of a realistic
implementation to avoid or minimise the presence of random walks: optimising the
evaluation order of sub-rules (‘serialisation’) and inferring the direction of computation.
A reference implementation of these algorithms (as well as additional sugar) is made
available as a language and interpreter, alethe (see Section V.6).

Nevertheless, in some cases the appearance of ambiguity/non-determinism may be
intentional and so we should provide the programmer a mechanism to explicitly weaken
the ambiguity checker when desired. An example of this might be in implementing a
fair coin toss for generating randomness,

‵COIN‵ TAILS;
‵COIN‵ HEADS;

If the computational architecture is Brownian, such as a molecular computer, then this
can be used to exploit the thermal noise of the environment to get as close as classical
physics allows to a true random number generator (RNG). The way this RNG is used is
by constructing a term COIN (). This term then matches both rules, and so depending
on which is chosen the term may evolve to () TAILS COIN or to () HEADS COIN. Moreover,
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this process will depend on the probability distribution realised by the implementation;
if we assume this is uniform3, then the coin toss will be fair with each term observed
with probability 1

2 . If the probability distribution is non-uniform, the situation is less
clear and depends on the exact rates of the forward and reverse transitions for each rule.
The analysis is beyond the scope of this chapter, but if the dynamics takes the form

() TAILS COIN
λ′
t−−⇀↽−−

λt

COIN ()
λh−−⇀↽−−
λ′
h

() HEADS COIN,

then the steady-state ratio of heads to tails will be λh/λ
′
h

λt/λ′
t

. By microscopic reversibility, we
expect λh = λ′h and similarly for λt (unless the system is biased away from equilibrium),
and therefore even a non-uniform distribution will have a uniformly distributed steady-
state. Note the interesting property that, in reverse, an ambiguous/non-deterministic
reversible rule is indistinguishable from irreversibility. Here, for example, the inverse of
a fair coin toss is a process that consumes4 a bit.

Ambiguity Checker To exclude these sorts of process, we thus introduce an ambi-
guity checker. Not only does the introduction of an ambiguity checker reassure the
programmer that they are writing information-preserving code, but the algorithm also
serves as an invaluable debugging tool. In a large codebase, it can be hard to keep track
of all the different patterns employed (the standard library has nearly two thousand), let
alone ensure that there are no ambiguities. The ambiguity checker in alethe performs
this check for the programmer and, most importantly, is able to tell the programmer
where the ambiguities lie.

In an unambiguous program, there are only a few valid scenarios for each term.
It can match two computational rules (where we think of the forward and reverse
directions of each rule as distinct rules for the current purpose), in which case it is
an intermediate state of a computation. It can match one computational rule and one
or more halting rules, in which case it is a terminal state of the computation. It can
match one computational rule, in which case the program has entered an erroneous
state and stalled. It can match one or more halting rules, in which case the term has no
computational capacity, and most likely represents a data value. Lastly, it can match
no rules, in which case it is an invalid term that cannot be constructed under normal
conditions.

3A more sophisticated implementation might reify and expose control over the distribution to the pro-
grammer, allowing arbitrary probabilities to be assigned. Going further, an interesting research direction
would be to what extent ℵ can be augmented quantum mechanically.

4There is a subtle point to make here: if the bit being consumed has no computational content and
is uniformly distributed, then this consumption does not generate any entropy. That is, drawing a
random bit from the environment and then replacing it is a completely isentropic process. For non-
uniform distributions, the process can also be isentropic provided that the producer/consumer has
a matching distribution. The problem arises when the distribution of the bit does not fit that of the
producer/consumer, with deterministic computation being an extreme case wherein the bit can only
take on a prescribed value (this is true even if the bit is pseudorandom).
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The remaining possibilities can be summarised two-fold: a term can match two
computational rules and one or more halting rules, in which case the computational
path from the terminus is ambiguous, or a term can match more than two computational
rules (and zero or more halting rules), which is the more obvious ambiguity scenario.

The above cases can be simplified: for a given term, consider all the rules it matches
but coalesce all halting rules, if any, into a single rule. Then, a term is unambiguous if it
matches at most two such rules, and ambiguous if it matches more than two.

Clearly it is impractical to test this for all possible terms, there being a countable
infinity of them; instead, one can determine whether it is possible to construct an
ambiguous term. To do so, build a graph G whose nodes are all the patterns occurring
on either side of a computational rule—which we will colour white for reasons that
will become apparent—and all the patterns occurring in a halting rule—which we will
colour black. An edge is drawn between two nodes if it is possible to construct a term
satisfying both patterns. This condition can be determined inductively: if either pattern
is variable, then draw an edge. If neither pattern is variable, then draw an edge only if
they are both the same atom, or they are both composite terms of the same length and
their respective sub-patterns matches pairwise. In order to proceed, we first prove a
lemma about this graph.

Lemma V.5. There exists a term that simultaneously satisfies each of a set of patterns Π if and
only if the subgraph of G formed from the nodes Π is complete.

Proof. The ( =⇒ ) case is obvious. We prove the converse by structural induction. As
base cases, we note that the statement is trivially true if |Π| = 0, 1, 2. Now consider the
possible forms of some π ∈ Π:

(ATOM) If π is an atom, a, then the only term satisfying it is the same atom, a. As π has
edges to every other pattern in Π, a must satisfy each of these other patterns too.

(VAR) Suppose there is a term t that satisfies all the patterns Π \ {π}. As t satisfies the
variable pattern π vacuously, t must satisfy all of Π. Without loss of generality
then, we can ignore all variable patterns.

(τ1 · · · τn) If π is a composite term, then there can only be an edge to the other patterns if
these are composite terms of the same length or are the variable pattern. By the
previous case, we can ignore these variable patterns. Now, index the patterns by
i = 1 . . .m and write πi = (τ

(i)
1 · · · τ

(i)
n ). Then construct graphs H1 · · ·Hn such that

the nodes of Hj are the patterns {τ (i)j : i = 1 . . .m}. If we draw edges according
to the same rules as for G, then by the inductive definition of the edge condition
for G, each of the graphs Hi will be complete. By inductive assumption, a term ti
exists satisfying all patterns in Hi for each i, and therefore the term (t1 · · · tn) must
satisfy all the patterns Π.

The lemma follows.
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Using Lemma V.5, we see that the different cases of unambiguous and ambiguous
terms reduce to considering the structures of the complete subgraphs of G. Moreover,
it suffices to only consider subgraphs formed from three nodes, i.e. triangles: the first
ambiguous case, of two white nodes and one or more black nodes, implies the existence
of a triangle with two white nodes and one black node; the second case, of three or more
white nodes and zero or more black nodes, implies the existence of a triangle with three
white nodes. Conversely, a triangle with two or more white nodes implies one of these
ambiguous cases. The only triangles present for the unambiguous cases contain two or
more black nodes. Therefore we can enumerate all the triangles of G containing two or
more white nodes; if there are any, then there is an ambiguity and the patterns present in
the triangles should be reported to the programmer. If there are none, then the program
is unambiguous and deterministic.

In fact, there is one more potential source of ambiguity. Suppose that the two patterns
of a sub-rule are not orthogonal (a common occurrence), then it is in principle possible
that a halting term might match either side, and therefore lead to a 2-way ambiguity.
The evaluation rules of our reference interpreter for alethe do not suffer from this
ambiguity, as it determines ahead of time the order and directionality of all sub-rules,
but it is possible for a faithful implementation of ℵ to suffer so. There are two ways
to avoid this: the first is to require sub-rule patterns be orthogonal, though this also
forbids many legal unambiguous programs—requiring additional levels of tedious and
unnecessary indirection to circumvent the restriction—and so is undesirable; the second
is to apply type inference (work towards which is presented in Section V.7) to gain
the extra knowledge needed to distinguish between legal and ambiguous programs.
Namely, type inference allows the compiler to infer what sequences of patterns and terms
occur in a program, and hence to determine which halting patterns are computationally
connected. With this knowledge, and knowledge of the types of variables in a rule, it can
determine what forms the halting terms of a sub-rule will take and therefore whether
there is a unique mapping between terms and patterns or not.

Serialisation Heuristics The Brownian semantics of ℵ, particularly in the absence of
coupling to a bias source, are not very performant. Specifically, sub-rule transitions
execute a random walk in a phase space whose size—in the worst case—scales expo-
nentially with the number of variables present in the current rule. Whilst explicit bias
coupling circumvents this by essentially serving to annotate the preferred order and
directionality of the sub-rules, it undermines the declarative nature of ℵ. Instead, it is
possible to algorithmically infer an appropriate execution path. Moreover, it can some-
times be the case (such as in the example of fractional addition) that the execution path is
non-trivial and so granting the compiler the power to perform this routing automatically
makes the job of the programmer easier: the programmer need only specify how all the
variables relate to one another, and may even specify this excessively, and the compiler
can figure out which relations are sensible to use.

To illustrate the problem, consider the following program excerpt which adds two
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(a) The full transition graph. Due to the size of the graph, labels have been suppressed. Halting states are
marked black.

a/b
p q

c/d g
p q

c/d g
p q q2

c/d g
p q g′

a/b g′

p q

c/d g
p′q

a/b g′

p′q g
a/b g′

p′q q2

a/b g′

p′q
c/d
p′q

c/d
p q

2

4

1

5 2

1

3 6

4

3 1

(b) A more practical excerpt of the full transition graph.

Figure V.13: Two views of the transition graph for the fraction-addition routine. Nodes corres-
pond to bags of variables in a ‘known’ state. An edge with label ℓ is drawn from node α to node
β if sub-rule ℓ can map the knowledge state α to the knowledge state β (with possible variable
duplication/elision). It can be seen that there are two paths from {a/b, p, q} to {c/d, p, q} worth
considering: 2−4−5−2−1−3−1, and 2−1−3−6−4−3−1. These are of roughly equal computa-
tional complexity, and so either is a viable choice.
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simplified fractions:

a/b ‵+ (FRAC p q)‵ c/d:

1. p − p′.
2. a/b ‵∼ (FRAC p q)‵ c/d g.

3. c/d ‵∼ (FRAC p′ q)‵ a/b g′.

4. (Sq) □ q2.

5. g′ ‵× g‵ q2.
6. g ‵× g′‵ q2.

where a fraction is represented by p
q+1 ≡ (FRAC p q) with p ∈ Z and q ∈ N. Maintaining

the invariant that fractions are in their simplest form is non-trivial, but involves finding
the greatest common divisor of the numerators and denominators of two intermediate
results, g and g′, and then showing that their product gg′ = (q+1)2. It turns out that this
fact can then be used to eliminate the intermediate garbage. In the unassisted semantics
of ℵ, the graph of all intermediate states generated by applying these rules transitively
is given by Figure V.13a. This graph has 117 nodes. It can therefore be seen that a
computation is very likely to get stuck in one of the 115 intermediates, and will take
a long time to find its way from the input variables, {a/b, p, q}, to the output variables,
{p, q, c/d}. Many of these states are not interesting computational, and indeed only a
small subgraph of 11 (or even 8) nodes is needed to perform the desired computation as
shown in Figure V.13b.

From this transition subgraph, we can see that there are two possible paths to get from
the input variables to the output variables, and the goal of the serialisation algorithm is
to find these paths and to pick the most optimal. Here both of these paths are of equal
complexity, and so either is valid. Having made a choice, the compiler can then direct
the computer to perform the prescribed series of transitions, rather than executing a
random walk. In a Brownian computational system, for example, this would be achieved
by adding ‘fake’ dependencies to the sub-rules to force a linear ordering (or possibly
partially parallel, where this makes sense) and automatically coupling the sub-rules to
the bias source in the correct direction. As we shall see, automatically determining the
cost of a path is non-trivial and sometimes even impossible, and so a perfect solution to
the serialisation problem is not generally possible. Nonetheless, for many programs it
is possible to find the appropriate path, or to give the compiler enough information to
make a better choice, and so further discussion of serialisation is warranted.

The simplest and least efficient serialisation strategy is as follows: suppose you start
with the input variables {x, y, z}. Enumerate all the sub-rules that can be evaluated
given this current ‘knowledge state’, e.g. x ‵FOO‵ y ws and z ∼ x would qualify but
ws ‵MAP BAR‵ vswould not because neither the variable ws nor the variable vs are currently
available. Evaluate all of these sub-rules in parallel, making sure to duplicate variables
as necessary to avoid unlearning any. Here, we would end up with the knowledge
state {ws, x, y, z}. Now ignore these sub-rules going forward and repeat this process
until all sub-rules have been used once (and only once), and all variables are known. If
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some sub-rule has not been used or a variable remains unknown, then there is a logic
error and the programmer should be appropriately chastised. Now, perform this entire
process again, but starting from the output variables. If all is well, then we will have
obtained two routes: one from the input variables to all variables, and one from the
output variables to all variables. As these routes are reversible, we are immediately
rewarded with a route from the input to the output variables, using each sub-rule twice.
Whilst clearly inefficient, this strategy demonstrates that each sub-rule need be used at
most twice (once in each direction).

A better strategy is to construct a ‘transition graph’ as follows: take as nodes the
powerset of all variables, i.e. ∅, {x}, {y}, {x, y}, etc. Mark the input and output nodes
specially for later. Draw an edge between two nodes if a sub-rule (with possible variable
duplication/elision) can be used to map between the two knowledge states, and label
the edge with this sub-rule and in which direction it is to be applied. With the transition
graph thus constructed, all possible routes between the input and output nodes can
be enumerated5. To proceed, a cost heuristic is needed in order to rank routes by
preference. For example, if the goal is simply to minimise the number of sub-rules used
then Dijkstra’s algorithm will suffice. Note that, in the reference interpreter, transition
graphs are constructed more restrictively. Namely, variable duplication/elision is not
implemented as this always6 leads to an exponentially large transition graph and, in
practice, it is rarely needed. Where it is needed, the programmer must instead explicitly
use DUP (and create a new variable). This provides dramatically better performance at
the expense of a slight inconvenience.

We saw an example of this algorithm earlier in Figure V.13. Another example, de-
serving of further comment, is given in Listing V.14. There are two routes of apparent
equal cost, 1−2−2−3 and 1−2−3−3, but this is misleading. If the tree has n nodes across
ℓ ∼ log n levels, a single (non-recursive) step of POLISH has time complexity α, and a
single (non-recursive) step of POLISHREADS has time complexity β, then the first route
can be shown to have time complexity O(2ℓn(α+ β)) whilst the second has complexity
O(n(α + 2ℓβ)). That is, if the serialisation algorithm picks a route which repeats a
recursive step then consequently there will be an exponential overhead. Moreover, this
becomes less obvious in the cases of corecursion, or higher order functions where a
function may be passed into itself (recursively or corecursively)—compare, for example,
the Y combinator. As such it is not generally possible to algorithmically discriminate
this scenario (although the extra knowledge afforded by the type inference algorithm
developed in Section V.7 may help). In fact, the reference interpreter for alethe does
not even try to do so. Instead, it exposes a method by which the programmer can adjust

5In fact there are infinitely many routes. It is therefore appropriate to restrict the routes under consideration
to a sane (and finite) subset; namely, we avoid revisiting any node, and we also exclude routes that
make use of a sub-rule more than twice.

6The serialisation algorithm in alethe is still subject to an exponential worst case complexity. The size of
the transition graph constructed depends on the inter-dependency of the variables: the more dependency,
the closer to linear in the number of variables the graph size is. If there is minimal dependency, such as
in the automatically generated implemention of DUP for data , a b c d e, then the worst case will be
realised.
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data TREE α = TREE α [TREE α]

POLISH : : TREE α→ [(INT, α)]

POLISH (TREE x x/s) = (LENGTH x/s, x) : CONCATMAP POLISH x/s

(a) A snippet of Haskell code for converting an arbitrary tree into Polish notation. Polish notation is
an isomorphic linear representation of tree-like structures that is well known for its use for arithmetic
expressions. For example, the expression (3 + 4)× 7− 25 can be represented as − × + 3 4 7 ∧ 2 5.

(TREE x t/s) ‵POLISH‵ [(, x n) · p]:
1.

‵LENGTH t/s‵ n.
2. t/s ‵CONCATMAP POLISH‵ p ℓ/s..
3. p ‵POLISHREADS n‵ t/s ℓ/s.

data TREE x t/s;
data , a b;

-- 2-tuples

(b) An excerpt of the program in (e). This is a rough translation of the Haskell implementation into alethe.
Unfortunately, the implementation of CONCATMAP in alethe has additional garbage in the form of a list
of the lengths of the intermediate lists (ℓ/s). To eliminate this garbage, we write a function POLISHREADS
which takes a string of trees in Polish notation and converts them back into trees, also generating the same
garbage value.

x
t/s

x n
t/s

x n
p ℓ/s

x n
t/s ℓ/s

x n
p

1 2
2

3

3

(c) The motif employed above—generating the garbage in two different ways—can be used to eliminate
it and achieve the desired (partial) bijection, as shown by its transition graph. There are two possible
execution paths, 1−2−2−3 and 1−2−3−3. As explained in the text, the second route is strongly preferred—
hence the cost annotation on (2).

t ‵POLISH‵ p:

p ‵POLISHREAD‵ [] t.

[(, x n) · x/s] ‵POLISHREAD‵ x/s′ (TREE x t/s):
x/s n ‵POLISHREADS‵ x/s′ t/s.

x/s Z ‵POLISHREADS‵ x/s [];
x/s (Sn) ‵POLISHREADS‵ x/s′′ [t · t/s]:

x/s ‵POLISHREAD‵ x/s′ t.
x/s′ n ‵POLISHREADS‵ x/s′ t/s.

(d) In fact, programming in a ‘reversible-first’ manner permits us to find the far more efficient and naturally
bijective program above. This program was written by considering how to read a tree from its Polish
representation: In our experience, picking the ‘harder’ direction of a bijective computation to implement
helps to suppress one’s learned intuition for irreversible programming, and hence makes it less likely to fall
into the traps of ‘shortcuts’ with their accompanying garbage.

Listing V.14: An example of serialisation as applied to the interconversion between trees and
Polish notation... (continued on next page)
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‵LENGTH []‵ Z;
‵LENGTH [x · x/s]‵ (Sℓ):

‵LENGTH x/s‵ ℓ.

‵SUM []‵ Z;
‵SUM [Z · n/s]‵ σ:

‵SUM n/s‵ σ.
‵SUM [(Sn) · n/s]‵ (Sσ):

‵SUM [n · n/s]‵ σ.

[] ‵MAP f ‵ [];

[x · x/s] ‵MAP f ‵ [y · y/s];
x ‵f ‵ y.

x/s ‵MAP f ‵ y/s.

‵MAP f []‵ [];
‵MAP f [x · x/s]‵ [y · y/s];

‵f x‵ y.
‵MAP f x/s‵ y/s.

[] ‵CONCAT‵ [] [];

[[] · x/ss] ‵CONCAT‵ y/s [Z · ℓ/s]:
x/ss ‵CONCAT‵ y/s ℓ/s.

[[x · x/s] · x/ss] ‵CONCAT‵ x · y/s [(Sℓ) · ℓ/s]:
[x/s · x/ss] ‵CONCAT‵ y/s [ℓ · ℓ/s].

x/s ‵CONCATMAP f ‵ y/s ℓ/s:
x/s ‵MAP f ‵ y/ss.
y/ss ‵CONCAT‵ y/s ℓ/s.

data TREE x t/s;
data , a b;

n ‵TREESIZE’ (TREE x t/s)‵ (Sn′):

n ‵∼GO t/s‵ n′.
n ‵∼GO []‵ n;

n ‵∼GO [t · t/s]‵ n′′:
n ‵TREESIZE’ t‵ n′.

n′ ‵∼∼GO t/s‵ n′′.

‵TREESIZE t‵ n:

Z ‵TREESIZE’ t‵ n.

(TREE x t/s) ‵POLISH‵ [(, x n) · p]:
‵LENGTH t/s‵ n.
t/s ‵CONCATMAP POLISH‵ p ℓ/s.
p ‵POLISHREADS n‵ t/s ℓ/s.

[(, x n) · x/s] ‵POLISHREAD‵ x/s′ (TREE x t/s) (Sℓ):

x/s ‵POLISHREADS n‵ x/s′ t/s ℓ/s.
‵LENGTH ℓ/s‵ n.
‵SUM ℓ/s‵ ℓ.
‵MAP TREESIZE t/s‵ ℓ/s.

x/s ‵POLISHREADS Z‵ x/s [] [];
x/s ‵POLISHREADS (Sn)‵ x/s′′ [t · t/s] [ℓ · ℓ/s]:

x/s ‵POLISHREAD‵ x/s′ t ℓ.
x/s′ ‵POLISHREADS n‵ x/s′ t/s ℓ/s.

(e) The full alethe program implementing interconversion between trees and Polish notation, following
the Haskell snippet in (a). In fact, a little thought and optimisation will reveal that the ℓ outputs of the
read functions can be eliminated, which then simplifies the definition of POLISH to that given in (d) and
obviates the need for the auxiliary functions LENGTH, SUM, MAP, etc. Nevertheless, the point of this is
to show that it is not unreasonable to arrive at the program listed here, and it may not be entirely obvious
that a simpler implementation with less garbage is possible.

Listing V.14: (continued) ...and the full alethe program being considered here.
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the heuristic cost function used in serialisation: each edge in the transition graph has a
weight, given by the number of full-stops following the sub-rule in the source; therefore,
in this case rule (2) should be annotated with a cost of 2 (via two full-stops) in order to
penalise its repeated use. To inspect the route chosen, the :p directive may be issued to
the interpreter.

Directional Evaluation Consider an intermediate term along a reversible computation
path (Figure III.2). In isolation, one cannot know in which direction computation should
proceed. Bias coupling helps with this, but alethe does not make use of this. Moreover,
it would be nice to avoid explicit bias-coupling where practical. As such, we need
some concept of computational ‘momentum’ to maintain a consistent direction. This
requires that the programs are deterministic such that phase space is branchless, which
fortunately we have guaranteed through the ambiguity checker. Recall that, treating
the forward and reverse directions of a rule as distinct, every term matches at most
two rules; if we maintain a consistent direction of computation, then one of these rules
will be the converse of the rule that was employed to reach the current state. More
concretely, let the terms of the computation be labelled as some contiguous subset of
{|n⟩ : n ∈ Z}. By determinism, there is a unique rule r(n 7→ n + 1) enacting each
transition |n⟩ 7→ |n+ 1⟩, and by reversibility the unique rule enacting the transition
|n+ 1⟩ 7→ |n⟩ is r̄, the converse of r. Therefore, given a term |n+ 1⟩, the rule r̄(n 7→ n+1)
can only take us to |n⟩; it can never also be the rule taking us to |n+ 2⟩. It is, however,
possible that the rule taking us to |n+ 2⟩ is the same as r(n 7→ n+ 1). To summarise, all
we need do is keep track of which rule we just applied, r; then, when considering the
new term, we find any rules it matches and exclude r̄ from this set. If the set is empty,
we have entered an error state and should report it to the user. Otherwise, our ambiguity
check has ensured that it either contains a single computational rule, which we duly
apply, or contains one or more halting rules, whence we would halt the computation
and report the result. This evaluation logic applies just as well to sub-rules. The one
edge case is when evaluating a new term; as only halting terms can be constructed, it
will have at most one computational rule to choose from and thus there is no ambiguity.

V.6. A Spoonful of Sugar: alethe

For clarity and convenience, we have introduced a number of syntactic shorthands in
Sections V.2 and V.3. We now summarise and extend this sugar to construct a program-
ming language, alethe, the definition of which is given in Listing V.15. Implementing
the additional measures discussed in Section V.5, a reference interpreter for alethe is
also made available7 together with a ‘standard library’ and select examples8. We proceed
with the definition of alethe by desugaring each form in turn.

7https://github.com/hannah-earley/alethe-repl
8https://github.com/hannah-earley/alethe-examples
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(PATTERN TERM) τ ::= α | VAR | ( τ∗ ) | σ
(ATOM) α ::= ATOM | ∼ α | #‵‵ CHAR∗ ′′ | #α

(VALUE) σ ::= N | ‵‵ CHAR∗ ′′ | [ τ∗ ] | [ τ+ . τ ] |
(PARTY) π ::= τ : τ∗ | VAR′ : τ∗

(PARTIES) Π ::= π | Π ; π

(RELATION) ρ ::= τ∗ = τ∗ | τ∗ ‵τ∗′ τ∗

(DEFINITION HEAD) δh ::= ρ | {Π } = {Π }
(DEFINITION RULE) δr ::= δh ; | δh : ∆+

(DEFINITION HALT) δt ::= ! τ∗; | ! ρ ;
(DEFINITION) δ ::= δr | δt

(COST ANNOTATION) ξ ::= .∗

(DECLARATION) ∆ ::= δ | π .ξ | ρ .ξ | ! ρ .ξ
(STATEMENT) Σ ::= δ | data τ∗; | import ‵‵MODULE PATH′′;

(PROGRAM) P ::= Σ∗

Listing V.15: Definition of alethe syntax.

(PATT. TERM) τ ::= α | VAR | ( τ∗ ) | σ
The definition of a pattern term only differs from its definition in ℵ by the inclusion
of sugared values, σ.

(ATOM) α ::= ATOM | ∼ α |#‵‵ CHAR∗ ′′ |#α
Atoms are fundamentally the same as in ℵ, but there are four ways of inputting an
atom. If the name of an atom begins with an uppercase letter or a symbol, then
it can be typed directly. In fact, any string of non-reserved and non-whitespace
characters that does not begin with a lowercase letter (as defined by Unicode)
qualifies as an atom; if it does begin with a lowercase letter, it qualifies as a variable.
If one wishes to use an atom name that does not follow this rule, one can use
the form #‵‵ CHAR∗ ′′, where CHAR∗ is any string (using Haskell-style character
escapes if needed). Additionally you can prefix a symbol with # to suppress its
interpretation as a relation (e.g. #+). Finally, if an atom is prefixed with some
number of tildes then it is locally scoped: that is, you can nest rule definitions and
make these unavailable outside their scope, and you can refer to locally scoped
atoms in outer scopes by using more tildes (there is no scope inheritance). You
can even use an empty atom name if preceded by a tilde, which can be useful for
introducing anonymous definitions. Example code using this sugar is given in
Listing V.7.

159



V. The ℵ-Calculus

(VALUE) σ ::= N | ‵‵ CHAR∗ ′′ | [ τ∗ ] | [ τ+ . τ ] |
The sugar here for natural numbers (N) and lists is familiar from earlier, but there
are two additional sugared value types: strings9, which are lists of character atoms
where the character atom for, e.g., the letter ‘x’ is ′x, and units, which can be
inserted with instead of ().

(PARTY) π ::= τ : τ∗ | VAR′ : τ∗

Parties are the same as in raw ℵ. Note, however, that the reference interpreter
of alethe has no separate representation for opaque variables: if the context
is a variable, then it is assumed to be opaque rather than the variable pattern.
When concurrency and contextual evaluation is supported in a future version, this
deficiency will need to be addressed.

(PARTIES) Π ::= π | Π ; π
Bags of parties are delimited by semicolons.

(RELATION) ρ ::= τ∗ = τ∗ | τ∗ ‵τ∗′ τ∗
Relations are shorthand for where there is a single, variable context. These are
familiar from the previous examples.

(DEF. HEAD) δh ::= ρ | {Π } = {Π }
A rule is either a relation, or a mapping between party-bags which are enclosed in
braces.

(DEF. RULE) δr ::= δh ; | δh : ∆+

If a rule has no sub-rules, then it is followed by a semicolon, otherwise it is followed
by a colon and then its sub-rules/any locally scoped definitions. These declarations
must either be in the same line, or should be indented more than the rule head
similar to Haskell’s off-side rule or python’s block syntax.

(DEF. HALT) δt ::= ! τ∗; | ! ρ ;
As well as the canonical halting pattern form, there is also sugar for a relation
wherein both sides of the relation each beget a halting pattern, as does the infix
term (if any).

(DEF.) δ ::= δr | δt
This is the same as for ℵ.

(COST ANN.) ξ ::= .∗

Sub-rules can be followed by more than one full-stop, with the number of full-
stops used quantifying the cost of the sub-rule for use in the serialisation algorithm
heuristics as explained towards the end of Section V.5.

9Once again, using Haskell-style character escapes if needed
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(DECL.) ∆ ::= δ | π .ξ | ρ .ξ | ! ρ .ξ
In addition to the party sub-rules present in ℵ, there are three sugared forms. If a
declaration is a definition then, after introducing and resolving fresh anonymous
names for any locally scoped atoms, the behaviour is the same as if the definition
was written in the global scope. If a declaration takes the form of a relation, then it
is the same as if we introduced a fresh context variable and bound each side of the
relation to it. If the relation is preceded by !, then it both declares a sub-rule and
defines a pair of halting patterns, e.g.

! ∼GO p x/s [] [] = ∼GO p x/s [n · n/s] y/s′.

becomes

! ∼GO p x/s [] [];
! ∼GO p x/s [n · n/s] y/s′;
∼GO p x/s [] [] = ∼GO p x/s [n · n/s] y/s′.

(STATEMENT) Σ ::= δ | data τ∗; | import ‵‵MODULE PATH′′;
A statement is a definition, a data definition, or an import statement. A data
definition data S n; is simply sugar for

! S n;
‵DUP (S n)‵ (S n′):

‵DUP n‵ n′.

i.e. it marks the pattern as halting and automatically writes a definition of DUP.
Future versions may automatically write other definitions, such as comparison
functions, or include a derivation syntax akin to Haskell’s. The import statement
imports all the definitions of the referenced file, as if they were one file, and
supports mutual dependency. Future versions may support partial, qualified and
renaming import variants.

(PROGRAM) P ::= Σ∗

A program is a series of statements. Additionally, comments can be added in
Haskell-style:

-- this is a comment.

! S {- so is this... -} n; -- ...and this.

{- and this is

a multiline comment -}

We also note that the interpreter for alethe treats the atoms Z, S, CONS, NIL, GARBAGE,
and character atoms specially when printing to the terminal. Specifically, they are
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automatically recognised and printed according to the sugared representations defined
above. That is, except for the GARBAGE atom which, when in the first position of a
term, hides its contents—rendering as {˜GARBAGE˜}. This is useful when working with
reversible simulations of irreversible functions that generate copious amounts of garbage
data. If one assigns the garbage to a variable, then the special :g directive can be used
to inspect its contents. Other directives include :q to quit, :l file1 ... to load the
specified files as the current program, :r to reload the current program, :v to list the
currently assigned variables after the course of the interpreter session, and :p to show
all the loaded rules of the current program (and the derived serialisation strategy for
each, see later). Computations can be performed in one of two ways; the first, | (+ 3)
4 -, takes as input a halting term, attempts to evaluate it to completion, and returns the
output if successful, i.e. () 7 (+ 3). The second, > 4 ‘+ 3‘ y, takes a relation as input
and attempts to get from one side to the other. For example, here we evaluate (+ 3) 4
(), obtaining () 7 (+ 3) which we then unify against () y (+ 3), finally resulting in
the variable assignment y 7→ 7. To run in the opposite direction, use < instead. Note that,
whilst the interpreter does understand concurrent rules, it is not yet able to evaluate
them.

Unification Efficiency Beyond the implementation concerns expressed in Section V.5,
another issue of practical importance is the efficiency of identifying patterns matching a
given term: to date, the standard library alone contains just shy of two thousand patterns,
and so searching the known patterns linearly is impractical. Our interpreter constructs a
trie-like structure for this purpose such that the time complexity for unification scales as
O(m+ log n) where m is the number of patterns which match and n the total number of
patterns. Though asymptotically this is the best complexity possible, there are certainly
improvements that could be made to the unification algorithm. In particular, the data
structures used are primarily binary trees; hash tables with fixed lookup time for reas-
onable values of n would yield significant improvements in distinguishing atoms, and
random access arrays would yield significant improvements for distinguishing between
composite terms of differing length. Notwithstanding these possible improvements, the
reference interpreter has proven sufficiently fast for demonstrating non-trivial computa-
tions in alethe. For example, computing 8! = 40 320 takes only a few seconds despite
the unary representation of natural numbers.

V.7. Towards a Type System
Type systems are very useful, in that they allow a compiler to statically analyse a program
before it is run and identify whether it is ever possible for a value to be passed to a
function that does not understand such an input. This is extremely powerful, and leads
to the Haskell maxim ‘if it compiles, it runs’: that is, although there may be logical
errors, the program should not crash.

We may be tempted to try to start with a simple polymorphic type system, such
as Hindley-Milner, but unfortunately Hindley-Milner is unsuitable for ℵ being that it
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does not have objects that can be uniquely assigned a computational role. Consider
attempting to type the symbol □ from Listing V.4, for example, which implements
squaring/square rooting for natural numbers. One is tempted to say something like
□ :: N ()↔ () N :: □, but this does not work. Inspecting the definition more closely, we
see that □ appears in a number of contexts: □ n (), □ n m □, and ()m □. It is the second
context where our attempt to type □ breaks down: not only does its apparent arity
change, but it appears twice in the same expression! Similar problems are encountered
when trying to type other declarative languages, such as Prolog. To proceed, we shall
require that any candidate type system treats terms holistically, not ascribing any special
importance to any particular part of a term. Such a holistic type system will most likely
also be declarative in nature.

A fruitful way of thinking of types of terms is by considering their endpoints—their
halting states. A well-formed term will be able to eventually transition to one or more
halting terms, and the properties of these halting terms are what we are most interested
in. For example, we would like to know that if we construct a term from +, two natural
numbers, and (), then we will be able to extract two natural numbers—rather than, say,
a boolean and a string—once computation finishes. But, the ‘end’ state is free to wander
back to the ‘beginning’, and so it is more appropriate to consider the type of the term
as an unordered pair, consisting of the two possible halting states. Checking this type
will then consist of enumerating which rules may be encountered along a computational
path, verifying that all these rules are consistent with the initial type and that the other
state is reachable in principle. If the ambiguity checker is turned off, then we see that it is
possible to have a term with more than two halting states and so its type should be a set
of types corresponding to each possible halting state. We then notice that conventional
data—such as a natural number—is of the same ilk, save that it only has one halting
state. We call these type-sets isotypes, and their inhabitants isovalues, as each isovalue has
one or more isomorphically equivalent representations.

How might these isotypes look? We begin with conventional data; let us call the
isotype of a natural number NAT, with inhabitants Z and Sn where n inhabits NAT. Let
us now attempt to type addition. As a first approximation, we write :: + NAT NAT () =
() NAT NAT +; where :: at the beginning marks this as an isotype. This is in the right
spirit, but doesn’t readily admit a consistent type theory. In particular, how would we
represent the isotype of a continuation in the term WALK β (CHARLIE′ x), as introduced
towards the end of Section V.3? Being more careful, we can say that an addition isovalue
is the unordered pair consisting of + a b () and () c d+ where a, b, c and d are all isovalues
of isotype NAT. We need this explication, because the isotypes of the arguments could be
far more complicated. Where it is unambiguous, however, it will be reasonable to write
this isotype as :: + NAT NAT () = () NAT NAT +;. Notice that, as this isotype is holistic, it
is completely orthogonal to the isotype :: + RAT RAT () = () RAT RAT +; where RAT is the
isotype of rationals. This reveals that we get overloading for free in this type system. It is
nevertheless desirable to introduce a notion similar to Haskell’s typeclasses, however, or
else (partial) isomorphisms employing addition, but polymorphic in the isotype they are
adding, will have much too generic an isotype (in particular, the type inference algorithm
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would not be able to conclude that an isotype :: + a b () = () c d +; does not exist, and so
we would have four isotype variables rather than the 1 expected). Typeclasses permit the
programmer to specify that an isotype of the form :: + a b () = () c d +; is only legal if it
is of the more restrictive form :: + a a () = () a a +; for some isotype a. Furthermore, the
introduction of typeclasses permits the abbreviation of complex (ad-hoc) polymorphic
isotypes.

What, then, might a polymorphic isotype look like? A good example is given by
the map function, which would have as isotype the unordered pair of (MAP f) x/s ()
and () y/s (MAP f) where x/s is an inhabitant of the isotype [a], i.e. the isotype of lists of
elements of isotype a, and where y/s is an inhabitant of [b]. f is required to be some term
which, when used to construct the halting states f x () and () y f , yields the isotype
:: f a () = () b f . More concisely, we write this as

:: [a] ‵MAP f ‵ [b]:

:: a ‵f ‵ b.

[] ‵MAP f ‵ [];

[x · x/s] ‵MAP f ‵ [y · y/s]:
x ‵f ‵ y.

x/s ‵MAP f ‵ y/s.

and we note the similarity of the isotype to the implementation of MAP at the isovalue
level. The composite term MAP f deserves further attention; this is itself halting, and so
can be considered to be an implicitly declared anonymous isotype with one representa-
tion.

As briefly mentioned earlier, a type checker (and a type inference algorithm, if it
exists) will perform a reachability analysis—starting from one halting pattern, it will
enumerate all the accessible rules, finding the most general type consistent with these.
The information gleaned this way is very valuable for all sorts of static analyses. We
can determine what other halting states are accessible, as well as whether there are any
missing cases along the way that could lead to a halting state. We can also resolve the
issue of sub-rule ambiguity raised earlier, helping strengthen the phase space restrictions
and avoid unintentional generation of entropy. It may also be possible to use this inform-
ation to refine the cost heuristic used for serialisation, improving runtimes. Furthermore,
knowledge of the execution path gives opportunities for identifying code motifs and
performing structural transformations, a necessary ingredient for performing the kind
of code optimisations a compiler is wont to do.

There is, however, a potential hiccup in the reachability analysis that occurs when a
continuation-passing-style is used. In this case, there are rules which are shared between
different computations. For example, in WALK β c ↔ WALK’ α c, c is a continuation.
There will be a number of computations which each pass control to such a WALK term,
and later accept control back from such a WALK’ term. Consequently, no definitive
isotype can be assigned to these intermediate terms. Moreover, consider these two
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potential computations:

FOO = WALK φ FOO’;

BAR = WALK β BAR’;

It is conceivable that the reachability analyser would, starting from FOO, (correctly)
determine that the pattern WALK β c is reachable, and then (incorrectly) presume the
term BAR is reachable from FOO. If so, the type checker would then (rightly) complain
of a type error, perhaps that the isotypes of FOO’ and BAR’ do not unify. The remedy to
the first issue, of indefinite isotyping of intermediate terms, is to only assign definitive
isotypes to sets of halting terms; intermediate terms are assigned definite isotypes only
in the course of inferring isotypes for particular halting sets, and these intermediate
isotypes are appropriately scoped such that the parallel process of isotype inference
may proceed in spite of conflicting intermediate term isotypes. The second issue is
remedied by specialising types as early as possible: in order to pass the ambiguity
checker, any computation making use of a shared rule as above must pass control to
the shared rule in a way orthogonal to any other computations passing control. In
the above example, this holds because FOO’ and BAR’ are orthogonal patterns such
that no term can be constructed satisfying them both simultaneously. Therefore, by
immediately specialising the type of the continuation c in WALK, there is no risk of
reachability ‘leaking’ into inaccessible rules. One may be concerned that perhaps the
reachability graph is much more complicated, engendering other reachability leaks, but
each such confluence point between distinct computational paths must have this same
explicit orthogonality property in order to satisfy the ambiguity checker, and so there is
in fact no risk. However, this remedy may be somewhat overzealous; suppose that the
example above is part of a larger program,

QUX FALSE = FOO;

QUX TRUE = BAR;

then the eager specialisation of the continuation isotype will yet result in a type-checking
error, similar to Haskell’s (optional) monomorphism restriction. To circumvent such
monomorphism, it would be advantageous to allow the type checker to introduce
additional scopes for intermediate types where such branches occur, providing that
these alternate paths eventually converge to a single type. If this is not possible, then the
solution may simply be to expect the programmer to annotate a ‘partial isotype’ of any
shared polymorphic rules in order to give the type checker sufficient information.

We are optimistic that, in programs without shared rules, it is possible to perform
automatic type inference without any type annotations as in the Hindley-Milner type
system. As for programs with shared rules, we are less certain; nonetheless, the power
and generality of type inference algorithms in type systems as sophisticated as Haskell’s
most recent iterations suggests that it is attainable. We also note that the above is just
a sketch of a possible type system, and will require further refinement and formalisa-
tion. Finally, we have neglected as yet to consider concurrency. Concurrency severely
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undermines the power of the type system, as there is no longer any continuity between
terms: at any point, a term could be consumed, produced, or merged with another.
It may be possible to extend the notion of isotype to include all the terms that might
interact with one another, but it is unclear how useful this would be. Alternatively, one
could simply ascribe types to single halting patterns, instead of seeking isotypes and
an enumeration of all possible isomorphic representations of an isovalue. Again, this
severely weakens the utility of the type system. A desirable compromise would be to
identify the non-concurrent parts of a program, and apply type checking and inference
to just these parts; a more rudimentary level of type checking could then be applied to
the concurrent parts to at least verify the consistency of any non-concurrent sub-rules
employed.

V.8. The Σ-Calculus
An earlier prototype, Σ was more functional in nature. Its terms were nested applications
of ‘general permutations’, which could be named for convenience (and for achieving
recursion without a fixed point combinator). Its definition was

(TERM) τ ::= ⟨πτ∗ : τ∗π⟩ | VAR | REF | τ∗

where REF is a reference to a named pattern. A generalised permutation is given by
⟨πτ∗ : τ∗π⟩, where π is a special variable that matches the permutation itself. That is,
the term (⟨π x y : y x π⟩ 1 2) would transition to (2 1 ⟨π x y : y x π⟩). Notice that this is
the convention taken in ℵ, that the atom or term in the first position tends to take the
‘active’ role, and tends to place itself at the end of the term after rule execution. In Σ,
however, this convention is enshrined in the language itself because all the information
concerning the transition rules is held within the permutation terms themselves, and
so it is required that there be two special locations within a term corresponding to the
current and previous permutation. The first position is used for the current permutation
in analogy to the λ-calculus, and the last position is used for the previous permutation
for symmetry. Permutations are ‘general’ in the sense that they can alter tree structure,
and can copy/elide variables.

The Σ-calculus can also be proven to be microscopically reversible and Reverse-
Turing complete, but the absence of sub-rules renders composition more unwieldy.
Additionally, discriminating different cases is tricky. As with the λ-calculus, where data
can be represented with functions via Church encoding, we can represent data in Σ with
permutations and these permutations will perform case statements. Taking lists as an
example, we have

CONS ≡ ⟨π{nc}zf : c{nf}zπ⟩
NIL ≡ ⟨π{nc}zf : n{fc}zπ⟩

where {xyz} is sugar for (⊥xyz⊤) used to represent an inert expression (⊤ ≡ ⊥ ≡ ε ≡ (),
not being a permutation, is an inert object that does nothing and is used to represent
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halting states in Σ). Using these definitions, list reversal can be implemented thus,

REV ≡ ⟨πl⊤ : NIL{λν}{{εε}l}π⟩
λ ≡ ⟨π{REV ν}{{r′r′′}{l̃l′l′′}}r̃ : l̃{REV′ ν}{{r̃r′r′′}{l′l′′}}π⟩
ν ≡ ⟨π{REV′ λ}{r{l′l′′}}CONS : CONS{REV λ}{{l′r}l′′}π⟩

REV′ ≡ ⟨π{λν}{r{εε}}NIL : ⊥rπ⟩

which is certainly not the most edifying program in the world! It would be used as so:

(REV[1 4 6 2]⊤) ∗←→ (⊥[2 6 4 1]REV′)

µ-Recursive Functions To give a deeper flavour of Σ, we implement the µ-recursive
functions (recall their definition and alethe implementation from Listing V.12). In order
to simulate a notion of function composition, we first adopt a ‘Σ-function’ motif: a
function is represented by the triple F = {f z f ′} where f and f ′ are the initial and
terminal permutations, and z is any data we wish to bind to F . The permutations f and
f ′ must be such that (f z f ′ x ⊤) ∗←→ (⊥ y g f z f ′), where x is the input, y the output
and g any garbage data.

The base µ-recursive functions can then be implemented thus:

Z ≡ {zεz} z ≡ ⟨zεz n ⊤ : ⊥ 0 n zεz⟩
S ≡ {sεs} s ≡ ⟨sεs n ⊤ : ⊥ {SUCCn} ε sεs⟩

Πk
i ≡ {πki επki } πki ≡ ⟨πki επki {n1, . . . , nk} ⊤ :

⊥ ni {n1, . . . , ni−1, ni+1, . . . , nk} πki επki ⟩

Note that we have written ⟨zεz · · · instead of ⟨πεz · · · or ⟨πεπ · · · for clarity.
The composition operator for F of arity k over functions Gi is given by {ck{FG⃗}c′k},

where

ck ≡ ⟨ck{FG⃗}c′k n⃗ ⊤ : c′′k F (G1 ∧ n⃗) · · · (Gk ∧ n⃗) ck⟩

c′′k ≡ ⟨c′′k F (m1 h1 ∨G1) · · · (mk hk ∨Gk) ck : c′k h⃗ G⃗ (F ∧ m⃗) c′′k⟩

c′k ≡ ⟨c′k h⃗ G⃗ (y hf ∨ F ) c′′k : ⊥ y {hf h⃗} ck{FG⃗}c′k⟩

where we have introduced sugared forms (F ∧ x) ≡ (fzf ′ x ⊤) and (y h ∨ F ) ≡
(⊥ y h fzf ′).

The primitive recursion operator is a little more complicated. To understand the
implementation below, it is important to know that the number 0 is represented as
{ZERO ε} and the number m+ 1 is given by {SUCC m}. When the form is unknown, we
can write a unified representation as {m̃m} where m̃ is the constructor and m is either ε
or the predecessor. Furthermore, the constructors are defined as follows:

ZERO ≡ ⟨π{pq}zr : p{rq}zπ⟩
SUCC ≡ ⟨π{pq}zr : q{pr}zπ⟩
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We write the primitive recursion of F and G (arities k and k+ 2) as RFG = {ρk{FG}ρ′k},
defined by:

ρk = ⟨ρk{FG}ρ′k {n⃗{m̃m}} ⊤ : m̃ {ζk σk} {FGn⃗m} ρk⟩
ρ′k = ⟨ρ′k {ζ ′k σ′′k} {yhFG} m̃ : ⊥ y {m̃h} ρk{FG}ρ′k⟩

ζk = ⟨ζk {ρk σk} {FGn⃗ε} ZERO : ζ ′k (F ∧ n⃗) G ζk⟩
ζ ′k = ⟨ζ ′k (y h ∨ F ) G ζk : ZERO {ρ′k σ′′k} {yhFG} ζ ′k⟩

σk = ⟨σk {ζk ρk} {FGn⃗m} SUCC : σ′k (RFG ∧ n⃗m) n⃗m σk⟩
σ′k = ⟨σ′k (y h ∨RFG) n⃗m σk : σ′′k (G ∧ n⃗my) F h σ′k⟩
σ′′k = ⟨σ′′k (z h′ ∨G) F h σ′k : SUCC {ζ ′k ρ′k} {z{hh′}FG} σ′′k⟩

In the above, the ρ permutation switches between the ζ and σ permutations depending
on if {m̃m} = 0 or > 0; the ζ route computes y = F (n⃗), whilst the σ route recurses down
to compute y = RFG(n⃗,m) and then z = G(n⃗,m, y). Both these routes then put their
results into a common representation and merge the control flow via m̃.

Finally, we implement the minimalisation operator as Mm
F = {µk{Fm}µ′k}; Mm

F is a
generalisation of the more canonical minimalisation operator (which is equivalent to
M0

F ),
Mm

F (n⃗) = min{ℓ ≥ m : f(n⃗; ℓ) = 0}

Interestingly, this is much simpler to implement than primitive recursion—only requiring
four permutations—yet is the necessary ingredient for universality:

µk = ⟨µk{Fm}µ′k n⃗ ⊤ : µ′′k m (F ∧ n⃗m) (M
{SUCC m}
F ∧ n⃗) µk⟩

µ′′k = ⟨µ′′k m ({ỹy}h ∨ F ) q µk : ỹ {µ′kµ′′′k }m ({ỹy}h ∨ F ) q µ′′k⟩

µ′′′k = ⟨µ′′′k {µ′kµ′′′k }m p (m′h ∨M{SUCC m}
F ) SUCC :

SUCC {µ′′kµ′k}m′ p (m′h ∨M{SUCC m}
F ) µ′′′k ⟩

µ′k = ⟨µ′k {µ′′kµ′′′k }m′ (F ∧ n⃗m) (M
{SUCC m}
F ∧ n⃗) µ̃ : ⊥m′ {µ̃n⃗} µk{Fm}µ′k⟩

In the above, we compute F (n⃗;m) and check if it’s 0, if so we return m as m′, otherwise
we compute Mm+1

F (n⃗) in a recursive manner and return its result as m′. Clearly, if there
is no m such that F (n⃗;m) = 0 then Mm

F (n⃗) = ⊥ ∀m. For concision, we compute both
functions simultaneously, making use of Σ’s parallelism to approximate laziness. We
then conveniently reverse both computations in a Bennett-like manner to produce only
a single bit of garbage (the history data we return is µ̃, representing whether or not
m = m′, and the input vector n⃗).

The Interpreter Whilst the implementation of the µ-recursive functions demonstrates
that realising meaningful programs in Σ is certainly possible, it is inelegant and clunky.
Rather than programming in Σ feeling like the λ-calculus, as was intended, it feels much
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more like programming in assembly. Nevertheless, we release the source code of the
interpreter10, example code11, and syntax highlighters12 for completeness.

V.9. Conclusion
The examples furnishing this chapter demonstrate the utility of the ℵ-calculus, as well as
its appropriateness as a candidate model targeting reversible molecular and Brownian
computational architectures. Though a molecular implementation is as yet unrealised,
an interpreter for the programming language alethe serves as a useful testbed for
ℵ. Going forward, we hope to extend the interpreter to support the full concurrent
language. Additionally, development of a type system appropriate for a language that
is both reversible and declarative would be helpful for improving code analysis and
reducing programmer errors, and work towards this is underway. Lastly, it is hoped
that ℵ can be realised experimentally in a molecular context.

Towards a Molecular Implementation Figure V.3 and Listing V.4b are suggestive of
a high level molecular implementation of the ℵ-calculus. Nevertheless, much more work
is needed to develop a viable molecular implementation. Translation from ℵ terms and
programs to the abstract molecular schemes is fairly routine: one should first eliminate
sub-terms by introducing intermediate terms, an example of which can be seen in the
orange plus ‘atoms’ in Figure V.3. One should also be careful to conserve mass, as
discussed in Section V.3. The resulting reaction schemes will in general still be difficult
to embed in a realistic chemical system. The reason for this is that arbitrary structural
rearrangements may occur in a single ℵ reaction, but realistic chemical reactions tend
to operate in small, local steps. Therefore, additional compilation steps besides mass
conservation and sub-term promotion will be needed. A further concern is that the
arbitrary nesting of terms in ℵmeans they may not be easily embeddable in flat three-
dimensional space. Methods to address this issue may consist of extensible ‘tethers’, or
terms could be split in two and linked ‘virtually’ via a unique address (akin to pointers
in conventional computational architectures).

Before this, however, it is necessary to identify the compilation target. This will
require construction of a lower level reversible molecular computational model that
is Turing Complete, dynamic, and term-based. As discussed in Chapter I, the current
predominant methods for molecular computation are unsuitable. To our knowledge,
there are not any existing molecular architectures that meet the combined requirements
of ℵ: reversibility, ability to couple to a common free energy currency, arbitrary structural
assemblies, and dynamic reassembly of said structures. Whilst the absence of an existing
architecture satisfying these properties might suggest that none exist, we believe that it
is possible to construct one. Indeed, biological enzymes routinely perform all of these

10https://github.com/hannah-earley/sigma-repl
11https://github.com/hannah-earley/sigma-examples
12https://github.com/hannah-earley/sigma-syntax
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tasks. The challenge is in designing a simple programmable system to perform particular
transitions. Ideally such a system will be constructed from nucleic acids, as they are
much easier to work with and design than polypetides are.
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VI. Conclusion
In this thesis we explore the intersection between reversible computation and molecular
computation. The benefits of reversible computation are primarily from the perspective
of energy efficiency, and it has been known for some time (see, e.g., Frank [9]) that the
gains in energy efficiency are asymptotic. That is, reversible computers can exhibit a rate
of computation that scales much better with system size than an equivalent irreversible
computer. In Chapter II we refined these results, proving that it is not possible to do
better than adiabatic scaling in any system, classical or quantum. This adiabatic scaling
corresponds to a computation rate ∼

√
PM where P is the rate of supply of free energy

andM the computational mass-energy. In contrast, the scaling for irreversible computers
is ∼ P . Asymptotically, P can scale no better than the convex bounding surface area of
the system, A, and M no better than the volume of the system, V , leading to respective
scaling laws

√
AV and A. Strictly speaking these apply to the mesoscopic regime; for

the microscopic and cosmic scales we further refined these results.
This performance metric of net computation rate ignores the importance of interac-

tion between computer subunits. In Chapters III and IV we therefore extended this
analysis to consider, respectively, computer-computer communication/synchronisation
interactions and interactions between computers and shared resources. These turned
out to be expensive in the case of Brownian architectures, and we conjectured about
the applicability of these results to any architecture in which individual computational
units evolve independently. If the same aggregate rate of interactions as the rate of
computation were to be maintained, then we showed that the net computation rate
would have to fall to that of irreversible computation, A. From the point of view of
molecular or Brownian computers, which we showed in Section II.4 were easily able to
saturate the adiabatic scaling bounds, this was because the timescale to perform an inter-
action was on the order of ∼ 1/b2 where b quantifies the computational bias, a measure of
the free energy density of the system. As b ≪ 1 is vanishing for large systems, this is
untenable: ideally, all computational transitions in a Brownian computer should operate
at a characteristic timescale ≲ 1/b. Whilst concerning from an engineering perspective,
we presented various mitigation steps in their respective conclusions. Primarily these
centred on reducing the instantaneous proportion of computational subunits permitted
to participate in such interactions. Moreover, for current computational scales up to the
order of metres it is likely that reasonable values of b ≳ 0.1 could be achieved and thus
no mitigation may be necessary at present.

Finally we proposed a model of computation that might be appropriate for program-
ming such a reversible Brownian computer. The motivation for this was the limited
attention which this intersectional computation paradigm has received, and thus this
model fills a vital gap. It is also novel in being the first (to our knowledge) declarative
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model of reversible programming. Whilst the ℵ-calculus is fully functional as a program-
ming language, more work needs to be done to develop it into a viable specification for a
reversible molecular computer. The examples in Sections IV.4 and V.2 serve as an initial
blueprint for this work, and we hope to further develop this over the coming years.
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