65 research outputs found

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic

    Serial Dictatorship Mechanism for Project Scheduling with Non-Renewable Resources

    Get PDF
    This paper considers a resource-constrained project scheduling problem with self-interested agents. A novel resource allocation model is presented and studied in a mechanism design setting without money. The novelties and specialties of our contribution include that the nonrenewable resources are supplied at different dates, the jobs requiring the resources are related with precedence relations, and the utilities of the agents are based on the tardiness values of their jobs. We modify a classical scheduling algorithm for implementing the Serial Dictatorship Mechanism, which is then proven to be truthful and Pareto-optimal. Furthermore, the properties of the social welfare are studied

    2 Combinatorial Models for Multi-agent Scheduling Problems

    Get PDF
    Abstract Scheduling models deal with the best way of carrying out a set of jobs on given processing resources. Typically, the jobs belong to a single decision maker, who wants to find the most profitable way of organizing and exploiting available resources, and a single objective function is specified. If different objectives are present, there can be multiple objective functions, but still the models refer to a centralized framework, in which a single decision maker, given data on the jobs and the system, computes the best schedule for the whole system. This approach does not apply to those situations in which the allocation process involves different subjects (agents), each having his/her own set of jobs, and there is no central authority who can solve possible conflicts in resource usage over time. In this case, the role of the model must be partially redefined, since rather than computing "optimal" solutions, the model is asked to provide useful elements for the negotiation process, which eventually leads to a stable and acceptable resource allocation. Multi-agent scheduling models are dealt with by several distinct disciplines (besides optimization, we mention game theory, artificial intelligence etc), possibly indicated by different terms. We are not going to review the whole scope in detail, but rather we will concentrate on combinatorial models, and how they can be employed for the purpose on hand. We will consider two major mechanisms for generating schedules, auctions and bargaining models, corresponding to different information exchange scenarios

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine

    Get PDF
    We consider a scheduling problem in which the jobs are generated by two agents and have time-dependent proportional-linear deteriorating processing times. The two agents compete for a common single batching machine to process their jobs, and each agent has its own criterion to optimize. The jobs may have identical or different release dates. The batching machine can process several jobs simultaneously as a batch and the processing time of a batch is equal to the longest of the job processing times in the batch. The problem is to determine a schedule for processing the jobs such that the objective of one agent is minimized, while the objective of the other agent is maintained under a fixed value. For the unbounded model, we consider various combinations of regular objectives on the basis of the compatibility of the two agents. For the bounded model, we consider two different objectives for incompatible and compatible agents: minimizing the makespan of one agent subject to an upper bound on the makespan of the other agent and minimizing the number of tardy jobs of one agent subject to an upper bound on the number of tardy jobs of the other agent. We analyze the computational complexity of various problems by either demonstrating that the problem is intractable or providing an efficient exact algorithm for the problem. Moreover, for certain problems that are shown to be intractable, we provide efficient algorithms for certain special cases

    Allocating raw materials to competing projects

    Get PDF

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Optimization for process planning and scheduling in parts manufacturing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore