
Competitive two-agent scheduling with deteriorating jobs on a single
parallel-batching machine

Lixin Tanga,∗, Xiaoli Zhaoa, Jiyin Liub, Joseph Y.-T. Leungc

aLiaoning Key Laboratory of Manufacturing System and Logistics, Institute of Industrial Engineering and
Logistics Optimization, Northeastern University, Shenyang, 110819, China

bSchool of Business and Economics, Loughborough University, Leicestershire LE11 3TU, UK
cSchool of Management, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China and Department of

Computer Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA

Abstract

We consider a scheduling problem in which the jobs are generated by two agents and have

time-dependent proportional-linear deteriorating processing times. The two agents compete for

a common single batching machine to process their jobs, and each agent has its own criterion

to optimize. The jobs may have identical or different release dates. The batching machine can

process several jobs simultaneously as a batch and the processing time of a batch is equal to

the longest of the job processing times in the batch. The problem is to determine a schedule for

processing the jobs such that the objective of one agent is minimized, while the objective of the

other agent is maintained under a fixed value. For the unbounded model, we consider various

combinations of regular objectives on the basis of the compatibility of the two agents. For the

bounded model, we consider two different objectives for incompatible and compatible agents:

minimizing the makespan of one agent subject to an upper bound on the makespan of the other

agent and minimizing the number of tardy jobs of one agent subject to an upper bound on the

number of tardy jobs of the other agent. We analyze the computational complexity of various

problems by either demonstrating that the problem is intractable or providing an efficient exact

algorithm for the problem. Moreover, for certain problems that are shown to be intractable, we

provide efficient algorithms for certain special cases.

Keywords: Scheduling, Release dates, Agent scheduling, Deterioration, Parallel-batching

∗Corresponding author. Tel./fax: +86 24 83680169.
E-mail addresses: lixintang@mail.neu.edu.cn (L. Tang)

Preprint submitted to Elsevier June 8, 2017

This paper has been accepted for publication in European Journal of Operational Research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288368065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

This paper addresses a two-agent scheduling problem on a single batching machine with

time-dependent proportional-linear deteriorating job processing times. Each agent has a set of

jobs to be scheduled on a common batching machine and seeks to minimize a cost function that

only depends on the completion times of its own jobs. The machine can process several jobs

simultaneously as a batch. The processing time of a batch is the longest processing time of

the jobs assigned to the batch. The processing time of a job is a proportional-linear increasing

function of its starting time. The problem we are considering is to find a schedule that minimizes

the objective of one agent with the restriction that the objective of the other agent cannot exceed

a given bound.

Our study is motivated by a production scheduling problem for the ingot soaking process

of a primary rolling plant in the steel industry (see Figure 1). When the molten steel from a

steelmaking furnace is ready, it is first cast into ingots. This casting process includes pouring the

molten steel into molds, followed by solidifying and stripping to remove the molds. The ingots

are then reheated and soaked in a soaking pit to the required rolling temperature before being

rolled into steel products, which may be either sold directly to customers or used for further

processing in the hot rolling mill. The sales department and the hot rolling mill can be viewed

as two agents for the ingot soaking process. An ingot can be viewed as a job. The soaking pit

can process several jobs simultaneously and can be considered as a bounded parallel-batching

machine. The time required for reheating and soaking an ingot in the soaking pit is known as

the soaking time of the ingot. The batch processing time in the soaking pit is the longest soaking

times of the jobs assigned to the batch. During the time period between steelmaking and soak-

ing, ingots are cast and remain on platforms, which can be moved along rail tracks in the plant.

Therefore, this time period is called the track time (Lee, 1979). As the track time increases,

the temperature of the ingot decreases, and the required soaking time increases. Depending on

the size and shape of the ingot, the increasing rate for the soaking time is different. Patel et al.

(1976) provide formulae of the relationship between the soaking time and the track time for three

different ingot types. Although the relationship contains a quadratic term, its coefficient is very

small, and the relationship is very close to a linear one. Using these relationships and the track

times of ingots provided in Lee (1979), ignoring the duplicates and those with track times longer

than an eight-hour shift, we calculate the corresponding soaking times and draw the data points

in Figure 2. We further fit a line for the points of each ingot type with the restriction that these

2

three lines must meet at a point on the horizontal axis. The resulting lines are also shown in

the figure, which can be clearly observed as a good fit to the points. Note that the starting time

of each ingot in the soaking process is the time when the track time ends, e.g., the horizontal

coordinate of the corresponding point in Figure 2. As a result, the soaking time of a job can be

regarded as a proportional-linear increasing function of its starting time. Consequently, we study

a two-agent scheduling problem with time-dependent proportional-linear deteriorating job pro-

cessing times on a bounded parallel-batching machine. Moreover, we extend the problems on a

bounded batching machine to an unbounded batching machine. For the unbounded model, there

is no upper bound on the number of jobs in the same batch. In the following, we will present an

example to illustrate the two-agent scheduling model with time-dependent proportional-linear

deteriorating job processing times on a bounded parallel-batching machine. In this example, we

assume that the hot rolling mill needs 3 steel slabs, which correspond to 3 ingots and can be

regarded as the job set of agent A, i.e., JA = {JA
1 , J

A
2 , J

A
3 }, and customers need 2 steel products,

which correspond to 2 ingots and can be regarded as the job set of agent B, i.e., JB = {JB
1 , J

B
2 }.

The actual processing time of job JX
j is pXj = αX

j (a + bt), X ∈ {A, B}, where αX
j > 0 is the

normal processing time, a ≥ 0 and b > 0 are constants, and t is the starting time of JX
j . In

this example, the job normal processing times are αA
1 = 1, αA

2 = 2, αA
3 = 3;αB

1 = 0.5, αB
2 = 1.

a = b = 1. The capacity of the soaking pit is 2. We further assume that all jobs have the same

release dates t0 = 1 and the jobs of different agents cannot be processed in the same batch. The

objective is to minimize the makespan CA
max of agent A, with the restriction that the makespan

CB
max of agent B cannot exceed a given bound QB = 32. Introduction of the specific parameters

can be seen in Section 2. We can obtain an optimal schedule π as shown in Figure 3. The

minimum makespan of agent A is 15 and the makespan of agent B is 31 < 32. This optimal

schedule not only satisfies the customers, but also improves the machine efficiency of the next

production stage.

Figure 1. Ingot production processing

3

Figure 2. The relationships between the soaking time and the track time

Figure 3. Schedule π

Agent scheduling has become a popular topic in the scheduling literature. Baker and Smith

(2003) and Agnetis et al. (2004) first introduce the scheduling problems with two agents, in which

all jobs have identical release dates. Baker and Smith (2003) consider a linear combination of the

objectives of two agents on a single machine, while Agnetis et al. (2004) study the constrained

optimization problems and the Pareto-optimization problems on a single machine or in two-

machine shop settings. Leung et al. (2010) generalize the results of Agnetis et al. (2004) and

extend the models from a single machine to parallel machines, where the jobs are allowed to

preempt and have different release dates. For agent scheduling problems, we refer the reader to

the recent survey by Perez-Gonzalez and Framinan (2014) and the recent book by Agnetis et

al. (2014). Though agent scheduling has been extensively studied in recent years, results of the

research focus mainly on agent scheduling with fixed job processing times, see Chapters 3-5 of

the book by Agnetis et al. (2014) for details. At the same time, most agent scheduling problems

concern jobs with the same release dates on single machine.

The parallel-batching scheduling problems have attracted wide attention in the field of

scheduling research. A parallel-batching machine can process several jobs simultaneously. The

processing time of a batch is equal to the longest processing time of the jobs in the batch. All

the jobs of the same batch start and complete at the same time. Once processing of a batch

4

begins, it cannot be interrupted, and other jobs cannot be added to the batch. According to

the capacity of the batching machine, the problem may be viewed as an unbounded model or

a bounded model. Potts and Kovalyov (2000) present a review of scheduling problems with

batching.

To the best of our knowledge, there are only two pieces of previous work considering con-

strained optimization of two-agent scheduling on a parallel-batching machine, in which the jobs

have fixed processing times and the same release dates. Li and Yuan (2012) study the scheduling

problems with two agents on an unbounded parallel-batching machine. They provide polyno-

mial or pseudo-polynomial time algorithms to solve various combinations of regular objective

functions for incompatible and compatible agents. Fan et al. (2013) consider the scheduling

problems with two agents on a bounded parallel-batching machine. They focus on minimizing

the makespan or the total completion time of one agent, subject to an upper bound on the

makespan of the other agent for incompatible and compatible agents.

Scheduling problems with time-dependent job processing times have received considerable

attention. For these problems, we refer the reader to the survey by Cheng et al. (2004) and

the book by Gawiejnowicz (2008). However, the jobs in these time-dependent scheduling works

are individual jobs without agents or may be considered as all belonging to one single agent.

In this paper, we focus on the scheduling problems with time-dependent proportional-linear

deteriorating job processing times and the jobs belonging to two different agents.

Contrary to agent scheduling with fixed job processing times, research on agent scheduling

with time-dependent deteriorating job processing times is very limited. Liu and Tang (2008) con-

sider the two-agent single machine scheduling problems with proportional deterioration. How-

ever, they only focus on the criteria of maximum lateness, makespan, total completion time

and maximum cost function. Liu et al. (2010) study the two-agent group scheduling problems

with proportional deterioration and proportional-linear deterioration on a single machine. The

objective is to minimize the total completion time of the first agent, with the restriction that

the maximum cost of the second agent cannot exceed a given upper bound. Gawiejnowicz et

al. (2011) consider the two-agent single machine scheduling problem with proportional deteri-

oration. The objective is to minimize the total tardiness of the first agent, with the constraint

that no tardy job is allowed for the second agent. Gawiejnowicz and Suwalski (2014) first study

the two-agent single-machine scheduling problem with proportional deterioration including a

non-trivial NP-completeness proof. They propose an exact algorithm and a meta-heuristic for

5

minimizing a weighted sum of the total weighted completion time of one agent and the maxi-

mum lateness of the other agent. Liu et al. (2011) consider two-agent single-machine scheduling

problems with proportional-linear deterioration to minimize the objective function of one agent

while limiting the objective value of the other agent. They study two problems with different

combinations of the objective functions and present optimal polynomial time algorithms to solve

them. Yin et al. (2015) extend the research of Liu et al. (2011) to other combinations of the two

agents’ objective functions. He and Leung (2016) also consider the two-agent single-machine

scheduling problem with proportional-linear deteriorating and proportional-linear shortening job

processing times. However, all of the above mentioned works consider only jobs with the same

release dates. Agnetis et al. (2014, Section 6.2) provide a detailed discussion of agent scheduling

problems with time-dependent deteriorating job processing times.

Although both the two-agent scheduling problems with time-dependent deteriorating job

processing times and the implementation of two-agent scheduling problems on a parallel-batching

machine have been extensively studied in the literature, we have not identified any previous

research reports on an integrated problem with all three features of two-agent, time-dependent

deteriorating job processing times and parallel-batching machine altogether. In this paper we

study the two-agent scheduling problems on a single parallel-batching machine, in which the

processing time of a job is a proportional-linear increasing function of its starting time. Because

the single-agent problems and the integrated problems with any of the above two features are

only special cases of our problems, our problems are much more complex and more difficult

than the previous work on these problems. Because of the deteriorating jobs and the two-

agent scheduling in our problems, many solution methods for the previous two-agent scheduling

problems with fixed job processing times and for the single-agent scheduling problems are no

longer suitable for our problems. We exploit the structure of the problem and present optimal

properties for different versions of the problem. Based on these properties, we design optimal

solutions for the solvable problems. In addition, we show that some problems are NP-hard and

develop polynomial or pseudo-polynomial time algorithms to solve certain special cases of these

intractable problems. Finally, we generalize the integrated problem to jobs with different release

dates. There is no previous result for this scenario even for the version with fixed processing

times. We analyze the computational complexity for these problems and establish the foundation

of theoretical research for the two-agent scheduling problems with different release dates. For the

example case of the ingot soaking problem in the steel industry mentioned earlier, the effective

6

solution of this integrated scheduling problem can guide the production and save energy in the

soaking process, as well as improve customer satisfaction.

The rest of the paper is organized as follows. In Section 2, we specify our notation and

provide an overview of the results to be presented in later sections. Section 3 presents the

results of the unbounded batching machine scheduling problems. Section 4 discusses the results

of the problems on the bounded batching machine. Finally, Section 5 provides conclusions.

2. Notation and overview of problems studied

The problem studied here can be described as follows. There are two agents A and B. Each

of them generates a set of jobs JA = {JA
1 , J

A
2 , . . . , J

A
nA
} and JB = {JB

1 , J
B
2 , . . . , J

B
nB
},

respectively. Let n be the total number of jobs, where n = nA + nB. The jobs will be processed

nonpreemptively on a common batching machine. The batching machine can process up to

c jobs simultaneously as a batch. We assume that the actual processing time of job JX
j is

pXj = αX
j (a + bt), X ∈ {A, B}, where αX

j > 0 is the normal processing time of job JX
j

for j = 1, 2, . . . , nX , a ≥ 0 and b > 0 are constants, and t is the starting time of JX
j . Let

dXj ≥ 0 be the due date of job JX
j . We assume that either all jobs are simultaneously available

for processing at time t0 ≥ 0, or each job JX
j has an individual release date rXj > 0. Let

M = (t0 + a
b)

∏nA
h=1(1 + αA

h)
∏nB

k=1(1 + αB
k) − a

b . In a given schedule we denote the completion

time of job JX
j as CX

j . We use UX
j to indicate whether job JX

j is tardy. UX
j = 1 , if job JX

j is

tardy, and UX
j = 0, otherwise.

We consider various scheduling problems denoted by the classification scheme α|β|γA : γB

(Agnetis et al., 2004), where α indicates the scheduling environment, β denotes the additional

constraints on the jobs, and γA : γB defines the objective function γA of agent A to be minimized

subject to the objective function γB of agent B not exceeding a given value QB ≥ 0. In this

paper, we consider one machine problems, implying that α = 1. Under β, we use pXj = αX
j (a+bt)

to indicate the actual processing time of job JX
j , j = 1, 2, . . . , nX ; p − batch represents the

parallel-batching machine; c =∞ and c < n represent the unbounded and bounded capacity of

the parallel-batching machine, respectively; IF and CF represent incompatible and compatible

agents, respectively, where the incompatible agents mean that one batch contains only jobs from

the same agent and the compatible agents mean that one batch may contain jobs from different

agents; rXj implies that each job has an individual release date and this parameter is omitted if

the release dates are equal. We mainly consider the minimization of the following objectives: the

7

number of tardy jobs
∑
Uj , the makespan Cmax = max{Cj}, the maximum of regular functions

fmax = max{fj(Cj)}, where fj(·) is a nondecreasing function of the completion time of job Jj

and its value can be calculated in constant time for any one job completion time, and the sum

of regular functions
∑
fj =

∑
fj(Cj).

3. The unbounded parallel-batching model

In this section, we consider the unbounded parallel-batching scheduling problems. The jobs

may have identical or different release dates. We propose algorithms for the problems and show

their complexities based on the compatibility of the two agents. Without loss of generality, we

assume that the job parameters are non-negative integers.

3.1. The unbounded parallel-batching with identical release dates

We first present the following two properties for the optimal schedules corresponding to

different agent compatibility types respectively. The first result characterizes the sequence

of jobs of each agent in an optimal schedule for the incompatible agents. The second result

characterizes the sequence of jobs of two agents in an optimal schedule for the compatible

agents. These properties can be proved by showing that any schedule violating the property can

be improved, or at least does not become worse, by shifting jobs to make it satisfy the property.

We omit the details of the proof.

Lemma 3.1. There is an optimal schedule for the problem 1|p − batch; pXj = αX
j (a + bt); c =

∞; IF |γA : γB, where the jobs (batches) from each agent are processed in the shortest normal

processing time (SNPT) order.

We refer to a schedule that satisfies the property in Lemma 3.1 as a D-SNPT-batch schedule.

Based on Lemma 3.1, if there are two jobs JB
i and JB

j with αB
i ≤ αB

j and dBi ≥ dBj ,

then the job JB
i can be moved to the same batch as the job JB

j . Hence, for the problem

1|p − batch; pXj = αX
j (a + bt); c = ∞; IF |γA : fBmax, we may assume that the jobs of agent B

have been re-indexed such that αB
1 < . . . < αB

nB
and d̄B1 < . . . < d̄BnB

, where d̄Bk is an induced

deadline and can be calculated in constant time, such that fBk (CB
k) ≤ QB for CB

k ≤ d̄Bk and

fBk (CB
k) > QB for CB

k > d̄Bk .

Lemma 3.2. There is an optimal schedule for the problem 1|p − batch; pXj = αX
j (a + bt); c =

∞;CF |γA : γB, where the jobs (batches) from the two agents are processed in the SNPT order.

We refer to a schedule that satisfies the property in Lemma 3.2 as an SNPT-batch schedule.

8

3.1.1. 1|p− batch; pXj = αX
j (a+ bt); c =∞|

∑
fAj : fBmax

Li and Yuan (2012) propose dynamic programming algorithms for 1|p−batch; c =∞|
∑
fAj :

fBmax with fixed processing times for the incompatible and compatible cases. To solve the

problems with proportional-linear deteriorating processing times, the running times of these

algorithms would be exponential. Hence, in this subsection, we present new dynamic pro-

gramming algorithms for the problem based on the compatibility of two agents. Let ∆ =

max{fj(M) : 1 ≤ j ≤ n}. For the incompatible case, we propose the following algorithm with

overall time complexity of O(n3
AnBn

2∆2).

Algorithm DP1

Based on Lemma 3.1, we may assume that the jobs of each agent are indexed according to

the SNPT rule, i.e., αA
1 ≤ αA

2 . . . ≤ αA
nA

and αB
1 ≤ αB

2 . . . ≤ αB
nB

. Define C(hA, kB, tA) as the

minimum completion time of a partial D-SNPT-batch schedule containing jobs JA
1 , J

A
2 , . . . , J

A
hA

,

JB
1 , J

B
2 , . . . , J

B
kB

such that the objective value of agent A is exactly tA and no job of agent B

completes after its induced deadline. If there is no feasible schedule, we define C(hA, kB, tA) =

+∞. The initial condition is C(0, 0, tA) =

t0, if tA = 0,

+∞, otherwise.

In a feasible schedule, assume that the last batch comes from agent A and is of the form

JA
lA
, . . . , JA

hA
with 1 ≤ lA ≤ hA. Then we have C(hA, kB, tA) = (1+bαA

hA
)C(lA−1, kB, t

∗
A)+aαA

hA
,

where t∗A = tA −
hA∑
i=lA

fAi (C(hA, kB, tA)). Assume that the last batch comes from agent B and is

of the form JB
lB
, . . . , JB

kB
with 1 ≤ lB ≤ kB. If (1 + bαB

kB
)C(hA, lB − 1, tA) + aαB

kB
≤ d̄BlB , where

d̄BlB is the induced deadline such that fBlB ((1 + bαB
kB

)C(hA, lB − 1, tA) + aαB
kB

) ≤ QB, then we

have C(hA, kB, tA) = (1 + bαB
kB

)C(hA, lB − 1, tA) + aαB
kB

.

Summarizing the above analysis, we have the following recursive relation:

C(hA, kB, tA) = min

(1 + bαA
hA

) min
1≤lA≤hA

min
t∗A∈Γ

C(lA − 1, kB, t
∗
A) + aαA

hA
,

(1 + bαB
kB

) min
1≤lB≤kB

C(hA, lB − 1, tA) + aαB
kB
,

if (1 + bαB
kB

)C(hA, lB − 1, tA) + aαB
kB
≤ d̄BlB .

where Γ = {t∗A : t∗A +
hA∑
i=lA

fAi ((1 + bαA
hA

)C(lA − 1, kB, t
∗
A) + aαA

hA
) = tA}.

The value of tA belongs to [0, n∆]. There are nAnBn∆ states in the dynamic program. In

each recursion, the value of t∗A has at most n∆ choices, and for each t∗A, we need O(nA) time to

check whether t∗A ∈ Γ or not. Hence, all C(hA, kB, tA) can be calculated in O(n3
AnBn

2∆2) time.

9

The optimal solution value is min{tA ∈ [0, n∆] : C(nA, nB, tA) < +∞}.

Theorem 3.1.1. The problem 1|p − batch; pXj = αX
j (a + bt); c = ∞; IF |

∑
fAj : fBmax can be

solved in O(n3
AnBn

2∆2) time.

For the compatible case, we propose the following algorithm for the problem 1|p−batch; pXj =

αX
j (a+ bt); c =∞;CF |

∑
fAj : fBmax.

Algorithm DP2

Based on Lemma 3.2, we may assume that the jobs of two agents are indexed according to

the SNPT rule, i.e., α1 ≤ α2 ≤ · · · ≤ αn. Define C(j, tA) as the minimum completion time of a

partial SNPT-batch schedule containing jobs J1, J2, . . . , Jj such that the objective value of agent

A is exactly tA and no job of agent B completes after its induced deadline. If there is no feasible

schedule, we define C(j, tA) = +∞. The initial condition is C(0, tA) =

t0, if tA = 0,

+∞, otherwise.

In a feasible schedule, assume that the last batch is of the form Ji, . . . , Jj with 1 ≤ i ≤ j.

Then we have recursive relation:

C(j, tA) = (1 + bαj) min
1≤i≤j

min
t∗A∈Γ

C(i− 1, t∗A) + aαj ,

where Γ = {t∗A : t∗A +
j∑

l=i

fl((1 + bαj)C(i− 1, t∗A) + aαj) = tA},

fl((1+bαj)C(i−1, t∗A)+aαj) =

fl((1 + bαj)C(i− 1, t∗A) + aαj), if Jl ∈ JA,

0, if Jl ∈ JB and (1 + bαj)C(i− 1, t∗A) + aαj ≤ d̄Bl ,

+∞, if Jl ∈ JB and (1 + bαj)C(i− 1, t∗A) + aαj > d̄Bl .

where d̄Bl is the induced deadline such that fl((1 + bαj)C(i− 1, t∗A) + aαj) ≤ QB if Jl ∈ JB.

The optimal solution value is min{tA ∈ [0, n∆] : C(n, tA) < +∞}.

Theorem 3.1.2. The problem 1|p − batch; pXj = αX
j (a + bt); c = ∞;CF |

∑
fAj : fBmax can be

solved in O(n5∆2) time.

3.1.2. 1|p− batch; pXj = αX
j (a+ bt); c =∞|

∑
fAj :

∑
fBj

In this subsection, we consider another problem 1|p− batch; pXj = αX
j (a+ bt); c =∞|

∑
fAj :∑

fBj based on the compatibility. We also propose new dynamic programming algorithms for the

incompatible and compatible cases. Their computational complexities areO(nAnBn∆QB(n2
An∆+

n2
BQB)) and O(n5∆2Q2

B), respectively.

10

Algorithm DP3

Based on Lemma 3.1, we may assume that the jobs of each agent are indexed according to

the SNPT rule, i.e., αA
1 ≤ αA

2 . . . ≤ αA
nA

and αB
1 ≤ αB

2 . . . ≤ αB
nB

. Define C(hA, kB, tA, tB) as the

minimum completion time of a partial D-SNPT-batch schedule containing jobs JA
1 , J

A
2 , . . . , J

A
hA
,

JB
1 , J

B
2 , . . . , J

B
kB

such that the objective values of agent A and agent B are exactly tA and tB,

respectively, and tB ≤ QB. If there is no feasible schedule, we define C(hA, kB, tA, tB) = +∞.

The initial condition is C(0, 0, tA, tB) =

t0, if tA = 0 and tB = 0,

+∞, otherwise.

Similar to DP1, we have the following recursive relation:

C(hA, kB, tA, tB) = min

(1 + bαA

hA
) min

1≤lA≤hA

min
t∗A∈Γ

C(lA − 1, kB, t
∗
A, tB) + aαA

hA
,

(1 + bαB
kB

) min
1≤lB≤kB

min
t∗B∈Γ′

C(hA, lB − 1, tA, t
∗
B) + aαB

kB
.

where Γ = {t∗A : t∗A +
hA∑
i=lA

fAi ((1 + bαA
hA

)C(lA − 1, kB, t
∗
A, tB) + aαA

hA
) = tA},

Γ′ = {t∗B : t∗B +
kB∑
i=lB

fBi ((1 + bαB
kB

)C(hA, lB − 1, tA, t
∗
B) + aαB

kB
) = tB}.

The values of tA and tB belong to [0, n∆] and [0, QB], respectively. There are nAnBn∆QB

states in the dynamic program. In each recursion, the value of t∗A has at most n∆ choices and t∗B

has at most QB choices, and we need O(nA) and O(nB) times to check whether t∗A ∈ Γ and t∗B ∈

Γ′ or not, respectively. Hence, all C(hA, kB, tA, tB) can be calculated in O(nAnBn∆QB(n2
An∆+

n2
BQB)) time. The optimal solution value is min{tA ∈ [0, n∆] : C(nA, nB, tA, tB) < +∞, tB ≤

QB}.

Theorem 3.1.3. The problem 1|p − batch; pXj = αX
j (a + bt); c = ∞; IF |

∑
fAj :

∑
fBj can be

solved in O(nAnBn∆QB(n2
An∆ + n2

BQB)) time.

Algorithm DP4

Based on Lemma 3.2, we may assume that the jobs of two agents are indexed according to

the SNPT rule, i.e., α1 ≤ α2 ≤ · · · ≤ αn. Define C(j, tA, tB) as the minimum completion time

of a partial SNPT-batch schedule containing jobs J1, J2, . . . , Jj such that the objective values of

agent A and agent B are exactly tA and tB, respectively, and tB ≤ QB. If there is no feasible

schedule, we define C(j, tA, tB) = +∞.

The initial condition is C(0, tA, tB) =

t0, if tA = 0 and tB = 0,

+∞, otherwise.

11

In a feasible schedule, assume that the last batch is of the form Ji, . . . , Jj with 1 ≤ i ≤ j.

Then we have recursive relation:

C(j, tA, tB) = (1 + bαj) min
1≤i≤j

min
t∗A∈Γ,t∗B∈Γ′

C(i− 1, t∗A, t
∗
B) + aαj ,

where Γ = {t∗A : t∗A +
j∑

l=i

fAl ((1 + bαj)C(i− 1, t∗A, t
∗
B) + aαj) = tA, Jl ∈ JA},

Γ′ = {t∗B : t∗B +
j∑

l=i

fBl ((1 + bαj)C(i− 1, t∗A, t
∗
B) + aαj) = tB, Jl ∈ JB}.

The optimal solution value is min{tA ∈ [0, n∆] : C(n, tA, tB) < +∞, tB ≤ QB}.

Theorem 3.1.4. The problem 1|p − batch; pXj = αX
j (a + bt); c = ∞;CF |

∑
fAj :

∑
fBj can be

solved in O(n5∆2Q2
B) time.

3.1.3. 1|p − batch; pXj = αX
j (a + bt); c = ∞|fAmax : fBmax, 1|p − batch; pXj = αX

j (a + bt); c =

∞|
∑
UA
j :

∑
UB
j and 1|p− batch; pXj = αX

j (a+ bt); c =∞|
∑
UA
j : fBmax

In this subsection, we generalize the algorithms proposed by Li and Yuan (2012) for their

previous problem with fixed processing times to our problems with time-dependent deteriorating

job processing times, we can obtain the corresponding extended results for the new problems

with time-dependent deteriorating job processing times. Because of space limit, we omit the

details here. If the readers want to read more information, please refer to the paper by Li and

Yuan (2012).

Remark 1. For each fixed value QA, whether a feasible schedule exists for the incompatible

and compatible cases of decision problem 1|p− batch; pXj = αX
j (a+ bt); c =∞|LA

max ≤ QA : fBmax

can be determined in O(nnAnB) time and O(n3) time, respectively.

Remark 2. The incompatible and compatible cases of problem 1|p−batch; pXj = αX
j (a+bt); c =

∞|LA
max : fBmax can be solved in O(nnAnB logM) time and O(n3 logM) time, respectively.

Remark 3. The incompatible and compatible cases of problem 1|p−batch; pXj = αX
j (a+bt); c =

∞|fAmax : fBmax can be solved in O(nnAnB log(QU − QL)) time and O(n3 log(QU − QL)) time,

respectively, where QL = min{fAj (t0) : 1 ≤ j ≤ nA} and QU = max{fAj (M) : 1 ≤ j ≤ nA}.

Remark 4. The incompatible and compatible cases of problem 1|p−batch; pXj = αX
j (a+bt); c =

∞|
∑
UA
j :

∑
UB
j can be solved in O(n2

An
2
Bn

2) time and O(n2nAnB) time, respectively.

Remark 5. The incompatible and compatible cases of problem 1|p−batch; pXj = αX
j (a+bt); c =

∞|
∑
UA
j : fBmax can be solved in O(n2

AnBn
2) time and O(n2nA) time, respectively.

12

3.2. The unbounded parallel-batching with distinct release dates

3.2.1. 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞|CA

max : CB
max

In this subsection, we show that the problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞|CA

max :

CB
max can be solved in polynomial time for both incompatible and compatible cases.

3.2.1.1. 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞; IF |CA

max : CB
max.

In this subsection, we propose a polynomial time algorithm for the incompatible case. We

first design a polynomial time dynamic programming algorithm to determine whether a feasible

schedule exists for the decision problem 1|p−batch; pXj = αX
j (a+bt); rXj ; c =∞; IF |CA

max ≤ QA :

CB
max. The dynamic programming is based on the following properties of an optimal schedule

for the problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞; IF |CA

max : CB
max.

Lemma 3.2.1. For the problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞; IF |CA

max : CB
max, there

is an optimal batch sequence π = (B1, B2, . . . , Bm) such that if two jobs Ji and Jj belong to the

same agent and distinct batches, with Ji ∈ Bx, Jj ∈ By and x < y, then αi > αj .

Corollary 3.2.2. There is an optimal batch sequence π = (B1, B2, . . . , Bm) for the problem

1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞; IF |CA

max : CB
max such that each batch Bx of agent A or

B is in the form Bx = {Jj ∈ JX : αl ≤ αj ≤ αu} for some numbers l and u.

If two jobs Ji and Jj are from the same agent with ri ≤ rj and αi ≤ αj , then we can always

put Ji in the same batch as Jj without increasing the makespan of each agent. Thus, we can

delete Ji from the job set. Therefore, without loss of generality, we can re-index the jobs of each

agent such that rX1 < rX2 < · · · < rXnX
and αX

1 > αX
2 > · · · > αX

nX
for X = A,B.

Based on the above properties, we present the following dynamic programming algorithm

to determine whether a feasible schedule exists for the decision problem 1|p − batch; pXj =

αX
j (a + bt); rXj ; c = ∞; IF |CA

max ≤ QA : CB
max. Then we use this algorithm as a subroutine to

solve the problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞; IF |CA

max : CB
max.

Algorithm DP5

Given any fixed QA > 0, define fQA
(hA, kB) as the minimum makespan of a partial schedule

containing jobs JA
1 , J

A
2 , . . . , J

A
hA
, JB

1 , J
B
2 , . . . , J

B
kB

such that the completion time of the last job of

agent A is at most QA and the completion time of the last job of agent B is at most QB. If there

is no feasible schedule, we define fQA
(hA, kB) = +∞. The initial condition is fQA

(0, 0) = 0.

In a feasible schedule, assume that the last batch belongs to agent A and it is of the form

{JA
lA+1, J

A
lA+2, . . . , J

A
hA
} with lA < hA. Then we have

13

fA = min
0≤lA≤hA−1

{max{fQA
(lA, kB), rAhA

} · (1 + bαA
lA+1) + aαA

lA+1, if max{fQA
(lA, kB), rAhA

} ·

(1 + bαA
lA+1) + aαA

lA+1 ≤ QA}.

Assume that the last batch belongs to agent B and it is of the form {JB
lB+1, J

B
lB+2, . . . , J

B
kB
}

with lB < kB. Then we have

fB = min
0≤lB≤kB−1

{max{fQA
(hA, lB), rBkB} · (1 + bαB

lB+1) + aαB
lB+1, if max{fQA

(hA, lB), rBkB} ·

(1 + bαB
lB+1) + aαB

lB+1 ≤ QB}.

Hence, the recursive relation is fQA
(hA, kB) = min{fA, fB}.

In the above recursive relation, if fQA
(nA, nB) < +∞, then we can obtain a feasible schedule

for the decision problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c = ∞; IF |CA

max ≤ QA : CB
max in

O(nAnBn) time.

Theorem 3.2.3. The problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞; IF |CA

max : CB
max can be

solved in O(nAnBn log(Q′U −Q′L)) time, where Q′U and Q′L are upper and lower bounds of QA,

respectively.

Proof. For each QA > 0, we can use DP5 as a subroutine to find a feasible schedule such that

CA
max ≤ QA and CB

max ≤ QB. Observe that a lower bound for QA is Q′L = F (nA) which is the

optimal value for the single-agent problem 1|p − batch; pj = αj(a + bt); rj ; c = ∞|Cmax that

only schedules the jobs JA
1 , J

A
2 , . . . , J

A
nA

and that can be solved using a dynamic programming

algorithm similar to DP 1 of Li et al. (2011) in O(n2
A) time. An upper bound for QA is

Q′U = F ′(nA) which is the optimal value for the problem 1|p − batch; pAj = αA
j (a + bt); rAj ; c =

∞;FB|CA
max, where FB means forbidden interval. Here “FB” refers to the processing intervals

for only optimally scheduling the jobs JB
1 , J

B
2 , . . . , J

B
nB

for the problem 1|p− batch; pBj = αB
j (a+

bt); rBj ; c =∞|CB
max. Then F ′(nA) can be optimally solved in O(n2

B +n2
AnB) time on the basis of

the problem 1|p−batch; rj ; c =∞;FB|Cmax (Yuan et al., 2008). We can conduct a binary search

in the range [Q′L, Q
′
U] to determine the optimal value Q∗A = min{QA : fQA

(nA, nB) < +∞}.

Hence, the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c = ∞; IF |CA

max : CB
max can be solved in

O(nAnBn log(Q′U −Q′L)). 2

3.2.1.2. 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞;CF |CA

max : CB
max.

In view of Lemma 3.2.1, we may assume that the jobs have been indexed such that r1 <

· · · < rn and α1 > · · · > αn. We define a batch as X-pure if this batch contains only the jobs of

agent X, X = A,B. We have the following properties for the compatible case.

Lemma 3.2.4. For the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c = ∞;CF |CA

max : CB
max,

there is an optimal schedule in the form (π1, π2, π3) that has the following properties:

14

1) the partial schedule π2 contains only all the B-pure batches, π3 contains part of A-pure

batches (if any), and π1 contains the remaining batches;

2) all the jobs (batches) in the partial schedules π1 and π2 are scheduled in decreasing order of

their normal processing times, all the jobs (batches) in the partial schedules π1 and π3 are also

scheduled in decreasing order of their normal processing times.

Lemma 3.2.4 implies that each batch contains only consecutive jobs.

Algorithm 1

Based on Lemmas 3.2.1 and 3.2.4, we may assume that the jobs have been indexed as

follows: JX
1 , . . . , J

X
i−1, J

A
i , J

B
i+1, . . . , J

B
k , J

A
k+1, . . . , J

A
n , X ∈ {A,B}, such that r1 < · · · < rn and

α1 > · · · > αn, where the job JA
i is the last job of agent A in π1, the jobs JB

i+1, . . . , J
B
k belong to

agent B, the job JB
k is the last job of agent B, the jobs JA

k+1, . . . , J
A
n belong to agent A. Let F (j)

be the minimum completion time of a partial schedule of jobs JX
1 , . . . , J

X
j , X ∈ {A,B}. Using

the solution method for the single-agent problem 1|p − batch; pj = αj(a + bt); rj ; c = ∞|Cmax,

which takes O(n2) time, we can obtain the minimum completion time F (j) of any one job Jj

j = 1, 2, . . . , n for a given schedule sequence. The minimum completion time of job JB
k in the

partial schedule of jobs JX
1 , . . . , J

X
i−1, J

A
i , J

B
i+1, . . . , J

B
k is denoted by Fopt(k).

1) If Fopt(k) ≤ QB, then we can compute F (k+1), . . . , F (n) for the job sequence JX
1 , . . . , J

X
i−1, J

A
i ,

JB
i+1, . . . , J

B
k , J

A
k+1, . . . , J

A
n , X ∈ {A,B}. This takes O(n2) time. There are two outcomes:

(1) We find the first job Jj ∈ JA, for k + 1 ≤ j ≤ n, such that F (j) > QB. We denote this job

by Jj∗ , i.e., F (j∗) > QB.

For j = j∗, j∗ + 1, . . . , n, if the last batch in the partial schedule of jobs JX
1 , . . . , J

X
i−1, J

A
i ,

JB
i+1, . . . , J

B
k , . . . , J

A
j contains at least one job of agent B, then we compute F (j) as F (j) =

min
j∗−1≤i≤j−1

{max {F (i), rj} · (1 + bαi+1) + aαi+1}. The time taken to compute F (j) is O(nA).

Hence, the running time for this case is O(n2
A).

If the last batch in the partial schedule of jobs JX
1 , . . . , J

X
i−1, J

A
i , J

B
i+1, . . . , J

B
k , . . . , J

A
j does

not contain any one job of agent B, then we compute F (j) as F (j) = min
k≤i≤j−1

{max{F (i), rj} ·

(1 + αi+1) + aαi+1}. The time taken to compute F (j) is O(nA). Hence, the running time for

this case is also O(n2
A).

(2) If F (j) ≤ QB for all k + 1 ≤ j ≤ n, then we move all jobs Jk+1, . . . , Jn to the front of JB
k ,

compute F (k) and check whether F (k) ≤ QB or not. If yes, then we move all jobs Jk+1, . . . , Jn

to the front of JB
k−1 and continue to check whether F (k) ≤ QB or not. If yes, we keep doing

this until the last time the minimum completion time of job JB
k is not greater than QB. In this

15

case, the optimal solution value of agent A is F (n) that can be obtained in O(n2nB) time.

If when all jobs Jk+1, . . . , Jn are moved to the front of JB
i+1 and the minimum completion

time of job JB
k is still not greater than QB, then the jobs of agent B before the job JA

i from

back to front are moved one-by-one to the position behind the job Jn and are processed in

the same sequence of their original positions, i.e., if JX
i−2, J

X
i−1 ∈ JB, then we have the sched-

ule JX
1 , . . . , J

X
i−3, J

A
i , J

A
k+1, . . . , J

A
n , J

X
i−2, J

X
i−1, J

B
i+1, . . . , J

B
k . And then compute F (k) and check

whether F (k) ≤ QB or not. If yes, we keep doing this until the last time the minimum comple-

tion time of job JB
k is not greater than QB. There are at most nB movements for the jobs of

agent B before the job JA
i . So the running time for this case is also O(n2nB).

Summarizing the above analysis, the optimal solution value of agent A is F (n). The running

time of the algorithm for this case is O(n2nB).

2) If Fopt(k) > QB, then the jobs of agent A before the job JB
i+1 from back to front are moved one-

by-one to the position behind the job JB
k and are processed in the same sequence of their original

positions, i.e., if JX
i−1 ∈ JA, then we have the schedule JX

1 , . . . , J
X
i−2, J

B
i+1, . . . , J

B
k , J

X
i−1, J

A
i , J

A
k+1,

. . . , JA
n . And then compute F (k) and check whether F (k) ≤ QB or not. If no, we keep doing

this until the minimum completion time of job JB
k is not greater than QB. There are at most

nA movements for the jobs of agent A before the job JB
i+1. Hence, in this case we can obtain

the optimal solution value F (n) of agent A in O(n2nA) time.

3.2.2. 1|p− batch; pXj = αX
j (a+ bt); rXj ; c =∞|

∑
UA
j :

∑
UB
j

Miao et al. (2012) prove that the problem 1|p− batch; pj = αjt; rj ; c =∞|Lmax is NP-hard.

Based on this result, it is easy to see that the problem 1|p − batch; pj = αjt; rj ; c = ∞|
∑
Uj

is also NP-hard. Consider a special case of the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c =

∞|
∑
UA
j :

∑
UB
j where a = 0 and the upper bound QB of the objective value

∑
UB
j for agent

B is sufficiently large such that the jobs of agent B can be processed at the end of the schedule

and start after the completion of all the jobs of agent A, while the upper bound restriction

is still satisfied. The problem is then equivalent to the single-agent problem (for agent A)

1|p− batch; pj = αjt; rj ; c =∞|
∑
Uj . Hence, we have the following result.

Theorem 3.2.5. The problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c = ∞|

∑
UA
j :

∑
UB
j is

NP-hard for both incompatible and compatible cases.

16

4. The bounded parallel-batching model

In this section, we consider the complexity of the bounded parallel-batching model based

on the compatibility of two agents. We can prove that most of the two-agent scheduling prob-

lems with deteriorating jobs on a bounded parallel-batching machine are NP-hard. We present

optimal solution methods for some solvable special cases.

4.1. The bounded parallel-batching with identical release dates

4.1.1. 1|p− batch; pXj = αX
j (a+ bt); c < n|CA

max : CB
max

We first show that 1|p − batch; pXj = αX
j (a + bt); c < n; IF |CA

max : CB
max is solvable in

polynomial time.

Theorem 4.1.1. The problem 1|p − batch; pXj = αX
j (a + bt); c < n; IF |CA

max : CB
max can be

solved in O(n log n) time.

Proof. For each agent, we can obtain an optimal solution in O(n log n) time by the Full

Batch Longest Normal Processing Time (FBLNPT) rule, which is similar to the Algorithm

FBLDR proposed by Li et al. (2011). Hence, we can decompose the problem 1|p− batch; pXj =

αX
j (a + bt); c < n; IF |CA

max : CB
max into two independent subproblems for each agent. Then we

can obtain an optimal schedule as follows: all the batches of agent A obtained by the FBLNPT

rule are processed first, followed by all the batches of agent B obtained by the FBLNPT rule if

CB
max ≤ QB; otherwise all the batches of agent B are processed first, followed by all the batches

of agent A. If CB
max > QB in the second schedule, then the problem has no solution. 2

We now show that 1|p − batch; pXj = αX
j (a + bt); c < n;CF |CA

max : CB
max is NP-hard by a

reduction from the Product Partition Problem, which is known to be NP-complete in the strong

sense (Ng et al., 2010).

Product Partition (PP) Problem : Given positive integer numbers a1, a2, ..., am, is there a

subset S′ ⊂ S := {1, 2, ...,m} such that
∏

i∈S′ ai =
∏

i∈S\S′ ai?

Theorem 4.1.2. The problem 1|p− batch; pXj = αX
j (a+ bt); c < n;CF |CA

max : CB
max is NP-hard

even if c = 2.

Proof. The decision version of the problem 1|p−batch; pXj = αX
j (a+bt); c < n;CF |CA

max : CB
max

is clearly in NP. Given an instance of the PP problem, Let D =
∏

i∈S ai, and H =
√
D, we

construct an instance of the decision version of our problem as follows:

There are nA = 3m jobs of m types of agent A and nB = m jobs of agent B.

Let a = 0, b = 1.

17

The normal processing times of A-agent’s jobs and B-agent’s jobs are defined by

αA
i1 = H4iai − 1, αA

i2 = αA
i3 =

H4i

ai
− 1; αB

i = H4i − 1; for i = 1, 2, . . . ,m.

All jobs are simultaneously available at time t0 = 1.

The upper bound QB is defined by QB = H2(m2+m)+1.

The threshold value of agent A is defined by QA = H4(m2+m)+1.

It can be seen that the above reduction from the strong NP-complete PP problem is poly-

nomial with respect to the input problem length. But the magnitude of the resulting prob-

lem parameters is not bounded by a polynomial in the length and the magnitude of the PP

problem, and so the reduction is not pseudo-polynomial. Consequently we are proving that

1|p − batch; pXj = αX
j (a + bt); c < n;CF |CA

max : CB
max is NP-hard in ordinary sense. We now

show that there is a schedule to this instance of our problem with CA
max ≤ QA and CB

max ≤ QB

if and only if there is a solution to the PP problem.

If Part. Given a subset S′ ⊆ S such that
∏

i∈S′ ai =
∏

i∈S\S′ ai, we construct a schedule for

the instance as follows: Bi1 = {JA
i1, J

B
i } for i ∈ S′, Bi2 = {JA

i2, J
B
i } for i ∈ S\S′, Bi3 = {JA

i2, J
A
i3}

for i ∈ S′, Bi4 = {JA
i1, J

A
i3} for i ∈ S\S′. The batches are processed according to the following

order: the batches Bi1 are first scheduled for all i ∈ S′, followed by the batches Bi2 for all

i ∈ S\S′, followed by the batches Bi3 for all i ∈ S′, and followed by the batches Bi4 for all

i ∈ S\S′. It is easy to show that CA
max ≤ QA and CB

max ≤ QB.

Only If Part. Given a schedule for the instance with CA
max ≤ QA and CB

max ≤ QB, we can

conclude that each batch contains only two jobs of the same type; i.e., for each i (1 ≤ i ≤ m),

the jobs JA
i1, J

A
i2, J

A
i3 and JB

i are divided into two batches (Similar to Li et al., 2011, we can

obtain this conclusion, so we omit the details here). This implies that the number of batches

is exactly 2m and the jobs of agent B are assigned to m distinct batches. Since jobs JA
i2 and

JA
i3 are identical for i = 1, . . . ,m, there are only two ways to partition the four jobs of type

i into two batches, i.e., {JA
i1, J

B
i } and {JA

i2, J
A
i3}, or {JA

i2, J
B
i } and {JA

i1, J
A
i3}. Assume that the

jobs JA
i1 and JB

i are processed in the same batch Bi1 for i ∈ S′, and the jobs JA
i2 and JB

i are

processed in the same batch Bi2 for i ∈ S\S′. The constraint CB
max ≤ QB = H2(m2+m)+1 can

be satisfied only if all the batches of {JA
i1, J

B
i } and {JA

i2, J
B
i } are first scheduled, so we have∏

i∈S′
ai ≤ H. The constraint CA

max ≤ QA = H4(m2+m)+1 can be satisfied only if
∏

i∈S\S′
ai ≤ H.

Note that
∏

i∈S ai = D = H2, so we obtain
∏
i∈S′

ai =
∏

i∈S\S′
ai = H, which gives a solution to the

PP problem. 2

18

4.1.2. 1|p− batch; pXj = αX
j (a+ bt); c < n|

∑
UA
j :

∑
UB
j

In this subsection, we discuss the complexity of the problem 1|p−batch; pXj = αX
j (a+bt); c <

n|
∑
UA
j :

∑
UB
j . We will show that this scheduling problem is NP-hard for both incompatible

and compatible cases by showing that the single-agent scheduling problem 1|p − batch; pj =

αj(a+ bt); c < n|
∑
Uj is NP-hard.

Theorem 4.1.3. The problem 1|p − batch; pj = αj(a + bt); c < n|
∑
Uj is NP-hard even if

c = 2.

Proof. We prove this by a reduction from the PP problem. Given an instance of PP, we

construct an instance of the decision version of our problem as follows:

n = 4m; a = 0; b = 1; αi1 = H4iai − 1, αi2 = αi3 = H4i

ai
− 1; di1 = di2 = di3 = d1 =

H4(m2+m)+1; αi4 = H4i − 1; di4 = d2 = H2(m2+m)+1; for i = 1, 2, . . . ,m; t0 = 1; c = 2; Q = 0.

By similar arguments as in the proof of Theorem 4.1.2, we can show that there is a schedule

for the instance with
∑
Uj ≤ Q if and only if there is a solution to the PP problem. We omit

the details of the proof. 2

Similar to Theorem 3.2.5, we consider a special case of the problem 1|p− batch; pj = αj(a+

bt); c < n|CA
max : CB

max where the upper bound QB of the objective value
∑
UB
j for agent

B is sufficiently large. This case is equivalent to the single-agent problem 1|p − batch; pj =

αj(a+ bt); c < n|
∑
Uj . Hence, we have the following result.

Theorem 4.1.4. The problem 1|p − batch; pXj = αX
j (a + bt); c < n|

∑
UA
j :

∑
UB
j is NP-hard

for both incompatible and compatible cases.

4.2. The bounded parallel-batching with distinct release dates

4.2.1. 1|p− batch; pXj = αX
j (a+ bt); rXj ; c < n|CA

max : CB
max

In this subsection, we first prove that the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c <

n|CA
max : CB

max is NP-hard for both incompatible and compatible cases. Then we consider

several polynomially solvable cases for incompatible and compatible agents.

Similar to Theorems 3.2.5 and 4.1.4, we can prove that the problem 1|p − batch; pXj =

αX
j (a + bt); rXj ; c < n|CA

max : CB
max is equivalent to the single-agent problem 1|p − batch; pj =

αj(a + bt); rj ; c < n|Cmax when the upper bound QB of the objective value CB
max for agent B

is sufficiently large. While the problem 1|p − batch; pj = αj(a + bt); rj ; c < n|Cmax is ordinary

NP-hard when a = 0 and b = 1 (Li et al., 2011). Hence, we can easily have the following result.

Theorem 4.2.1. The problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c < n|CA

max : CB
max is NP-hard

for both incompatible and compatible cases.

19

4.2.1.1. Scheduling with l distinct normal processing times for agent A and a common release

date for agent B.

In this subsection, we present an optimal algorithm for the incompatible scheduling problem in

which the jobs of agent A have l(l ≥ 2) distinct normal processing times and the jobs of agent B

have a common release date rB > 0, where l is a fixed positive integer. Let α1, α2, . . . , αl be the l

distinct normal processing times of agent A. We call the jobs of agent A with normal processing

times αi as type i. Let mi be the number of jobs of type i, then we have
∑l

i=1mi = nA. For

ease of exposition, we denote the jth job of type i as JA
i,j and its corresponding release date can

be denoted by rAi,j for i = 1, ..., l and j = 1, ...,mi. We can easily obtain the following properties:

Lemma 4.2.2. For the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c < n; IF |CA

max : CB
max,

in which the jobs of agent A have l distinct normal processing times and the jobs of agent B

have a common release date rB > 0, there is an optimal schedule such that all jobs of agent

B are consecutively scheduled at or after time rB, and they follow the FBLNPT rule, i.e., full

batch longest normal processing time, and the jobs of the same type belonging to agent A are

processed in non-decreasing order of their release dates.

Lemma 4.2.3. For the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c < n; IF |CA

max : CB
max, in

which the jobs of agent A have l distinct normal processing times and the jobs of agent B have

a common release date rB > 0, there is an optimal schedule for the jobs of agent A such that

each batch is full with the possible exception of the first batch for the batches containing some

jobs of the same type.

Algorithm DP6

According to Lemma 4.2.2, we first index the jobs of the same type of agent A such that

rAi,1 ≤ rAi,2 ≤ · · · ≤ rAi,mi
for i = 1, ..., l. Let f(h1, h2, ..., hl;n1, n2, ..., nl) be the minimum

completion time of A-agent’s jobs that are processed before agent B satisfying the following

conditions: (i) we have assigned jobs JA
i,1, J

A
i,2, ..., J

A
i,hi

for each type i = 1, ..., l before agent B;

(ii) the total number of jobs of type i processed before agent B is at most ni for i = 1, ..., l

and 0 ≤ hi ≤ ni ≤ mi; (iii) the last batch contains the last si jobs of type i (i.e. jobs

JA
i,hi−si+1, ..., J

A
i,hi

) and 0 ≤ si ≤ hi for i = 1, ..., l; (iv) the size of the last batch is not more than

the capacity constraint, i.e.,
∑l

i=1 si ≤ c.

The initial condition is f(0, 0, ..., 0;n1, n2, ..., nl) = 0 and

20

f(h1, h2, ..., hl;n1, n2, ..., nl) =

+∞, if si > min{c, hi},

+∞, if
∑l

i=1 si > min{c,
∑l

i=1 hi},

+∞, if for some i′, satisfy 0 < si′ < hi′ and
∑l

i=1 si < c.

The recursive relation is f(h1, h2, ..., hl;n1, n2, ..., nl) = min{max{f(h1 − s1, h2 − s2, ..., hl −

sl;n1, n2, ..., nl), r(h1, h2, ..., hl;n1, n2, ..., nl)}(1+bα(h1, h2, ..., hl;n1, n2, ..., nl))+aα(h1, h2, ..., hl;

n1, n2, ..., nl) : 0 ≤ si ≤ hi ≤ ni ≤ mi, 1 ≤ i ≤ l, 1 ≤
∑

1≤i≤l
si ≤ c}, where r(h1, h2, ..., hl;n1, n2, ...,

nl) = max{rAi,hi
: si > 0, 1 ≤ i ≤ l} and α(h1, h2, ..., hl;n1, n2, ..., nl) = max{αA

i : si > 0, 1 ≤ i ≤

l} denote the release date and the normal processing time of the last batch, respectively.

The optimal solution value is min{f(m1,m2, ...,ml;n1, n2, ..., nl)} if max{min{f(m1,m2, ...,

ml;n1, n2, ..., nl)}, rB}
∏dnB

c
e

k=1 (1 + bαB
k) + a

b (
∏dnB

c
e

k=1 (1 + bαB
k)− 1) ≤ QB, where αB

k is the normal

processing time of each batch of agent B according to the FBLNPT rule.

If max{min{f(m1,m2, ...,ml;n1, n2, ..., nl)}, rB}
∏dnB

c
e

k=1 (1+bαB
k)+ a

b (
∏dnB

c
e

k=1 (1+bαB
k)−1) >

QB, then for each value f(n1, n2, ..., nl;n1, n2, ..., nl), satisfying max{min{f(n1, n2, ..., nl;n1,

n2, ..., nl)}, rB}
∏dnB

c
e

k=1 (1+bαB
k)+ a

b (
∏dnB

c
e

k=1 (1+bαB
k)−1) ≤ QB, use the above recursive relation

to compute the minimum completion time of A-agent’s jobs that are processed after agent B, i.e.,

f ′(m1−n1,m2−n2, ...,ml−nl;m1−n1,m2−n2, ...,ml−nl). At this time, the initial condition

is f ′(0, 0, ..., 0;m1−n1,m2−n2, ...,ml−nl) = max{f(n1, n2, ..., nl;n1, n2, ..., nl), r
B}

∏dnB
c
e

k=1 (1 +

bαB
k) + a

b (
∏dnB

c
e

k=1 (1 + bαB
k) − 1). Hence, the optimal solution value is min{f ′(m1 − n1,m2 −

n2, ...,ml − nl;m1 − n1,m2 − n2, ...,ml − nl)}.

It is clear that the complexity of the algorithm is O(n2l
Ac

l).

4.2.1.2. Scheduling with agreeable (reversely agreeable) release dates and normal processing times.

In this subsection, we consider the compatible scheduling problem in which all job release

dates and normal processing times are agreeable, i.e., ri < rj implies αi ≤ αj , denoted by

agr(rj , αj), or the job release dates and normal processing times are reversely agreeable, i.e.,

ri < rj implies αi ≥ αj , denoted by revagr(rj , αj). By using job-interchange argument, we have

the following properties.

Lemma 4.2.4. For both of the problems 1|p − batch; pXj = αX
j (a + bt); agr(rj , αj); c <

n;CF |CA
max : CB

max and 1|p − batch; pXj = αX
j (a + bt); revagr(rj , αj); c < n;CF |CA

max : CB
max,

there is an optimal schedule in the form (π1, π2, π3) that has the following properties:

1) the partial schedule π2 contains only all the B-pure batches, π3 contains part of A-pure

batches (if any), and π1 contains the remaining batches;

21

2) all the jobs (batches) in the partial schedules π1 and π2 are scheduled in non-decreasing order

of their release dates, all the jobs (batches) in the partial schedules π1 and π3 are also scheduled

in non-decreasing order of their release dates.

Algorithm 2

By Lemma 4.2.4, we may assume that the jobs have been indexed as follows: JX
1 , . . . , J

X
i−1, J

A
i ,

JB
i+1, . . . , J

B
k , J

A
k+1, . . . , J

A
n , X ∈ {A,B}, such that r1 ≤ r2 ≤ · · · ≤ rn. The definition of each

parameter is the same as in Algorithm 1. Define F (j) as the minimum completion time of a

partial schedule containing jobs JX
1 , . . . , J

X
j , for X ∈ {A,B}. Using the solution method for the

single-agent problem 1|p−batch; pj = αj(a+bt); rj ; c < n|Cmax that is similar to Algorithm DP2

proposed by Li et al (2011), we can obtain the minimum completion time F (j) of any one job

Jj j = 1, 2, . . . , n for a given schedule sequence in O(nc) time. The minimum completion time

of job JB
k in the partial schedule of jobs JX

1 , . . . , J
X
i−1, J

A
i , J

B
i+1, . . . , J

B
k is denoted by Fopt(k).

1) If Fopt(k) ≤ QB, then we can compute F (k + 1), . . . , F (n) for job sequence JX
1 , . . . , J

X
i−1, J

A
i ,

JB
i+1, . . . , J

B
k , J

A
k+1, . . . , J

A
n , X ∈ {A,B}. This takes O(nc) time.

(1) We find the first job Jj ∈ JA for k + 1 ≤ j ≤ n such that F (j) > QB. We denote this job

by Jj∗ , i.e., F (j∗) > QB.

For each j = j∗, j∗ + 1, . . . , n, if the last batch in the partial schedule of jobs JX
1 , . . . , J

X
i−1,

JA
i , J

B
i+1, . . . , J

B
k , . . . , J

A
j contains at least one job of agent B, then compute F (j) as F (j) =

min
[j−(j∗−1)−c]++j∗−1≤i≤j−1

{max{F (i), rj}(1 + bαj) + aαj} (for the agreeable case) and F (j) =

min
[j−(j∗−1)−c]++j∗−1≤i≤j−1

{max{F (i), rj}(1 + bαi+1) + aαi+1} (for the reversely agreeable case),

where x+ = max{x, 0}. There are at most nA values for j and each value of j can be evaluated

in O(c) time. Hence, the running time for this case is O(nAc).

If the last batch in the partial schedule of jobs JX
1 , . . . , J

X
i−1, J

A
i , J

B
i+1, . . . , J

B
k , . . . , J

A
j does

not contain any one job of agent B, then compute F (j) as F (j) = min
(j−c)+≤i≤j−1

{max{F (i), rj}(1+

bαj) +aαj} (for the agreeable case) and F (j) = min
(j−c)+≤i≤j−1

{max{F (i), rj}(1 + bαi+1) +aαi+1}

(for the reversely agreeable case). There are at most nA possible values for j and each value of

j can be evaluated in O(c) time. Hence, the running time for this case is O(nAc).

(2) If F (j) ≤ QB for all k + 1 ≤ j ≤ n, then the analysis is similar to (2) of Algorithm 1. The

running time for this case is O(nnBc).

2) If Fopt(k) > QB, then the analysis is similar to 2) of Algorithm 1. The running time for this

case is O(nnAc).

22

4.2.2. 1|p− batch; pXj = αX
j (a+ bt); rXj ; c < n|

∑
UA
j :

∑
UB
j

By Theorem 4.1.4, the problem 1|p−batch; pXj = αX
j (a+bt); c < n|

∑
UA
j :

∑
UB
j is NP-hard,

so when the jobs have different release dates, the problem 1|p− batch; pXj = αX
j (a+ bt); rXj ; c <

n|
∑
UA
j :

∑
UB
j is also NP-hard for both incompatible and compatible cases. We consider the

complexity of two special cases in both incompatible and compatible cases, respectively. We will

show that the problems with agreeable release dates and due dates in both cases are NP-hard.

And the problems with agreeable release dates, due dates, and normal processing times in both

cases are solvable in polynomial time.

4.2.2.1. Scheduling with agreeable release dates and due dates.

Theorem 4.2.5. The single-agent problem 1|p − batch; pj = αj(a + bt); rj ; c < n|
∑
Uj is

NP-hard even if the release dates and due dates are agreeable.

Proof. We prove this by a reduction from the 4-Product problem, which is NP-complete in the

strong sense (Kononov, 1996).

An instance of the 4-Product problem can be stated as follows:

4-Product (4-P) problem: Given positive rational numbers a1, a2, . . . , a4p and H such that

H
1
5 < ai < H

1
3 for i = 1, 2, . . . , 4p and

4p∏
i=1

ai = Hp, does there exist a partition of the set X =

{1, 2, . . . , 4p} into p disjoint subsets X1, X2, . . . , Xp such that
∏

i∈Xk
ai = H for k = 1, 2, . . . , p?

The decision version of the problem 1|p− batch; pj = αj(a+ bt); rj ; c < n|
∑
Uj is clearly in

NP. Given an instance of the 4-P problem, we construct an instance of the decision version of

the single-agent problem as follows:

There are n = 10p jobs. Let a = 0 and b = 1.

The normal processing times are defined by

αj =

H − 1, j = 1, . . . , p,

ab 1
2

(j−p+1)c − 1, j = p+ 1, . . . , 9p,

H − 1, j = 9p+ 1, . . . , 10p,

The release dates are defined by

rj = t0 = 1, for j = 1, . . . , 9p; r9p+i = H2i−1, for i = 1, . . . , p.

The due dates are defined by

dj = H2j , for j = 1, . . . , p; dj = H2p, for j = p+ 1, . . . , 10p.

The capacity of bounded batch and the threshold value are defined by c = 2; Q = 0.

23

It can be seen that the above reduction from the strong NP-complete 4-P problem is poly-

nomial with respect to the input problem length. But the magnitude of the resulting prob-

lem parameters is not bounded by a polynomial in the length and the magnitude of the 4-P

problem, and so the reduction is not pseudo-polynomial. Consequently we are proving that

1|p − batch; pj = αj(a + bt); rj ; c < n|
∑
Uj is NP-hard in ordinary sense. We now show that

there is a schedule to the instance with
∑
Uj ≤ Q if and only if there is a solution to the 4-P

problem.

If Part. Suppose that there are disjoint subsets X1, X2, . . . , Xp with Xk = {lk1, lk2, . . . , lk,nk
}

and
∏

i∈Xk
ai = H for k = 1, 2, . . . , p, where

p∑
k=1

nk = 4p. For i = 1, . . . , 4p, we put jobs Jp+2i−1

and Jp+2i in a batch. Each batch corresponds to an element of the set Xk. This batch is denoted

by {Jp+2i−1, Jp+2i} and has normal processing time ai − 1. For i = 1, . . . , p, we put jobs Ji and

J9p+i in a batch. This batch is denoted by {Ji, J9p+i} and has normal processing time H − 1.

We construct a batch sequence for the instance as follows:

{Jp+2l11−1, Jp+2l11}, {Jp+2l12−1, Jp+2l12}, . . . , {Jp+2l1,n1−1, Jp+2l1,n1
}, {J1, J9p+1};

{Jp+2l21−1, Jp+2l21}, {Jp+2l22−1, Jp+2l22}, . . . , {Jp+2l2,n2−1, Jp+2l2,n2
}, {J2, J9p+2};

.

{Jp+2lp1−1, Jp+2lp1}, {Jp+2lp2−1, Jp+2lp2}, . . . , {Jp+2lp,np−1, Jp+2lp,np
}, {Jp, J10p}.

It is easily verified that this schedule does not have any tardy jobs, i.e.
∑
Uj ≤ Q = 0.

Figure 4. Jobs Ji, J9p+i(i = 1, . . . , p) in the proof of Theorem 4.2.5.

Only If Part. Given a solution to the instance with
∑
Uj ≤ Q = 0, we can conclude that there

must be no idle time in this schedule and all batches must be full, while the two jobs in each batch

must have identical normal processing times. This is because (
10p∏
j=1

(1 +αj))
1
c = H2p = max

j
{dj}.

In addition, for i = 1, . . . , p, since αi = α9p+i = H − 1, ri = t0 = 1, r9p+i = H2i−1 and

di = H2i, jobs Ji and J9p+i must form a batch with starting time H2i−1 and finishing time

H2i (see Figure 4). Thus, all the remaining jobs Jp+j , j = 1, . . . , 8p, must fit into the time

intervals [H2k−2, H2k−1], k = 1, 2, . . . , p. Since the two jobs in each batch must have identical

normal processing times, we can construct batches as follows: jobs Jp+2i−1 and J2i form a batch,

for i = 1, . . . , 4p. Note that the number of tardy jobs is zero in such batch scheduling. Since

24

4p∏
h=1

(1 + αA
h) =

4p∏
h=1

ah = Hp and each of these intervals [H2k−2, H2k−1] has a length of H time

units, the sets of batches within these intervals corresponding to the sets JXk
for k = 1, 2, . . . , p.

Hence
∏

i∈Xk
ai = H, which gives a solution to the 4-P problem. 2

By the preceding proof, we can conclude that when the upper bound value QB of agent B is

sufficiently large, the two-agent scheduling problem is equivalent to the single-agent scheduling

problem. Hence, we have the following result.

Theorem 4.2.6. The problem 1|p − batch; pXj = αX
j (a + bt); rXj ; c < n|

∑
UA
j :

∑
UB
j is

NP-hard for both incompatible and compatible cases when the release dates and due dates are

agreeable.

4.2.2.2. Scheduling with agreeable release dates, due dates and normal processing times.

We first present a polynomial time algorithm for the incompatible case in which the jobs

of each agent have agreeable release dates, due dates and normal processing times, denoted by

agr(rXj , d
X
j , α

X
j) for X = A,B. We assume that the jobs of each agent have been re-indexed

such that rX1 ≤ · · · ≤ rXnX
, dX1 ≤ · · · ≤ dXnX

, and αX
1 ≤ · · · ≤ αX

nX
. We have the following

property.

Lemma 4.2.7. For the problem 1|p − batch; pXj = αX
j (a + bt); rXj ; agr(rXj , d

X
j , α

X
j), X =

A,B; c < n; IF |
∑
UA
j :

∑
UB
j , there is an optimal schedule which has the form (E, L), where

E is the set of batches containing all the early jobs and L is the set of batches containing all the

late jobs. Moreover, all the early jobs that belong to each agent are scheduled in non-decreasing

order of their indices and the early batches contain only consecutive jobs.

Algorithm DP7

Define F (hA, uA, kB, uB) as the minimum completion time of the last early batch of a

partial schedule of jobs JA
1 , J

A
2 , . . . , J

A
hA
, JB

1 , J
B
2 , . . . , J

B
kB

, where the numbers of early jobs of

agents A and B are at least uA and uB, respectively. If there is no feasible schedule, we define

F (hA, uA, kB, uB) = +∞. The initial conditions are F (0, 0, 0, 0) = 0; F (hA, uA, kB, uB) = +∞,

if hA < 0 or kB < 0 or uA < 0 or uB < 0. By Lemma 4.2.7, we only consider the early jobs.

When the last scheduled job belongs to agent A: if JA
hA

is tardy, then F (hA, uA, kB, uB) =

F (hA − 1, uA, kB, uB); if JA
hA

is early, then based on Lemma 4.2.7, the last early batch will

contain lA (1 ≤ lA ≤ b) consecutive jobs of agent A. When the last scheduled job belongs to

25

agent B, we have a similar analysis. Hence, the recursive relation is

F (hA, uA, kB, uB) = min

min{ min
1≤lA≤min{c,uA}

{FlA(hA, uA, kB, uB)}, F (hA − 1, uA, kB, uB)}

if the last scheduled job belongs to agent A,

min{ min
1≤lB≤min{c,uB}

{FlB (hA, uA, kB, uB)}, F (hA, uA, kB − 1, uB)}

if the last scheduled job belongs to agent B.

where

FlA(hA, uA, kB, uB) =

max{F (hA − lA, uA − lA, kB, uB), rAhA
}(1 + bαA

hA
) + aαA

hA
,

if max{F (hA − lA, uA − lA, kB, uB), rAhA
}(1 + bαA

hA
) + aαA

hA

≤ dAhA−lA+1,

+∞, otherwise.

FlB (hA, uA, kB, uB) =

max{F (hA, uA, kB − lB, uB − lB), rBkB}(1 + bαB
kB

) + aαB
kB
,

if max{F (hA, uA, kB − lB, uB − lB), rBkB}(1 + bαB
kB

) + aαB
kB

≤ dBkB−lB+1,

+∞, otherwise.

Here, FlA(hA, uA, kB, uB) denotes the completion time of the last early batch of a partial

schedule of jobs JA
1 , J

A
2 , . . . , J

A
hA
, JB

1 , J
B
2 , . . . , J

B
kB

when lA jobs (i.e., JA
hA−lA+1, J

A
hA−lA+2, . . . , J

A
hA

)

of agent A are processed in the last early batch, and FlB (hA, uA, kB, uB) denotes the comple-

tion time of the last early batch when lB jobs (i.e., JB
kB−lB+1, J

B
kB−lB+2, . . . , J

B
kB

) of agent B are

processed in the last early batch.

The optimal solution value is nA − max{uA|F (nA, uA, nB, uB) < +∞, uB ≥ nB − QB, 1 ≤

uA ≤ nA}. The complexity of this algorithm is O(n2
An

2
Bc).

In the following, we present a polynomial time algorithm for the compatible case in which

the jobs have agreeable release dates, due dates, and normal processing times, denoted by

agr(rj , dj , αj). We may assume that the jobs have been re-indexed such that r1 ≤ · · · ≤ rn,

d1 ≤ · · · ≤ dn, and α1 ≤ · · · ≤ αn. It is easy to see that Lemma 4.2.7 holds for all jobs in this

problem as well.

Algorithm DP8

We may assume that the jobs are numbered from J1 to Jn according to the EDD sequence.

Define F (j, uA, uB) as the minimum completion time of the last early batch of a partial schedule

26

containing jobs J1, J2, . . . , Jj , where the numbers of early jobs of agents A and B are at least

uA and uB, respectively. The initial conditions are F (0, 0, 0) = 0; F (j, uA, uB) = +∞, if j < 0

or uA < 0 or uB < 0. The recursive relation is given by

F (j, uA, uB) = min{ min
1≤l≤min{c,uA+uB}

{Fl(j, uA, uB)}, F (j − 1, uA, uB)},

where for lA + lB = l,

Fl(j, uA, uB) =

max{F (j − l, uA − lA, uB − lB), rj}(1 + bαj) + aαj ,

if max{F (j − l, uA − lA, uB − lB), rj}(1 + bαj) + aαj ≤ dj−l+1,

+∞, otherwise.

Here, Fl(j, uA, uB) denotes the completion time of the last early batch of a partial schedule

containing jobs J1, J2, . . . , Jj , when l jobs (i.e., Jj−l+1, Jj−l+2, . . . , Jj) are processed in the last

early batch, in which lA jobs are from agent A and lB jobs are from agent B, i.e., lA + lB = l.

The optimal solution value is nA −max{uA|F (j, uA, uB) < +∞, uB ≥ nB −QB, 1 ≤ uA ≤ nA}.

The complexity of this algorithm is O(nnAnBc).

5. Conclusions

In this paper, we studied several two-agent scheduling problems on a batching machine

with time-dependent proportional-linear deteriorating job processing times. We focused on

minimizing the objective of one agent subject to an upper bound on the objective of the other

agent. The objective functions considered include the number of tardy jobs, the makespan and

the maximum of regular functions of job completion times. We provided either polynomial time

algorithms or NP-hardness proofs for general problems, in which the jobs may have the same

or different release dates for incompatible and compatible cases. We also provided polynomial

or pseudo-polynomial time algorithms for certain special cases of the intractable problems. For

future research, it will be interesting to develop exact or approximate solution algorithms for

the intractable problems. Future research may also consider other objective functions, such as

the total completion time.

Acknowledgment

This research is partly supported by State Key Program of National Natural Science Foun-

dation of China (71032004).

27

References

Agnetis, A., Billaut, J.C, Gawiejnowicz, S., Pacciarelli, D., & Soukhal, A. (2014). Multiagent

scheduling: models and algorithms. Berlin, Heidelberg: Springer.

Agnetis, A., Mirchandani, P.B., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with

two competing agents. Operations Research, 52, 229–242.

Baker, K.R., & Smith, J.C. (2003). A multiple-criterion model for machine scheduling. Journal

of Scheduling, 6, 7–16.

Cheng, T.C.E., Ding, Q., & Lin, B.M.T. (2004). A concise survey of scheduling with time-

dependent processing times. European Journal of Operational Research, 152, 1–13.

Fan, B.Q., Cheng, T.C.E., Li, S.S., & Feng, Q. (2013). Bounded parallel-batching scheduling

with two competing agents. Journal of Scheduling, 16, 261–271.

Gawiejnowicz, S. (2008). Time-Dependent Scheduling. Springer, Berlin.

Gawiejnowicz, S., Lee, W.C., Lin, C.L., & Wu, C.C. (2011). Single-machine scheduling of pro-

portionally deteriorating jobs by two agents. Journal of the Operational Research Society,

62, 1983–1991.

Gawiejnowicz, S., & Suwalski, C. (2014). Scheduling linearly deteriorating jobs by two agents

to minimize the weighted sum of two criteria. Computers & Operations Research, 52,

135–146.

He, C., & Leung J.Y.T. (2016). Two-agent scheduling of time-dependent jobs. Journal of

Combinatorial Optimization, available online, DOI: 10.1007/s10878-016-9994-y.

Kononov, A. (1996). Combinatorial complexity of scheduling jobs with simple linear processing

times. Diskretny Analiz i Issledovanie Operatsii, 3, 15–32 (in Russian).

Lee, K.H. (1979). Dynamic scheduling of ingot processing in steel production. Ph.D. Thesis,

Purdue University.

Leung, J.Y.T., Pinedo, M.L., & Wan, G. (2010). Competitive two agent scheduling and its

applications. Operations Research, 58, 458–469.

Li, S.S., Ng, C.T., Cheng, T.C.E., & Yuan, J.J. (2011). Parallel-batch scheduling of deterio-

rating jobs with release date to minimize the makespan. European Journal of Operational

Research, 210, 482–488.

Li, S.S., & Yuan, J.J. (2012). Unbounded parallel-batching scheduling with two competitive

agents. Journal of Scheduling, 15, 629–640.

28

Liu, P., & Tang, L.X. (2008). Two-agent scheduling with linear deteriorating jobs on a single

machine. Lecture Notes in Computer Science, 5092, 642–650.

Liu, P., Tang, L.X., & Zhou, X.Y. (2010). Two-agent group scheduling with deteriorating jobs

on a single machine. The International Journal of Advanced Manufacturing Technology,

47, 657–664.

Liu, P., Yi, N., & Zhou, X.Y. (2011). Two-agent single-machine scheduling problems under

increasing linear deterioration. Applied Mathematical Modelling, 35, 2290–2296.

Miao, C.X., Zhang, Y.Z., & Wu, C.L. (2012). Scheduling of deteriorating jobs with release dates

to minimize the maximum lateness. Theoretical Computer Science, 462, 80–87.

Ng, C.T., Barketau, M.S., Cheng, T.C.E., & Kovalyov, M.Y. (2010). “Product Partition” and

related problems of scheduling and systems reliability: Computational complexity and

approximation. European Journal of Operational Research, 207, 601–604.

Patel, C., Ray, W.H., & Szekely, J. (1976). Computer simulation and optimal scheduling of a

soaking pit-slabbing mill system. Metallurgical Transactions B, 7B, 119–130.

Perez-Gonzalez, P., & Framinan, J.M. (2014). A common framework and taxonomy for multi-

criteria scheduling problem with interfering and competing jobs: Multi-agent scheduling

problems. European Journal of Operational Research, 235, 1–16.

Potts, C.N., & Kovalyov, M.Y. (2000). Scheduling with batching: a review. European Journal

of Operational Research, 120, 228–249.

Yin, Y., Cheng, T.C.E., Wan, L., Wu, C.C., & Liu, J. (2015). Two-agent single-machine

scheduling with deteriorating jobs. Computers & Industrial Engineering, 81, 177–185.

Yuan, J.J., Qi, X.L., Lu, L.F., & Li, W.H. (2008). Single machine unbounded parallel-batch

scheduling with forbidden intervals. European Journal of Operational Research, 186, 1212–

1217.

29

	Introduction
	Notation and overview of blackproblems studied
	The unbounded parallel-batching model
	The unbounded parallel-batching with identical release dates
	1|p-batch; pjX=jX(a+bt); c=|fjA:fmaxB
	1|p-batch; pjX=jX(a+bt); c=|fjA:fjB
	1|p-batch; pjX=jX(a+bt); c=|fmaxA:fmaxB, 1|p-batch; pjX=jX(a+bt); c=|UjA:UjB and 1|p-batch; pjX=jX(a+bt); c=|UjA:fmaxB

	The unbounded parallel-batching with distinct release dates
	1|p-batch; pjX=jX(a+bt); rjX; c=|CmaxA:CmaxB
	1|p-batch; pjX=jX(a+bt); rjX; c=|UjA:UjB

	The bounded parallel-batching model
	The bounded parallel-batching with identical release dates
	1|p-batch; pjX=jX(a+bt); c<n|CmaxA:CmaxB
	1|p-batch; pjX=jX(a+bt); c<n|UjA:UjB

	The bounded parallel-batching with distinct release dates
	1|p-batch; pjX=jX(a+bt); rjX; c<n|CmaxA:CmaxB
	1|p-batch; pjX=jX(a+bt); rjX; c<n|UjA:UjB

	Conclusions

