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Abstract

Most classical scheduling research assumes that the objectives sought are common to all jobs to be

scheduled. However, many real-life applications can be modeled by considering different sets of jobs,

each one with its own objective(s), and an increasing number of papers addressing these problems has

appeared over the last few years. Since so far the area lacks a unified view, the studied problems

have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some

authors do not seem to be aware of important contributions in related problems, and solution procedures

are often developed without taking into account existing ones. Therefore, the topic is in need of a common

framework that allows for a systematic recollection of existing contributions, as well as a clear definition

of the main research avenues. In this paper we review multicriteria scheduling problems involving two or

more sets of jobs and propose an unified framework providing a common definition, name and notation

for these problems. Moreover, we systematically review and classify the existing contributions in terms

of the complexity of the problems and the proposed solution procedures, discuss the main advances, and

point out future research lines in the topic.
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1 Introduction

The existence of several objectives is consubstantial to scheduling problems, as it can be seen from different

definitions of the field, such as Pinedo (1995), where scheduling is defined as a decision-making process that

has as a goal the optimization of one or more objectives. Therefore, it is not surprising that multicriteria

scheduling problems have been widely studied in the scheduling literature (see e.g. the reviews by T’kindt

and Billaut, 2001, 2002; Hoogeveen, 2005 and Minella et al., 2008). In all the problems analyzed in these

surveys the criteria considered affect all jobs to be scheduled. Only Hoogeveen (2005) mentions the case of

multicriteria scheduling problems with two or more sets of jobs. In these problems, two or more sets of jobs

(not necessarily disjoint) have to be scheduled, each one with its own objective(s). Although this is a special

case of multicriteria scheduling problems, the existence of several sets makes the problems rather different

than their one-set counterpart as, in general, the complexity of these problems changes even if the objective

functions are the same (Agnetis et al., 2004).

As discussed later in this paper, this type of scheduling problems arise in a number of real-life applications

and therefore have been subject of interest by researchers and practitioners in the last few years. However,

the lack of a unified framework has been a major deterrent for research advances in the field. There is

not even a common name which has caused some contributions to ignore past works on the topic, as the

keywords and title of the existing results make it difficult to conduct an extensive search (for instance, the

same conclusion regarding a specific problem is independently shown by Agnetis et al., 2007a and Nong

et al., 2011). Without a common definition and name, the notation and limits for this kind of problems are

not clear, which may have hidden valuable contributions and makes the comparison among similar problems

very difficult. In addition, this has caused that some scheduling problems dealing with two types of jobs,

but with no interference among them, were considered part of the topic. For instance, in some problems

described in Leung et al. (2010), the jobs in one set have their due date to be equal to their release date

plus their processing times. Therefore, these jobs have to be processed in a specific (fixed) time interval and

the remaining scheduling problem is how to schedule the jobs in the other set, which can be assimilated to a

traditional scheduling problem with machine unavailability.

In this paper we will try to move towards an unified view on the topic that allows overcoming the

above problems. More specifically, we 1) discuss the different definitions and approaches for the problem

and provide a framework consisting of a single definition and notation, 2) give some complexity results and

general properties, 3) review and classify the different contributions and results on the topic based on the

aforementioned framework, and 4) point out the main research avenues in the field. By doing so, we expect

to foster the research in this interesting and challenging scheduling area.

The remainder of the paper is structured as follows: Section 2 discusses the problems, their applications

and the different names used in the literature. In Section 3 we present the notation and adapt the taxonomy

presented by T’kindt and Billaut (2002) for multicriteria scheduling problems. The relationship among the

complexities, single criteria and multicriteria scheduling problems is outlined in Section 4, where some general

properties are presented as well. Literature is reviewed by classifying the problems into basic problems

(discussed in Section 5) if there are no conditions for the machines or jobs, i.e. the most general case
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indicating only the machine environment and the objectives considered for each set of jobs; and extended

problems (discussed in Section 6), where specific conditions are imposed. Finally, Section 7 contains the

conclusions and future research lines.

2 Fields of application and problem definition

We consider two or more set of jobs –not necessarily disjoint– competing or using common processing resources

(machines). Each set of jobs has one objective, which may or may not be the same for each set. The objectives

of some sets have to be optimized while others have to satisfy one or more constraints. This type of scheduling

problems arise from many real-life fields of application (see Mor and Mosheiov, 2010):

• Supply chain scheduling: In a supply chain, a classical problem is to minimize overall manufacturing and

distribution costs integrating production and delivery. If the customers are competing for a common

processing resource then the problem implies interfering jobs. Fan (2010) presents a scheduling problem

where the customers are placed at different locations such that delivery times are given. The objective

is to minimize the sum of time between job’s release and the delivery to the corresponding customer.

• Rescheduling: Rescheduling can be defined as the process of updating an existing production schedule

in response to disruptions or other changes (Herrmann, 2006), such as the arrival of new jobs to be

processed. Rescheduling usually implies more than one set of jobs, so a standard rescheduling problem

can be formulated as a two-agent scheduling problem (Leung et al., 2010). In this problem there are

usually two sets of jobs: existing jobs which have been already scheduled and new jobs to be scheduled.

In this problem, two cases may be distinguished (Pinedo, 1995):

– The starting times of the existing jobs cannot be modified (‘frozen’ jobs), so the problem can be

considered as a single criteria problem subject to machine/job availability constraints (see e.g.

Perez-Gonzalez and Framinan, 2009, 2010a; Perez-Gonzalez et al., 2011).

– The starting times of the existing jobs can be modified (existing jobs can be rescheduled). If

the same objective is considered both for existing and incoming jobs, the problem is again a

scheduling problem with one set of jobs. However, in many situations it makes sense to employ

different objectives for each set: Some performance measure is minimized for incoming jobs in

order to obtain a short completion time for this set of jobs (e.g. minimizing their makespan or

flowtime), while the objective for the existing jobs aims to minimize the disruption from their

initial schedule. The usual way to achieve the latter objective is either to minimize their tardiness

or impose that these jobs cannot be tardy (see e.g. Unal et al., 1997; Perez-Gonzalez and Framinan,

2010b); or to consider special disruption measures as the differences between the completion times

of the old jobs in the sequence before rescheduling and the new sequence (such as in e.g. Hall and

Potts, 2004; Yuan and Mu, 2007; Yuan et al., 2007; Mu and Gu, 2010).

• Telecommunications: Packet-switching networks usually support different applications, each one re-

quiring the transmission of data packages that must reach their destination within some time limit.

3



The most important performance objective for some applications (such as file transfer or interprocess

communication) is not to exceed certain mean delay, while for other applications (such as voice or

video) is to achieve a specific loss rate. Therefore, the idea of several sets of jobs (packets belonging

to applications) that must compete for the use of the same resource (the bandwidth) arises naturally.

This problems have been addressed by Peha and Tobagi (1990); Peha (1995) and Meiners and Torng

(2007). A similar problem is found in Arbib et al. (2004) for internet protocols, where one user wants to

maximize the on-time packets transmitted to other user, while guaranteeing certain amounts of on-time

packets to a third user.

• Maintenance scheduling: Some references in the literature address problems about scheduling jobs and

preventive maintenance simultaneously (see e.g. Cassady and Kutanoglu, 2003; Ruiz et al., 2007),

considering only one criteria for the jobs. However, since production and maintenance have common

resources (the machines) and their activities are actually often conflicting, integrated production and

maintenance cooperative scheduling is an example of interfering job problems when we consider a

multiobjective approach. Khelifati and Bouzid-Sitayeb (2011a) simultaneously address the problem of

scheduling production and preventive maintenance operations, taking into account both production

and maintenance criteria. Since most machines have to be maintained at regular intervals (i.e. they

require given periods of time on each machine), maintenance tasks can be modelled as maintenance

jobs to be scheduled along with production jobs. Since maintenance tasks have to be performed within

a time window, each maintenance job has both a release date and a due date (representing the earliest

and latest time for the task, respectively). The natural objective for scheduling the set of maintenance

jobs is thus to minimize a function of the deviation from their release and due dates, while production

jobs are scheduled to minimize some performance measure. This approach is adopted by Wan et al.

(2010). Kellerer and Strusevich (2010) give an interpretation of their specific interfering job problem

where machine(s) is(are) subject to a compulsory maintenance during the planning period, the length

and the deadline of the maintenance operations are given, and the Decision Maker has to decide when

to start the maintenance period, while an objective related to the jobs has to be minimized.

It is to note that, there are several papers focusing on game theory aspects of the problems and its appli-

cations in industrial management, project scheduling, queuing setting, telecommunication services, economic

markets, scheduling of trains, etc . . . These papers are originally cited in Agnetis et al., 2000, 2004, 2007a,b),

and they are subsequently cited often by authors dealing with interfering jobs scheduling problems, but it

is to note that problems addressed there are not interfering jobs problems, at least in view of the definition

given here. This is (another) side effect of the lack of a common framework for the topic.

Regarding the name employed to denote this type of problems, different authors have used different

denominations:

• Peha (1995) call heterogenous-criteria scheduling to the problems where jobs are divided in two classes,

and the performance measure differs from class to class. Earlier, Peha and Tobagi (1990) call heteroge-

neous performance objectives to the same problem, but without an explicit definition.
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• The term interfering job sets first appeared in the review about multicriteria scheduling by Hoogeveen

(2005), defined as a scheduling problem with two sets of jobs competing for processing on a single

machine. Interfering job sets or Interfering jobs were later used by Balasubramanian et al. (2009);

Elvikis et al. (2009, 2010b); Huynh-Tuong and Soukhal (2009a,b, 2010) in the multi-machine context.

Their definitions are not homogeneous: In the first reference, the definition expresses that the jobs

belong to disjoint classes or sets with a criterion associated with each set, while for the latter authors

the sets are not disjoint, and there is an objective function for all jobs subject to minimizing another

objective function for a subset of jobs, calling this case global objective function (Huynh-Tuong et al.,

2011; Sadi et al., 2012).

• The most extended name is two agent or multi agent scheduling problems. In some cases it is called

competing agents (Agnetis et al., 2004, 2009a; Fan, 2010; Huynh-Tuong et al., 2010; Kellerer and

Strusevich, 2010; Mor and Mosheiov, 2010, 2011; Ding and Sun, 2011), being the main keyword agent.

This concept was introduced by Agnetis et al. (2004) when addressing a scheduling problem in which

two agents compete to perform their respective jobs on a common processing resource, each agent

minimizing an objective function depending exclusively on the completion times of its jobs.

In addition, other –less employed– names have been suggested, such as ‘competing users’ (Shen, 1998;

Agnetis et al., 2000), ‘customers’ (Baker and Smith, 2003), ‘multiple job classes’ (Soltani et al., 2010),

‘multi-users’ (Saule and Trystram, 2009), ‘two families of jobs’ (Yuan et al., 2005), ‘mixed criteria scheduling

problem’ (Meiners and Torng, 2007), or even ‘scheduling problem with a floating machine non-availability

interval’ (Kellerer and Strusevich, 2010), motivated by the fact that there is a machine maintenance interval

which is not fixed. Finally, Arbib et al. (2004) do not give a name for the problem.

When trying to consolidate a name for the problem, it does not sound logic to choose one of these

aforementioned less-employed names. Besides, multi-customer or multi-users do not imply a multicriteria

problem, and ‘class’ or ‘family’ of jobs are terms used generally for batch scheduling which may be confusing.

Similarly, ‘heterogeneous criteria’ and ‘mixed criteria scheduling problem’ imply different criteria for each set

of jobs, so the case when the sets have the same objective is not considered.

While agent is the most extended name, we think that it could also be confusing, as there is an extensive

literature on scheduling with multi-agent systems without relationship with our problem (see e.g. Coudert

et al., 2002; Shen et al., 2006). Multi-agent system is a subfield of Distributed Artificial Intelligence where a

network of individual agents share knowledge and communicate with each other to solve a problem beyond

the scope of a single agent (Balaji and Srinivasan, 2010). This approach can be applied to scheduling in

order to solve problems with competitive and negotiating algorithms controlled by agents (see e.g. Khelifati

and Bouzid-Sitayeb, 2011a), but many references do not consider two or more set of jobs to be scheduled.

Finally, the term sets (or classes, or families) of jobs could be adopted, but it must be taken into account

that there may be problems with several sets of jobs that do not necessarily compete for a resource, even

if they have different objectives, and that these scheduling problem could be disaggregated into two single-

criterion scheduling sub-problems.
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Regardless if each job belongs to an agent, is a part of a customer order, an operation of a department

or user, belongs to disjoint sets or not, etc. the key feature is that the job interferes with other jobs for the

same resources. Although we think that interfering jobs is the most suitable term to name our problem, the

most employed is multi-agent scheduling problem (MASP) so it is the term selected.

In the next section, we provide a common notation and taxonomy for these problems.

3 Notation and Taxonomy

Multi-agent Scheduling Problems (MASPs) consider k = 2, . . . ,K sets of nk jobs denoted J 1, . . . ,JK . We

define n =
∑K

k=1 n
k and J = J 1

∪
· · ·

∪
JK . Each set J k has assigned a criterion fk. If J k = J for some

k, then fk is denoted by f . In this case the problem is called interfering jobs problem with global objective

function. Each job j ∈ J k has to be processed on machine i with processing time pkij , i = 1, . . . ,m. If there

is only one machine, its processing time is denoted pkj . Additionally, we define pk =
∑m

i=1

∑
j∈J k pkij and

P =
∑m

i=1

∑
j∈J pij . As many references deal with two disjoint sets of jobs (k = 2 J 1 ∩ J 2 = ∅), we denote

these sets as J A and J B , each one with nA and nB jobs, and objective functions fA and fB, respectively.

Obviously, some special cases of this notation do not constitute MASPs. For instance, in the problem with

two-sets, J A = ∅ (or J B = ∅) constitutes a single-criterion scheduling problem, while J A = J B denotes a

standard (i.e. not competing) multicriteria scheduling problem. Such cases will not be treated here.

A complete sequence σ = [σ1, . . . , σn] is a permutation of all jobs in J , where each σj , j = 1, . . . , n, is in

some J k. Given a sequence σ, the completion time of job σj in machine i is denoted as Cij(σ), being Cj(σ)

the completion time of job σj in the last machine on which this job needs to be processed. Without loss of

generality, we omit σ in the completion times unless necessary.

A classification for MASPs can be obtained extending on the standard triplet α|β|γ notation by Graham

et al. (1979) (see Pinedo, 1995 for a complete description). The α field represents the machine environment,

i.e. including the single machine (1), identical machines in parallel (Pm), machines in parallel with different

speeds (Qm), unrelated machines in parallel (Rm), flowshop (Fm), jobshop (Jm), or openshop (Om). We

denote the case of the permutation flowshop (PFm) in order to obtain a clearer taxonomy of the problems

with an empty β field (in the standard notation, the permutation condition in flowshops is indicated in the

field β by the notation prmu).

β indicates conditions applying to jobs. If a condition is applied only in some sets, then it is indicated by

a super-index. Usual restrictions are:

• Time-related conditions, such as release dates (rj) and common due dates (dj = d),

• Processing-times-related conditions: such as preemption (prmp); learning effect (learning) / deterio-

rating jobs (deteriorating) i.e. processing times decrease/increase with the starting time or the position

of the job in σ; controlable processing times (ctrl), i.e. pkij is a variable in the problem and can be

chosen in a given interval [pkij , p
k
ij
], with a cost of the compression of the processing times, ckij , which

is penalized in the objective function by Ctrlksum =
∑m

i=1

∑
j∈J k ckij(p

k
ij − pkij); and on-line problems
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(on-line), when processing times only become known on arrival, opposite to off-line problems, which is

the usual case, when processing times are known in advance.

• Batch-related constraints (batch). Parallel batch (p-batch) indicates that a machine can process up to

b jobs simultaneously, being the processing time of a batch equal to the largest processing time of the

jobs in the batch. In serial batching (s-batch), jobs are processed sequentially with a setup time for

each batch (i.e. setup time between two jobs is equal to zero if both jobs are scheduled in the same

batch). This case is also called family/part type-dependent setup times, including the case where a

family is determined by a set of jobs. There may be batch capacity restrictions (denoted as b ≤ x,

otherwise we assume b = ∞), where each job has a size sizej . Finally, there may be incompatible sets

(IS) if jobs from different sets cannot be placed in the same batch.

• Availability constraints. A case treated in the literature is that of forbidden intervals (I), denoting a

time interval where no jobs can be scheduled. The number of forbidden intervals is denoted by n∗.

• Precedence. This condition can be applied to machines or jobs: Machine precedence is denoted as

mi 7→ mj indicating that jobs must be processed by machine mi before entering in machine mj . Job

precedence is denoted prec.

Usually, γ includes the objective function to be minimized. In our proposal, it contains a model indicating

the performance measures fk used for each set of jobs J k. Different problems or approaches can be defined

using the functions fk. In order to unify the notation, we integrate some of the multicriteria approaches in

T’kindt and Billaut (2002) with those found in the MASP literature:

• Linear Convex Combination (LCC) approach: We denote Fl(f
1, . . . , fK) if the objective is to

minimize a linear convex combination of the K criteria,
∑K

i=1 λif
i, where

∑K
i=1 λi = 1.

• Epsilon-constraint (ϵ-constraint) approach: We denote ϵ(f1/f2, . . . , fK), if the objective is to

minimize f1 subject to fk ≤ ϵk, ϵk ≥ 0 for k = 2, . . . ,K. Constraints can be defined for all or for some

fk, i.e. ϵk = +∞ for some values of k. An instance of an ϵ-constraint problem may not have feasible

solutions, and it is denoted feasible if there is at least one feasible solution.

• Pareto approach: We denote #(f1, . . . , fK) if the objective is to enumerate all Pareto optima. A

schedule σ is weak Pareto optimum if and only if @σ′ such that ∀k = 1, . . . ,K, fk(σ′) < fk(σ), and it

is strict Pareto optimum (or efficient solution or nondominated solution) if and only if @σ′ such that

∀k = 1, . . . ,K, fk(σ′) ≤ fk(σ) (fk(σ′) < fk(σ)), with at least one strict inequality.

Other approaches found in the literature are Goal Programming and Lexicographical approach.

The goal programming approach, denoted GP (f1, . . . , fK), also named feasibility model or decision model,

is the special case ϵ(f/f1, . . . , fK), with f constant. The goal here is to find a feasible schedule σ satisfying

fk ≤ ϵk, k = 1, . . . ,K. The lexicographical approach, denoted Lex(f1, . . . , fK), minimizes all criteria in the

given order.
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Note that the order in which fk are considered is only relevant for the ϵ-constraint and the lexicographical

approaches, as different orders imply different problems.

For each approach, different forms of fk can be considered. Cheng et al. (2006) distinguish two types

depending on the functions gkj applied to the completion times Ck
j , j ∈ J k, k = 1, . . . ,K, i.e.: max-form:

max fk = max1≤j≤nk gkj (C
k
j ), and sum-form:

∑
fk =

∑
1≤j≤nk gkj (C

k
j ). When the jobs are weighted, we

denote the functions maxwkfk and
∑
wkfk respectively.

If gkj are non-decreasing functions of Ck
j for all j ∈ J k, then they are called regular performance

measures (see e.g. Pinedo, 1995). We denote a regular performance measure with capital letter.

Among non-regular performances measures, only those related to earliness, defined as Ej = max{0, dj −
Cj}, have been found in the review. These performance measures, jointly with the related to the tardiness

defined below, are called just in time performance measures (see e.g. T’kindt and Billaut, 2002 for more

information).

Table 1 summarizes the regular and non-regular performance measures encountered in the literature. The

usual definitions for lateness (Lj = Cj − dj), tardiness (Tj = max{Cj − dj , 0}), and unit penalty (Uj yields

1 if Cj > dj , 0 otherwise) apply.

Type Function form

Regular Due date independent

Max-form Maximum cost maxF k
j = maxj∈Jk gkj (Cj)

Makespan (Weighted) maxCk
j = maxj∈Jk Cj (maxwk

jC
k
j = maxj∈Jk wjCj)

Sum-form Sum of costs
∑

F k
j =

∑
j∈Jk gkj (Cj)

Flowtime (Weighted)
∑

Ck
j =

∑
j∈Jk Cj (

∑
wk

jC
k
j =

∑
j∈Jk wjCj)

Due date dependent

Max-form Maximum lateness maxLk
j = maxj∈Jk Lj

Maximum tardiness maxT k
j = maxj∈Jk Tj

Sum-form Total tardiness (Weighted)
∑

T k
j =

∑
j∈Jk Tj (

∑
wk

j T
k
j =

∑
j∈Jk wjTj)

Number of tardy jobs (Weighted)
∑

Uk
j =

∑
j∈Jk Uj (

∑
wk

jU
k
j =

∑
j∈Jk wjUj)

Non regular Due date dependent

Max-form Maximum earliness maxEk
j = maxj∈Jk Ej

Sum-form Total earliness (Weighted)
∑

Ek
j =

∑
j∈Jk Ej (

∑
Ek

j =
∑

j∈Jk wjEj)

Table 1: Usual performance measures for MAPSs

Finally, we also analyse performance measures employed in the rescheduling literature in order to include

them in the notation proposed. In rescheduling, usually two sets of jobs are considered: old jobs J O, and

new jobs JN , as well as two schedules: an initial sub-sequence σo, formed by jobs in J O, and a final sequence

obtained when jobs have been rescheduled σn, formed by jobs in J = J O
∪

JN . There are two approaches

depending on σo (Hall and Potts, 2004): to consider a single disruption, so the original schedule is optimal

with respect to the initial scheduling objective, or to consider the most recent of multiple disruptions, so the

initial schedule is regarded as arbitrary due to previous disruptions.
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Different ways to measure the disruption of jobs in J O can be considered:

1. No tardy jobs constraint. In this case, jobs in J O cannot be late, which means that Cj ≤ dj , ∀j ∈ J O.

There are several (equivalent) ways to model this constraint, such as maxLO
j ≤ 0, maxTO

j = 0

(equivalent to maxTO
j ≤ 0),

∑
TO
j = 0 (equivalent to

∑
TO
j ≤ 0), and

∑
UO
j = 0 (equivalent to∑

UO
j ≤ 0). All of these models have a weighted counterpart. Note that these constraints are on the

form of an ϵ-constraint approach. If the objective is to minimize f subject to no tardy jobs for the set

J O, it is denoted as 0(f/fO), with fO ∈ {maxLj ,maxTj ,
∑
Tj ,

∑
Uj ,maxwjTj ,

∑
wjTj ,

∑
wjUj}.

2. Sequence disruption: Dj(σo, σn) = |y − x| with y the position of the job j in σo, and x its position in

σn. When there is no ambiguity, the notation is simplified to Dj , with objectives maxDj and
∑
Dj .

3. Time disruption: ∆j(σo, σn) = |Cj(σn)−Cj(σo)|. When there is no ambiguity, the notation is simplified

to ∆j , with objectives max∆j and
∑

∆j .

Depending on the approach, machine setting, objective function, etc, there are many different problems

in the literature. A broad classification is to divide the problems into basic problems (i.e. when there are

no conditions for the machines or jobs, i.e. the most general case indicating only the machine environment

and the objectives considered for each set of jobs) and extended problems (i.e. where specific conditions are

imposed). Prior to this classification, it is useful to recall the complexity of the different problems and to

derive general properties that may apply to some approaches. Both aspects are discussed in the next section.

4 Complexity and General Properties

4.1 Complexity

Many contributions in the literature about MASPs are devoted to classify and/or determine the complexity

of different problems. In the same way as in single criterion and classical multicriteria scheduling problems,

the complexities of some MASPs can be determined by reductions to known problems. In this subsection

we intend to give a first step to determine the relationship between the complexities of MASPs and known

problems.

Complexity theory is based on languages theory and Turing machines (see Garey and Johnson, 1979). A

problem belongs to a class of complexity, which informs us of the complexity of the “best algorithm” able

to solve it (T’kindt and Billaut, 2002). We know the complexity of a problem if it can be reduced from/to

another problem with a known complexity. A search (decision) problem π′ is NP -hard (NP-complete) if

and only if another search (decision) problem π is NP -hard (NP-complete) and a reduction of π towards π′

exists. The problem π′ is at least as difficult to solve as the problem π. NP -hard problems are also called

NP-hard in the ordinary sense, ordinary NP-hard, binary NP-hard problems, or weakly NP-hard. A subclass

of NP -hard problems are the so-called strongly NP -hard problems (NP-hard in the strong sense or unary

NP-hard). For detailed definitions we refer the reader to Garey and Johnson (1979); Gawiejnowicz (2008);

T’kindt and Billaut (2002).
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In order to establish the relationship among the complexities of single-criterion, multicriteria and MASPs,

we use the following notation:

• Di: Decision problem associated to the criterion f i.

• SCi: Single criterion problem with criterion f i.

• MC∗: Multicriteria scheduling problem (i.e. only one set of jobs is considered), * denoting the approach

(see section 3).

• MASP∗: MASP (i.e. two or more sets of jobs are considered), * denoting the approach.

• MASPDJ
∗ : MASP with disjoint sets of jobs, * denoting the approach.

• MASPGO
∗ : MASP with global objective, * denoting the approach.

4.1.1 Relation to single-criterion scheduling problems

The special case of an MASP when all sets of jobs except one are empty is a single-criterion scheduling prob-

lem. T’kindt and Billaut (2002) (pp. 39-42) give a complete study about the complexities of single-criterion

scheduling problems, providing the reduction trees depending on the machine setting, on the constraints and

criteria. Since reduction tree of machine settings and reduction tree of constraints can be applied to multicri-

teria problems as well as to MASPs, they are not discussed here. Note that the latter allow us to identify the

relationship among the complexities of basic and some simple cases of extended problems (under the same

machine and criteria conditions). However, application of the reduction tree of criteria to multicriteria and

therefore, to MASPs is not direct, since it depends on the approach.

Within each approach, reductions can be developed whenever we consider two problems in which all

sets (except one) involve the same objective functions, i.e. if α|β|f is reduced from α|β|g, then problem

α|β| ∗ (f1, . . . , fk, . . . , fK) is reduced from α|β| ∗ (f1, . . . , gk, . . . , fK). Note that if all K sets in each problem

have the same function, then α|β| ∗ (f1, . . . , fk, . . . , fK) is reduced from α|β| ∗ (g1, . . . , gk, . . . , gK).

4.1.2 Relation to multicriteria scheduling problems

Another special case of MASPs is when all sets of jobs are equal. Then, the problem is equivalent to a

standard multicriteria scheduling problem. However, there are more MASPs than multicriteria scheduling

problems, since it does not make sense to consider multicriteria problems for the ϵ-constraint and LCC

approaches with equal objectives, while the multi-agent counterpart is well-defined.

The relationship among the complexities of the different approaches is the same for multicriteria scheduling

problems than for MASPs. We have adapted the reduction tree of multicriteria problems given by T’kindt

and Billaut (2002) to MASPs (see Figure 1, where a solid arrow from problem A to problem B indicates

that a reduction exists from A to B). As it is possible to associate a decision problem with an optimisation

problem, the relation among their complexities is represented in Figure 1 by dotted arrows. Therefore, the

complexity of most problems concerning the goal programming approach are a straightforward consequence

of the corresponding ϵ-constraint version.
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Figure 1: Reduction tree for MASPs, adapted from T’kindt and Billaut (2002)

Although the reduction tree for multicriteria and MASPs is the same, in general, the complexities of the

MASPs are not the same as that of the corresponding multicriteria problems even if the objective functions

are the same (Agnetis et al., 2004). Agnetis et al. (2004) give some examples where the complexities are

not the same in the case of basic problems of the ϵ-constraint approach. Therefore, the tables with the

complexities for bicriteria basic problems for LCC, Lexicographical and ϵ-constraint approaches provided

by T’kindt and Billaut (2002) (pp. 116, 117) do not apply for MASPs. However, for the special case of

MASPs with global objective, Huynh-Tuong et al. (2011) develop some reductions to these problems from

single-criterion, bicriteria and MASPs with two disjoint sets of jobs. Only ϵ-constraint and LCC approaches

have been considered. The reductions have been adapted for general cases with more than two objective

functions in Figure 2, where solid arrow applies for regular measures, and dashed arrow implies reductions

for objective functions belonging to the set {maxLj ,
∑
wjCj ,

∑
wjTj ,

∑
Uj ,

∑
wjUj}.

Figure 2: Simple reductions from multicriteria and MASPs with disjoint sets to MASP with global objective, adapted from

Huynh-Tuong et al. (2011)
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4.1.3 Solution Procedures

An algorithm is a finite procedure that finds a solution to an arbitrary instance of a problem. In the litera-

ture, there are different methods to solve scheduling problems. Gawiejnowicz (2008), for example, presents

a classification of different types of algorithms applied to scheduling in the literature (in particular to time-

dependent scheduling problems), which can be extended to scheduling problem in general, and to MASPs in

particular: Exact algorithms find the exact solution of a problem (not only feasible solutions). Polynomial-

time algorithms are examples of exact algorithms that find the exact solution in polynomial-time. For the

problems for which no polynomial-time algorithms are known, exact solutions can be found by enumerative,

branch-and-bound (B&B) or dynamic programming algorithms. Pseudopoynomial-time algorithms are ap-

plied to NP-hard problems, and, in general, a problem which is strongly NP-hard cannot be solved by them.

Approximation algorithms are polynomial algorithms that generate an approximate solution that is close to

an optimal solution, measured by the worst-case ratio (approximation ratio), which is a number in single cri-

terion problems. In multicriteria and MASPs with Pareto and Goal Programming approaches and objectives

(f1, . . . , fK), the (β1, . . . , βK)-approximation schedule is the schedule which provides an approximation ratio

of βk for objective fk (see e.g. Lee et al. (2009); Saule and Trystram (2009)). A family of approximation

algorithms which generate solutions as close to the optimal one as desired is called an approximation scheme.

There exist two types of approximation schemata: polynomial-time approximation scheme (PTAS) and fully

polynomial-time approximation scheme (FPTAS). Finally, Heuristics and Metaheuristics are algorithms with

unknown worst-case ratio. It is not possible to predict the behavior of this algorithm for all instances and

their efficiency is evaluated by computational experiments. Some examples found in the MASP literature

are Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search (TS), Variable Neighborhood Search

(VNS), or Ant Colony Optimization (ACO).

All previous methods can be applied to MASPs regardless the approach. However, the Pareto approach

is the most difficult (see Figure 1), and it is not easy to find methods to determine the set of Pareto

optima for MASPs. Usually, a straightforward way is to solve repeatedly instances of the corresponding

ϵ-constraint problem for decreasing values of ϵ (for example, see Elvikis et al., 2010a, 2009; Agnetis et al.,

2004). Theoretically, an optimal solution to the ϵ-constraint problem is a weak Pareto optimum. However, it

is possible to assign an ϵ value to each strict Pareto optimum that it is an optimal solution to the associated

ϵ-constraint problem (Ehrgott, 2005). For example, if we consider an MASP with two disjoint sets of jobs

on a single machine, the problem of finding one schedule which is also non dominated among the optimal

schedules of the ϵ-constraint version can be always addressed by binary search (Agnetis et al., 2004).

In some cases, only the cardinality (size) of the set of Pareto optima is provided. This size depends on

the specific problem, and it can be polynomially bounded or not. Note that, when the number of tardy jobs

is considered at least for one set of jobs, it is clear that the number of non-dominated schedules is linear.

Agnetis et al. (2004) give a scheme for enumerating the set of Pareto optima when the problem involves

two sets of jobs on a single machine. Figure 3 presents a generalization of this scheme for K sets of jobs,

1||ϵ(f1/f2, . . . , fK), considering ϵ = (ϵ2, . . . , ϵK) the bounds of f2, . . . , fK , and a given vector δ = (δ2, . . . , δK)

with δk > 0, ∀k = 2, . . . ,K. This method depends on the corresponding ϵ-constraint problem, and when it is
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polynomially solvable, the scheme turns out to be polynomial for those problems with a polynomial number

of Pareto optima. Then, this method provides a way to determine the cardinality of the set of Pareto optima

in some cases.

{
S := ∅; Q := +∞; i := 0

while 1||ϵ(f1/f2, . . . , fK) is feasible

{
i := i+ 1

σi:= strict pareto solution to 1||ϵ(f1/f2, . . . , fK)

S := S ∪ σi

for k = 2 to K

ϵ′k := fk(σi)

ϵ := ϵ′ − δ

}
}

Figure 3: Scheme for enumerating strict pareto optima for the problem 1||#(f1, f2, . . . , fK), adapted from Agnetis et al. (2004)

4.2 General Properties

For certain types of MASPs, some properties on the structure of their optimal solutions can be proved. Some

of these properties have been proved by Baker and Smith (2003) for single machine MASPs. Baker and

Smith (2003) consider only the LCC approach and some regular performance measures. Here we provide a

generalisation of these properties for all approaches and regular performance measures. Standard proofs by

contradiction apply. These properties may be a starting point to study more complex problems (different

layouts or extended problems) to determine their complexities and even to be applied to solution methods

(exact or approximate) to solve these problems.

The starting point for obtaining these properties is the problem 1||maxCj , since any job sequence provides

the same makespan, and therefore, all schedules are optimal. Consequently, it can be observed that this

objective does not have influence on the solution of multicriteria problems and MASPs with two non disjoint

sets and makespan for the global objective function. Then, these problems have the same complexity as the

single criterion problem for the other objective. For the rest of the cases, the complexity of MASPs considering

makespan for some set J k depends on the approach selected. The following properties are related to the

sequences of jobs in optimal solutions according to the regular performance measures selected:

Property 4.1 There is an optimal solution for the MASP considering maxCj for any set J k, in which the

jobs belonging to this set are processed consecutively.

The previous property implies that, the structure of an optimal solution to a problem with two disjoint sets

of jobs considering makespan for J B , is J A
prec∪J B ∪J A

succ, where J A
prec∪J A

succ = J A and J A
prec∩J A

succ = ∅.
Using this property, we can conclude that the optimal solution to these problems is completely defined by
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the partition (J A
prec,J A

succ) of the set J A, a result provided by Agnetis et al. (2009a) for the specific case

1||ϵ(maxLA
j /maxCB

j ).

Based on this property, it can be observed that the complexity of any MASP with LCC approach for two

disjoint sets of jobs and makespan as one of the criteria is the same as the corresponding single criterion

problem for the second criterion (Baker and Smith, 2003). This result can be generalized as follows: the

complexity of any MASP with LCC approach for more than two disjoint sets of jobs and makespan criterion

for J k is the same as the corresponding problem without the k-th set (Cheng et al., 2008).

However, for the ϵ-constraint approach (and consequently for the Pareto approach) the problems cannot

be reduced from the single criterion case even for two sets of jobs. For example, 1||ϵ(
∑
wjC

A
j /maxCB

j )

(see Section 5) is NP-hard (Agnetis et al., 2004), and 1||#(
∑
wjC

A
j ,maxCB

j ) has an exponential number of

non-dominated solutions (Agnetis et al., 2007b), while 1||
∑
wjCj is polynomial (Lawler et al., 1993).

Property 4.2 There is an optimal solution for the MASP considering maxLj for one of the sets, J k, in

which the jobs belonging to this set are ordered by non-decreasing values of the due dates dkj , that is, EDD

order (even though they may not appear consecutively in the schedule).

Property 4.3 There is an optimal solution for the MASP considering
∑
Cj for one of the sets, J k, in

which the jobs belonging to this set are ordered by non-decreasing values of their processing times pkj , that is,

SPT order (even though they may not appear consecutively in the schedule).

Property 4.3 cannot be adapted for
∑
wjCj using the WSPT order for any set of processing times and

weights (for a counterexample see Agnetis et al., 2007a). Baker and Smith (2003) tried to prove it for

1||Fl(
∑
wjC

A
j , F

B) when FB ∈ {maxCj ,maxLj ,
∑
wjCj} if pAi ≤ pAj and

pA
i

wA
i

≤ pA
j

wA
j
. However, Yuan et al.

(2005) give a counterexample showing the property to be incorrect. They provide a weakened version of the

property, and their proof can be generalized to other approaches when all functions are regular:

Property 4.4 There is an optimal solution for the MASP considering
∑
wjCj for one of the sets, J k, with

pki ≤ pkj whenever wk
i > wk

j , in which the jobs belonging to this set are ordered by non-increasing values of

pkj , that is, in SPT order.

5 Basic problems

In this Section we review basic problems where no conditions on machines or jobs are imposed (i.e. the field

β is empty) and the problems have the form α||γ. We classify the problems in disjoint and non-disjoint sets

of jobs. The former case can be known as competing sets of jobs, and the latter as interfering sets of jobs.

For each case, we classify the problems according to the approach: LCC, ϵ-constraints and Pareto. Some

results about the GP approach are included whenever appropriate.
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fA\fB maxLj maxTj

∑
Cj

∑
wjCj

∑
Uj

∑
wjUj

maxCj O(nB lognB) O((nA)3nB + nA(nB)3) O(n3 logn) O(n logn) O(n3 logn) NP

maxLj O(nnAnB) O((nA)3nB + nA(nB)3) O(nnAnB) NP O(n3 logn) NP

maxTj O((nA)3nB + nA(nB)3) O(n3 logn) Open O(n3 logn) NP∑
Cj O(n logn) O(n logn) Open NP

maxwjCj O(n logn) Open NP∑
Uj O(n4) NP∑

wjUj NP

Table 2: Complexity for basic MASPs with two disjoint set of jobs on a single machine for LCC approach

5.1 Disjoint (Competing) sets of jobs

5.1.1 LCC approach

In most of the problems addressed in this approach, the layout is the one-machine case. Complexities for two

sets of jobs are summarised in Table 2 where fA and fB are regular functions. As the problem is symmetric,

we have indicated the complexities in the upper part of a triangular matrix. These problems have been

studied by Baker and Smith (2003); Yuan et al. (2005); Agnetis et al. (2007a) and Soltani et al. (2010).

Apart from the cases in Table 2, Agnetis et al. (2007a) show that the general case 1||Fl(maxFA
j ,maxFB

j )

(with maxFA
j and maxFB

j regular functions) can be solved in O(n3 log n). Additionally, for more

than two sets of jobs, Cheng et al. (2008) show that the complexity of 1||Fl(maxF 1
j , . . . ,maxFK

j ) is

O((n1n2 . . . nK)K log n) for F k
j ∈ {T k

j , L
k
j }, ∀k = 1, . . . ,K.

As discussed in Section 4, 1||Fl(maxCA
j ,maxCB

j ) is trivial (Baker and Smith, 2003). Moreover, this

problem for K sets of jobs (K > 2) is polynomially solvable in O(n +K logK) (Cheng et al., 2008). How-

ever, the weighted version 1||Fl(maxw1
jC

1
j , . . . ,maxwK

j C
K
j ) is proved to be strongly NP-hard by Cheng

et al. (2008) (since 1||GP (
∑
wA

j C
A
j ,maxLB

j ) is strongly NP-complete). The cases 1||Fl(maxFA
j ,

∑
UB
j ) and

1||Fl(maxFA
j ,

∑
CB

j ) are shown to be both polynomially solvable in O(n3 log n) by Agnetis et al. (2007a).

Although 1||Fl(maxCA
j ,

∑
wB

j C
B
j ) is polynomially solvable by the WSPT rule (Baker and Smith, 2003), the

problem 1||Fl(maxwA
j C

A
j ,

∑
wB

j C
B
j ) is proved to be strongly NP-hard by Feng and Yuan (2007). Nong et al.

(2011) give a 2-approximation algorithm for this problem. However, they prove that this problem is NP-hard

in the ordinary sense when nA is fixed, and develop a PTAS for the case where preemption of jobs in J B is

allowed, which can be applied to the case without preemption.

Soltani et al. (2010) develop a GA and SA for 1||Fl(maxLA
j ,

∑
wB

j C
B
j ), which can be seen in Table 2

that it is NP-hard. Baker and Smith (2003) reduce 1||Fl(maxC1
j ,maxL2

j ,
∑
w2

jC
3
j ) to the latter problem

by consolidating jobs in J 1 as a single job jA with processing time p1 =
∑

j∈J 1 pj and weight w1 = 1 and

considering J A = J 2 and J B = jA
∪

J 3.

Regarding other layouts, only the problem PF2||Fl(maxCA
j ,maxCB

j ) has been studied by Luo et al.

(2011), showing that it is NP-hard. They provide a dynamic programming algorithm with running time

O(nP 4), P =
∑

j∈J pj . They also develop a FPTAS with running time O(n5/δ8), being δ > 0 the worst-case
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fA\fB maxFj

∑
Cj

∑
wjCj

∑
Tj

∑
Uj

∑
wjUj

maxFj O((nA)2 + nB lognB) O(nA lognA + nB lognB) NP NP O(nA lognA + nB lognB) NP∑
Cj NP NP NP NP NP∑

wjCj NP NP s-NP s-NP∑
Tj NP NP NP∑
Uj O(nnAnB) NP∑

wjUj NP

Table 3: Complexity for basic MASPs with two disjoint set of jobs on a single machine for ϵ-constraint approach

ratio.

5.1.2 ϵ-constraint approach

In this section, we review the problem when the sets of jobs are disjoint considering the ϵ-constraint approach.

Most studies are devoted to one-machine layout and two sets of jobs. Table 3 summarizes the complexities for

1||ϵ(fA/fB) when fA and fB are regular functions. For the single machine case, Agnetis et al. (2004) proved

that the symmetric problems are equivalent, since it is possible to reduce 1||ϵ(fB/fA) from 1||ϵ(fA/fB) by
a binary search in a logarithmic number of instances. Then, in the same way that the LCC approach, we

have indicated the complexities in the upper part of a triangular matrix. These problems have been studied

by Agnetis et al. (2004); Ng et al. (2006); Agnetis et al. (2007a, 2009a); Leung et al. (2010).

The general case 1||ϵ(maxFA
j /maxFB

j ), with maxFj regular is polynomial (Agnetis et al., 2004, 2007a).

This result is extended by Agnetis et al. (2004) for more than two sets of jobs, giving Agnetis et al.

(2007b) an algorithm for the goal programming counterpart. Moreover, Agnetis et al. (2004) prove that

1||ϵ(
∑
wA

j C
A
j /maxFB

j ) is NP-hard by proving that the goal programming counterpart is NP-complete,

although 1||GP (
∑
C1

j ,maxF 2
j , . . . ,maxFK

j ) is polynomial in O(n1 log n1 + n′ log n′), with n′ =
∑K

k=2 n
k

(Agnetis et al., 2007b).

Although 1||ϵ(
∑
wA

j C
A
j /maxFB

j ) is NP-hard, the case with maxLB
j is shown to be strongly NP-hard by

Ng et al. (2006). The case 1||ϵ(
∑
wA

j C
A
j /maxCB

j ) is addressed by Kellerer and Strusevich (2010) by means

of an FPTAS. They show it to be equivalent to a single criterion problem with one fixed non-availability

machine interval in the case that the non-availability is resumable and the total weighted completion time as

objective.

As we can see in Table 3, the problem 1||ϵ(
∑
wA

j C
A
j /

∑
wB

j C
B
j ) is NP-hard. This complexity also

holds for more than two sets of jobs (Lee et al., 2009). These authors provide an FPTAS to solve the

goal programming version of this problem for the single machine and the unrelated parallel machines. In

the same way, Agnetis et al. (2004) find 1||ϵ(
∑
U1
j /

∑
U2
j , . . . ,

∑
UK
j ) to be polynomially solvable since

1||ϵ(
∑
UA
j /

∑
UB
j ) is polynomially solvable too. This result implies that the goal programming counterpart

is polynomial too, although the weighted version 1||GP (
∑
w1

jU
1
j , . . . ,

∑
wK

j U
K
j ) is proved to be strongly

NP-complete by Cheng et al. (2006). These authors present an FPTAS for the problem and prove that it is

polynomial when K is arbitrary and the weights and epsilon values of all sets are positive integers. Related to
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the latter problem, Agnetis et al. (2007a,b) obtain a O(
∑K′

k=1 n
k
∏K

k=1 n
k + n log n) running time algorithm

for the problem 1||GP (
∑
w1

jU
1
j , . . . ,

∑
wK′

j UK′

j ,max fK
′+1

j , . . . ,max fKj ).

Regarding problems considering non-regular performance measures, Mor and Mosheiov (2010) study the

general case where max fkj = maxj∈J k{fkj (Ek
j )}, with k = A,B, providing an algorithm to solve the problem

in polynomial time with O(nB log nB + (nA)2).

With respect to other layouts different from the single machine, although 1||ϵ(maxCA
j /maxCB

j ) is trivial,

the ϵ-constraint problem with the same objective is shown to be NP-hard for even the 2-machine open shop

(Agnetis et al., 2004) and, consequently, for the permutation flowshop (Luo et al., 2011). For the last problem,

Luo et al. (2011) provide an FPTAS. A consequence is that PFm||ϵ(maxCA
j /maxTB

j ) is NP-hard, and the

structure of the solutions is studied by Perez-Gonzalez et al. (2011) for common and different due dates.

PF2||ϵ(
∑
CA

j /
∑
UB
j ) and PF2||ϵ(

∑
TA
j /

∑
UB
j ) are both NP-hard (Lee et al., 2011, 2010). The authors

present B&B as well as SA algorithms for both problems.

Finally, there are some rescheduling problems where the objective is to minimize a function of one set

of jobs subject to that one or more functions of the other set to be bounded. All of them have the form

1||ϵ(fA/fB1 , fB2 ), and are presented in Table 4. Some properties about feasibility and conditions for op-

timal schedules are given by Mu and Hao (2010) for 1||ϵ(fA/fB ,maxDB
j ) and 1||ϵ(fA/fB,max∆B

j ) when

fA, fB ∈ {maxCj ,
∑
Cj ,maxLj}. Polynomially solvable algorithms for 1||ϵ(maxCA

j /maxCB
j ,maxDB

j ) and

1||ϵ(maxCA
j /maxCB

j ,max∆B
j ) are given by Mu and Gu (2010). The rest of the problems can be solved by

dynamic programming algorithms (Mu and Gu, 2010; Mu and Hao, 2010).

fB
2

maxDj

∑
Dj max∆j

∑
∆j

1||ϵ(maxCA
j /maxCB

j , fB
2 ) O(nA lognA) O((nA)2(nB)2ϵ1) O(nA lognA) O((nB)2(nA)2pAϵ1)

1||ϵ(
∑

CA
j /

∑
CB

j , fB
2 ) O(nB(nA)2ϵ1) O((nB)2(nA)2ϵ1) O(nBnApAϵ1 + nA lognA) O(nB(nA)2pAϵ1)

Table 4: Complexity of the algorithms to solve basic multiagent rescheduling problems on a single machine for LCC approach

with the form 1||ϵ(fA/fB
1 , fB

2 )

5.1.3 Pareto approach

In this section, we review the problem of finding the set of Pareto optima when there are disjoint sets of

jobs. As discussed in Section 4, some authors only provide an algorithm to determine the size of the non-

dominated sets. For 1||#(maxFA
j ,

∑
CB

j ), the size of the non-dominated set is at most nAnB (Agnetis et al.,

2004, 2007a). Agnetis et al. (2004, 2007b) provide procedures to determine the size of the non-dominated set

with complexity O(nA log nA + nB log nB). For the weighted case, 1||#(maxFA
j ,

∑
wB

j C
B
j ), Agnetis et al.

(2007b) show that it may have an exponential number of non-dominated solutions with respect to the instance

size. The case with parallel machines Pm||#(maxCA
j ,

∑
CB

j ), is shown to be NP-hard by Balasubramanian

et al. (2009), developing several constructive heuristics and a GA. Saule and Trystram (2009) show that

Pm||#(maxC1
j , . . . ,maxCK

j ) is strongly NP-hard, and provide an approximation algorithm for the problem

for an arbitrary number of machines.
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Agnetis et al. (2004) prove that finding one non-dominated solution for 1||#(
∑
CA

j ,
∑
CB

j ) is NP-hard,

and the number of non-dominated solutions may be exponential with respect to the instance size. Saule

and Trystram (2009) study the case with more than two sets, 1||#(
∑
C1

j , . . . ,
∑
CK

j ), proposing an ap-

proximation algorithm and extending the approach to Pm||#(
∑
C1

j , . . . ,
∑
CK

j ). Lee et al. (2009) develop

the same approximation algorithm for the goal programming counterparts 1||GP (
∑
C1

j , . . . ,
∑
CK

j ) and

Rm||GP (
∑
C1

j , . . . ,
∑
CK

j ). For the weighted case 1||#(
∑
wA

j C
A
j ,

∑
wB

j C
B
j ), an algorithm based on the

Nash Bargaining Solution is proposed by Agnetis et al. (2009b). For 1||#(
∑
w1

jC
1
j , . . . ,

∑
wK

j C
K
j ) with K

fixed, Lee et al. (2009) develop an FPTAS for computing a δ-efficient set (according to the definition given

by Warburton, 1987), with δ the error bound. Additionally, Saule and Trystram (2009) consider the case for

parallel machines, Pm||#(
∑
w1

jC
1
j , . . . ,

∑
wK

j C
K
j ), developing approximation algorithms for this problem

and Pm||#(
∑
w1

jC
1
j , . . . ,

∑
wK′

j CK′

j ,maxCK′+1
j , · · · ,maxCK′′

j ) with K = K ′ +K ′′.

Finally, Agnetis et al. (2000) consider a job shop problem, J2||#(fA, fB), assuming that both J A and

J B contain only one job with nA and nB operations, and fA and fB non-regular cost functions f i(Ci).

For this problem, the set of nondominated schedules is identified, and an algorithm to generate them in

polynomial time is provided. The running time depends on the number of incompatible pairs, defined as a

pair of operations of J A and J B which require the same machine and cannot be done in parallel.

5.2 Non-disjoint (Interfering) sets of jobs

5.2.1 Linear Convex Combination approach

For this approach, only one machine problems have been studied. Table 5 shows the complexity of these

problems with global objective for some regular measures analysed by Huynh-Tuong et al. (2011) and Huynh-

Tuong and Soukhal (2010).

f\fB maxCj maxLj

∑
Cj

∑
wjCj

∑
Tj

∑
wjTj

∑
Uj

∑
wjUj

maxCj trivial O(n logn) O(n log n) O(n log n) NP NP NP NP

maxLj O(n log n) O(n logn) O(n2) NP NP NP NP NP∑
Cj O(n log n) Open O(n log n) O(n log n) NP NP NP NP∑
wjCj O(n log n) NP O(n log n) O(n log n) NP NP NP NP∑
Tj NP NP NP NP NP NP NP NP∑
wjTj NP NP NP NP NP NP NP NP∑
Uj O(n log n) Open NP NP NP NP NP NP∑
wjUj NP NP NP NP NP NP NP NP

Table 5: Complexity for basic MASPs with global objective function on a single machine for LCC approach (Huynh-Tuong

et al., 2011; Huynh-Tuong and Soukhal, 2010)

Hall and Potts (2004) study several rescheduling problems, shown in Table 6. They consider J A as

the set of old jobs, and J is the set of old and new jobs. Objective functions are f ∈ {
∑
Cj ,maxLj}

and fA ∈ {maxDA
j ,

∑
DA

j ,max∆A
j ,

∑
∆A

j }, considering all of them with a single disruption. Additionally,
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the study includes the case with multiple disruption (md) for the problem 1||Fl(
∑
Cj ,maxDA

j ). Finally,

1||Fl(maxwjTj ,
∑
FA
j ) is addressed by Li and Cheng (1999), with J A the set of the new jobs. The objective

is to determine the due dates of the new jobs which are calculated depending on their completion times by

considering
∑
FA
j =

∑
j∈JA dj(Cj) as a function cost. The problem is shown to be NP-hard, although the

unweighted version is polynomially solvable in O(n4).

f\fA maxDj

∑
Dj max∆j

∑
∆j∑

Cj O(n+ nA log nA); (md) O(nAn3) O(nB lognB) O(n+ nB log nB) O(nB log n)

maxLj O(n+ nB log nB) NP O(n+ nB log nB) NP

Table 6: Complexity for basic multiagent rescheduling problems with global objective function on a single machine for LCC

approach (Hall and Potts, 2004)

5.2.2 ϵ-constraint approach

Similar to the LCC approach, the single machine layout is the most extended case, all of them with global

objective function. Taking into account that the problem is not symmetric, most of them have the form

1||ϵ(f/fA), whereas 1||ϵ(fA/f) has not been tackled in the literature. Table 7 shows the complexity of

these problems for some regular measures given by Huynh-Tuong et al. (2011) and Huynh-Tuong and

Soukhal (2010). Additionally, the problem with more than two sets of jobs 1||ϵ(maxFj/maxF 1
j , . . . ,maxFK

j )

is polynomially solvable in O(n2) (Sadi et al., 2012). For this approach, Hall and Potts (2004) study

some rescheduling problems whose complexities are shown in Table 8. All problems are studied with

a single disruption, and for several cases where there may be several job arrivals, multiple disrup-

tions (md) are included. Finally, Sadi et al. (2012) show that Pm||ϵ(f/fA) is NP-hard if fA, f ∈
{maxLj ,

∑
Cj ,

∑
wjCj ,

∑
Uj ,

∑
wjUj ,

∑
Tj ,

∑
wjTj}. They also give a dynamic programming algorithm

to solve the problem for m = 2 and fA, f ∈ {maxCj ,
∑
Cj} in running time O(n2ϵ).

f\fB maxCj maxLj

∑
Cj

∑
wjCj

∑
Tj

∑
wjTj

∑
Uj

∑
wjUj

maxCj trivial O(n logn) O(n logn) NP NP NP Open NP

maxLj O(n logn) O(n logn) O(n logn) NP NP NP Open NP∑
Cj O(n logn) Open NP NP NP NP NP NP∑

wjCj O(n logn) NP NP NP NP NP NP NP∑
Tj NP NP NP NP NP NP NP NP∑

wjTj NP NP NP NP NP NP NP NP∑
Uj O(n2) NP NP NP NP NP Open NP∑

wjUj NP NP NP NP NP NP NP NP

Table 7: Complexity for basic MASPs with global objective function on a single machine for ϵ-constraint approach (Huynh-Tuong

et al., 2011; Huynh-Tuong and Soukhal, 2010)
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f\fA maxDj

∑
Dj max∆j

∑
∆j∑

Cj O(n+ nA log nA); (md) O(n3) O((nAnB)2) O(n+ nA lognA) s-NP

maxLj O(n+ nA log nA) Open O(n+ nA log nA); (md) NP NP; (md) NP

Table 8: Complexity for basic multiagent rescheduling problems with global objective function on a single machine for ϵ-constraint

approach (Hall and Potts, 2004)

5.2.3 Pareto approach

In this case, we are only aware of the work by Ben Ltayef et al. (2009), who address the PF2||#(maxCj , f
A)

and PF2||#(maxTj , f
A) problems, where fA ∈ {

∑
DA

j ,maxDA
j ,

∑
∆A

j ,max∆A
j }. They give the mathe-

matical formulation for these problems, and present solution procedures based on SA and TS.

6 Extended problems

Extended problems have some condition/s for jobs and/or machines, indicated in the field β. In the next

subsections, we review the main contributions for each approach. Note that, given the heterogeneity of the

problems addressed, it is not possible to clearly classify the contributions as in the case of basic problems.

Nevertheless, we have identified the following categories: Release times and/or preemption; Variable process-

ing times (processing times are not fixed values); Batch and/or set-up; and Others. These categories should

be interpreted in a loose manner and only as a way to classify the disparity of contributions.

6.1 Disjoint (Competing) sets of jobs

6.1.1 Linear Convex Combination approach

Release times and/or preemption

Regarding problems in which release times are allowed, 1|rj |Fl(maxCA
j ,maxCB

j ) is shown to be NP-hard

by Ding and Sun (2010), who also give an optimal algorithm with O(nA+nB) running time for its preemptive

version. For the on-line case, i.e. 1|on-line, rj , prmp|Fl(maxCA
j ,maxCB

j ) they develop an approximation

algorithm. The equivalent problem without preemption, 1|on-line, rj |Fl(maxCA
j ,maxCB

j ), is also addressed

giving an on-line algorithm with a lower bound of the competitive ratio of the problem.

Different contributions are due to Cheng et al. (2008) for some specific cases with more than two sets and

regular performance measures. They prove that 1|prec, I, prmp|Fl(F
1, . . . , FK) and 1|prec|Fl(F

1, . . . , FK)

can be solved in pseudo-polynomial time when K is fixed. Finally, the case without precedence

1|I, prmp|Fl(F
1, . . . , FK) is polynomial with O((n∗ log n∗ + n log n)(

∏K
k=1 nk)

K), where n∗ is the number

of forbidden intervals, when F k ∈ {maxwA
j C

k
j ,maxLk

j }.

6.1.2 ϵ-constraint approach

Release times and/or preemption
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The assumption of preemption for all jobs in both sets has only been studied for the problem

1|prmp|ϵ(
∑
UA
j /maxFB

j ) by Agnetis et al. (2004), who show that it is solvable in O(nA log nA+nB log nB).

The case 1|prmp, rj |ϵ(maxFA
j /maxFB

j ) where release times for all sets of jobs are added to the preemp-

tion hypothesis is addressed by Leung et al. (2010),who show that is polynomially solvable in O(n2). This

complexity can be further reduced to O(nA log nA + nB lognB) when the criterion for J A is maxLA
j or∑

CA
j , and to O(n3(nAnB)2) when it is

∑
UA
j . Moreover, they show that 1|prmpA, rj |ϵ(

∑
CA

j /maxTB
j )

and 1|prmpA, rj |ϵ(maxLA
j /maxTB

j ) are solvable in O((nA)n
B+1 log nA) when ϵ = 0. Finally, they study

some problems on parallel machines: P2|prmp|ϵ(
∑
CA

j /maxF
B
j ) is solvable in O(nA log nA + nB log nB)

(this result is shown by Wan et al. (2010) too). However, the problem with release dates for all jobs is

NP-hard when m ≥ 2 and fixed. Additionally, Pm|prmp|ϵ(
∑
UA
j /maxFB

j ) is solvable in O(n2nAnB) for

m = 2, in O(n3m−5(nA)2(nB)2) time for m > 2 and fixed, and NP-hard when m is arbitrary. Furthermore,

they show that the assumption of release dates transform the problem into NP-hard even for m ≥ 2 and

fixed. Finally, the problem Pm|prmp|ϵ(maxFA
j /maxFB

j ) is solvable in O(log(αU − αL)n log(nm)), where

αU = maxj∈JA{FA
j (P )} and αL = minj∈JA{FA

j (0)}. When release times are considered, the complexity is

O(log(αU − αL)n
3).

Leung et al. (2010) show that 1|rBj |ϵ(maxFA
j /maxTB

j ) is NP-hard. Note that this result, al-

though developed independently from Ding and Sun (2010), is a consequence of the NP-hardness of the

1|rj |Fl(maxCA
j /maxCB

j ) shown by the latter authors. The problem is NP-hard too for the criteria
∑
CA

j

and
∑
UA
j . However, if preemption is allowed, all corresponding problems are polynomially solvable.

Yin et al. (2012b) consider two problems with release dates for all jobs. First, they prove that

1|rj |ϵ(
∑
CA

j /maxLB
j ) is strongly NP-hard. Therefore, 1|rj |ϵ(

∑
TA
j /maxLB

j ) is strongly NP-hard too, and

they present a mixed integer programming model, a B&B with some dominance rules and a marriage in

honey-bees optimization algorithm.

Cheng et al. (2007) study different problems with preemption, precedence constraints and forbidden

intervals. They show that the problems 1|prmp, I, precB |ϵ(
∑
FA
j /maxFB

j ) can be polynomially reduced

to 1|prmp, I|
∑
FA
j in O((nB)2 + n∗ log n∗), solving it in (O((nB)2 + nA log nA + n∗ log n∗)) when

∑
FA
j ∈

{
∑
CA

j ,
∑
UA
j }.

Finally, for more than two sets of jobs, Agnetis et al. (2007b) address 1|prmp|ϵ(F 1/maxF 2
j , . . . ,maxFK

j )

and 1|prmp, I|ϵ(F 1/maxF 2
j , . . . ,maxFK

j ) in order to discover some properties that were later applied to

their basic counterpart. Pm|prmp|ϵ(
∑
Fj/

∑
F 1
j , . . . ,

∑
FK
j ) is considered by Sadi et al. (2012), showing

that it is NP-hard. They present a linear programming model for the general case with un-related machines

in parallel.

Variable processing times

The references reviewed in this section assume that the processing times are not fixed in ad-

vance. They include deteriorating jobs, learning effect and controllable processing times. For the

1|deteriorating|ϵ(maxFA
j /maxFB

j ) problem, Yin et al. (2012a) give a polynomial time algorithm with run-

ning time O((nA)2+nB log nB). 1|deteriorating|ϵ(maxLA
j /maxCB

j ) and linear deterioration is shown to be

O(nA log nA) by Liu and Tang (2008); Liu et al. (2010a, 2011b).

There are no such general results when both functions are not under the max form. However,
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there are algorithms to optimally solve a number of problems in O(nA log nA + nB log nB), such as

1|deteriorating|ϵ(
∑
CA

j /maxFB
j ) with linear deterioration depending on the starting time (Liu and Tang,

2008; Liu et al., 2011a,b) and with linear deterioration depending on the position of the jobs (Liu et al.,

2010c); as well as for 1|deteriorating|ϵ(
∑
EA

j /maxFB
j ) and 1|deteriorating, dAj = d|ϵ(

∑
wA

j E
A
j /maxFB

j )

(Yin et al., 2012a).

The problem 1|deteriorating|ϵ(
∑
TA
j /

∑
UB
j ) with ϵ = 0 is tackled by Gawiejnowicz et al. (2010) and

Gawiejnowicz et al. (2011). In the first reference, the authors develop a B&B combined with simple heuristics

and local search, while in the second present an evolutionary algorithm.

Liu et al. (2010b) study the problem 1|deteriorating, s-batch|ϵ(
∑
CA

j /maxFB
j ), where the processing

times as well as the setup times of each job are linear functions of its starting time. They tackle two problems

depending on the type of the deteriorating function, proposing two algorithms to solve both problems in

O(nA log nA) time respectively.

Regarding the learning effect, 1|learning|ϵ(
∑
CA

j /maxFB
j ) is shown to be solvable in O(nA log nA +

nB log nB) if there is a linear deterioration depending on the position of the jobs (Liu et al., 2010c). For

the 1|learning|ϵ(
∑
Tj/

∑
Uj) problem with ϵ = 0, Wu et al. (2011a) present a B&B and develop heuristic

algorithms for larger instance sizes. The problem 1|learning|ϵ(
∑
wA

j C
A
j /

∑
UB
j ) with ϵ = 0 is addressed

by Cheng et al. (2011a) with a position based function. They show that the problem is NP-hard since

the corresponding basic case is already NP-hard (Ng et al., 2006), and propose a B&B and three SA-based

algorithms.

The combination of position-based- learning and deteriorating effects is addressed by Cheng et al. (2011b),

as they show that the 1|learningA, deterioratingB |ϵ(
∑
CA

j /maxLB
j ) problem is NP-hard. A B&B is pro-

posed, as well as several SA-based algorithms. Wu et al. (2011b) address the same problem with a different

position-based function. Again, a B&B and metaheuristics based on ACO are provided and compared.

Regarding controllable processing times, Wan et al. (2010) address several 1|ctrl|ϵ(fA/fB) problems:

• For the objective ϵ(CtrlAsum/maxLA
j ,maxFB

j ) with ϵ = (0, ϵB), the problems where β is

ctrlA, rAj , prmp; ctrl
A, rj , prmp; and ctrlA, prmpA are shown to be polynomial with running time

O(n(log n + k + 1)), with k the number of different costs of J A. However, the case where β is

ctrlA, rAj , prmp
A is strongly NP-hard.

• When β is ctrlA and ctrlA, prmpA, the problem with objective ϵ(CtrlAsum+
∑
CA

j /maxFB
j ) is polyno-

mial with running time O((nA)2nBn log n), and O((nA)2nBn) for ϵ(CtrlAsum +maxTA
j /maxFB

j ) and

ϵ(CtrlAsum+maxLA
j /maxFB

j ). However, when β is ctrlA, rAj , prmp
A all of them are strongly NP-hard.

Finally, for the parallel machines case, the problem P2|ctrlA, prmp|ϵ(
∑
FA
j +

∑
CA

j /maxFB
j ) is shown

to be polynomially solvable in O(nB log nB + (nA)3 + (nA)2nB) by Wan et al. (2010).

Batch and/or set-up

The p-batch case has been studied by Li and Yuan (2011) for different forms of fA and fB, including

both incompatible and compatible sets of jobs. Table 9 shows the complexities and the running times in the

pseudo-polynomial and polynomial cases on a single machine, where αU = maxj∈JA{fAj (P )}, P =
∑

j∈J pj

and αL = minj∈JA{fAj (0)}.
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ϵ(maxFA
j /maxFB

j ) ϵ(
∑
FA
j /maxFB

j ) ϵ(
∑
FA
j /

∑
FB
j ) ϵ(

∑
wA

j C
A
j /maxCB

j )

CS O(n log n log(αU − αL)) O(n2P ) O(n2ϵP ) NP

IS O(nnAnB log(αU − αL)) O(nnAnBP ) O(nnAnBϵP ) NP

ϵ(
∑
wA

j C
A
j /

∑
CB

j ) ϵ(maxLA
j /maxFB

j ) ϵ(
∑
UA
j /

∑
UB
j ) ϵ(

∑
UA
j /maxFB

j )

CS NP O(n log n logP ) O(n2nAnB) O(n2nA)

IS NP O(nnAnBP ) O(n2(nA)2(nB)2) O(n2(nA)2nB)

Table 9: Complexity of ϵ-constraint approach for extended MASPs on a single machine with p− batch

The s-batch case is addressed by Mor and Mosheiov (2011) when set-up times depend on the set and the

batches of jobs in J B must be processed continuously, i.e. the batches of jobs in J A are partitioned into two

sequences, scheduled prior to and after the batches of jobs in J B , respectively. They introduce an efficient

O(n
3
2 ) solution algorithm for the resulting problem 1|s-batch, pj = 1|ϵ(

∑
CA

j /
∑
CB

j ).

The problem 1|s-batch|ϵ(
∑
wB

j C
B
j /maxTA

j , setup,
∑
DA

j ) is analysed by Unal et al. (1997) with ϵ =

(0, 0, 0). The objective is to minimize the total weighted completion times of jobs in J B , integrating them

into the schedule of jobs in J A making any job in J A tardy and without incurring any setup times or

changing the relative sequence of the jobs in J A. They show that the problem is NP-hard, and that the

specific case where pj = 1 ∀j ∈ J is solvable in polynomial time. This case turns to be strongly NP-hard if

there are chain-like precedence constraints on the jobs in J A.

Others

Fan (2010) study the 1|V (1,∞), direct|ϵ(
∑
CA

j /
∑
CB

j ) problem for a particular case where each set of

jobs belongs to a customer situated at different locations. Jobs are processed and delivered to each customer

by a uncapacitated vehicle. In this case, Cj is the completion time plus transportation time. V (1,∞), direct

specifies that a single delivery vehicle can deliver any number of orders, and that only jobs going to the same

customer can be delivered together in the same shipment. The authors prove that the problem is NP-hard,

and develop a dynamic programming algorithm with complexity O(n8).

In the case of unrelated machines, the only contributions are Elvikis et al. (2009) and Elvikis et al. (2010a)

for the Qm|pj = p|ϵ(FA,maxCB
j ) problem, which is used to solve the Parero counterpart. The complexity

of this problem depends on the form of FA, and it is reduced from the complexity of the Pareto counterpart

indicated in the following subsection.

Regarding flowshops, there are very few contributions. Huynh-Tuong and Soukhal (2009a) show that

the F3|J A(m1 7→ m2),J B(m2 7→ m3)|ϵ(maxCB
j /maxCA

j ) problem is NP-hard. Huynh-Tuong and Soukhal

(2009b) provide a pseudo-polynomial algorithm with running time O(nBϵβ), with β =
∑

j∈JB (p2j + p3j).

Finally, Perez-Gonzalez et al. (2011) analyze the structure of solutions for the problem PFm|dj =

d|ϵ(maxCA
j /maxTB

j ) when ϵ = 0. As the problem is NP-hard by reduction from PF2||ϵ(maxCA
j /maxCB

j ),

Perez-Gonzalez and Framinan (2010b) develop some heuristics and a VNS method are proposed which are

tested for this problem.

23



6.1.3 Pareto approach

Preemption and/or release dates

Cheng et al. (2007) present a polynomial algorithm to obtain the set of nondominated solutions for

1|prmp, I, precB |#(fA/max fBj ) with fA ∈ {
∑
Cj ,

∑
Uj}, giving a bound of the running time. The algo-

rithm is valid for the cases without precedence constraints.

The problem 1|rj , prmp|#(
∑
CA

j ,
∑
wB

j U
B
j ) is shown to be NP-hard by Meiners and Torng (2007). How-

ever, they show that if pj = 1 is polynomially solvable.

Regarding other settings, only Peha (1995) models the problem Pm|rj , pj = 1|#(
∑
wA

j C
A
j ,

∑
wB

j U
B
j )

from a practical application about real-time systems and integrated services networks. They develop an

algorithm to solve this problem in O(n2) running time.

Batch and/or set-up

Tan et al. (2011) consider the 1|p-batch|#(maxCA
j ,maxCB

j ) problem where each job has a different

size. This problem is shown to be NP-hard by reduction to the case with one set of jobs. They give the

mathematical formulation of the problem, and provide an ACO to solve it. Moreover, an evaluation is carried

out in order to compare ACO to a GA adapted from the one set problem.

Yazdani Sabouni and Jolai (2010) provide one heuristic for each of the following prob-

lems: Problem 1|p-batch, IS, b ≤ n|#(maxCA
j ,maxLB

j ) and equal size of the jobs, problem

1|p-batch, IS|#(maxCA
j ,maxLB

j ), and problem 1|p-batch, CS, b ≤ n, pBj = p|#(maxCA
j ,maxLB

j ) and equal

size of the jobs. They also show that the heuristic for the first problem turns to be optimal if pBj = p. Finally,

Feng et al. (2011) study the problem 1|s-batch, IS|#(maxCA
j ,maxLB

j ), giving a polynomial time algorithm

with O(nA + (nB)4).

Others

The case of unrelated machines has been only studied in the context where pj = p when J A and J B have

only one job with nA and nB operations respectively, Qm|pj = p|#(maxFA
j ,maxFB

j ), addressed by Elvikis

and T’kindt (2012); Elvikis et al. (2010b). They develop an algorithm that enumerates all Pareto solutions

of this problem in O((nA)2nB + nAnB lognB) running time. The algorithms are further refined by Elvikis

et al. (2009, 2010a) for Qm|pj = p|#(FA,maxCB
j ), with FA any regular function. For this problem, they

develop an algorithm to enumerate the set of Pareto solutions by solving iteratively the ϵ-constraint version

of this problem with different ϵ values. The algorithm has O(n logm+nAψ) running time, with ψ depending

on the time needed to assign jobs in J A. When FA takes a regular sum form, the aforementioned generic

algorithm reduces its running time to O(n4). Moreover, for
∑
wA

j C
A
j ,

∑
TA
j and

∑
wA

j T
A
j with the due

dates and weights agreeable, i.e. dj ≤ dj′ ⇒ wj ≥ wj′ , the running time is O(n logm+ψ′), with ψ′ the time

to solve 1|pj = 1|
∑
FA
j . Additionally, for

∑
UA
j and

∑
wA

j U
A
j , the running time is O(n logm+ nA log nA).

When FA takes a regular max form, the nondominated solutions can be found in O(n3). Furthermore,

for maxCA
j , there are only two strictly non-dominated solutions, and finally, for maxLA

j they develop an

O(n logm+ nA log nA) running time algorithm.

Finally, Peha (1995) consider the problem Pm|pj = 1|#(
∑
wA

j C
A
j ,

∑
wB

j U
B
j ) where the complexity of

the algorithm is O(n log n).
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6.1.4 Other problems

Some references found in the literature consider MASPs with different objective functions and do not corre-

spond to the previous subsections. Some of them are applied problems.

Agnetis et al. (2007a) consider a constraint specific of MASPs, where a coordination protocol is defined

by an arbitrator. Each set of jobs belongs to an agent, who submits the jobs one by one to the arbitra-

tor on each step. Between those jobs provided for each agent, the arbitrator selects one according to a

priority rule, and schedules it at the end of the current schedule (initially empty). In this problem, the

objective is to determine the order to provide the jobs for each agent to the arbitrator, since the priority

rule is public information, whereas jobs characteristics are private information of the respective agent. Some

rules encountered in the literature include priority rules (such as the well-known SPT , WSPT , EDD);

Round-Robin rule (denoted as RR), where jobs are alternated from each set; or k-R, where at most k con-

secutive jobs of the same set are selected according to rule R. Considering the single machine problem,

Agnetis et al. (2007a) prove that 1|RR|Fl(
∑
CA

j ,
∑
CB

j ), 1|RR|#(
∑
CA

j ,
∑
CB

j ), 1|k-R|Fl(
∑
CA

j ,
∑
CB

j )

and 1|k-R|#(
∑
CA

j ,
∑
CB

j ) are solvable using the SPT rule. Although 1|WSPT |#(
∑
wA

j C
A
j ,

∑
wB

j C
B
j ) is

optimally solvable by WSPT rule, for the LCC case the weights must be the same. Finally, they also prove

that, for the problem 1|EDD|Fl(
∑
UA
j ,

∑
UB
j ), the coordination rule (for example EDD) turns out to be

ineffective.

In the previous sections we have mentioned some problems considering the goal programming approach

used to solve problems of different approaches. However, there are some references explicitly addressing a

goal programming objective. For example, 1|p − batch, IS|GP (maxLA
j ,maxFB

j ) is solved by Li and Yuan

(2011) by an algorithm developed previously to solve 1|p− batch, IS|ϵ(maxFA
j /maxFB

j ), and which can be

easily applied to this problem. The running time of this algorithm is O(nnAnB log(αU − αL)) where αU =

maxj∈JA{FA
j (P )} with P =

∑m
i=1

∑
j∈J pij , and αL = minj∈JA{FA

j (0)}. Moreover, Cheng et al. (2008)

shows that 1|prec|GP (maxF 1
j , . . . ,maxFK

j ) is solvable in O(n2), and the running time is O(n∗ log n∗ + n2),

depending on the number of forbidden intervals, n∗, if we consider the case with preemption. The same

problem is polynomially solvable in O(n∗ log n∗ + n log n) without the precedence constraint. Finally, Cheng

et al. (2006) shows that 1|prmp|GP (
∑
U1
j , . . . ,

∑
UK
j ) is equivalent to the basic case, and this problem with

forbidden intervals is reducible in linear time to the equivalent basic problem, with modified due dates.

The rest of the references are applied problems. First, Peha and Tobagi (1990) consider a MASP applied

to traffic in telecommunications (file transfer or interprocess communication) on a single packet-switched

network. They consider two sets of jobs formed by packets, J A and J B , and a lexicographical approach

where the objective functions are
∑

wA
j UA

j∑
j∈JA wA

j
and

maxwB
j LB

j∑
j∈JB wB

j
. They present an algorithm with O(n2) for the

weighted and the unweighted cases.

Arbib et al. (2004) consider two problems with two disjoint sets of jobs J A and J B: in the first problem

the objective is to maximize the minimum between
∑
FA
j and

∑
FB
j . The second one is an ϵ-constraint

approach where the objective is to maximize
∑
FA
j subject to

∑
FB
j ≥ ϵ. Problems are solved by pseudo-

polynomially dynamic programming algorithm.

Finally, some authors consider the problem where jobs (in J A) and maintenance tasks (in J B), are
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scheduled together. PMB is the frequency of the maintenance tasks, indicating that there is a tolerance

interval between the earliest and the latest time separating two consecutive occurrences of the maintenance

task j ∈ J B for each machine. Bouzid-Sitayeb et al. (2008) develop an ACO and it is compared to a GA for

the problem PFm|PMB |Lex(maxCA
j ,

∑
EB

j +
∑
LB
j ). Moreover, Khelifati and Bouzid-Sitayeb (2011b,a)

consider the same problem for the LCC approach, PFm|PMB |Fl(maxCA
j ,

∑
EB

j +
∑
LB
j ), suggesting a

multi-agent system and developing a simulation experiment.

6.2 No-disjoint (Interfering) set of jobs

6.2.1 Linear Convex Combination approach

Some rescheduling problems are studied by Yang (2007). They prove that 1|ctrlB|Fl(f, Ctrl
B
sum,

∑
∆A

j ) is

polynomially solvable in O((nA)2.5(nB)2.5) time when f is
∑
Cj . However, when f is

∑
Tj the problem is

NP-hard, and Yang (2007) solve it by a very large scale neighborhood search method, which is compared to

a B&B algorithm.

6.2.2 ϵ-constraint approach

A number of results have been produced for the 1|rj |ϵ(maxCj/f
A) problem for different functions fA:

• For maxDA
j , the problem is polynomially solvable in O((nB)2n) (Yuan and Mu, 2007). The on-line

version is solvable by algorithms with competitive ratio 3
2 (Mu and Guo, 2009a,b).

• For
∑
DA

j , the problem is solvable in O((n log n+(nB)2) log rmax) with rmax = maxj∈J rj (Yuan et al.,

2007). They show that the symmetric problem 1|rj |ϵ(
∑
DA

j /maxCj) can be solved in O(n log n +

(nB)2).

• For max∆A
j , it is strongly NP-hard (Yuan and Mu, 2007). However, Mu and Guo (2009b) show that

the on-line version is solvable by an algorithm with competitive ratio 3
2 .

• For
∑

∆A
j , it is strongly NP-hard (Yuan and Mu, 2007).

1|deteriorating|ϵ(
∑
Cj/f

A) is analysed by Zhao and Tang (2010) for different functions fA:

• For maxLA
j is solvable in O(n log n) when ϵ = 0.

• Two algorithms of identical complexity O(n+ nB log nB) are provided for maxDA
j , one in the case of

job-dependent processing rate, and other where there is a constant processing rate for all jobs.

• Two algorithms are provided for max∆A
j , one in the case of job-dependent processing rate, and other

where there is a constant processing rate for all jobs. The complexity of the first one is O(n+nB log nB);

being O(n5) that of the second one.

Regarding learning effect, 1|learning|ϵ(
∑
wjCj/maxCA

j ) is addressed by Li and Hsu (2011). Since the

corresponding basic problem is already NP-hard, they present some dominance properties and a lower bound

for the B&B algorithm. Then, three GA algorithms are proposed and compared.
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Finally, regarding batches, the rescheduling problem 1|s-batch, FRA|ϵ(maxCj/maxDA
j ) is studied by

Mocquillon et al. (2008). FRA means that the order of jobs in J A is given and it has to be kept. They

propose a polynomial time algorithm with running time O(n+ nB log2 n
B).

7 Conclusions

In this work, we have reviewed a high number of papers containing different contributions to the field of

multicriteria scheduling problems considering two or more sets of jobs. Up to 75 papers have been identified

as related to the problem in the sense presented in this work, including only those papers written in English.

Doing an analysis of the literature we concluded that the most suitable name for this kind of problems is

interfering jobs scheduling problem. However, the most used term is multiagent scheduling problem (MASP).

Problems have been classified in basic or extended problems, indicating the approach considered (Linear

Convex Combination approach; ϵ-constraint and Pareto approach). In the following, we will highlight the

main conclusions and try to set some possible future research avenues.

The first comment refers to the fact that there are much more works solely devoted to extended problems

(47) than to basic problems (20). Moreover, eight references consider both types of problems. This may be

seen as an indicator that the research has been so far conducted by specific application areas rather than

for a systematic approach, which is not surprising given the lack of an integrated framework that hopefully

our paper may help to build. While there are clear advantages for the application-oriented approach (such

as providing sound, real-life justification for research in the area) more research on the basic problems would

set the foundations for gaining further advances on extended problems. Then, extensions of the solution

procedures for the former can be implemented in the latter.

A second general comment is that most of the works refer to the one machine setting, which is clearly an

indication of the fact that we are on the early stages of the research. Moreover, most of the single machine

problems are NP-hard, so we can expect that a big number of problems are NP-hard. Therefore, in the next

years, the number of contributions addressing other settings would increase. Interestingly, the proportion of

works dealing with layouts different than the one-machine is higher for the extended problems than for the

basic problems. Again, this point out the direction that most research has been application-driven.

Regarding basic problems, the case of disjoint sets of jobs has been the one receiving more attention.

Some comments about the main results can be done:

• In the one-machine layout, the LCC approach has been found to be polynomially solvable for many

objectives, and only some specific cases of weighted objectives are shown not to be polynomial. Outside

this layout, only the permutation flowshop with two machines has been studied for a very simple case

(maxCA
j and maxCB

j ), which is already NP-hard.

• The ϵ-constraint approach has been found not to be polynomially solvable except for a very simple

case, even for one machine and two objectives. However, relatively few approximate algorithms have

been proposed for these problems. The cases with three or more objectives have been addressed only

for specific rescheduling-related objective functions.
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• With respect to the Pareto approach, less work has been done, bounding the number of non-dominated

solutions for most of the problems, mainly because the complexity of this approach.

Basic problem with non disjoint sets of jobs have been addressed only for the case where one of the

sets contains all jobs (called interfering jobs problems with global objective function). An interesting future

research line could be to analyse the complexity for the more general case of non-disjoint (interfering) sets of

jobs (i.e. when one of sets does not contain all jobs). The contributions with global objective function consider

the ϵ-constraint and LCC approaches, and they are due to two groups of authors, analysing complexities for

a great number of problems. There are hardly any algorithm proposed for these problems, so it is a open

issue for this approach. In contrast, such algorithms have been proposed for the Pareto approach.

Regarding the extended problems, the case considering only one constraint has been scarcely studied, and

a research avenue could be initiated in this area. Most of the works have been done for the case of disjoint sets

of jobs under the LCC approach. In this type of problems, some general results have been presented regarding

the learning effect. In contrast, those obtained for controllable processing times are very specific, focusing

on the determination of the polynomially solvable cases. Regarding the Pareto approach, it is worth to note

that many problems have been found not to be polynomially solvable, and several approximate algorithms

(mostly based on metaheuristics) have been presented. Extended problems with non-disjoint sets of jobs

have been scarcely studied, all of them for one machine.

Regarding solution procedures, there is an extensive contribution on studying the complexity, and a

considerable number of one machine problems providing exact procedures have been found. It would be

interesting to extend these results to other, more complex, machine layouts, even if it is likely that the

complexity would increase. In contrast, there are relatively few approximate procedures available for the rest

of the problems addressed with higher complexity (although it can be observed a concentration of similar

methods for similar problems, for example some papers considering deteriorating and learning constraints).

The relative scarcity of solution procedures is again another sign of a research field in its earliest stages, and

it makes difficult to apply the research results. Another consequence of this fact is that there are only a

handful of test beds to generate problem instances in which the solution procedures can be tested. Most of

them consider the same size of the sets of jobs, avoiding extreme cases. Therefore, it may be interesting to

generate a common and exhaustive test bed, considering different cases for the sizes of the jobs, in order to

facilitate the comparison among solution procedures.

Finally, it is also worth mentioning that, in the case of more than two sets of jobs, most of the work is

preliminary and for some specific cases, pointing at other future area of research.
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