1,528 research outputs found

    Analysis, design optimisation and experimental performance of synchronous reluctance and permanent magnet assisted synchronous reluctance machines

    Get PDF
    The research studies, in detail, the synchronous reluctance machine (SynRM) and permanent magnet assisted synchronous reluctance machine (PMSynRM) to improve the machine performances. In this study, the SynRM analytical models are revisited, and functional characteristics are mathematically developed to improve the machine performance. The performance parameters such as torque density, power factor, and efficiency are investigated along with torque ripples. SynRM is known for its high torque density in a compact size. Its improvement is analytically studied further by optimising rotor properties. The power factor of these machines is rather low compared with its equivalent AC machines. Although the machine’s power factor can be improved using control techniques, it is still not high enough. The machine has gone through significant development over the years since J.K Kostko published the first paper on reluctance machines back in 1923. The researchers have tested various types of anisotropies, such as axially laminated and transversally laminated. The machine torque and power factor depend on its saliency ratio. Although the axially laminated structure offers high saliency ratio due to the naturally distributed flux barrier structure, it has mechanical constraints. The axial rotor segments are fixed together by specially designed bolts that are conductive material in nature. This mechanical arrangement increases quadrature axis inductance, consequently reduces the saliency ratio of the machine. On the other hand, the transversally laminated structure is more mechanically feasible and offers comparatively high performance. One of the primary focus of this study is to improve the power factor. It has been comprehensively investigated. The SynRM machine is also known for high torque ripples. The non-linear structure and its reluctance path along the air-gap make the machine highly susceptible to torque pulsation. The cross induction due to the D and Q axis along the air-gap increases the machine’s ripples. Besides, poor stator winding (both sinusoidal and step excitation) also increases the machine torque ripples. The existing ripple reduction practices are revisited in this study to further understand the torque ripples of this machine. The rotor of SynRM is redesigned and optimised to reduce the ripples effect. The causes of ripples are also analytically studied in detail, and mathematical models are developed and presented for understanding the phenomena. Two different ways of analysing the ripple effects are considered, and the pros and cons of both methods are discussed. The SynRM is simulated using an advanced finite element analysis (FEM) software to verify the analytical models as well as optimise the machine performance. Firstly, primitive rotor structures are developed so that they can be automatically varied during parameterisation and optimisation. Four flux barrier shapes are analysed to determine the optimum shape for high performance by investigating flux’s natural path. From the results, a multi-barrier arrangement is studied with an advanced algorithm for three and four-layer designs, and an optimum rotor is proposed based on the simulations. Using a single-objective and multi-objective optimisation techniques, the SynRM is optimised from the simulated design. An advanced topology is developed for automated optimisation that can offer flexibility in varying optimisation variables as part of this research. The optimised design’s performance is analysed in detail and compared with analytical models. The torque ripples are discussed in detail, and an advanced torque ripple minimisation topology is developed. Then the design is optimised for two types of barrier shapes. A number of designs are prototyped for experimental verification. Finally, the current trend in rare-earth magnets is investigated with its cost per volume ratio. The rare-earth neodymium magnets are focused on this study for improved performance with optimum volume. The analytical model of PM assisted design is studied in detail, and its performance parameters are compared with SynRM. A PMSynRM with a linear-barrier is simulated for a detailed analysis of the machine that discusses different PM volumes and the impact on machine performance due to the volume of PM and location. The performance parameters, discussed in the analytical model, are compared with the simulation results. The improvement in power factor and torque density is investigated using various designs. The optimisation is performed in two ways. The first one is adding PMs to the optimised SynRM. Single-objective and multi-objective optimisation are performed using an advanced optimisation algorithm. Secondly, the topology of SynRM is modified for PMSynRM in such a way the entire machine can be automated during optimisation by adding the PM’s variables to the existing one. The performances of the two optimised designs have been compared. PMSynRM prototypes are developed to verify the simulation results. The eight SynRM designs are prototyped to report the practical results. Six of them are to verify various performance parameters of SynRM and two of them to test the ripples effect. Moreover, two PMSynRM prototypes are fabricated to verify the simulation results. The saliency of each SynRM is measured and compared with simulated results. Then, each design is tested experimentally in all possible scenarios and compared. Extensive testing is performed on all prototypes under various operating conditions and reported

    Electrical and magnetic faults diagnosis in permanent magnet synchronous motors

    Get PDF
    Permanent magnet synchronous motors (PMSMs) are an alternative in critical applications where high-speed operation, compactness and high efficiency are required. In these applications it is highly desired to dispose of an on-line, reliable and cost-effective fault diagnosis method. Fault prediction and diagnosis allows increasing electric machines performance and raising their lifespan, thus reducing maintenance costs, while ensuring optimum reliability, safe operation and timely maintenance. Consequently this thesis is dedicated to the diagnosis of magnetic and electrical faults in PMSMs. As a first step, the behavior of a healthy machine is studied, and with this aim a new 2D finite element method (FEM) modelbased system for analyzing surface-mounted PSMSs with skewed rotor magnets is proposed. It is based on generating a geometric equivalent non-skewed permanent magnet distribution which accounts for the skewed distribution of the practical rotor, thus avoiding 3D geometries and greatly reducing the computational burden of the problem. To diagnose demagnetization faults, this thesis proposes an on-line methodology based on monitoring the zero-sequence voltage component (ZSVC). Attributes of the proposed method include simplicity, very low computational burden and high sensibility when compared with the well known stator currents analysis method. A simple expression of the ZSVC is deduced, which can be used as a fault indicator parameter. Furthermore, mechanical effects arising from demagnetization faults are studied. These effects are analyzed by means of FEM simulations and experimental tests based on direct measurements of the shaft trajectory through self-mixing interferometry. For that purpose two perpendicular laser diodes are used to measure displacements in both X and Y axes. Laser measurements proved that demagnetization faults may induce a quantifiable deviation of the rotor trajectory. In the case of electrical faults, this thesis studies the effects of resistive unbalance and stator winding inter-turn short-circuits in PMSMs and compares two methods for detecting and discriminating both faults. These methods are based on monitoring and analyzing the third harmonic component of the stator currents and the first harmonic of the ZSVC. Finally, the Vold-Kalman filtering order tracking algorithm is introduced and applied to extract selected harmonics related to magnetic and electrical faults when the machine operates under variable speed and different load levels. Furthermore, different fault indicators are proposed and their behavior is validated by means of experimental data. Both simulation and experimental results show the potential of the proposed methods to provide helpful and reliable data to carry out a simultaneous diagnosis of resistive unbalance and stator winding inter-turn faults

    Numerical Modelling and Analysis of a New Rotor Cooling Technique for Axial Flux Permanent Magnet Machines

    Get PDF
    An efficient thermal management is essential for an electrical machine because it determines its durability and performance; particularly the continuous power output. Without good thermal management, the operational temperature will exceed the machine’s temperature threshold limit, which may possibly lead to catastrophic failure. YASA Motors Ltd. specialise in the design and development of high efficiency electric motors specifically aimed at the automotive industry. However, the current Yokeless and Segmented Armature (YASA) machine has limited performance due to the sealed or confined design that limits the heat transfer on the rotors and the permanent magnets. Therefore, this thesis presents a new cooling technique for the YASA machine but which can also be adapted to any Axial Flux Permanent Magnet (AFPM) design in order to maximise its continuous performance for automotive and motorsports applications. The work begins with a detailed review on the issues of thermal challenges for electrical machines (i.e. efficiency, reliability and performance), the derivation of an AFPM machine and then the heat sources from which the electric machine losses are produced. Utilising the Computational Fluid Dynamics (CFD), the losses of a 50kW sealed YASA machine has been studied in order to understand the thermal characteristics and thermal distribution. The novel secondary cooling strategy of the rotor has been implemented by attaching several fan designs on the rotor including other design iteration to assess its cooling performance. The idea is to allow the fan to drive the coolant (air) in the machine and become a heat exchanger at the same time. At this stage, only a single side of the rotor has studied under secondary cooling design, while the other side remained sealed. In order to aid the design assessment, a novel dimensionless number named Cooling Performance Index (CPI) has been proposed. The CPI number helps in comparing the cooling performance, apart from the comparison in the flow and thermal characteristics of each design change. The dual rotor cooling technique for the YASA machine is subsequently presented, where the backward curve fan has been selected as the best option based on its higher CPI number. The air outlet of the non-drive-end rotor that has an attached fan, was channelled to the drive-end to cool the other side of the rotor. The CFD analysis prove that the dual rotor cooling technique is able to maintain the rotors and magnets temperature with an increase up to 300% (150kW) continuous power compared to the 50kW on the existing sealed machine. The work presented here is not limited to the YASA machine case; rather it can be extrapolated to any other disc-type AFPM machine

    Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

    Get PDF
    This Ph.D. thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution, time and space harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator’s performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine’s heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement. Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth’s algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization. Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. It is shown that a better fit is available when utilizing modern design functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations. Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain and the meteorological data regarding the location of the project was also considered. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module’s temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system. A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The variation of un-replicated factorials using a Window-Zoom-in approach is examined to determine the parameter settings and to check the suitability of the design. An experimental investigation was carried out to verify the 3-D shading analysis and NOCT technique for an open-circuit and grid-connected PV module.Esta tesis muestra un novedoso estudio referente al diseño optimizado de forma analítica y numérica de un generador síncrono de imanes permanentes (PMSGs) para una aplicación de microgeneración eólica en un entorno urbano, donde se ha escogido una topología de rotor exterior con un estator de ranuras cerradas. Las ventajas electromagnéticas de los arrollamientos fraccionarios de doble capa, con bobinas concentradas se discuten ampliamente en la parte inicial del diseño del mismo, así como las características de distribución de la inducción, los armónicos espaciales y temporales, la fem generada, el par de cogging así como las características de salida (par, potencia generada, la eficiencia y la distribución y cálculo de las pérdidas en el hierro que son analizadas detalladamente) Posteriormente se evalúan diferentes configuraciones de estructuras de imanes con magnetización Halbach con el fin de maximizar las prestaciones del generador. Adicionalmente se analiza la distribución de temperaturas y su mejora mediante el uso de un novedoso diseño mediante el uso de ventilación natural para velocidades próximas a la nominal y superiores con el fin de disminuir la temperatura de la máquina, principalmente en el diente estatórico. El cálculo analítico se completa mediante simulaciones 2D y 3D utilizando el método de los elementos finitos así como mediante diversas experiencias que validan los modelos y aproximaciones realizadas. Posteriormente se desarrollan algoritmos de optimización aplicados a variables tales como el tipo de magnetización, la potencia de salida, la eficiencia así como la minimización de las pérdidas y el coste de los materiales empleados. En la tesis se proponen un nuevo diseño optimizado basado en una metodología multinivel usando la metodología de superficie de respuesta (D-RSM) y un algoritmo de Booth (maximizando la potencia de salida y minimizando el coste de material empleado) Adicionalmente se investiga la maximización de la eficiencia del generador trabajando conjuntamente con el circuito de salida acoplado. El algoritmo utilizado queda validado mediante la experimentación desarrollada conjuntamente con el mismo. Adicionalmente, se han realizado diversos estudios vibroacústicos trabajando a velocidad variable usando dos técnicas diferentes para reducir el ruido generado y las vibraciones producidas. Posteriormente se considera un sistema fotovoltaico orientado a aplicaciones urbanas que hemos llamado “Smart tree for small power generation” y que consiste en un poste con un generador eólico en la parte superior juntamente con uno o más paneles fotovoltaicos. Este sistema se ha modelado usando metodologías en 3D. Se ha considerado el efecto de las sombras proyectadas por los diversos elementos usando datos meteorológicos y de irradiación solar de la propia ciudad de Barcelona. Usando una metodología basada en un análisis 3D y Pareto se consigue identificar completamente el sistema fotovoltaico; para este sistema se considera la temperatura de la célula fotovoltaica y la carga conectada con el fin de generar un algoritmo de control que permita obtener el punto de trabajo de máxima potencia (MPPT) comprobándose posteriormente el funcionamiento del algoritmo para diversas situaciones de funcionamiento del sistemaLa tesis desenvolupa un nou estudi per al disseny optimitzat, analític i numèric, d’un generador síncron d’imants permanents (PMSGs) per a una aplicació de microgeneració eòlica en aplicacions urbanes, on s’ha escollit una configuració amb rotor exterior i estator amb ranures tancades. Es discuteixen de forma extensa els avantatges electromagnètics dels bobinats fraccionaris de doble capa així com les característiques resultats vers la distribució de les induccions, els harmònics espacials i temporals, la fem generada, el parell de cogging i les característiques de sortida (parell, potencia, eficiència i pèrdues) Tanmateix s’afegeix l’estudi de diferents estructures Halbach per als imants permanents a fi i efecte de maximitzar les característiques del generador. Tot seguit s’analitza la distribució de temperatures i la seva reducció mitjançant la utilització d’una nova metodologia basada en la ventilació natural. Els càlculs analítics es complementen mitjançant anàlisi en 2 i 3 dimensions utilitzant elements finits i diverses experiències que validen els models i aproximacions emprades. Una vegada fixada la geometria inicial es desenvolupen algoritmes d’optimització per a diverses variables (tipus de magnetització dels imants, potencia de sortida, eficiència, minimització de pèrdues i cost dels materials) La tesi planteja una optimització multinivell emprant la metodologia de superfície de resposta i un algoritme de Booth; a més, es realitza la optimització considerant el circuit de sortida. L’algoritme resta validat per la experimentació realitzada. Finalment, s’han considerat diversos estudis vibroacústic treballant a velocitat variable, emprant dues tècniques diferents per a reduir el soroll i les vibracions desenvolupades. Per a finalitzar l’estudi es considera un sistema format per una turbina eòlica instal·lada sobre un pal de llum autònom, els panells fotovoltaics corresponents i el sistema de càrrega. Per a modelitzar l’efecte de l’ombrejat s’ha emprat un model en 3D i les dades del temps i d’irradiació solar de la ciutat de Barcelona. El model s’ha identificat completament i s’ha generat un algoritme de control que considera, a més, l’efecte de la temperatura de la cèl·lula fotovoltaica y la càrrega connectada al sistema per tal d’aconseguir el seguiment del punt de màxima potenciaPostprint (published version

    Space Power Free-Piston Stirling Engine Scaling Study

    Get PDF
    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power module efficiency is seen to increase slightly, but at the expense of increased specific mass. An empirical equation relating power module thermal efficiency as a function of power module specific mass, power output, and temperature ratio is developed. Alternative configurations to the single cylinder, direct coupled linear alternator approach are also evaluated, but are shown to have technical drawbacks that lessen their attractiveness. The dynamic balance assembly mass (moving mass and structure) represents 20 to 30 percent of the total single cylinder power module mass. Joining two modules in a balanced opposed configuration eliminates the need for the balancer, and a hot end junction can be made without significant addition of structural mass. Recommendations are made for evaluation of advanced heat pipe concepts, tests of radial flow heat exchangers, and evaluation of high temperature alternator materials

    Hybrid modeling techniques embracing permanent-magnet-biased salient machines

    Get PDF

    Advanced propulsion system for hybrid vehicles

    Get PDF
    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery

    Multi-physics Model Of Key Components In High Efficiency Vehicle Drive

    Get PDF
    Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) are crucial technologies for the automotive industry to meet society’s demands for cleaner, more energy efficient transportation. Meeting the need to provide power which sustains HEVs and EVs is an immediate area of concern that research and development within the automotive community must address. Electric batteries and electrical motors are the key components in HEV and EV power generation and transmission, and their performance plays very important role in the overall performance of the modern high efficiency vehicles. Therefore, in this dissertation, we are motivated to study the electric batteries, interior permanent motor (IPM), in the context of modern hybrid electric/electric drive systems, from both multi-physics and system level perspectives. Electrical circuit theory, electromagnetic Finite Element Analysis (FEA), and Computational Fluid Dynamic (CFD) finite volume method will be used primarily in this work. The work has total of five parts, and they are introduced in the following. Firstly, Battery thermal management design is critical in HEV and EV development. Accurate temperature distribution of the battery cells during vehicle operation is required for achieving optimized design. We propose a novel electrical-thermal battery modeling technique that couples a temperature dependent battery circuit model and a physics-based CFD model to meet this need. The electrical circuit model serves as a heat generation mechanism for the CFD model, and the CFD model provides the temperature distribution of the battery cells, which can also impact the heat generation of the electrical battery model. In this part of work, simulation data has been derived from the model respective to electrical performance of the battery as well iv as the temperature distribution simultaneously in consideration of the physical dimensions, material properties, and cooling conditions. The proposed model is validated against a battery model that couples the same electrical model with a known equivalent thermal model. Secondly, we propose an accurate system level Foster network thermal model. The parameters of the model are extracted from step responses of the CFD battery thermal model. The Foster network model and the CFD model give the same results. The Foster network can couple with battery circuit model to form an electric-thermal battery model for system simulation. Thirdly, IPM electric machines are important in high performance drive systems. During normal operations, irreversible demagnetization can occur due to temperature rise and various loading conditions. We investigate the performance of an IPM using 3d time stepping electromagnetic FEA considering magnet’s temperature dependency. Torque, flux linkage, induced voltage, inductance and saliency of the IPM will be studied in details. Finally, we use CFD to predict the non-uniform temperature distribution of the IPM machine and the impact of this distribution on motor performance. Fourthly, we will switch gear to investigate the IPM motor on the system level. A reduced order IPM model is proposed to consider the effect of demagnetization of permanent magnet due to temperature effect. The proposed model is validated by comparing its results to the FEA results. Finally, a HEV is a vehicle that has both conventional mechanical (i.e. internal combustion engine) and electrical propulsion systems. The electrical powertrain is used to work with the conventional powertrain to achieve higher fuel economy and lower emissions. v Computer based modeling and simulation techniques are therefore essential to help reduce the design cost and optimize system performance. Due to the complexity of hybrid vehicles, multidomain modeling ability is preferred for both component modeling and system simulation. We present a HEV library developed using VHDL-AMS
    • …
    corecore