2,332 research outputs found

    Knowledge-Aided STAP Using Low Rank and Geometry Properties

    Full text link
    This paper presents knowledge-aided space-time adaptive processing (KA-STAP) algorithms that exploit the low-rank dominant clutter and the array geometry properties (LRGP) for airborne radar applications. The core idea is to exploit the fact that the clutter subspace is only determined by the space-time steering vectors, {red}{where the Gram-Schmidt orthogonalization approach is employed to compute the clutter subspace. Specifically, for a side-looking uniformly spaced linear array, the} algorithm firstly selects a group of linearly independent space-time steering vectors using LRGP that can represent the clutter subspace. By performing the Gram-Schmidt orthogonalization procedure, the orthogonal bases of the clutter subspace are obtained, followed by two approaches to compute the STAP filter weights. To overcome the performance degradation caused by the non-ideal effects, a KA-STAP algorithm that combines the covariance matrix taper (CMT) is proposed. For practical applications, a reduced-dimension version of the proposed KA-STAP algorithm is also developed. The simulation results illustrate the effectiveness of our proposed algorithms, and show that the proposed algorithms converge rapidly and provide a SINR improvement over existing methods when using a very small number of snapshots.Comment: 16 figures, 12 pages. IEEE Transactions on Aerospace and Electronic Systems, 201

    Two-dimensional multivariate parametric models for radar applications-Part I: Maximum-entropy extensions for Toeplitz-block matrices

    Get PDF
    Copyright © 2008 IEEEIn a series of two papers, a new class of parametric models for two-dimensional multivariate (matrix-valued, space-time) adaptive processing is introduced. This class is based on the maximum-entropy extension and/or completion of partially specified matrix-valued Hermitian covariance matrices in both the space and time dimensions. This first paper considers the more restricted class of Toeplitz Hermitian covariance matrices that model stationary clutter. If the clutter is stationary only in time then we deal with a Toeplitz-block matrix, whereas clutter that is stationary in time and space is described by a Toeplitz-block-Toeplitz matrix. We first derive exact expressions for this new class of 2-D models that act as approximations for the unknown true covariance matrix. Second, we propose suboptimal (but computationally simpler) relaxed 2-D time-varying autoregressive models (ldquorelaxationsrdquo) that directly use the non-Toeplitz Hermitian sample covariance matrix. The high efficiency of these parametric models is illustrated by simulation results using true ground-clutter covariance matrices provided by the DARPA KASSPER Dataset 1, which is a trusted phenomenological airborne radar model, and a complementary AFRL dataset.Yuri I. Abramovich, Ben A. Johnson, and Nicholas K. Spence

    Forward Looking Radar: Interference Modelling, Characterization, and Suppression

    Get PDF
    This research characterizes forward looking radar performance while noting differences with traditionally examined sidelooking radar. The target detection problem for forward looking radar is extremely difficult due to the severe, heterogeneous and range dependent ground clutter. Consequently, forward looking radar detection represents an important but overlooked topic because of the increased difficulty compared to sidelooking radar. This void must be filled since most fighter aircraft use forward looking radar, making this topic intensely interesting to the Air Force. After characterizing forward looking radar performance, basic radar concepts along with advanced adaptive interference suppression techniques improve the output Signal-to-Interference-plus-Noise Ratio (SINR) and target detection rates using fixed false alarm for linear arrays. However, target detection probabilities and output SINR do not improve enough. Although the methods considered are adaptive in azimuth and Doppler, effective range ambiguous clutter mitigation requires elevation adaptivity, a feature not offered by linear arrays. The research continues by examining planar arrays. Elevation adaptivity combined with azimuth and Doppler adaptivity allows suppressing range ambiguous clutter and significantly increasing output SINR, detection probability, and maximum detection range. Specifically, three-dimensional Space-Time Adaptive Processing (3D STAP) techniques with adaptivity in elevation, azimuth, and Doppler achieve detection probability improvements of over 10 dB in required input SINR compared to two-dimensional (2D) STAP processing. Additionally, 3D STAP improves detection probability versus input SINR curves over 30 dB when compared to 2D conventional processing techniques. As a result, forward looking radars using 3D STAP have the capacity to detect targets that conventi

    Parametric Estimation Techniques for Space-Time Adaptive Processing with Applications for Airborne Bistatic Radar Systems

    Get PDF
    This thesis considers parametric scenario based methods for Space-Time Adaptive Processing (STAP) in airborne bistatic radar systems. STAP is a multidimensional filtering technique used to mitigate the influence of interference and noise in a target detector. To be able to perform the mitigation, an accurate estimate is required of the associated space-time covariance matrix to the interference and noise distribution. In an airborne bistatic radar system geometry-induced effects due to the bistatic configuration introduces variations in the angle-Doppler domain over the range dimension. As a consequence of this, clutter observations of such systems may not follow the same distribution over the range dimension. This phenomena may affect the estimator of the space-time covariance matrix.\ua0In this thesis, we study a parametric scenario based approach to alleviate the geometry-induced effects. Thus, the considered framework is based on so called radar scenarios. A radar scenario is a description of the current state of the bistatic configuration, and is thus dependent on a few parameters connected to the two radar platforms which comprise the configuration. The scenario description can via a parametric model be used to represent the geometry-induced effects present in the system. In the first topic of this thesis, an investigation is conducted of the effects on scenario parameter residuals on the performance of a detector. Moreover, two methods are presented which estimate unknown scenario parameters from secondary observations. In the first estimation method, a maximum likelihood estimate is calculated for the scenario parameters using the most recent set of secondary data. In the second estimation method, a density is formed by combination of the likelihood associated with the most recent set of radar observations with a prior density obtained by propagation of previously considered scenario parameter estimates through a dynamical model of the scenario platforms motion over time. From the formed density a maximum a posteriori estimate of the scenario parameters can be derived. Thus, in the second estimation method, the radar scenario is tracked over time. Consequently, in the first topic of the thesis, the sensitivity between scenario parameters and detector performance is evaluated in various aspects, and two methods are investigated to estimate unknown scenario parameters from different radar scenarios.\ua0In the second part of the thesis, the scenario description is used to estimate a space-time covariance matrix and to derive a generalized likelihood ratio test for the airborne bistatic radar configuration. Consequently, for the covariance matrix estimate, the scenario description is used to derive a transformation matrix framework which aims to limit the non-stationary behavior of the secondary data observed by a bistatic radar system. Using the scenario based transformation framework, a set of non-stationary secondary data can be transformed to become more stationarily distributed after the transformation. A transformed set of secondary data can then be used in a conventional estimator to estimate the space-time covariance matrix. Furthermore, as the scenario description provides a representation of the geometry-induced effects in a bistatic configuration, the scenario description can be used to incorporate these effects into the design of a detector. Thus, a generalized likelihood ratio test is derived for an airborne bistatic radar configuration. Moreover, the presented detector is adaptive towards the strength of both the clutter interference and the thermal noise

    On Spectral Estimation and Bistatic Clutter Suppression in Radar Systems

    Get PDF
    Target detection serve as one of the primary objectives in a radar system. From observations, contaminated by receiver thermal noise and interference, the processor needs to determine between target absence or target presence in the current measurements. To enable target detection, the observations are filtered by a series of signal processing algorithms. The algorithms aim to extract information used in subsequent calculations from the observations. In this thesis and the appended papers, we investigate two techniques used for radar signal processing; spectral estimation and space-time adaptive processing.\ua0In this thesis, spectral estimation is considered for signals that can be well represented by a parametric model. The considered problem aims to estimate frequency components and their corresponding amplitudes and damping factors from noisy measurements. In a radar system, the problem of gridless angle-Doppler-range estimation can be formulated in this way. The main contribution of our work includes an investigation of the connection between constraints on rank and matrix structure with the accuracy of the estimates.Space-time adaptive processing is a technique used to mitigate the influence of interference and receiver thermal noise in airborne radar systems. To obtain a proper mitigation, an accurate estimate of the space-time covariance matrix in the currently investigated cell under test is required. Such an estimate is based on secondary data from adjacent range bins to the cell under test. In this work, we consider airborne bistatic radar systems. Such systems obtains non-stationary secondary data due to geometry-induced range variations in the angle-Doppler domain. Thus, the secondary data will not follow the same distribution as the observed snapshot in the cell under test. In this work, we present a method which estimates the space-time covariance matrix based upon a parametric model of the current radar scenario. The parameters defining the scenario are derived as a maximum likelihood estimate using the available secondary data. If used in a detector, this approach approximately corresponds to a generalized likelihood ratio test, as unknowns are replaced with their maximum likelihood estimates based on secondary data

    The Rank of the Covariance Matrix of an Evanescent Field

    Full text link
    Evanescent random fields arise as a component of the 2-D Wold decomposition of homogenous random fields. Besides their theoretical importance, evanescent random fields have a number of practical applications, such as in modeling the observed signal in the space time adaptive processing (STAP) of airborne radar data. In this paper we derive an expression for the rank of the low-rank covariance matrix of a finite dimension sample from an evanescent random field. It is shown that the rank of this covariance matrix is completely determined by the evanescent field spectral support parameters, alone. Thus, the problem of estimating the rank lends itself to a solution that avoids the need to estimate the rank from the sample covariance matrix. We show that this result can be immediately applied to considerably simplify the estimation of the rank of the interference covariance matrix in the STAP problem

    Nonlinear Suppression of Range Ambiguity in Pulse Doppler Radar

    Get PDF
    Coherent pulse train processing is most commonly used in airborne pulse Doppler radar, achieving adequate transmitter/receiver isolation and excellent resolution properties while inherently inducing ambiguities in Doppler and range. First introduced by Palermo in 1962 using two conjugate LFM pulses, the primary nonlinear suppression objective involves reducing range ambiguity, given the waveform is nominally unambiguous in Doppler, by using interpulse and intrapulse coding (pulse compression) to discriminate received ambiguous pulse responses. By introducing a nonlinear operation on compressed (undesired) pulse responses within individual channels, ambiguous energy levels are reduced in channel outputs. This research expands the NLS concept using discrete coding and processing. A general theory is developed showing how NLS accomplishes ambiguity surface volume removal without requiring orthogonal coding. Useful NLS code sets are generated using combinatorial, simulated annealing optimization techniques - a general algorithm is developed to extended family size, code length, and number of phases (polyphase coding). An adaptive reserved code thresholding scheme is introduced to efficiently and effectively track the matched filter response of a target field over a wide dynamic range, such as normally experienced in airborne radar systems. An evaluation model for characterizing NLS clutter suppression performance is developed - NLS performance is characterized using measured clutter data with analysis indicating the proposed technique performs relatively well even when large clutter cells exist

    Knowledge-aided STAP in heterogeneous clutter using a hierarchical bayesian algorithm

    Get PDF
    This paper addresses the problem of estimating the covariance matrix of a primary vector from heterogeneous samples and some prior knowledge, under the framework of knowledge-aided space-time adaptive processing (KA-STAP). More precisely, a Gaussian scenario is considered where the covariance matrix of the secondary data may differ from the one of interest. Additionally, some knowledge on the primary data is supposed to be available and summarized into a prior matrix. Two KA-estimation schemes are presented in a Bayesian framework whereby the minimum mean square error (MMSE) estimates are derived. The first scheme is an extension of a previous work and takes into account the non-homogeneity via an original relation. {In search of simplicity and to reduce the computational load, a second estimation scheme, less complex, is proposed and omits the fact that the environment may be heterogeneous.} Along the estimation process, not only the covariance matrix is estimated but also some parameters representing the degree of \emph{a priori} and/or the degree of heterogeneity. Performance of the two approaches are then compared using STAP synthetic data. STAP filter shapes are analyzed and also compared with a colored loading technique
    • …
    corecore