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Abstract
This thesis considers parametric scenario based methods for Space-Time Adap-
tive Processing (STAP) in airborne bistatic radar systems. STAP is a multi-
dimensional filtering technique used to mitigate the influence of interference
and noise in a target detector. To be able to perform the mitigation, an ac-
curate estimate is required of the associated space-time covariance matrix to
the interference and noise distribution. In an airborne bistatic radar system
geometry-induced e�ects due to the bistatic configuration introduces varia-
tions in the angle-Doppler domain over the range dimension. As a consequence
of this, clutter observations of such systems may not follow the same distri-
bution over the range dimension. This phenomena may a�ect the estimator
of the space-time covariance matrix.

In this thesis, we study a parametric scenario based approach to alleviate
the geometry-induced e�ects. Thus, the considered framework is based on
so called radar scenarios. A radar scenario is a description of the current
state of the bistatic configuration, and is thus dependent on a few parame-
ters connected to the two radar platforms which comprise the configuration.
The scenario description can via a parametric model be used to represent
the geometry-induced e�ects present in the system. In the first topic of this
thesis, an investigation is conducted of the e�ects on scenario parameter resid-
uals on the performance of a detector. Moreover, two methods are presented
which estimate unknown scenario parameters from secondary observations.
In the first estimation method, a maximum likelihood estimate is calculated
for the scenario parameters using the most recent set of secondary data. In
the second estimation method, a density is formed by combination of the like-
lihood associated with the most recent set of radar observations with a prior
density obtained by propagation of previously considered scenario parameter
estimates through a dynamical model of the scenario platforms motion over
time. From the formed density a maximum a posteriori estimate of the sce-
nario parameters can be derived. Thus, in the second estimation method, the
radar scenario is tracked over time. Consequently, in the first topic of the
thesis, the sensitivity between scenario parameters and detector performance
is evaluated in various aspects, and two methods are investigated to estimate
unknown scenario parameters from di�erent radar scenarios.

In the second part of the thesis, the scenario description is used to esti-
mate a space-time covariance matrix and to derive a generalized likelihood
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ratio test for the airborne bistatic radar configuration. Consequently, for the
covariance matrix estimate, the scenario description is used to derive a trans-
formation matrix framework which aims to limit the non-stationary behavior
of the secondary data observed by a bistatic radar system. Using the scenario
based transformation framework, a set of non-stationary secondary data can
be transformed to become more stationarily distributed after the transforma-
tion. A transformed set of secondary data can then be used in a conventional
estimator to estimate the space-time covariance matrix. Furthermore, as the
scenario description provides a representation of the geometry-induced e�ects
in a bistatic configuration, the scenario description can be used to incorpo-
rate these e�ects into the design of a detector. Thus, a generalized likelihood
ratio test is derived for an airborne bistatic radar configuration. Moreover,
the presented detector is adaptive towards the strength of both the clutter
interference and the thermal noise.

Keywords: Airborne Bistatic Radar Systems, Parametric Space-Time
Adaptive Processing.
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CHAPTER 1

Introduction

1.1 Introduction

In 1904 the German inventor Christian Hülsmeyer patented a device that used
radio waves to detect the presence of a distinct metallic object at a distance.
From a spark gap, Hülsmeyer generated pulsed signals which radiated from
the device. He demonstrated the technique by detecting a ship in dense fog.
The invention was based upon experiments performed by Heinrich Hertz in
1886 where he discovered the polarization dependent reflection of an electro-
magnetic wave [1]. The device build by Hülsmeyer would later be denoted as
Radio Detection and Ranging, though it is today most known by its acronym
RADAR. Although the radar was invented in the early 20th century, the de-
velopment and the usage of the radar first started to accelerate during the
Second World War. In the war, many countries used the radar as a vital tool
for detection and tracking of enemy aircrafts [2].

In modern society, the radar is still an important sensor used in military
operations, but is further used in a broader spectrum of applications. As the
radar is a sensor that uses electromagnetic waves to measure the surrounding
environment, it has some advantages compared to other sensors, such as a
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Chapter 1 Introduction

Figure 1.1: Radar market per field of application, and a forecast of the radar mar-

ket in 2025 [3].

camera or a lidar, used for the same purpose. Thus, the radar can operate in
all weather and lighting conditions, and can provide measurements for both
long and short ranges. For these reasons, radar systems can be found in the
applications of civil air tra�c control, weather forecasting and remote sens-
ing. Moreover, the radar system is an important sensor which enables ships to
navigate and provides useful information for advanced driver assistance sys-
tems and autonomous driving in vehicles. In Fig 1.1, the distribution of the
radar market per application is visualized. As seen in the figure, most of the
growth in the radar market arises from automotive application, strongly con-
nected to the introduction of more autonomous features in vehicles. Although
radar systems can be found in multiple applications, this thesis concern radar
systems used in military applications.

One of the main objectives of a radar system is to provide target detec-
tions. That is, from the electromagnetic waves reflected by the environment
surrounding the radar, determine the presence or the absence of any targets
in the environment. To be able to perform the target detection, the radar is
equipped with both hardware and software. Depending on the application,
various requirements are set on both the hardware and the software for the
radar to provide target detections suited for the specific application. Thus,
various design choices can be made for both the hardware and the software
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1.1 Introduction

when constructing a radar system. In terms of hardware, some design choices
can involve the usage of a pulsed signal waveform or a continuous signal wave-
form, as well as the number of array channels comprising the radar antenna. A
pulsed signal waveform can in general provide measurements for a longer dis-
tance and can be more robust against jamming interference signals compared
to a continuous signal waveform. However, a continuous signal waveform is
not associated with any minimum distance of where targets can be detected,
and may require less power for the wave to be transmitted over time. The
number of array channels on an antenna a�ects the directivity of a transmitter
antenna and the spatial resolution of a receiver antenna. The software of a
radar system will, for instance, a�ect the systems ability to mitigate distur-
bance signals, to resolve targets from each other and the number of targets a
system is able to track over time. The accuracy of such operations is a�ected
by numerous parameters, e.g. the quality of the signals observed by the re-
ceiver antenna, the amount of computational processing capacity available in
the processor and the accuracy of the radar signal processing algorithms. In
this thesis, and in the appended papers, methods for radar signal process-
ing is further investigated with the intention to improve their accuracies and
decrease their computational complexity.

In most radar systems, the processing of the received electromagnetic sig-
nals is performed by a chain of various signal processing algorithms. Con-
sequently, the term radar signal processing refers to a collection of multiple
processing techniques of a radar system. In the chain of processing, the aim
of each step is either to transform the signal or extract information from the
signal to facilitate for succeeding calculations in the chain. As an example
of a processing chain; reflections of unwanted objects are removed from the
electromagnetic signals before a detector determine the target state, or that
target detections are aided to a tracking algorithm to be tracked over time.
Moreover, a radar system usually is required to be able to operate in various
environments and under various scenarios. Such requirements implies that
the chain of processing must be robust towards varying characteristics of the
received signals. To satisfy the criteria of robustness, the signal processing
algorithms are commonly designed to be adaptive. Hence, the processing algo-
rithms will adapt towards phenomena present in the current measured signal.
Such adaptive behavior of the processing may be obtained by describing the
electromagnetic signals using statistical tools. Thus, an algorithm is designed
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Chapter 1 Introduction

Figure 1.2: Visualization of an airborne bistatic radar configuration.

to manage a distribution of possible signals rather than one deterministic case.
Moreover, with a statistical framework, the algorithms may use observations
in the adaptation of the processing and hence become data dependent.

Although many radar signal processing techniques are designed to be adap-
tive, it may be beneficial to incorporate knowledge about the specific radar
configuration in the design of the processing techniques as the configuration
of the radar system a�ect the statistical properties of the received signals.
Thus, to illustrate the e�ect of the configuration on the processing, consider
the airborne monostatic configuration and the airborne bistatic configuration.
The di�erence between the two configurations is related to the location of an-
tennas. In a monostatic configuration, the same antenna is used to emit the
electromagnetic waves and to receive the radar echo signals. In a bistatic con-
figuration two antennas which are separated at a distance collaborate with
each other to create a radar system. Thus, one of the antennas emits an
electromagnetic wave and the other antenna receives the radar echoes. A
visualization of an airborne bistatic radar system is shown in Fig 1.2. The
monostatic configuration is the most common configuration of operational
radar systems today, but in recent years an increased research interest has
been shown for the bistatic configuration. As an indication of the increased
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Figure 1.3: Number of publications on Google Scholar involving the search term

"Bistatic radar".

research interest, the number of publications on Google Scholar including the
search term bistatic radar is shown in Fig 1.3. Part of the increased inter-
est arises from the introduction of digitalization in a higher degree in the
radar systems, i.e. that each antenna channel is sampled as a separate digital
channel [4]. A digital radar has the possibility to fully take advantage of the
potential of the bistatic configuration [5]. One of the advantages associated
with a bistatic configuration is the silent operation of the receiver platform.
Thus, as the receiver antenna receives radar echoes emitted by the transmit-
ter antenna, the receiver platform does not reveal its position by emitting a
signal. Moreover, a target using stealth techniques to decrease the targets
radar cross section, may be detected with a higher probability in a bistatic
configuration than in a monostatic configuration due to the oblique bounces
of the electromagnetic signals in a bistatic system. Additionally, in a bistatic
configuration, the transmitting antenna has the possibility to emit a signal
constantly, and thus emit more electromagnetic energy over time compared
to a corresponding antenna operating in a monostatic configuration. This is
possible as a transmitter antenna of a bistatic configuration is not required
to be silent when receiving radar echoes. In theory, this property can lead to
higher signal-to-noise-ratios in a bistatic configuration compared to a mono-
static configuration.
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To utilize the full potential of a bistatic radar configuration, additional
processing functionality is needed compared to what is required in a mono-
static radar configuration. As an example, in a bistatic configuration there
can be a direct signal between the transmitter platform and the receiver plat-
form. As the direct signal travel one direction, in contrast to radar echoes
which travels from the transmitter to an object and to the receiver, the di-
rect signal may have a significantly larger signal power compared to the radar
echoes. Thus, if the direct signal is not mitigated, it may disturb the process-
ing significantly. Moreover, to be able to operate a bistatic radar system, the
platform used as a transmitter and the platform used as a receiver must be
synchronized. In a military application, it may be problematic to establish
a communication channel between the two platforms where the synchroniza-
tion is performed, as it may expose the positions of the platforms. Using the
direct signal can be one approach to perform the synchronization between
the platforms. Furthermore, in a bistatic system, the statistical properties of
the observations depend on the geometry of the radar configuration. Thus,
the positions and the velocities of the transmitter platform and the receiver
platform a�ect the characteristics of the measurements. As a consequence of
this, a geometry-induced range dependency is present in the angle-Doppler
domain of observations in a bistatic radar configuration. In the appended
papers of this thesis, a parametric scenario based approach which considers
the geometry-induced e�ects is investigated in various aspects.

1.2 Outline of the thesis
This thesis is divided into two parts. In the first part, the theoretical back-
ground of the thesis is presented with the intention of introducing the topic
and prepare the reader to the second part of the thesis. In the second part, the
contributions of the author in the field of parametric estimation techniques
in airborne bistatic detectors and bistatic space-time adaptive processing are
presented in terms of five appended publications.

The first part of the thesis is structured as follows; In Chapter 2 the fun-
damentals and the working principles of a radar system is introduced. In
Chapter 3 an introduction to detectors is presented, and a brief introduction
to parameter tracking is given in Chapter 4. Space-Time Adaptive Process-
ing is presented in Chapter 5, and a summary of the appended papers of the
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1.2 Outline of the thesis

thesis is presented in Chapter 6. In Chapter 7 the thesis is concluded and
some possible future research directions are presented.
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CHAPTER 2

Fundamentals of Radar Systems

In this chapter, a short introduction to the radar sensor and to the fundamen-
tal theory of a radar measurement is given. A more comprehensive overview
is given in e.g. [6].

2.1 Radar signal modelling
In a radar system, an antenna emits electromagnetic energy of some waveform
into the environment surrounding the radar. The electromagnetic energy is
reflected by the objects in the environment, and echoes from a small fraction
of the emitted energy are received by an antenna used by the radar system.
The radar system can measure the distance, speed and direction towards the
objects which reflected energy is received by the receiving antenna. In this
section, a short description of these measurements is given for a monostatic
radar. However, the same principles holds also for other radar configurations.

The distance, or the range, to an object is measured by the time between the
signal has been emitted, reflected by the object and received by the receiving
antenna. The range R to an object is for an monostatic radar system is given
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Chapter 2 Fundamentals of Radar Systems

by

R = c�t

2 (2.1)

where c is the speed of light and �t is the duration of time the signal travels
from the radar platform to the object and back to the radar platform.

A signal echo reflected by a moving object will, relative to the emitted
signal, either be compressed or stretched in time depending on the direction
of movement of the object relative to the location of the radar antenna. For a
signal of narrow bandwidth, a compression or a stretch of the signal result in a
shifted frequency of the signal compared to a signal reflected by a non-moving
object. The frequency shift is known as the Doppler e�ect. The frequency
shift is given by

fd = ≠2v

⁄
(2.2)

where ⁄ is the wavelength of the transmitted signal and v is the relative
velocity between the radar platform and the object.

The direction to an object can be determined by either considering the look
direction of the radar antenna, or by consider some direction-of-arrival (DOA)
estimation scheme. For the determination of the direction to an object via the
look direction of the radar antenna, it may be beneficial to employ a beam
pattern with a narrow main beam. Objects which generate a radar echo is then
simply considered to be located in the direction of the transmitted main lobe
of the gain pattern. As for a DOA estimation scheme, it can be assumed that
echo signals reflected by objects at a large distance encounter the receiving
array antenna as a wave of planar wavefront [6]. Under such assumptions, a
signal of narrow bandwidth introduce a linear phase shift between adjacent
array channels if received by a Uniform Linear Array (ULA) receiver antenna.
The phase shift between the array channels is proportional to the sine of the
DOA angle of the echo signal. An illustration of this phenomena is shown in
Fig 2.1. In the figure, the DOA angle of the signal wave encounter the array
is denoted with ◊, and the ULA have N array channels with equal distance d

between two adjacent array channels.
The signal power of the echo signals received by the receiver antenna is

12



2.2 Radar Operation Environments

Figure 2.1: Illustration of direction of arrival for an array antenna.

given by the radar range equation

P = ⁄
2
PT‡RCS
(4fi)3

GT
R

2
T

GR
R

2
R

(2.3)

where PT is the power of the transmitted signal, and the gain pattern of
the transmitter antenna and the receiver antenna is denoted GT and GR,
respectively. The range between the transmitter and the object is RT, and
the range between the receiver and the object is RR. The radar cross section
of the object is denoted ‡RCS.

2.2 Radar Operation Environments
An environment which an airborne radar system operates in is illustrated
in Fig 2.2. The environment consists of clutter interference, jamming inter-
ference and possible targets which can be both airborne and ground based.
Consequently, the observations of a radar system will include clutter interfer-
ence, jamming interference, possible targets as well as thermal noise generated
from the receiver platform. In this section, the components of the radar ob-
servations are introduced.

In this work, we consider an antenna of N array channels that receives and
processes M pulses of a coherent waveform over K + 1 range bins. A pulse
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Figure 2.2: Illustration of a radar environment consisting of clutter interference,

jamming interference and a target.

compression scheme can be utilized to obtain the observations in the consid-
ered framework [7]. By vectorizing the spatial and the temporal response in
each range bin, i.e. to vectorize the observations of all pulses and all antenna
channels of one range, a space-time snapshot is obtained. The snapshot from
an arbitrary range bin k is denoted as xk œ CNM◊1. Assume that the snapshot
is additively comprised of clutter interference, xk,c ≥ CN (0, Rk,c) œ CNM◊1,
jamming interference, xk,j ≥ CN (0, Rk,j) œ CNM◊1, receiver thermal noise,
xk,n ≥ CN (0, Rk,n) œ CNM◊1, and possible targets xk,s = ‡ssts œ CNM◊1,
where ‡s is the intensity of the target and sts is a space-time steering vector
towards the angle-Doppler direction of the target. The notation CN (µ, �)
denotes a complex Gaussian distribution of mean µ and covariance matrix �.
Consequently, it is assumed that the clutter interference, the jamming inter-
ference and the thermal noise are complex Gaussian distributed. This is a
common assumption regarding the distribution of the components comprising
the radar snapshot [6]. Other formulations regarding the distributions has
been presented, such as describing the distribution of the clutter interference
using heavy-tailed distributions [8], [9].

In a detector, a test statistics is formed by the multiplication between the
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2.2 Radar Operation Environments

radar snapshot of the cell-under test and a weight vector. Thus, for a test
in range bin 0 the test statistic becomes �(x0) = |wH

0 x0|, where w0 is the
weight vector and superscript ’H’ denotes Hermitian transpose. Detectors are
further discussed in Chapter 3. However, a useful measure of performance is
the signal-to-interference-and-noise-ratio (SINR), which is given by

SINR = |wH

k
xk,s|2

E{|wH

k
(xk,j + xk,c) + w

H

k
xk,n|2}

(2.4)

where E{·} denotes expected value operator [10]. The SINR measure have a
one-to-one relationship with performance measures of a detector [11]. Hence,
maximizing the SINR is equivalent to maximizing the performance of a de-
tector. Thus, in the design of radar signal processing algorithms, and when
comparing di�erent radar signal processing algorithms with each other, it is
common to consider the SINR measure in such evaluations [12]–[15].

Clutter interference

Unwanted radar echoes originating from reflections of electromagnetic energy
generated by the own radar are denoted as clutter interference. In di�erent
radar applications, di�erent objects are regarded as wanted or unwanted in the
radar echoes. Thus, the terminology clutter interference include echoes from
di�erent objects in di�erent applications. In the radar application considered
in this work, i.e. target detection of moving objects, echoes from the ground,
trees, clouds mountains and buildings are considered as clutter interference
[6].

Jamming interference

Signals actively emitted by another system than the own radar, and which
interfere with the own radar signals at the used frequency band, are considered
to be jamming signals. Jamming can both be unintended, as when two friendly
radars are using the same frequency band or when a telecommunication system
interfere with the radar, or intended as an electronic warfare technique [6].

A jamming signal is usually observed by the radar receiver antenna via the
direct signal and some multipath propagation. The direct signal propagates
directly between the emitting platform to the receiver antenna, in contrast to
a radar echo which travels two ways; to an object and back to the radar. As
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Chapter 2 Fundamentals of Radar Systems

a consequence of this, jamming signals may have a significantly larger signal
power compared to the power of a radar echo. Thus, jamming signals may
cause large problem for the receiver processor. Furthermore, a common jam-
ming signal characteristics is that the signal have a broad Doppler spectrum
and originate from a distinct spatial direction [10].
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CHAPTER 3

Detection

Target detection serve as one of the primary objectives of a radar system. In
this chapter, we introduce the mathematical framework of the binary hypoth-
esis test which a detector performs, and two detectors commonly used in a
radar system; the matched filter and the Kelly’s detector.

3.1 Binary hypothesis testing
A detection framework can be used in the situation when a measurement can
arise from a number of possible hypotheses. The objective of the detection
problem is to determine which of the possible hypotheses the measurement
arises from. If the measurement is seen as a realization of a stochastic variable,
the detection problem may use statistical hypothesis testing to discriminate
between the hypotheses. In statistical hypothesis testing, the measurement is
used to form a test statistic which is evaluated against some decision bound-
aries. Depending on the outcome of the test statistic compared to the decision
boundaries, the measurement is declared to arise from one of the hypotheses.
In the case when the measurement can arise from two possible hypotheses,
binary hypothesis testing may be used. In the appended papers of this thesis,
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Figure 3.1: The four categories of a binary hypothesis test in terms of actual status

and declared status.

the binary hypothesis test has been considered.
In a binary hypothesis test, the measurement is seen as a realization of a

stochastic variable. Thus, to determine between the hypotheses a probability
density function (pdf) is associated with each of the two hypotheses. For a
measurement x, the pdf under the null-hypothesis, H0, is denoted px|H0(x),
while the pdf under the alternative hypothesis, H1, is denoted px|H1(x).

Given the declaration of a specific measurement, the declaration can be
categorized into four di�erent categories depending on the actual hypothesis
of the measurement and the assigned hypothesis of the measurement. In
radar terminology, the di�erent categories are; detection, missed detection,
false alarm and correct rejection. In Fig 3.1, the categories are illustrated
together with the actual status and the assigned status.

To determine between the hypotheses, a test statistic, �(x), is formed. One
framework that can be used to select test statistic is the Neyman-Pearson Cri-
teria (NPC) [12], [16]. The objective of the NPC is to maximize the probability
of a detection while keeping the probability of a false alarm below some max-
imum false alarm rate the detector can tolerate. A decision mechanism which
obtains the optimal solution to the NPC is the likelihood ratio test (LRT)
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[16]. The LRT is given by

�ú(x) =
px|H1(x)
px|H0(x)

H1
?
H0

“ (3.1)

where the superscript ’ú’ denotes optimality. Thus, the LRT forms a test
statistic which evaluates the ratio between the pdf of the alternative hypoth-
esis and the pdf of the null-hypothesis with a threshold. If the test statistic
exceeds the threshold, the alternative hypothesis is declared to have generated
the measurement x. Otherwise, the measurement is declared to be generated
from the null-hypothesis.

A binary hypothesis test involve some measures of performance. The NPC
considered the probability of detection, PD, and the probability of false alarm,
PFA. These probabilities are defined as:

PD = Pr[H1 declared|H1 is true] =
⁄

xœ�(x)>“

px|H1(x)dx (3.2)

PFA = Pr[H1 declared|H0 is true] =
⁄

xœ�(x)>“

px|H0(x)dx (3.3)

where “ is the threshold to determine between the hypotheses. A visualization
of the probability density functions of the two hypotheses together with the
decision threshold and the corresponding performance measures is shown in
Fig 3.2.

To evaluate the LRT, the processor is required to possess full knowledge
of both px|H0(x) and px|H1(x). In a practical application, it is unlikely that
the processor holds that information and rather some parameter that defines
the probability density functions is unknown. In such scenarios, the unknown
parameter can be replaced with an estimate of the parameter. For a parameter
that is replaced by a maximum likelihood estimate, and used in the framework
of (3.1), yield a generalized likelihood ratio test (GLRT) [16]. Consequently,
the GLRT is given by

�(x) =
max◊œ�1 px|H1(x|◊1)
max◊œ�0 px|H0(x|◊0)

H1
?
H0

“ (3.4)

where ◊0 and ◊1 are unknown parameter vectors within the sets �0 and �1,
respectively.
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Figure 3.2: An illustration of the probability density functions of the hypotheses

involved in a binary hypothesis test.

3.2 Radar detectors

Now we will consider detectors used in radar systems. Consequently, consider
a radar system which employs an array antenna of N channels which emits
and receives M pulses of coherent waveforms over K +1 range bins. Thus, the
considered system will observe a measurement x œ CNM(K+1). One common
discretization of such measurement is to discretize the measurement along the
range dimension. Consequently, by vectorizing the observations of all pulses
and all array channels in each range bin, the measurement can be reorganized
to a set of measurements, xk œ CNM◊1 ’ k œ [0, K]. These manipulations
allows for a detection framework to be applied towards each range bin of
the observed set of measurement. In this chapter, radar detectors using the
discretization over range is investigated.

Recall from Chapter 2 that a radar observation is additively comprised of
clutter interference, jamming interference, thermal noise and possible targets.
Consider that range bin 0 is associated with the cell-under-test (CUT) which
the detector is to declare between target presence or target absence. Thus,
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3.2 Radar detectors

formulate two hypotheses

H0 : x0 = x0,c + x0,j + x0,n (3.5)
H1 : x0 = x0,s + x0,c + x0,j + x0,n (3.6)

Thus, under the null-hypothesis, H0, a target is absent in range bin 0, and
under the alternative hypothesis, H1, a target is present in range bin 0. As-
suming that clutter interference, jamming interference and receiver thermal
noise are complex Gaussian distributed, the associated probability density
functions are px0|H0(x) = CN (0, R0) and px0|H1(x) = CN (‡ssts, R0) for the
null-hypothesis and the alternative hypothesis, respectively. For mutually
uncorrelated clutter interference, jamming interference and thermal noise, we
have that R0 = R0,c + R0,j + R0,n.

The test statistic used in the binary hypothesis test of the detector is the
scalar output y0 = |wH

0 x0|, where w0 is a weight vector. The weight vector
which yields a maximum SINR is w0 = µR

≠1
0 sts, where µ is an arbitrary

scalar and sts is the space-time steering vector of the currently investigated
cell-under-test [11]. This weight vector is selected to mitigate the influence of
the interference and the noise in the test, while preserving the signal power
of possible targets. The arbitrary constant µ does not a�ect the SINR of
the test. However, some µ can provide additional properties which may be
beneficial in subsequent calculations of the test. One common detector have
a test statistic of,

|wH

0 x0|2 = |sH

ts R
≠1
0 x0|2

s
H

ts R
≠1
0 sts

H1
?
H0

“ (3.7)

where µ = 1/

Ò
s

H

ts R
≠1
0 sts. This detector is here denoted the matched filter,

and is associated with two useful properties. First, the matched filter solves
the LRT and consequently is an optimal detector. Secondly, the matched
filter have the constant-false-alarm-rate (CFAR) property [17]. It implies a
normalization factor of the test statistic which compensates for the power of
the interference and the thermal noise, to maintain a constant probability of
false alarm.
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Similarly, a GLRT derived by Kelly,

|sH

ts R̂
≠1
0 x0|2

s
H

ts R̂
≠1
0 sts(1 + 1

K
x

H

0 R̂
≠1
0 x0)

H1
?
H0

“ (3.8)

where R̂0 is an estimate of R0, and K is the number of snapshots used in the
estimate of the space-time covariance matrix [18]. The snapshots used in the
estimate are typically the radar observations that have been observed, but
currently not evaluated by the detector. Snapshots available for estimation of
unknowns in the range bin associated with the CUT are denoted as secondary
data. Here, for a test in range bin 0, the secondary data comprises of the
snapshots xk ’ k œ [1, K]. Characteristics of the secondary data may a�ect
the space-time covariance matrix estimate, and implicitly the detector (3.8).
Further discussions of estimates of space-time covariance matrices is presented
in Chapter 5. Moreover, the Kelly’s detector can be used when the space-time
covariance matrix of the observation is unknown, and it fulfills the CFAR
property.

22



CHAPTER 4

Tracking

In this chapter, we give a brief introduction to the state vector tracking prob-
lem from the viewpoint of Bayesian statistics.

4.1 Problem formulation
An unknown state vector of a dynamical system is denoted as ›n œ R

d› ,
where n is the current discrete time index and d› is the dimensionality of
the state vector. A state vector of a dynamical system can involve various
terms associated with the system. However, in a tracking application, the
state parameters usually represent motion characteristics of the system, e.g.
positions, velocities and accelerations of components comprising the dynam-
ical system. In most real-world dynamical systems, the state parameters are
continuous in time, where the continuous time index tn corresponds to the
discrete time index n. However, measurements from a sensor of the state dy-
namics are most certainly produced in discrete moments of time. Although
the filtering problem can be performed in continuous time, it is most common
to be performed in discrete time. The formulation of the filtering presented
in this chapter concern the discrete time description.
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Chapter 4 Tracking

Consider that at a certain time index n, we would like to find an estimate
of ›n with as high accuracy as possible. Thus, we seek ›̂n which is close to
›n in some measure. In a Bayesian setting [19], the state vector estimate is
calculated from the posteriori probability density function (pdf),

p(›n|Zn) (4.1)

where Z
n denotes a sequence of measurements from time index 1 to n. A

measurement at a certain time is not necessary a scalar value, but can be
comprised by a vector of measurements. The sequence of measurements is
then the ordered set,

Z
n = {z1, z2, . . . , zn} (4.2)

where zn is the vector of measurements at time n.
Given that the posteriori pdf is known, a state estimate can be derived

from it. Various versions of such estimates can be considered. One popular
estimate is the minimum mean-square error (MMSE) estimate, given by

›̂MMSE
n

= E{›n|Zn} =
⁄

›np(›n|Zn)d›n (4.3)

where E{·} denotes the expected value operator. Moreover, another popu-
lar estimator considers the maximum a posteriori (MAP) estimate. A MAP
estimate is the solution to the following optimization problem

›̂MAP
n

= arg max
›n

p(›n|Zn) (4.4)

Consequently, the essence of a Bayesian filtering problem, is to calculate
the posteriori pdf p(›n|Zn), or find an approximation of it, and extract an
estimate ›̂n from the density.

4.2 Conceptual solution
As discussed in the section above, filtering of a single state vector includes the
calculation, or approximation, of the posteriori pdf p(›n|Zn). In this section,
we present the exact calculation of this density.
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4.2 Conceptual solution

Consider that the set of measurements can be split into two parts, Z
n =

(zn, Z
n≠1). The posteriori pdf then becomes

p(›n|zn, Z
n≠1) (4.5)

Using Bayes’ rule [20], the posteriori pdf can be rewritten as

p(›n|Zn) = p(zn|›n, Z
n≠1)p(›n|Zn≠1)

p(zn|Zn≠1) (4.6)

Given a state vector ›n, the density of the measurement vector does not
depend on previous measurements. Thus, we have,

p(›n|Zn) = p(zn|›n)p(›n|Zn≠1)
p(zn|Zn≠1) (4.7)

As seen in (4.7), the posterior density is proportional to the product of the
likelihood, p(zn|›n), and a prior, p(›n|Zn≠1). The likelihood describes how
likely a measurement, zn, is, given the state vector, ›n. In a tracking appli-
cation, the likelihood, p(zn|›n), is commonly referred to as a measurement
model. The prior density is found by the marginalization over the previous
state

p(›n|Zn≠1) =
⁄

p(›n, ›n≠1|Zn≠1)d›n≠1

=
⁄

p(›n|›n≠1, Z
n≠1)p(›n≠1|Zn≠1)d›n≠1 (4.8)

Assuming that the dynamical system fulfills the Markov property [21], i.e.
that

p(›n|›n≠1, Z
n≠1) = p(›n|›n≠1) (4.9)

we get the Chapman-Kolmogorov equation

p(›n|Zn≠1) =
⁄

p(›n|›n≠1)p(›n≠1|Zn≠1)d›n≠1 (4.10)

Consequently, the integral in (4.10) propagates the posteriori pdf at time n≠1
though the pdf p(›n|›n≠1). The density p(›n|›n≠1) is often referred to as the
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motion model or the process model. The resulting pdf p(›n|Zn≠1) is called
the predicted density.

Using the Equations (4.7) and (4.10), the posteriori density function at
time n, p(›n|zn), can be expressed as a function of previous posteriori dis-
tribution, p(›n≠1|zn≠1), the motion model p(›n|zn≠1) and the measurement
model p(zn|›n). Consequently, with a filtering process initialized with a prior
distribution p(›0) on the initial state ›0, the equations can be used to calcu-
late p(›1|z1), and then p(›2|z2), and so on. Thus, (4.7) and (4.10) represents a
recursive method to calculate the posteriori probability density function each
time a new measurement is available.

The motion model and the measurement model can be described in an
alternative way using a system of equations,

›n = fn≠1(›n≠1, qn≠1) (4.11)
zn = hn(›n, wn) (4.12)

where fn≠1 and hn are possible non-linear functions, qn≠1 and wn are re-
alizations of motion model noise and measurement model noise, respectively.
Knowing the motion model and the measurement model is equivalent to know-
ing the functions fn≠1 and hn and the joint density functions of qn≠1 and
wn.

4.3 Practical solutions

In the section above, the conceptual solution to the Bayesian filtering problem
was presented. Under some circumstances there exists a closed form solution
to the filtering problem. One case when a closed form solution exists is when
(4.11) and (4.12) have linear dynamics and the noise is additive and Gaussian
distributed. Consequently, the system of equations can be written as

›n = Fn≠1›n≠1 + qn≠1 (4.13)
zn = Hn›n + wn (4.14)
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where qn≠1 and wn are independently distributed as

qn≠1 ≥ N (0, Qn≠1) (4.15)
wn ≥ N (0, Wn) (4.16)

in which Qn≠1 is the process noise covariance matrix and Wn is the measure-
ment noise covariance matrix. Further, Fn≠1 is denoted the system matrix,
and Hn is denoted the measurement matrix.

If the dynamical system and the associated state vector measurements can
be written in terms of (4.13) and (4.14), a closed form solution to the filtering
problem exists and is given by the Kalman filter [22]. The Kalman filter is
a recursive processing technique which calculates the first two moments of
the posteriori state vector in each time iteration. As the first two moments
completely describes a Gaussian pdf, the solution of the Kalman filter gives a
complete description of p(›n|zn). Moreover, if the mean value of such posterior
pdf is used as a state vector estimate, the Kalman filter estimator is the
optimal estimator in a mean square error (MSE) sense. This since the a
posteriori mean is the minimum mean square error (MMSE) estimate.

The Kalman filter can only operate on linear process models and linear
measurement models. To handle non-linear models, extensions of the Kalman
filter has been proposed. Two such extensions are the Extended Kalman Filter
(EKF) [23] and the Unscented Kalman Filter (UKF) [24]. Other filtering tech-
niques, possible to use for general models, are particle filters and grid-based
methods [25]–[27]. With these methods, an approximation of the posterior
pdf is made, which is di�erent from the EKF, for example, where the state
space models are approximated.

In the appended Paper C of this thesis, a Bayesian filtering framework is
used to estimate scenario motion parameters of the transmitter platform and
the receiver platform comprising a bistatic radar configuration. The state
vector estimate used in Paper C is the maximum a posteriori (MAP) state
vector. Further, to obtain the second moment of the posteriori state vector,
a Taylor series approximation is calculated in the MAP estimate. From the
Taylor series expansion, the corresponding state vector covariance matrix is
extracted from the second degree Taylor polynomial. In such a manner, the
posteriori pdf is approximated by a Gaussian distribution using the MAP
estimate as mean value and the corresponding covariance matrix of the Taylor
expansion.
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CHAPTER 5

Space-Time Adaptive Processing

In this chapter we introduce the space-time adaptive processing (STAP) tech-
nique. It can be used to limit the e�ects of interference and noise in an
airborne radar systems.

5.1 Problem formulation
To demonstrate the need of STAP, recall from Chapter 3, that the optimal
test statistic in a SINR sense have the form, w0 = |µR

≠1
0 sts| [11]. Thus, to

obtain a detector of high performance, it is required to know the associated
space-time covariance matrix, R0, of the distribution to the interference and
the noise. However, in many radar applications, the covariance matrix is
unknown for the processor. In an airborne radar system, space-time adaptive
processing is a technique that can be used to estimate the covariance matrix
adaptively from radar observations [28].

In an airborne radar system, the motion of the platform makes that non-
moving objects have a relative velocity towards the moving platform. Thus,
the echoes of the clutter interference will in such systems have energy in the
angle-Doppler domain in regions apart from the zero-Doppler dimension. As
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a consequence of this, the response of the clutter interference and moving
targets may coincide in the angle-Doppler domain, making it di�cult to dis-
tinguish them apart. Consequently, a detector can in such a scenario have a
degraded performance. To enhance the performance of the detector in such
radar systems, the STAP technique can be used. STAP is a multidimensional
filtering technique which combines information from an array antenna with
multiple pulses of a coherent waveform. The objective of a STAP scheme is
to describe the distribution associated with the interference and the thermal
noise [13], [14]. In this work, we have assumed that the clutter interference,
the jamming interference and the thermal noise are complex Gaussian dis-
tributed. Under those assumptions, it is su�cient for the STAP scheme to
describe the distribution of the interference and the noise in terms of the
associated space-time covariance matrix. In the following sections, methods
are presented where the covariance matrix is adaptively estimated from radar
observations.

5.2 Sample Covariance Matrix Estimate

Consider that an array antenna of N channels is receiving and processing M

pulses over K + 1 ranges. Furthermore, the observations of the N channels
and the M pulses corresponding to one range bin is vectorized, making the
radar system observe a set of measurements of the form x̄ = {xk}K

k=0 where
xk œ CNM◊1 ’ k œ [0, K]. Thus, the observation in each range bin comprises
of temporal and spatial information, and is here called a snapshot. Moreover,
consider that a detector perform a binary hypothesis test in range bin 0.
Snapshots from the range bins [1, K] are consequently currently not involved
in the test. Snapshots not involved in the test are denoted as secondary data,
and can be used to estimate unknowns in the range bin investigated by the
detector. Moreover, the secondary data is commonly assumed to be absent
of any targets. For the set x̄, we assume that all snapshots of the secondary
data are statistically identical and independently distributed (IID), thus the
measurements are distributed as xk ≥ CN (0, R) for all k œ [1, K]. It can
be argued that the set x̄ represents observations received by a side-looking
monostatic radar [11].

Given the set x̄, a maximum likelihood estimate of the space-time covari-
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ance matrix R0 is the solution to the following optimization problem

R̂0 = arg max
R

L(x̄|R) (5.1)

where L(·) denotes the associated likelihood function to the distribution of x̄.
The solution to (5.1) is the sample covariance matrix (SCM) estimator, given
by

R̂0 = 1
K

Kÿ

k=1
xkx

H

k
(5.2)

A SCM estimator using, at least, K = 2NM snapshots in the estimate, is
associated with a ≠3 dB loss in SINR compared to the SINR of the clairvoyant
space-time covariance matrix [13]. The minimum number of snapshots used
in the estimate to reach the ≠3 dB SINR loss is known as the Reed-Mallet-
Brennan (RMB) rule.

In some radar systems, it can be assumed that the thermal noise power is
known to the processor. In such case, the noise power can be incorporated
in the space-time covariance matrix estimate. Two techniques which can be
used to incorporate a known thermal noise level are diagonal loading [29] and
fast maximum likelihood [30]. In a diagonal loading approach, the covariance
matrix estimate becomes

R̂
DL
0 = R̂0 + ‡

2
nI (5.3)

where R̂0 is a SCM estimate [29]. In the fast maximum likelihood (FML)
framework, the eigenvalues of a SCM estimate are set to a minimum thresh-
old value corresponding to the thermal noise power [30]. Consequently, for
an eigenvalue decomposition of a SCM estimate R̂0 = ��0�H , where �
is a matrix containing the eigenvectors of R̂0 and �0 is a diagonal ma-
trix with the ordered eigenvalues of R̂0 on the diagonal. Denote ⁄D to
be the smallest eigenvalue of R̂0 which is greater than ‡

2
n. Set �FML

0 =
diag(⁄1, ⁄2, . . . , ⁄D, ‡

2
n, . . . , ‡

2
n). A space-time covariance matrix estimate with

a FML approach then becomes

R̂
FML
0 = ��FML

0 �H (5.4)
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5.3 Heterogeneous and non-stationary radar
observations

Radar observations from real world applications and for configurations other
than the side-looking monostatic configuration are unlikely to be identically
distributed over the range dimension. Thus, the assumptions of the set x̄

generally does not hold. There are mainly two factors a�ecting the response
not to be IID; clutter heterogeneity and geometry-induced range dependen-
cies. Variations of the terrain surrounding the radar system may cause a
variational response in strength of the clutter interference reflections. Con-
sequently, in the angle-range dimension, the clutter interference have a het-
erogeneous response. One common approach to manage such heterogeneous
clutter is to aid the processor with additional knowledge about the surround-
ing environment, and incorporate such knowledge in the covariance matrix
estimate. Such approaches are typically known as knowledge-aided STAP,
and is further discussed in [31], [32]. A geometry-induced range dependency
arises from the relative array configuration compared to the heading of the
platform. These e�ects introduce variations of the clutter intensity in the
angle-Doppler domain over range. Radar observations a�ected by geometry-
induced e�ects is here called non-stationary. Other monostatic configurations
than the side-looking configuration are a�ected by geometry-induced e�ects.
Consequently, angle-Doppler variations in the range dimension are present
for forward-looking arrays [28], [33], circular arrays [34] and conformal arrays
[35] Moreover, geometry-induced e�ects are present in bistatic configurations
where the relative orientation and the relative velocity of both the transmitter
platform and the receiver platform contribute to the angle-Doppler variations
[28], [36], [37].

To demonstrate the impact of a geometry-induced range dependency on
a space-time covariance matrix estimate, consider a set of secondary data
x̃ = {xk}K

k=1. The distribution of the set is as follows; xk ≥ CN (0, Rk) for
all k œ [1, K]. Consequently, the set x̃ is range variant. A SCM estimator
applied on the secondary data x̃ have an expected value of

E[R̂0] = 1
K

Kÿ

k=1
E[xkx

H

k
] = 1

K

Kÿ

k=1
Rk (5.5)
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Thus, the expected value of the SCM estimator is the average behavior of the
range dependent covariance matrices, rather than the covariance matrix for
range bin with index zero.

Several techniques have been presented which address the complications
of range dependent secondary data. The algorithms can mainly be divided
into three di�erent categories based on their processing technique. The first
category comprises of techniques which aim to limit the variations within the
data itself. This can be accomplished by only considering secondary data
in a close vicinity to the CUT, and is often combined with some dimension
reduction technique [37], [38]. In the other two categories, the angle-Doppler
variations of the secondary data are included in the processing. Thus, in
the second category, the processing assumes a model of the variations in the
secondary data. This includes a time-varying weight scheme where temporal
variations are modeled in the secondary data [37], [39], [40]. In the last
category, transformations are applied to the secondary data with the aim of
homogenizing the angle-Doppler response over the range dimension. Several
transformations have been presented which transforms the secondary data
according to various measures [41]–[47]. As an example, in a registration
based approach, the associated direction-Doppler curve of the snapshot of
each range bin is adjusted via curve fitting to coincide with the direction-
Doppler curve of a reference range bin [45]. While in the Adaptive Angle-
Doppler Compensation (A2DC) method, the eigenvector associated with the
dominant eigenvalue of the secondary data in each range bin is rotated to
the direction of the corresponding eigenvector of a reference range bin. The
argumentation of this approach is to homogenize the dominant subspace of
each range of the secondary data [46], [47].

5.4 Reduced dimension techniques
In the sections above, we describe processing techniques applied towards the
N spatial channels and the M pulses of coherent waveforms. Such direct
formulations are commonly known as the joint-domain STAP. However, from
a practical implementation viewpoint the joint-domain STAP is of limited
use. Two factors mainly makes the joint-domain STAP intractable in a real
world applications: sample support and computational complexity. To exem-
plify this, consider the radar system used in publicly available data collection
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program MCARM [48]. In the MCARM program, they have used a radar
antenna of N = 22 array channels and M = 128 pulses of coherent waveform.
The Reed-Mallet-Brennan rule requires for these parameters the minimum of
2NM = 5632 snapshots used in a SCM estimator [13]. This heavily exceeds
the available sample support of 630 snapshots in the MCARM dataset. Fur-
thermore, the SCM estimator is associated with the computational complexity
of O(N2

M
2
K). Consequently, a large amount of antenna array channels pro-

cessing multiple pulses may complicate a joint-domain implementation in real
world radar systems. As an attempt to limit these implementational com-
plications, sophisticated techniques which reduce the size of the necessary
sample support and the associated computational complexity have been pre-
sented. Here, we will briefly introduce one of the presented techniques: the
reduced-dimension technique. However, another commonly used technique,
the reduced-rank technique, which utilizes the low rank nature of clutter in-
terference and the jamming interference is further presented in [28], [49].

In a reduced-dimension technique for STAP, the radar observations are fil-
tered with a data-independent transformation before applying the STAP [11].
The objective of the transformation is to reduce the number of degrees of
freedom in the observations, which will reduce the required sample support
and the computational complexity of a subsequent STAP technique. Conse-
quently, for a space-time snapshot xk, a transformed snapshot becomes

x̆k = T
H

k
xk (5.6)

where Tk œ C
NM◊J is a transformation matrix. Consequently, the trans-

formed snapshot x̆k have dimensions J ◊1 where J < NM . STAP algorithms,
as described in Section 5.2, can then be applied to x̆k.

Multiple choices of the transformation matrix Tk are possible. A good
selection of Tk manage the tradeo� between reducing the sample support
and reduce the computational complexity, while maintaining the number of
degrees of freedom necessary to mitigate the interference and the noise and
preserve the power of echo signals of possible targets. Common selections
of the transformation matrix involve traditional radar signal processing tech-
niques such as Doppler processing and beamforming [50], [51].
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
Mitigation of Ground Clutter in Airborne Bistatic Radar Systems
Published in IEEE Sensor Array and Multichannel Signal Processing
Workshop,
pp. 1–5, June. 2020.
c•2020 IEEE DOI: 10.1109/SAM48682.2020.9104314 .

A space-time adaptive processing algorithm is dependent on an accurate
estimate of the space-time covariance matrix to mitigate the e�ects of in-
terference and noise. In this paper, we investigate the sensitivity of such
a covariance matrix estimate calculated from a model describing the cur-
rent radar scenario. Consequently, a radar scenario is dependent on a set
of scenario parameters, connected to the two radar platforms comprising the
bistatic configuration, which can be used via a model to calculate a covari-
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Chapter 6 Summary of included papers

ance matrix. A scenario parameter describes some characteristic of the radar
platform which a�ects the radar observations of the system. An example of
a scenario parameter can be the position or the velocity of a radar platform,
and the direction of the transmitter antenna gain pattern. In a real-world
application, a set of scenario parameters is typically unknown to the pro-
cessor in the system. Therefore, in this paper, we investigate the influence
of scenario parameter residuals on the covariance matrix estimate. Thus,
the evaluation concerns a sensitivity analysis of the covariance matrix on the
radar scenario. In numerical simulations, the sensitivity is measured in form
of detector performance and the calculated covariance matrix is evaluated
against other state-of-the-art methods for estimation of covariance matrices
in bistatic radar systems.

6.2 Paper B
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
A Parametric Approach to Space-Time Adaptive Processing in Bistatic
Radar Systems
Published in IEEE Transactions on Aerospace and Electronic Systems,
vol. 58, no. 2, pp. 1149–1160, April 2022.
c•2019 IEEE DOI: 10.1109/TAES.2021.3122520.

This paper considers the space-time covariance matrix estimation problem
for airborne bistatic radar systems. In such systems, the distribution as-
sociated with the radar observations is range variant due to the geometry
of bistatic configuration. In the paper, a covariance matrix estimate calcu-
lated from a model describing the radar scenario is considered. The scenario
description implies that the geometry-induced e�ects due to the configura-
tion are incorporated in covariance matrix estimate. Consequently, to obtain
the covariance matrix with the considered approach, the set of scenario pa-
rameters defining the radar scenario must be known. However, in a radar
application, it can be expected that a subset of the scenario parameters is
unknown to the processor. Therefore, a maximum likelihood estimate of the
scenario parameters is derived using the secondary observations of the system.
Moreover, if the scenario approach is used in a detector, it would represent
an approximative generalized likelihood ratio test as unknowns are replaced
by their maximum likelihood estimates. In numerical simulations, the pre-
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6.3 Paper C

sented scenario approach is indicated to significantly reduce the associated
signal-to-interference-and-noise-ratio loss compared to the other investigated
state-of-the-art methods.

6.3 Paper C
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
Scenario Tracking for Airborne Bistatic Radar Systems
Submitted for publication in IEEE Transactions on Aerospace and Elec-
tronic Systems, Jan 2023,.

In most implementations of a space-time adaptive processing technique,
the required space-time covariance matrix is estimated using secondary ob-
servation associated with the most recent coherent processing interval. Con-
sequently, such an estimate is only dependent on the set of measurements
currently being observed. In this paper, we derive the covariance matrix using
the parametric model of the radar scenario. The model of the radar scenario
is dependent on a few parameters which define the state of the scenario. Thus,
with this approach, it is su�cient to estimate the scenario parameters to ob-
tain the covariance matrix estimate. Moreover, for scenario parameters which
represent motion characteristics of a radar platform, the scenario approach
enables that the parameters can be tracked over time by assuming a motion
model. Thus, the estimator of the paper derives a scenario parameter estimate
using a combination of the likelihood density associated with the most recent
set of measurements and a prior density obtained from the propagation of a
previous scenario parameter estimate through the assumed dynamical motion
model. The derived scenario parameter estimate is a maximum a posteriori
estimate. Consequently, the approach of the presented maximum a posteriori
estimator implies that information from multiple coherent processing intervals
contribute to the considered space-time covariance estimate.

6.4 Paper D
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
Scenario Based Transformations for Compensation of Non-Stationary
Radar Clutter
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Submitted for publication in IEEE Transactions on Aerospace and Elec-
tronic Systems,.

This paper investigates a transformation framework which aim to com-
pensate for angle-Doppler variations in the range dimension of bistatic radar
observations. The framework is a combination of an incomplete scenario de-
scription and secondary observations, which are used to find a space-time
covariance matrix estimate. Thus, the incomplete scenario description is used
to find the unitary transformation matrix which, in a Frobenius norm sense,
minimizes in each range bin the expected clutter covariance matrix of the sce-
nario description towards the corresponding response in a reference range bin.
The unitary condition of the transformation matrix preserves the stationary
behavior of the thermal noise under the transformation. With this approach,
a set of non-stationary secondary data can be transformed to become more
stationary distributed after the transformation. A sample covariance matrix
estimator is applied on the transformed set of secondary data to find the
space-time covariance matrix estimate. The outlined procedure is denoted
as a Scenario Based Transformation (SBT) STAP. The presented method is
evaluated and compared with other methods for the considered problem in
numerical simulation.

6.5 Paper E
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
A Parametric Generalized Likelihood Ratio Test for Airborne Bistatic
Radar Systems
Published in IEEE Radar Conference.,
New York, USA, Mar 21-25 2022, pp. 1-5.
c•2022 IEEE DOI: 10.1109/RadarConf2248738.2022.9764266 .

This paper studies the e�ects of non-stationary secondary data on radar
detectors. Thus, in the presence of angle-Doppler variations in the radar ob-
servations, a conventional detector approach using a sample covariance matrix
covariance matrix estimator together with a detector like the Kelly detector
will not represent a generalized likelihood ratio test. In this paper, we de-
rive a generalized likelihood ratio test designed for the airborne bistatic radar
system. Thus, in the presented detector, a scenario dependent model is used
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6.5 Paper E

to represent the geometry-induced range variations of the radar observations.
Unknown parameters in the assigned scenario model is estimated by their
maximum likelihood estimates. This allows for the derivation of a range and
scenario dependent generalized likelihood ratio test of bistatic radar systems.
In numerical simulations, the presented generalized likelihood ratio test is
compared with other radar detectors used for the considered bistatic radar
configuration.
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CHAPTER 7

Concluding Remarks and Future Work

In this thesis, we have studied a parametric scenario based approach for air-
borne bistatic radar systems. The contributions of the publications regard
scenario parameter estimation from secondary radar observations, and an in-
vestigation of the influence on detector performance of scenario parameter
residuals. Moreover, the publications involve methods where the scenario de-
scription is used to transform non-stationary secondary data to become more
stationary distributed, and to derive a generalized likelihood ratio test for air-
borne bistatic systems. In this chapter, we provide some comments regarding
possible extensions of the results, and directions for future research.

The methods of the appended papers of this thesis have all been evaluated
solely on simulated data. Consequently, the proposed methods in this thesis
have not been evaluated on observations from a real radar system. Therefore,
an evaluation with real radar observations is of interest for future studies.

Further research directions can involve the calculation of a theoretical bound
on the accuracy of the scenario parameter estimates for the scenario based
framework to the space-time covariance matrix estimation problem. Such a
theoretical bound can provide information regarding the identifiability of the
scenario parameters given an observed set of measurements, as well as an
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analysis regarding the sensitivity of the parameter estimates on the number
of secondary data in the estimates.

Moreover, a theoretical bound on the scenario parameters enables a cog-
nitive approach to the detection problem in a bistatic radar configuration.
Thus, for an area of interest to be evaluated by a detector, the theoretical
bound of the scenario approach can propose a radar scenario which yields
the optimal detector performance for the considered area of interest. Con-
sequently, the platforms comprising the bistatic configuration can follow the
trajectories which would yield an optimal performance of the detector. Such
trajectories can be calculated o�-line before the bistatic radar system starts
to operate.

Connections between the platforms of a multistatic configuration can be
described as multiple bistatic triangles. Consequently, the scenario based
framework of this thesis can also be used in a multistatic configuration. In a
multistatic configuration the processing for a detection of possible targets can
either be performed in each of the receiver platforms comprising the configu-
ration or in a central processing unit. In both of these two processing set-ups,
information needs to be communicated between the platforms. In a military
application, the use of communication channels between the platforms may
be unwanted as it can reveal the position of the platforms. As a consequence
of this, it is beneficial to minimize any needed communication between the
platforms. The scenario approach provides a compact description, i.e. the
scenario parameters, which can be used in the covariance matrix estimation
problem, and hence suitable to the used in a multistatic configuration.

Furthermore, with the description of a multistatic configuration is com-
prised by multiple bistatic connections, it can be expected that some of the
bistatic triangles contribute more to the performance of a detector than other
bistatic triangles. Moreover, as the processing capabilities of the processor is
not unlimited, it may be desirable to perform the processing with a minimum
amount of bistatic combinations. Thus, a selection is required to determine
the number of bistatic connections, and which bistatic connections, to include
in the processing. One further research direction is to consider the scenario
based approach in such selection process.
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