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The problem of estimating the covariance matrix of a primary

vector from heterogeneous samples and some prior knowledge is

addressed, under the framework of knowledge-aided space-time

adaptive processing (KA-STAP). More precisely, a Gaussian

scenario is considered where the covariance matrix of the

secondary data may differ from the one of interest. Additionally,

some knowledge on the primary data is supposed to be available

and summarized in a prior matrix. Two KA-estimation schemes

are presented in a Bayesian framework whereby the minimum

mean square error (MMSE) estimates are derived. The first

scheme is an extension of a previous work and takes into

account the nonhomogeneity via an original relation. In search

of simplicity and to reduce the computational load, a second

estimation scheme, less complex, is proposed and omits the fact

that the environment may be heterogeneous. Along the estimation

process, not only the covariance matrix is estimated but also

some parameters representing the degree of a priori and/or the

degree of heterogeneity. Performance of the two approaches are

then compared using STAP synthetic data. STAP filter shapes are

analyzed and also compared with a colored loading technique.

I. INTRODUCTION

Detecting targets in highly heterogenous

environments is a challenging task for future airborne

radars. Signal processing has to enable the extraction

of targets embedded in noise consisting mostly of

thermal noise, possibly jammers, and ground clutter

whose characteristics may vary rapidly over azimuth

and range. Space-time adaptive processing (STAP)

is recognized today as the best candidate to perform

this task [1—3]. STAP performance depends mostly

on the knowledge of the noise covariance matrix.

As the noise cannot entirely be known a priori, its

covariance matrix is usually estimated from secondary

range cells. In a homogeneous environment, where

the range gates share the same covariance matrix,

the sample covariance matrix (SCM) maximizes

the signal-to-noise-plus-interference ratio (SINR)

[4] and is also the maximum likelihood estimator

[5]. Unfortunately, in real-world scenarios, the

homogeneity assumption is often not satisfied. Thus

the SCM may be a poor estimate of the true noise

covariance matrix.

Heterogeneity can be caused by many phenomena

[6, 7] including nonhomogeneous ground reflectivity

(e.g., amplitude and/or spectral variation, clutter edges,

discretes), secondary targets in the training interval

or in the cell under test, and range-dependence of

the clutter frequencies in the angle-Doppler domain

(often referred to as nonstationary clutter). A variety

of models have been proposed to measure the impact

of several types of heterogeneity. Most of them rely

on the general clutter model (GCM) covariance

matrix developed by the radar community [1]. Thus,

amplitude and spectral variations but also target-like

signals in the secondary data can severely compromise

STAP performance [8]. Highly nonstationary clutter

can lead as well to very poor detection performance

around clutter angle-Doppler loci [2].

Many techniques have been considered to

counteract the deleterious effect of heterogeneity.

Low sample support algorithms intend to reduce the

presence of heterogeneous samples in the training

interval. Among them one can mention reduced rank

or reduced dimension algorithms [1, 2, 9], diagonal

loading [10], and estimation schemes based on

structured interferences [11, 12]. On the other hand,

a careful selection of the secondary data allows one to

discard heterogeneous samples according to a certain

criterion based, e.g., on power considerations [13] or

on more complex metrics such as nonhomogeneity

detectors (NHD) [14]. Another way to deal with

heterogeneity is to incorporate it directly via a model

into the detection scheme. Some detectors for instance

allow one to take into account local power fluctuations

[15, 16]. However, one of the most promising ways

to enhance the detection performance in heterogenous

environments may be the use of a priori knowledge.



Such algorithms are referred to as knowledge-aided

STAP (KA-STAP) and are often merged with the

former cited strategies.

This last decade KA-processing has received

a growing interest and seems to be a key concept

for the next generation of adaptive radar systems

[17, 18]. In this sense, the Defense Advanced

Research Projects Agency (DARPA) has initiated the

KA sensor signal processing and expert reasoning

(KASSPER) workshop [19]. KA-STAP aims at using

prior knowledge provided by external databases (e.g.,

digital ground model, Global Positioning System

(GPS), previous scanning data) to assist and improve

detection. The a priori information can be used in

two ways [20, 21]: either indirectly, e.g., to select

representative training data [22, 23], or directly to

form the filter. Regarding this last concern, it is

generally assumed that the prior information can

be summarized into a known matrix. This matrix is

often built upon the GCM, where parameter values

have been set up at the system design stage or by

measurements. One delicate issue is then to adequately

use this a priori matrix to form the STAP filter.

Among the algorithms that allow one to

incorporate the a priori matrix into the detection

scheme, one can mention the fast maximum likelihood

with assumed clutter covariance [24], the KA

parametric estimation [25] and colored loading (CL).

CL is a commonly used technique whereby the

covariance matrix estimate is formed as a weighted

sum of the SCM and the a priori covariance matrix

[26—33]. CL has an appealing form because the STAP

filter can be implemented in two steps: a prewhitening

step based on the prior matrix, followed by adaptive

filtering [34]. Interestingly, the technique happens

to be the solution to different problem formulations.

In [27], [28], [34], CL is presented as the solution

of the usual linearly constrained minimum variance

space-time beamformer with an additional quadratic

constraint. In [35]—[37], a Bayesian approach is

undertaken instead and leads also to the CL technique.

Though CL seems to be an efficient method to

incorporate a priori information, the choice of the

weighting factors remains a delicate issue and is

discussed in [21], [31], [32]. An adaptive approach

seems obviously more adequate. In [21], the weight

of the prior matrix is derived so as to maximally

whiten the observed interference data. In [31], a

maximum-likelihood approach is invoked under the

restrictive assumption that the weighting factors are

range independent. In [32], this restrictive assumption

is alleviated, and the weights are derived so as to

minimize the mean-squared error (MSE) of the CL

estimator.

Recently, so as to integrate the prior matrix in the

estimation scheme, we have focussed our attention on

a new Bayesian data model [33, 38]. The Bayesian

approach turns out to be appropriate both to take

into account the nonhomogenous assumption (in

a certain way) and to incorporate the prior matrix.

The proposed model is tuned by two scalars called

hyperparameters that were shown to represent the

degree of heterogeneity of the environment and the

degree of a priori knowledge. In [38], the minimum

mean-squared estimator (MMSE) of the noise

covariance matrix is derived, assuming these two

scalars are exactly known. Obviously, for practical

applications, these quantities are unknown and have

to be chosen properly. To do so, we propose here to

extend the work of [38] by introducing a hierarchical

level to the data model. More precisely, we consider

both the degree of heterogeneity and the degree of

a priori knowledge as random variables with known

priors and estimate them jointly with the covariance

matrix. This new estimation strategy is therefore a

robustified version of the algorithm presented in [38].

After describing the robustified algorithm thoroughly,

we study its performance for a STAP scenario.

Particularly, we intend to observe the STAP filter

shape and the values of the estimated hyperparameters

to highlight how the prior information is incorporated

and how the heterogeneity is dealt with. Note that

we do not focus our attention on the generation of

the prior matrix (though a major topic). Additionally,

we propose another robustified algorithm in the case

where the heterogeneity would not be taken into

account and show that this omission can lead to severe

loss. This could happen for instance if, after an NHD,

some heterogeneous samples still remained in the

training interval.

The remainder of the paper is organized as

follows. Section II describes the Bayesian data

model and the robustified estimation procedure

originally introduced in [39]. Section III presents

a similar algorithm, but this algorithm alleviates

the heterogeneous assumption so as to obtain

less complex estimators. Section IV provides

numerical results obtained from synthetic STAP data.

Conclusions and perspectives are finally drawn in

Section V.

II. KNOWLEDGE-AIDED ESTIMATION IN A
HETEROGENEOUS ENVIRONMENT

This section describes the data model for a

KA-heterogenous environment with its MMSE

estimation procedure initially introduced in [39].

The model, defined under a Baysesian framework,

entails two original relations, one describing the

heterogeneity of the environment and the other

describing how the prior information is related to

the primary data. These two relations are partly

chosen to ensure mathematical tractability. Thus,

so as to robustify the model, we turn to a common

strategy encountered in the Bayesian philosophy, the

hierarchical Bayes modeling [40]. More precisely,

an additional hierarchical level is added to the data



model whereby the hyperparameters–representing

the degrees of heterogeneity and a priori of the

model–are considered as random variables with

noninformative priors.

A. Data Model

We intend to estimate the covariance matrix

Mp of a ³-length complex data vector z with both
K secondary data Z= [z1 ¢ ¢ ¢zK] and some a priori
information collected into a prior matrix M̄p. As

a first attempt to model heterogeneity, the zks are
supposed to be independent and Gaussian distributed

with the same covariance matrix Ms, which may differ

from Mp. This distribution is denoted by

Z jMs » Ñ³,K(0,Ms): (1)

The probability density function (pdf) of Z jMs is

thus given by

f(Z jMs) = ¼
¡³K jMsj¡Ketrf¡M¡ s¡1Sg (2)

where S= ZZH , j:j and etrf:g stand for the
determinant and the exponential of the trace of a

matrix, respectively. To complete the data model, a

Bayesian framework is then advocated so that both

the primary and secondary covariance matrices are

considered as random variables with known priors.

Choosing these two priors is rather delicate. As

presented hereafter, we have chosen Wishart and

inverse Wishart distributions. These priors have

already been invoked under statistical considerations

in similar contexts [41, 42]. In a first step, the two

priors are designed so that the primary matrix Mp

departs possibly from the secondary covariance

Ms and/or from the prior matrix M̄p. The pdfs are

also chosen among conjugate priors to make the

model suitable for further derivations. In a second

step, a hierarchical level is added to robustify these

conjugate prior distributions, i.e., making the model

less sensitive to the choice of these two priors.

1) Heterogeneity Model: Unlike the

physical-based model [1], the heterogeneity is

described here by the pdf of the secondary covariance

matrix Ms which has to be thoroughly designed.

A complex inverse Wishart distribution–with º
degrees of freedom and associated covariance matrix

(º¡ ³)Mp–is chosen as an adequate candidate and is

denoted by

Ms jMp,º » W̃¡1
³ ((º ¡ ³)Mp,º) (3)

with pdf

f(Ms jMp,º) =
j(º¡ ³)Mpjº
¡̃³(º)jMsj(º+³)

etrf¡(º ¡ ³)MsMpg

(4)
where

¡̃³(º) = ¼
³(³¡1)=2

³Y
k=1

¡ (º¡ ³ + k) (5)

and where ¡ (:) is the gamma function. To be correctly
defined, º has to be greater than or equal to ³, and the
parameter matrix has to be Hermitian positive definite

(i.e., º > ³).
The distribution (3) implies that on average the

environment is homogenous, i.e., EfMs jMp,ºg=Mp,

but ensures that Ms always differs from Mp. Looking

now at the second-order moment, it is clear that the

hyperparameter º monitors the distance between Mp

and Ms via the relation

Ef(Ms¡Mp)
2 jMp,ºg=

M2
p+(º¡ ³)TrfMpgMp

(º ¡ ³ +1)(º¡ ³ ¡1) :
(6)

The larger º is, the more homogeneous the
environment. Thus, in the following, the

hyperparameter º is referred to as the degree of
heterogeneity of the environment. Note also that the

former expression (6) is defined only if º > ³ +1.
Of course we do not pretend here that the

model (3) can embrace every kind of heterogeneity,

especially because some limitations can be expected

due to the fact that EfMs jMp,ºg=Mp [38].

However, as shown in the numerical Section IV,

model (3) is actually able to take into account, in an

interesting way, the fact that Ms 6=Mp.

2) KA Model: The KA part of the model is

described in a similar way to the heterogeneous

model. Note that some authors [41] have previously

proposed a Bayesian KA model involving a primary

covariance matrix Mp and a random prior matrix

M̄p. Indeed, given that M̄p could be based on prior

Gaussian observations, they have assumed that M̄p j
Mp has a Wishart distribution with mean Mp. Here,

we have assumed that the primary covariance matrix

Mp is a random variable distributed around an ideal

and known matrix M̄p that is built upon relevant

models and databases. Randomness allows the primary

matrix Mp to absorb some real effects or model

inaccuracies not foreseen in the prior matrix M̄p (e.g.,

calibration errors, near-field effects, inaccuracies of

GPS and/or cultural databases, etc.). More precisely,

the covariance matrix Mp is supposed to be drawn

from a complex Wishart distribution denoted by

Mp j M̄p,¹» W̃³(¹
¡1M̄p,¹) (7)

with pdf

f(Mp j M̄p,¹) =
jMpj¹¡³

¡̃³(¹)j¹¡1M̄pj¹
etrf¡¹MpM̄

¡1
p g:

(8)

Note here that the prior matrix M̄p is supposed to

be Hermitian positive definite and stands for the

whole noise (not only the ground clutter). Also, the

hyperparameter ¹ has to be greater than or equal to ³.
The distribution (7) implies that on average the

primary covariance matrix is equal to the a priori



matrix, i.e., EfMp j M̄p,¹g= M̄p, but ensures that

Mp differs from M̄p. Besides, observing the second

order moment, one notices that the hyperparameter

¹ monitors the distance between Mp and M̄p via the

relation

Ef(Mp¡ M̄p)
2 j M̄p,¹g=

TrfM̄pg
¹

M̄p: (9)

The larger ¹ is, the more accurate the prior
information. Hence the hyperparameter ¹ is referred
to as the degree of a priori knowledge.

3) Hyperparameters: Thus far, we have

established a KA-heterogenous model whereby two

priors, (4) and (8), have been chosen among a family

of conjugate priors to ensure mathematical tractability.

In [38] and [33], we proposed an estimation procedure

assuming that both the hyperparameters º and ¹
introduced by (4) and (8) were known. For practical

applications, these two quantities are unknown and

have to be chosen carefully, as estimation performance

depends on their values. Therefore, we develop

here a robustified version of the algorithm of [38],

assuming that º and ¹ are random variables with

noninformative priors. More precisely, we propose to

consider them independent with uniform discrete pdfs,

i.e.,
º j ºm,ºM » Ufºm ,:::,ºMg (10a)

¹ j ¹m,¹M » Uf¹m,:::,¹Mg (10b)

where ºm, ºM , ¹m, and ¹M are integers setting the
bounds of the estimation.

We discuss here the values of the bounds ºm,
ºM , ¹m, and ¹M . Assuming that no information is
available either on the degree of heterogeneity or

on the degree of a priori knowledge, one has to

take care that (10a) and (10b) are noninformative

priors. In other words, intervals fºm, : : : ,ºMg and
f¹m, : : : ,¹Mg must have a good dynamic range to
represent every possible degree of heterogeneity

and a priori, respectively. As explained before, the

values of the integers º and ¹ have to verify º > ³
and ¹¸ ³, respectively, and so do the lower-bounds,
i.e., ºm ¸ ³ +1 and ¹m ¸ ³. Discussing the values of
ºM and ¹M is a little bit more delicate. Indeed, the
values of º and ¹ are not a priori upper bounded.
Yet, looking at (6) and (9), the distance between the

two matrices at stake is approximately (or exactly)

inversely proportional to the hyperparameter. Thus,

beyond a certain value of º (respectively ¹), the
heterogeneity of the environment (respectively

the accuracy of the prior matrix) does not change

much. An opposite behavior is observed for small

º and ¹. Hence it is crucial to adjust the minimal
bounds ºm and ¹m as low as possible, i.e., ºm =
³ +1 and ¹m = ³. Furthermore, the heterogeneity
of the environment and the accuracy of the prior

knowledge are not misrepresented if one compells

º and ¹ to lie in appropriate upper-bounded intervals.
We see later that the numerical choice of ºM and
¹M also strongly drives the required computational
resources.

For the sake of convenience, we omit in the rest

of the paper constant and known quantities in the

conditional terms.

B. MMSE Estimation

1) Monte Carlo Method: We present here the

joint MMSE estimation of the matrix Mp and the

hyperparameters º and ¹ according to the model
previously exposed. The notation μ is used to
designate indifferently one of these variables. By

definition, the MMSE estimate of μ is the average of
the posterior distribution1

μ̂mmse = Efμ j Zg=
Z

μf(μ j Z)dμ: (11)

As explained in [39], the derivation of the integral

(11) is feasible for neither Mp, nor for º or ¹.
Moreover, resorting to deterministic methods (such as

numerical integration) to approximate (11) has to be

prohibited when the problem dimension is greater than

4 [43], which is always the case in STAP applications.

As a consequence, we propose the use of a Markov

chain Monte Carlo (MCMC) method to generate

samples distributed according to an appropriate target

distribution and to use the samples to approximate

Efμ j Zg. More precisely, a hybrid Gibbs sampler [44]
can be used to generate samples (M(i)

p ,M
(i)
s ,º

(i),¹(i))
distributed according to the joint posterior distribution

f(Mp,Ms,º,¹ j Z). As described in Fig. 1, each
sample μ(i) is generated according to its conditional
distribution. After a burn-in period–say, equal to Nbi
samples–the iterative process generates samples μ(i)

distributed according to their posterior distribution

f(μ j Z) [44]. Thus, the MMSE estimates of μ can be
approximated by the empirical mean

μ̂mmse
¢
=
1

Nr

NrX
i=1

μ(i+Nbi) (12)

where Nr is a number of samples ensuring that the
estimate will be correctly approximated. The values

of the burn-in period Nbi and the number of samples
of interest Nr are discussed later in Section IV. Note
that the convergence of the procedure is obtained

with whatever initial value μ(0) is supplied [44]. For
instance, in Fig. 1, º(0) and ¹(0) are chosen randomly
according to (10a) and (10b), and M(0)

p is chosen as

the SCM given by

M̂scm
p =

1

K
S:

1Let us remind readers here that, so as to lighten the expressions,

constant and known parameters (e.g., M̄p, ºm, ºM , ¹m, and ¹M ) are

not mentioned in the conditional terms.



Fig. 1. Hybrid Gibbs sampler.

Note also that the MMSE of the secondary covariance

matrix Ms can be obtained as a byproduct of the

proposed sampling strategy.

To derive the conditional distribution of each

chain parameter, we first express the joint posterior

distribution of Mp,Ms,º,¹ j Z. Using the Bayes
theorem with (2), (4), (8), and (10), one obtains

f(Mp,Ms,¹,º j Z)
/ jMsj¡(º+³+K)jMpjº+¹¡³ jM̄pj¡¹

£ etrf¡M¡ s¡1[S+(º¡ ³)Mp]¡¹M̄¡1
p Mpg

£ (º ¡ ³)
³º

¡̃³(º)

¹³¹

¡̃³(¹)
Ifºm ,ºMg(º)If¹m ,¹Mg(¹) (13)

where Ifa,bg is the indicator function defined on the set
of integers fa, : : : ,bg and / means proportional to.
2) Gibbs Moves: We use the expression (13) to

obtain the conditional distributions of Mp jMs,º,¹,Z
and Ms jMp,º,¹,Z. Considering, Ms, º, and ¹ as
given quantities in (13), it follows that

f(Mp jMs,º,¹,Z)

/ jMpjº+¹¡³etrf¡[¹M̄¡1
p +(º ¡ ³)M¡ s¡1]Mpg:

(14)
Similarly, one can show that

f(Ms jMp,º,¹,Z)

/ jMsj¡(º+K+³)etrf¡M¡ s¡1[S+(º ¡ ³)Mp]g:
(15)

Therefore, the conditional distributions of Mp jMs,º,
¹,Z and Ms jMp,º,¹,Z are recognized as complex

Wishart and inverse complex Wishart distributions,

respectively,

Mp jMs,º,¹,Z» W̃³ ([¹M̄
¡1
p +(º¡ ³)M¡ s¡1]¡1,º+¹)

(16a)

Ms jMp,º,¹,Z» W̃¡1
³ (S+(º¡ ³)Mp,º+K): (16b)

Complex Wishart and inverse complex Wishart

distributions can be easily sampled to generate the

matrices M(i)
p and M(i)

s . These two steps are referred to

as Gibbs moves.

3) Metropolis-Hastings Moves: Let us consider

now the generation of samples º(i) and ¹(i). Using
(13), the conditional distributions of º jMp,Ms,¹,Z
and ¹ jMp,Ms,º,Z can be expressed as

f(º jMp,Ms,¹,Z)

/ (º¡ ³)
³º

¡̃³(º)
jMpM¡ s¡1jº

£ etrf¡(º ¡ ³)MpM¡ s¡1gIfºm ,ºMg(º)
(17a)

f(¹ jMp,Ms,º,Z)

/ ¹³¹

¡̃³(¹)
jMpM̄

¡1
p j¹etrf¡¹MpM̄

¡1
p gIf¹m,¹Mg(¹):

(17b)

Unfortunately the pdfs (17) do not belong to any

familiar class of distributions. Therefore, we resort

to a Metropolis-Hastings (MH) move [44]. The MH

algorithm is an iterative procedure that generates

samples asymptotically distributed according to a

given target distribution. Its principle is explained

hereafter.

Let us focus, for instance, on the target distribution

g (third step in Fig. 1), given by

g(º) = f(º jM(i)
p ,M

(i)
s ,¹

(i¡1),Z):

The MH algorithm associated with this target

distribution is described in Fig. 2 for NMH iterations.
At the jth iteration, a candidate c(j¡1) is drawn from
a proposal distribution q(: j º). The candidate c(j¡1) is
then accepted as the next sample º(j) according to the
acceptance probability

&(º(j¡1),c(j¡1)) = min
½
1,
g(c(j¡1))
g(º(j¡1))

q(º(j¡1) j c(j¡1))
q(c(j¡1) j º(j¡1))

¾
:

(18)

The proposal distribution q(: j º) has to be chosen
properly. First, from an implementation point of

view, q(: j º) has to be easy to sample. Additionally,
any proposal distribution q(: j º) can be chosen as
long as its support contains the support of the target

distribution [45]. Then, two routes are usually taken.

The first approach is referred to as a random-walk

MH algorithm. Candidates are of the form c(j) = º(j)



Fig. 2. MH algorithm (implementation of step 3).

+" where " is a random variable with an appropriate

distribution [44]. This technique is well suited for

narrow target distributions. As depicted in Fig. 3,

the target distribution (17) is quite narrow for small

values of º but becomes much wider for larger values
of º. We thus turn to the second approach based
upon an independent proposal mechanism whereby

the candidate does not depend on the instantaneous

chain sample [44, p. 276]. More precisely, to fulfill

the former requirements and in search of simplicity,

we choose a uniform proposal distribution as in (10a),

i.e.,

q(c(j¡1) j º(j¡1)) = q(c(j¡1))/ Ifºm,ºMg(c(j¡1)): (19)
This way, the proposal distribution is able to explore

the support of the target distribution equally likely.

This is desirable, as it is assumed that no information

is available about the true value of º. The MH
acceptance probability (18) boils down to

&(º(j¡1),c(j¡1)) = min
½
1,
g(c(j¡1))
g(º(j¡1))

¾
(20)

meaning that the candidate is always accepted if

it contributes to increasing the target distribution.

Note that the convergence time of the MH algorithm

will increase according to the length of the interval

fºm, : : : ,ºMg, as the algorithm must explore the whole

support of the target distribution. Recalling that we

have earlier set ºm = ³ +1, this means that, from
a computational point of view, ºM must be kept as
low as possible. Similar reasonings can be made for

the fourth step of the sampler leading to q(¹0 j ¹)/
If¹m,¹Mg(¹

0).
Finally, note an interesting property of the hybrid

Gibbs sampler depicted in Fig. 1. As explained before,

the MH algorithm is an asymptotic procedure. Hence,

several accept/reject procedures usually have to

be performed before the samples become actually

distributed according to the target distribution, i.e.,

NMHÀ 1. Conversely, the convergence of the hybrid

Gibbs sampler is achieved even when steps 3 (and

Fig. 3. Theoretical posterior conditional distribution of

º jMp,Ms,¹,Z. KA-heterogeneous model. K = 24, ¹min = 9,

¹max = 40.

4) are reduced to a single accept/reject step [43], i.e.,

NMH=1.

III. KNOWLEDGE-AIDED ESTIMATION IN A
HOMOGENOUS ENVIRONMENT

In the previous section, a KA-estimation procedure

for use in a heterogenous environment has been

described. One could argue against its complexity

or the fact that the heterogeneity part of the model

is not, strictly speaking, physical based. We intend

to investigate in this section the relevance of the

heterogeneity relation (3). Is it worth introducing it

in the estimation scheme? To answer that question,

we develop a similar estimation procedure based on

a model that alleviates the heterogenous assumption.

More precisely, we assume that Mp =Ms, and we

still consider that some prior information is available

and summarized into the matrix M̄p. After adjusting

the model of Section II to a homogeneous case,

we derive the MMSE estimators of both Mp and

¹ that are obtained enjoyably in closed form. Note
that the KA-homogeneous model presented in this

section turns out to be a robustified version of the

one described in [36], [37], where the parameter

¹ was assumed to be known. Comparison of the
KA-heterogeneous and KA-homogeneous models is

performed in Section IV.

A. Data Model

Under the assumption of a homogeneous

environment, the secondary data Z share the same

covariance matrix Mp as the primary data z, i.e.,

Z jMp » Ñ³,K(0,Mp): (21)

To ensure mathematical tractability, the matrix Mp

is supposed to be drawn from an inverse Wishart



distribution (a similar reasoning is made in [36],

[37]). Indeed, this way, the distribution of Mp j M̄p,¹
is a conjugate prior for the likelihood f(Z jMp). To

establish a certain fairness for further comparison with

the KA-heterogenous model introduced earlier, the

parameters of this distribution are adjusted to ensure

EfMp j M̄p,¹g= M̄p, i.e.,

Mp j M̄p,¹» W̃¡1
³ ((¹¡ ³)M̄p,¹): (22)

The pdf of Mp j M̄p,¹ is thus given by

f(Mp j M̄p,¹) =
j(¹¡ ³)M̄pj¹
¡̃³(¹)jMpj¹+³

etrf¡(¹¡ ³)M¡1
p M̄pg:

(23)
Note also that the hyperparameter ¹ can still be
interpreted as the degree of a priori knowledge

because we have for ¹ > ³ +1,

Ef(Mp¡ M̄p)
2 j M̄p,¹g=

M̄2
p+(¹¡ ³)TrfM̄pgM̄p

(¹¡ ³ +1)(¹¡ ³ ¡1)) :

(24)
The larger ¹ is, the more accurate the prior

information contained in the matrix M̄p.

To complete and robustify the KA-homogenous

model, a hierarchical level is introduced via a

noninformative prior on ¹. More precisely, we
keep the former distribution (10b), whereby

the hyperparameter is modeled as a uniform

discrete random variable on an appropriate interval

f¹m, : : : ,¹Mg, i.e.,
¹ j ¹m,¹M » Uf¹m,:::,¹Mg:

Let us remind readers here that, by doing so, the

prior of Mp, i.e., f(Mp) =
R
¹ f(Mp j ¹)f(¹)d¹, is less

restrictive than a prior f(Mp j ¹0) where ¹ would have
been set to an arbitrary constant ¹0. Note that the
domain of the definition of ¹ is now slightly different,
i.e., ¹ > ³, and therefore ¹m > ³.

B. MMSE Estimation

According to the KA-homogeneous data model

(21), (22), and (10b), we derive now the MMSE

estimators of the degree of a priori knowledge ¹ and
the matrix Mp. Using the Bayes theorem, the joint

posterior distribution of ¹,Mp j Z can be expressed as
follows:

f(¹,Mp j Z) =
1

f(Z)

1

¼³K
1

¹M ¡¹m+1
j(¹¡ ³)M̄pj¹
¡̃³(¹)jMpjK+¹+³

£ etrf¡M¡1
p [S+(¹¡ ³)M̄p]gIf¹m,¹Mg(¹):

(25)
We start by deriving the MMSE estimator of ¹
because the posterior distribution f(¹ j Z) is useful
in expressing the MMSE estimator of Mp.

1) MMSE Estimator of ¹: Using (25), the

posterior distribution of ¹ j Z can be expressed as
follows:

f(¹ j Z) =
Z
f(¹,Mp j Z)dMp

/ j(¹¡ ³)M̄pj¹
¡̃³(¹)

If¹m,¹Mg(¹)
Z

1

jMpjK+¹+³

£ etrf¡M¡1
p [S+(¹¡ ³)M̄p]gdMp (26)

/ j(¹¡ ³)M̄pj¹
jS+(¹¡ ³)M̄pjK+¹

¡̃³(K +¹)

¡̃³(¹)
If¹m ,¹Mg(¹)

(27)

where we have recognized in (26) the integral of an

inverse Wishart distribution with parameter matrix

S+(¹¡ ³)M̄p and K +¹ degrees of freedom. Finally,
the posterior pdf of ¹ j Z is given by

f(¹ j Z) = c̄ j(¹¡ ³)M̄pj¹
jS+(¹¡ ³)M̄pjK+¹

¡̃³(K +¹)

¡̃³(¹)
If¹m ,¹Mg(¹)

(28)

where c̄ is a normalization constant such as

c̄¡1 =
¹MX
¹=¹m

j(¹¡ ³)M̄pj¹
jS+(¹¡ ³)M̄pjK+¹

¡̃³(K +¹)

¡̃³(¹)
: (29)

The MMSE of ¹ is then obtained in closed form as

the mean of the posterior distribution (28)

¹̂mmse =

P¹M
¹=¹m

¹h(¹)P¹M
¹=¹m

h(¹)
(30)

where

h(¹) =
j(¹¡ ³)M̄pj¹

jS+(¹¡ ³)M̄pjK+¹
¡̃³(K +¹)

¡̃³(¹)
: (31)

Observing (30), we can note that if ¹M = ¹m then ¹
is a deterministic quantity and, as expected, ¹̂mmse =
¹M = ¹m.

REMARK 1 (Implementation issue) To avoid

numerical problems, we recommend computing ¹̂mmse

as follows:

¹̂mmse =

P¹M
¹=¹m

¹h̃(¹)P¹M
¹=¹m

h̃(¹)
(32)

where h̃(¹) = expflog(h(¹))¡ log(h(¹̃))g and ¹̃=
argmax¹ logh(¹).

2) MMSE Estimator of Mp: Using (25), the

conditional posterior distribution of Mp j Z,¹ can be
expressed as

f(Mp j Z,¹)/
etrf¡M¡1

p [S+(¹¡ ³)M̄p]g
jMpjK+¹+³

If¹m ,¹Mg(¹):

(33)



We thus recognize that Mp j Z,¹ is distributed
according to the following inverse Wishart

distribution:

Mp j Z,¹» W̃¡1
³ (S+(¹¡ ³)M̄p,K +¹): (34)

Using the hierarchical structure of the data model, the

posterior pdf of Mp j Z can be written as the finite
sum

f(Mp j Z) =
¹MX
¹=¹m

f(Mp j Z,¹)f(¹ j Z): (35)

Averaging the pdf (35), we obtain the MMSE

estimator of Mp:

M̂mmse
p =

Z
Mp

¹MX
¹=¹m

f(Mp j Z,¹)f(¹ j Z)dMp

=

¹MX
¹=¹m

EfMp j Z,¹gf(¹ j Z): (36)

EfMp j Z,¹g is the mean of the inverse Wishart
distribution (34), i.e., EfMp j Z,¹g= [S+(¹¡ ³)M̄p]=
(K +¹¡ ³). The MMSE estimator of Mp can finally

be obtained in closed form by

M̂mmse
p = wM̂scm

p + w̄M̄p (37)

where

w =

¹MX
¹=¹m

K

K +¹¡ ³ f(¹ j Z) (38a)

w̄ =

¹MX
¹=¹m

¹¡ ³
K +¹¡ ³ f(¹ j Z): (38b)

To give some insight to the former expression (37),

several remarks can be made.

1) The MMSE estimate of Mp is equivalent to

an adaptive CL technique where the weights of each

matrix depend on the data through the posterior

distribution f(¹ j Z). More precisely, the weights of
the SCM and the a priori matrix can be expressed,

respectively, as

w = E
½

K

K +¹¡ ³ j Z
¾

(39a)

w̄ = E
½

¹¡ ³
K +¹¡ ³ j Z

¾
: (39b)

2) It can be easily verified that w+ w̄ = 1. Note
that this equality has been already encountered in the

literature [20, 32].

3) If the training interval K is finite, then the

weight of the a priori covariance matrix is strictly

positive, i.e., w̄ > 0 (Indeed, for ¹ 2 f¹m, : : : ,¹Mg, we
have ¹ > ³ and f(¹ j Z)> 0). It means that M̄p always

contributes in the MMSE estimator of Mp.

4) Finally, let us consider the special case ¹M =
¹m, which allows us to know ¹ exactly.

a) We recover the CL estimate of [37].

b) If the degree of a priori knowledge is as low

as possible, i.e., ¹M = ¹m = ³ +1, then M̂
scm
p

contributes K times more than M̄p in the
estimator (37).

c) If the degree of a priori knowledge becomes
very large, i.e., ¹M = ¹m!+1, then the
MMSE estimator of Mp is equal to the a priori

covariance matrix M̄p.

IV. NUMERICAL SIMULATIONS

This section studies the performance of the
MMSE estimators derived in the two last sections. We
intend to show that it is essential to take into account
the heterogeneity even if some prior knowledge is
available. The section is divided into two parts. First,
the estimators are studied independently when the data
are generated according to the assumed model. Then,
in the second part, their performance is analyzed
using STAP synthetic data. A comparison with the
CL approach proposed in [32] is also conducted. Note
that our study is limited to an estimation problem.

A. Synthetic Data

The space dimension is set to ³ = 8, and the

prior matrix is a Toeplitz matrix such that M̄p(k,`) =

0:9jk¡`j.
1) KA-Heterogeneous Model: Let us consider the

KA-heterogeneous model of Section II, where the
data are generated according to (1), (3), and (7). We
discuss first the values of some parameters and then
study the estimation performance.
Adequate values for ºm and ¹m have been already

discussed in Section II, where ºm = ³ +1 and ¹m = ³.
Choosing adequate values for ºM and ¹M results from
a trade-off between the computational load and the
desired accuracy on the degrees of heterogeneity
and a priori. We recall here that the value of ºM has
to stand for a homogenous environment (i.e., small
distance between Ms and Mp) and that the value of
¹M has to represent an accurate prior information (i.e.,

small distance between Mp and M̄p). According to (6)
and (9), the rule of thumb ºM = ¹M = 5³ turns out to
be a good compromise while giving satisfying results
in different scenarios. It is selected in the remainder of
the paper.
We discuss now the convergence assessment of the

algorithm depicted in Fig. 1 which aims at setting two
parameters:

Nbi: the burn-in period required so that the
outputs μ(i) of the sampler are generated according
to their posterior distribution f(μ j Z),
Nr: the number of samples that ensures an

accurate approximation of the MMSE estimate.

To determine these two parameters, we have adopted

the methodology described in [40], where several



Fig. 4. Empirical posterior distribution of º j Z and ¹ j Z.
KA-heterogeneous model. º = 10, ¹= 10, K = 24, ¹min = 9,

¹max = 40.

Markov chains have to be run independently with

assumed values for Nbi and Nr. The appropriate values
of Nbi and Nr have to be chosen in order to provide
an adequate potential scale reduction factor. In our

case, the convergence was assessed for Nbi = 100 and
Nr = 2000 (for more details on the procedure, the
reader is invited to consult the analysis conducted

in [39]). We stress that the values of Nbi and Nr are
high and impact the computational load accordingly.

But as we see later for a STAP scenario, the method,

though computationally intensive, brings undeniable

advantages.

Once the algorithm parameters are set to

adequate values, the performance of the estimators

(12) can be studied. Fig. 4 displays the empirical

posterior distributions of º j Z and ¹ j Z for a highly
heterogeneous scenario (º = 10) with inaccurate
a priori (¹= 10). The estimated posteriors are

Fig. 5. MSE for parameter Mp. KA-heterogeneous model.

¹= 20, K = 24, ¹min = 9, ¹max = 40.

Fig. 6. Theoretical posterior distribution of ¹ j Z.
KA-homogenous model. K = 24, ¹min = 9, ¹max = 40.

consistent with the true values of º and ¹. Fig. 5
shows the MSE for the parameter Mp as a function

of º. Three estimators of Mp are compared: the

MMSE estimator (12), the MMSE estimator

when º and ¹ are known [38], and also the SCM.
The two MMSE estimators outperform the SCM

significantly, especially when the environment is

highly heterogeneous (small º). We also observe
that the robustified algorithm of Section II incurs

small losses compared with its first version [38] that

assumed known values of º and ¹.
2) KA-Homogeneous Model: This section studies

the estimators (30) and (37) derived under the

assumption of a KA-homogenous model. Data are

generated according to (21) and (22). For comparison

purposes, we set the bounds for the estimation of ¹
to ¹m = ³ +1 and ¹M = 5³. The posterior distribution



Fig. 7. MSE for parameter Mp. KA-homogeneous model.

K = 24, ¹min = 9, ¹max = 40.

f(¹ j Z) is depicted in Fig. 6. As can be seen, the pdf
is very sharp for small ¹ but gets wider for larger ¹.
Fig. 7 displays the MSE for the parameter Mp as a

function of the degree of a priori knowledge ¹. Three
estimators are compared: the MMSE estimator (37),

the MMSE estimator (37) with known ¹ (i.e., the
method of [36]), and the SCM. The robust estimator

(37) performs almost as well as the MMSE estimator

with known ¹. When the degree of a priori is small
(¹¼ ³ +1), the MMSE estimator performs similarly to
the SCM. Indeed, for small ¹, M̄p does not provide

additional information on the primary covariance

matrix Mp, and the traditional and less complex SCM

can be used instead. Yet when ¹ increases, the MSE
of the MMSE estimator decreases, while that of the

SCM remains constant. Thus, the MMSE estimator

(37) takes advantage of both the homogeneous data

and the prior information.

B. Synthetic STAP Data

1) Scenario Parameters: In this section, we

consider an airborne radar sending a burst of M
chirps at the pulse repetition frequency (PRF) fr. The
carrier frequency is denoted by f0. The antenna is a
uniform linear array (ULA) with N half-wavelength

inter-spaced elements. We focus our attention on

a scenario exempt from jammers. The target-free

space-time snapshot zj at the jth range gate is
generated as a centered complex Gaussian vector with

covariance matrix Mj , i.e.,

zj » Ñ³(0,Mj):

Thermal noise and ground clutter are assumed to be

independent; thereby

Mj =Mc,j +Mn (40)

where

Mn is the thermal noise covariance matrix.

Assuming a mutual independence between channels

and under the ULA assumption, Mn = ¾
2I with ¾2 the

noise power per element.

Mc,j is the clutter covariance matrix at the jth gate
generated according to the GCM described in [1].

Succinctly, it is defined as the integral of independent

clutter sources evenly distributed in azimuth

Mc,j = ¾
2

NaX
r=1

NpX
p=1

»p,r;jf¡p,r;j − INg¯fa(p,r;j)a(p,r;j)Hg

(41)
where

− is the Kronecker matrix operator,
¯ is the Hadamard matrix operator,
Na is the number of range ambiguities,
Np is the number of ground patches,
»p,r;j is the clutter-to-noise ratio associated with the

(p,r)th patch at the jth range gate and is obtained
from the radar equation as in [1, p. 23],

¡p,r;j is the intrinsic clutter motion (ICM)
covariance matrix for the (p,r)th patch at the jth range
gate,

a(p,r;j) is the space-time steering vector associated
with the (p,r)th patch at the jth range gate.
The ICM stands for the pulse-to-pulse fluctuation

of the clutter amplitude. In the following, the ICM

is assumed to be independent of the clutter patch

number, and it is modeled with a Gaussian spectrum

[46], i.e.,

¡p,r;j = Toeplitzf°c(0), : : : ,°c(M ¡1)g with

°c(m) = exp

(
¡1
2

μ
4¼¾v

f0
cfr
m

¶2) (42)

where c is the propagation velocity and ¾v is the
velocity standard deviation. The space-time steering

vector a(p,r;j) can be expressed as the following
Kronecker product:

a(p,r;j) = at(p,r;j)− as(p,r;j)
where at(p,r;j) and as(p,r;j) are, respectively, the
M-length temporal steering vector and the N-length
spatial steering vector associated with the (p,r)th
patch at the jth range gate, i.e., for m= 0, : : : ,M ¡ 1
and n= 0, : : : ,N ¡ 1,

[at(p,r;j)]m = exp

μ
j2¼m

2v

c

f0
fr
cos(μp,r;j) sin(Áp,r;j +Áa)

¶
[as(p,r;j)]n = exp

μ
j2¼n

d

¸0
cos(μp,r;j) sin(Áp,r;j)

¶
where

d is the interelement distance,
¸0 = c=f0 is the wavelength,
v is the radar platform velocity,



Fig. 8. Range-Doppler map: optimal SINR-loss.

TABLE I

Scenario Parameters

Parameter Value

velocity v = 100 m/s

crab Áa = 90
±

carrier f0 = 450 MHz

PRF fr = 750 Hz

pulses M = 16

channel N = 8

interelement distance d = ¸0=2

element pattern cosine

backlobe level be =¡30 dB
CNR1 (range #1) CNR= 40 dB

ICM ¾v = 0:25 m/s

Note: 1Clutter-to-noise ratio.

(Áp,r;j ,μp,r;j) is the azimuth and depression angle of
the (p,r)th clutter patch at the jth range gate,
Áa is the misalignment angle between the velocity

vector and the lengthwise direction of the ULA.

Hereafter, we assume a scenario without range

ambiguities, i.e., Na = 1. A forward-looking antenna
(i.e., Áa = 90

±) is considered to obtain a nonstationary
clutter [1, 2]. Such geometrical configuration ensures,

indeed, that the spatio-Doppler frequencies occupied

by the clutter vary over range as depicted in Fig. 8

(the SINR loss is defined later). We focus the analysis

on the range gate 50 where the clutter is highly

nonstationary. Scenario parameters useful to generate

Mc,j according to (41) are given in Table I.

2) Processing Parameters: We apply the

estimation procedures within a reduced-dimension

algorithm with a post-Doppler structure. Indeed, it

allows one to apply the estimation procedure locally

over M 0 ¿M Doppler bins. Moreover, it significantly

decreases the computational load. More precisely, an

extended factored algorithm (EFA) has been chosen

with M 0 = 3 Doppler bins and without zero-padding

[1, 47]. Thus, for a given range gate, the estimation

procedure is applied M times (one time per bin) with

³ =NM 0 = 24.
Only one prior matrix M̄p of dimension NM £NM

is generated and then projected onto the appropriate

reduced Doppler-element domain. The a priori

covariance matrix is built in a similar way to (40), i.e.,

M̄p = M̄n+ M̄c,50 (43)

where M̄n and M̄c,50 are the noise and clutter

components, respectively. The noise component M̄n

is supposed to be known exactly, i.e., M̄n =Mn. The

clutter component M̄c,50 is built upon the GCM model

according to (41) but departs from the true matrix

Mc,50. Indeed, three parameters of the GCM have been

changed as follows:

1) the ICM has been overestimated with the value

¾v = 0:5 m/s,
2) a misalignment of ¢Áa = 2

± has been
introduced between the velocity vector and the

longitudinal axis of the fuselage,

3) the backlobe level of the element pattern has

been increased to be =¡5 dB.
The first two modifications represent errors that

are common in real scenarios. Although the third

modification is less realistic, its impact is localized

in the Doppler domain and hence, as shown later,

it allows us to illustrate the performance of our

algorithms in a case where the environment is

homogeneous and the a priori highly inaccurate.

Finally, the number of secondary data is set to K =
2³ = 48. The bounds for hyperparameter estimation
are set to

ºm = ³ +1 = 25, ¹m = ³ = 24, ºM = ¹M = 5³ = 120
for the KA-heterogenous model,

¹m = ³ +1 = 25, ¹M = 5³ = 120 for the
KA-homogeneous model.

3) Results: We observe in this section the STAP

filter shape for different estimates M̂p of the noise

covariance matrix. To do so, we display the SINR loss

defined as [2]

L= jwHaj2
wHMpw

1

aHM¡1
n a

(44)

where a is the steering vector and w/ M̂¡1
p a is the

STAP filter. Results are averaged using Mc = 100
Monte Carlo runs. Additionally for each Doppler bin,

we observe the average values of the hyperparameters

º and ¹ as well as the average values of the weighting
factors w and w̄, given by (38). Results are displayed
in Fig. 9.

Before analyzing the behavior of the MMSE

estimators, we recall first that the optimal filter in

an EFA structure is obtained by the clairvoyant case,

i.e., M̂p =Mp. Note also the expected behavior of the

SCM filter that performs badly around the clutter



Fig. 9. KA-estimation assuming homogenous environment: SINR loss (a), estimated ¹ (c), weights w and w̄ (e). KA-estimation

assuming heterogeneous environment: SINR loss (b), estimated ¹ (d), estimated º (f).

notch (fifth Doppler bin), as the clutter is highly

nonstationary. Elsewhere, the SCM filter incurs a

3dB loss (compared with the optimal filtering in an

EFA structure) as predicted by the Reed, Mallett,

and Brennan rule [5]. Finally, we emphasize that the

forward-looking scenario and the a priori matrix have



TABLE II

Distinct Domains of Environment and a priori

Domain Bins Environment a priori

D1 f¡8,¡7g\ f¡3, : : : ,2g homogeneous accurate

D2 f¡6, : : : ,¡4g homogeneous inaccurate

D3 f3, : : : ,6g heterogeneous accurate

been chosen so that three different areas can be clearly

identified, as summarized in Table II:

1) Observing Fig. 8 and according to the

training interval, it is clear that the clutter is highly

nonstationary from bin 3 to 6. Elsewhere the

secondary data are homogenous with the primary one.

2) Observing now the filter shape of the prior

matrix in Fig. 9, one can see that the a priori

information is rather accurate except from bin ¡6
to ¡4. A slight ICM overestimation (as suggested

in [21]) and a small crab error do not significantly

affect the mainlobe clutter notch other than a slight

widening and deepening. Note also that the backlobe

level, which has been increased to build M̄p, impacts

only bin ¡6 to ¡4.
Of course, some specific algorithms (e.g., the

extended sample matrix inversion [48]) are efficient

at counteracting the nonstationarity of the clutter

considered here (especially when the nonstationarity

is so continuous). However, the simplicity of the

scenario allows us to characterize at once the behavior

of the studied estimators for three distinct cases

as described in Table II. The contrast is not so

distinct with more realistic clutter. In the following,

we comment on Figs. 9 and 10, which depict the

performance of the MMSE estimators of Sections II

and III and also, for comparison purposes, the CL

estimator presented in [32].

Observing Figs. 9(a), (c), and (e), the following

comments can be made on the MMSE estimators

based on a KA-homogeneous model.

1) The filter built with the estimator (37) does not

perform well in the nonstationary domain D3 or in D2
where the a priori information is not accurate. Close

to optimal performance is observed in domain D1
where the environment is actually homogeneous and

the a priori matrix is accurate.

2) The estimated degree of a priori ¹ (30) is large
in the domain D1 but has small values elsewhere in
D2 and D3. Thus, the estimator fails at recognizing the
domain D3. Note that ¹ is closely related to the weight
w̄ of the a priori matrix.

This behavior can be explained as follows.

1) In domain D3, the data do not respect the
homogeneous assumption used to derive (30) and

(37). This leads to underestimation of ¹ and w̄. Thus

the estimator (37) does not give enough weight to the

a priori matrix.

2) In domain D2, the estimation of ¹ seems
adequate because the a priori information is not

accurate. However, the filter based on (37) does not

perform much better than the a priori filter. Indeed

the weight w̄, though small (w̄¿ 1), is not equal to

zero, and thus the a priori matrix cannot be totally

rejected in the estimate. In other words, the number

of secondary data K is not large enough so that the

SCM outweights the prior matrix. This behavior is

very undesirable and contrasts the results obtained

for the MSE of Mp (37) when the data are generated

according to the KA-homogenous model.

The performance of the MMSE estimators based

on the assumption of a KA-heterogeneous model

are depicted in Figs. 9(b), (d), and (f). The following

points can be underlined.

1) The proposed filter always provides the best

performance among the three adaptive filters under

study. It behaves like the a priori filter in D1 and D3
when the later outperforms the SCM filter. Otherwise,

the filter behaves like the SCM filter.

2) The values of the estimated ¹ are large in
D1 and D3, i.e., ¹̂mmse ¼ ¹M , when the a priori
information is accurate. In domain D2, where the
a priori is not precise, the estimated values of º
are low, i.e., ¹̂mmse ¼ ¹m. Thus the estimate of ¹
identifies correctly and precisely whether the a priori

information is reliable or not.

3) The estimated values of the degree of

heterogeneity º are more contrasted. In domain D2,
the values of º are small (º̂mmse ¼ ºm). Thus D2 is
correctly identified as a nonhomogenous environment.

In domains D1 and D3, the values of º are large but
endure some variations, though the environment is

equally homogeneous over the area. Especially around

the fourth Doppler bin, the value of º decreases where
the degree of a priori is small.

Thus the estimate of ¹ is a very important
quantity. It defines the shape of the filter: if ¹ is
large the filter behaves like the a priori filter; if ¹ is
small the filter behaves like the SCM filter. It also

correctly identifies if the a priori matrix brings an

accurate information and incorporates or discards it

accordingly in the covariance matrix estimate. As

expected the heterogenous model (3) is perfectible.

Indeed the filter does not outperform the SCM filter if

the prior matrix is not accurate. However, the model

(3) gives some kind of degree of freedom between the

prior knowledge and the secondary data that allows

one an appropriate incorporation of the prior matrix.

Moreover, the estimate of º provides additional
information. It identifies correctly the heterogeneity



Fig. 10. GLC-CL estimation: SINR loss (a), weights ® and

¯ (b).

as long as the prior is accurate enough (otherwise the

algorithm seems to suffer from a lack of reference).

The behaviors of the two estimation procedures

are summarized in Table III. Of course the Gibbs

sampling strategy is highly computationally intensive.

Moreover, the interpretation of its estimators is made

harder because they are not obtained in closed form

(12). However, unlike the estimation based on a

KA-homogenous model, the algorithm is able to

identify precisely the accuracy of the prior matrix

whether the environment is heterogeneous or not.

Furthermore, the matrix estimate derived under

the heterogeneous assumption can entirely reject

the a priori matrix, which is a desirable property,

especially when this matrix does not bring trustworthy

information. In light of these results, it is clear

that using the heterogeneity relation (3) of the

KA-heterogeneous model is actually relevant.

TABLE III

Summary of the Performance of the MMSE Estimates on STAP

Synthetic Data

Environment a priori a priori

Identification º Identification ¹ Incorporation

KA-H1 KA-NH2 KA-H KA-NH KA-H KA-NH

Data

Type

D1 Ø
p p p p p

D2 Ø ¼ p p £ p
D3 Ø

p £ p £ p

Note: 1,2KA-homogenous model, KA-heterogeneous model. Ø,

¼, p, £ none, approximate, correct, not correct.

Finally, before closing this section, the two

Bayesian approaches are compared with the

deterministic CL technique presented recently in [32].

More precisely, we have considered the general linear

combination (GLC) technique. The covariance matrix

estimate is supposed to be a linear combination of the

SCM and the prior matrix

M̂glc
p = ¯M̂scm

p +®M̄p (45)

with ® > 0 and ¯ > 0. The weighting factors ® and ¯
are then derived so as to minimize the MSE between

M̂glc
p and the clairvoyant covariance matrix Mp. More

precisely, as Mp is not known a priori, an estimate of

the MSE is considered instead. The latest is obtained,

assuming that the SCM is unbiased. Fig. 10 displays

the STAP filter shape and the GLC00 weighting factors.

1) In domain D1 and D3, the GLC filter behaves
like the filter based on the KA-homogenous model.

Near-optimal performance is obtained in D1 where
the environment is homogeneous and the prior matrix

is accurate. In D3, the heterogeneity prevents an
appropriate estimation of the weighting factors.

2) Interestingly, in domain D2, the GLC method is
able to reject almost entirely the prior information that

is unprecise.

Thus the deterministic CL estimate (45) performs

better than the Bayesian CL estimate (37). However,

the Bayesian CL technique is able to identify

the degree of a priori when the environment is

homogeneous. This information is not provided as

clearly by the GLC technique. In any event, the

Bayesian estimators, based on the assumption of a

KA-heterogenous model, provide better filtering and

also important information regarding the degrees of

a priori and heterogeneity.

V. CONCLUSIONS

In KA-STAP, a priori information is used

to improve the detection performance in highly

heterogeneous environments. In this context, we

have presented two estimation schemes designed to

incorporate a prior matrix in the noise covariance

matrix estimate. Both schemes rely on Bayesian



data models. The first model also entails an

original relation of heterogeneity that describes

how the secondary covariance matrix differs from

the primary one. The second model assumes a

homogenous environment. The KA part and (possibly)

the heterogeneity relation of the models involve

hyperparameters that represent the degrees of a priori

and heterogeneity, respectively. The MMSE estimators

of both the hyperparameters and the covariance

matrix are derived. For the KA-heterogeneous

model, the estimation is performed via a Gibbs

sampling strategy that is highly computationally

intensive. For the KA-homogenous model, the MMSE

estimators are obtained in closed form, and the

algorithm turns out to belong to the well-known CL

technique. Performance analysis on STAP synthetic

data shows that it is essential to take into account

the heterogeneity in the data model. It brings a

degree of freedom between the secondary data and

the prior matrix that allows one to identify and

incorporate the prior information in an appropriate

way. Otherwise the proposed estimators are not able

to reject inaccurate information, yet achievable with a

less complex deterministic CL method. Additionally,

the estimation scheme based on the first model yields

precise information on the degree of heterogeneity

if the prior information is accurate. Finally, one can

think of some refinements for the future. As expected,

the heterogenous model might be improved. Indeed

when the a priori information is not reliable, the

KA-STAP filter does not perform better than the SCM

filter. Also the computational load induced by the

MCMC method is currently a drawback for real-time

processing.
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