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Two-Dimensional Multivariate Parametric Models
for Radar Applications—Part I: Maximum-Entropy

Extensions for Toeplitz-Block Matrices
Yuri I. Abramovich, Senior Member, IEEE, Ben A. Johnson, Student Member, IEEE, and Nicholas K. Spencer

Abstract—In a series of two papers, a new class of para-
metric models for two-dimensional multivariate (matrix-valued,
space-time) adaptive processing is introduced. This class is based
on the maximum-entropy extension and/or completion of par-
tially specified matrix-valued Hermitian covariance matrices in
both the space and time dimensions. This first paper considers
the more restricted class of Toeplitz Hermitian covariance ma-
trices that model stationary clutter. If the clutter is stationary
only in time then we deal with a Toeplitz-block matrix, whereas
clutter that is stationary in time and space is described by a
Toeplitz-block-Toeplitz matrix. We first derive exact expressions
for this new class of 2-D models that act as approximations for the
unknown true covariance matrix. Second, we propose suboptimal
(but computationally simpler) relaxed 2-D time-varying autore-
gressive models (“relaxations”) that directly use the non-Toeplitz
Hermitian sample covariance matrix. The high efficiency of these
parametric models is illustrated by simulation results using true
ground-clutter covariance matrices provided by the DARPA
KASSPER Dataset 1, which is a trusted phenomenological air-
borne radar model, and a complementary AFRL dataset.

Index Terms—Adaptive processing, autoregressive, stationary
interference, time-varying.

I. INTRODUCTION AND BACKGROUND

I N modern radar applications, adaptive processing is often
performed on two-dimensional (2-D) data streams. For

example, efficient ground-clutter cancellation in airborne radar
can only be achieved using space-time adaptive processing
(STAP) on data that is collected simultaneously by spa-
tially distinct receive channels (antenna array sensors) over
temporally distinct waveform repetitions (“slow time”) that
comprise a coherent processing interval (CPI), which is the
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fundamental set of data that a radar system processes. The main
problem with the use of 2-D STAP algorithms is the need to
adaptively estimate an -variate covariance matrix using,
generally, a very limited number of training data samples. In
airborne radar, there are very few range bins (the “fast-time” di-
mension) on the ground that produce sufficiently homogeneous
backscattered signals due to both geometric considerations
and terrain variations [1]–[3]. When no a priori assumptions
regarding any further properties of the -variate Hermitian
covariance matrix are made, the generic sample covariance
matrix estimate is used in signal processing algorithms that are
based on sample-matrix inversion (SMI). Unfortunately, the
number of independent identically distributed (i.i.d.) training
samples must be at least (otherwise the sample matrix is
rank deficient), and moreover must be at least in order to
ensure that the average signal-to-interference-plus-noise ratio
(SINR) losses of the STAP filter are below 3 dB, relative to the
optimum (clairvoyant) Wiener filter [4]. In most airborne radar
scenarios, such a large number of i.i.d. (i.e., suffi-
ciently homogeneous) training samples is simply not available.

However, in most practical cases, some additional a priori
information on the properties of the ground-clutter covariance
matrix is available. In certain applications (and as modeled in
DARPA’s high-fidelity airborne side-looking radar KASSPER
Dataset 1 [5], [6]), the ground clutter is stationary in slow time.
In this case, the (range-dependent) -variate true covariance
matrices have a Toeplitz-block structure. Note that we carefully
(but possibly unconventionally) use the term Toeplitz-block ma-
trix for a blockwise-Toeplitz matrix composed of unstructured
blocks, as distinct from a block-Toeplitz matrix which describes
an overall unstructured matrix composed of individually
Toeplitz blocks. (Of course, the term Toeplitz-block-Toeplitz
means an overall Toeplitz matrix composed of Toeplitz blocks.)

Due to the embedded (block/matrix-valued) nature of the ma-
trices we deal with, we also need to introduce our notation more
carefully than usual. We use bold-face lower-case letters for
vectors, block upper-case letters for block matrices, upper-case
letters for simple matrices, and corresponding lower-case let-
ters for the matrix elements. We use and to denote a gen-
eral matrix, with and for a Toeplitz matrix. , and
all refer to a priori unknown variables. As mentioned, a typical
covariance (hence Hermitian) matrix in this problem is also
an -variate Toeplitz-block matrix, so that the macroscopic
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structure is an Toeplitz (matrix-valued) matrix, while
the microscopic structure (each block) is an (unstruc-
tured/general) matrix:

(1)

where and are respectively the classes of com-
plex and complex Hermitian Toeplitz -variate matrices. In this
notation, and are spatial indexes with being the number
of antenna sensors, while and are temporal (“slow-time”)
indexes with being the number of waveform repetitions. The
notation emphasizes that the elements (covariance lags)
are Toeplitz in the temporal dimension only. The default size
of a matrix is . The default size of a block matrix is

, unless we indicate otherwise by a subscript, e.g.,
; moreover, the first factor in the

subscript indicates the “inner” dimension, with the second cor-
responding to the “outer,” so that comprises

lots of -variate blocks.
Another simplification occurs when we consider radars

whose receive antenna is a uniform linear array (ULA), in
which case the resulting -variate covariance matrix is
Toeplitz-block-Toeplitz:

(2)

where is the class of -variate complex Toeplitz ma-
trices.

Restricting the class of admissible covariance matrices
from Hermitian-block matrices to Toeplitz-block matrices
to Toeplitz-block-Toeplitz matrices somewhat reduces the
training-sample requirements from [7]. Yet in
most practical cases, the available number of suitable training
samples is still too small. One remedy to the problem of
sample-support shortage is a still further restriction of the
admissible set of estimated covariance matrices to some para-
metric family, whose number of free parameters is sufficiently
small to potentially decrease the required i.i.d. sample support.

Naturally, if the chosen parametric model is not accurately
supported by the phenomenology of the underlying process,
such as airborne radar ground clutter, it must be treated cir-
cumspectly. Even the “best” parametric approximation of a
“true” covariance matrix will inevitably cause some STAP
performance degradation with respect to the clairvoyant Wiener
filter. In particular, the -variate “phenomenological” co-
variance matrices of the KASSPER dataset, apart from being
Toeplitz-block matrices, do not exactly fit any known para-
metric model with a small number of free parameters.

Therefore, selecting an appropriate parametric model is
equivalent to finding the best tradeoff between performance

losses due to the mismatch between the true covariance matrix
and its parametric approximation, and performance losses due
to using a limited number of training samples (“finite sample
support”). While the latter “stochastic losses” are expected
to decrease as more parametric restrictions are imposed, the
former “model-mismatch losses” should increase. A mean-
ingful assessment and comparison of parametric model-based
STAP could be performed only if a trustworthy phenomenolog-
ical clairvoyant covariance matrix of ground clutter is provided.
For this reason, our study relies upon the KASSPER Dataset 1,
an elaborate high-fidelity phenomenological clutter model for a
particular side-looking airborne radar. The KASSPER dataset
uses the Splatter, Clutter and Target Signal model (SCATS)
[8], which incorporates detailed modeling of range-specific
clutter, interference and terrain-scattered interference, based on
three-dimensional terrain datasets and rigorous terrain shad-
owing, scattering and diffraction modeling. An -band radar
front-end is modeled: 32 waveform repetitions per CPI and
a nominally ULA with 11 sensors (subarrays), including
three different types of antenna errors: physical positioning
errors, differences in subarray beam-patterns, and calibration
errors. These antenna errors mean that the -variate covari-
ance matrices, provided for 1000 consecutive range bins, are
Toeplitz-block matrices, not Toeplitz-block-Toeplitz ones.

Unfortunately, the KASSPER software does not have an op-
tion to “switch off” antenna errors [9], and so to validate our
parametric models devised for a Toeplitz-block-Toeplitz covari-
ance matrix, we used a complementary ground-clutter model
from the U.S. Air Force Research Laboratory (AFRL) [10].
This model was derived for the same KASSPER radar scenario,
but adopts slightly simplified electromagnetic simulation algo-
rithms (e.g., no shadowing), and allows for an ideal ULA ge-
ometry.

Let the th observed radar data “snapshot” be ,
, where , i.e., is an

-variate random complex (circular) Gaussian training
vector, with zero mean and covariance . Given the true covari-
ance matrix (for a particular range bin), the optimum Wiener
STAP filter is , where
is the space-time “stacked steering vector” for a target located
in the azimuthal direction and moving with the Doppler
frequency . (We keep the elevation angle constant in this
study; the steering vector is calculated in the standard way
[3].) For any parametric estimate (i.e., model approximation) of
the covariance matrix , where is the set of parameters,
the STAP filter is calculated as .
For this study, we have chosen the performance criterion for
assessing and comparing this parametric model to be the SINR
loss factor with respect to the optimum filter:

(3)

If the parametric model is calculated for the true (clair-
voyant) covariance matrix , then the resulting loss factor is
the SINR performance degradation associated with the model
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mismatch only. More usually, when is an “adaptive” esti-
mate, i.e., , the loss factor is a
random number that incorporates both “model-mismatch” and
“stochastic” losses.

Given the KASSPER or AFRL true covariance matrix , we
are able to conduct Monte Carlo STAP simulations using a set
of ideal (perfectly homogeneous) training samples, which are
generated as

(4)

where is the -variate identity matrix, as usual.
When considering STAP applications for a process that is

stationary in slow time, an obvious parametric family is the
multivariate autoregressive model [11]–[13] with a
relatively small order . While this autoregressive (AR)
clutter model does not have a straight-forward phenomenolog-
ical (physical) basis, it has been traditionally used in univariate
moving-target detection applications, and theoretically justifies
the simplest -stage moving-target indicator (MTI) filters
[14]. modeling leads to a two-fold reduction in the
minimum sample-support requirement. First, the -variate
Toeplitz-block matrix is uniquely defined by its principal

-variate block (the top-left corner, say)

(5)

Second, the ergodicity principle allows us to generate, from a
single -variate training sample, different

-variate identically distributed training samples to estimate
the matrix by “sliding-window” averaging (temporal
smoothing) over the -long CPI. While these training sam-
ples are not statistically independent, their homogeneity makes
them a valuable contribution to the -variate covari-
ance matrix estimate . If the traditional sample matrix

is considered (as a sufficient statistic) for estimating
the Toeplitz-block matrix , then the minimum number
of -variate training samples (range bins)
is [15]

(6)

where denotes the smallest integer greater than the argument
(the “ceiling” function).

For clutter that is stationary both in slow time (i.e., a
strictly periodic radar waveform) and space (i.e., a per-
fectly ULA), whose -variate covariance matrix is
Toeplitz-block-Toeplitz in structure, the natural choice for
STAP applications is the 2-D autoregressive model
[16], [17]. For this model, the covariance matrix is uniquely
specified by the -variate matrix [18]

(7)

and now different (but dependent)
-variate training samples can be generated

from a single -variate one by sliding-window averaging

over both the slow-time and space dimensions. Hence, the
minimum sample support for the model is

(8)

which means that even a single training sample may be
sufficient, if and .

Despite promising results for and
models [12], a number of important practical STAP application
issues have not yet been addressed. Specifically, regarding the

model as follows.
(1.1) This model imposes parametric restrictions over only

the temporal domain by limiting the AR order . If sim-
ilarly to the ideal ULA case, it is possible to impose parametric
(order) restrictions over the spatial domain (for an arbitrary an-
tenna array geometry), then a further sample-support reduction
could be expected. We call this a “mixed AR model” because
it is AR in its temporal dimension, with the spatial dimension
having some sort of restriction.

(1.2) In most studies on parametric STAP [12], estimation
of a stable (causal) model is considered given a
set of i.i.d. training samples. The various estimation pro-
cedures described in [16], for example, are not optimal in
any particular sense (such as maximum likelihood), yet are
computationally involved. Given a positive-definite (p.d.)
Hermitian-block sample matrix , these methods re-
construct an -variate p.d. Toeplitz-block matrix that
then uniquely specifies the -variate covariance
matrix estimate . However, the possibility of reconstructing
a -variate p.d. Hermitian-block matrix from the same
sample matrix , that is efficient in terms of SINR per-
formance, remains unexplored. If successful (as this paper will
demonstrate), such an approach involves a deliberate inconsis-
tency: stationarity in slow time (and therefore Toeplitz-block
structure of the clutter covariance matrix) is exploited by
sliding-window averaging over the CPI when estimating the

-variate sample matrix ; but this property is
deliberately abandoned in our final estimate , which then
prompts us to use the term “relaxation” (for a relaxed model).
Clearly, if the development of the “mixed” AR model in (1.1)
is successful, a similar “relaxation” may also be available (and
desirable) for this Toeplitz-block matrix. Finally, for any true

-variate covariance matrix, as supplied in KASSPER or
AFRL datasets, it remains unclear whether a rigorous (causal)

model with will always outperform its
corresponding relaxation in the SINR sense.

Note that the “relaxation” idea is already known in the field of
adaptive signal processing: the conventional (Hermitian) sample
covariance matrix estimate (or its diagonally loaded version) is
routinely used when applying an adaptive matched filter (AMF)
or generalized likelihood-ratio (GLRT) detector [19], [20], de-
spite often knowing properties of the underlying covariance ma-
trix (e.g., Toeplitzness).

Regarding the causal 2-D model, the as-yet unad-
dressed issues are as follows.
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(2.1) Fairly recent results of Woerdeman et al. [18] have
proven that an -variate p.d. Toeplitz-block-
Toeplitz matrix must satisfy special additional
structural requirements in order to serve as the covariance
matrix of a causal/stable model. This is an impor-
tant difference from the model where an arbitrary
p.d. Toeplitz-block matrix can be uniquely extended
to be the -variate Toeplitz-block covariance matrix of
a causal model. In practice, this means that an

-variate Hermitian-block sample matrix
must be somehow first converted into a p.d.

Toeplitz-block-Toeplitz matrix , which then has
to undergo further modifications to meet those structural
requirements. While possible in principle, but not in the
maximum-likelihood sense (e.g., see [18]), it is uncertain
whether this is the only model that can achieve the dramatic
sample-support reduction (8), and at the same time, produce an

-variate covariance matrix estimate appropriate for STAP
applications.

(2.2) For the “conventional” model and other
models derived for an arbitrary -variate p.d.
Toeplitz-block-Toeplitz matrix -variate
Hermitian relaxations that can be directly calculated from the
given -variate p.d. Hermitian-block sample
matrix should be considered for practical radar
applications.

This paper presents the results of our study that addresses
these issues. Specifically, in Section II for clutter that is
stationary in slow time (hence a Toeplitz-block covariance
matrix), we introduce a new class of 2-D mixed autoregressive
models . Apart from being an -type model
in the slow-time domain, we impose additional time-varying
autoregressive (TVAR) order restrictions in the spatial domain
that lead to requiring fewer training samples. Such “mixed
models” are AR in one dimension and TVAR in the other. In
Section III, we introduce a set of new 2-D models

and that allows us to uniquely recon-
struct an -variate Toeplitz-block matrix, given an arbitrary

-variate p.d. Toeplitz-block-Toeplitz matrix.
The models introduced in Sections II and III serve as approx-
imations of the true Toeplitz-block or Toeplitz-block-Toeplitz
clutter covariance matrix, and therefore allow us to investi-
gate “model-mismatch” SINR losses. Section IV introduces
relaxations and corresponding
to the stationary causal models and
respectively. For ground clutter that is stationary in both di-
mensions, we also derive the relaxations and

. Model-mismatch losses for these models are
analyzed in Section V for the phenomenological KASSPER
and AFRL datasets. We also demonstrate high STAP SINR
performance when using a small number of i.i.d. training sam-
ples, generated according to (4). (A more detailed analysis of
parametric STAP performance for airborne radar applications is
presented in a separate study [21].) Section VI summarizes this
paper, while the Appendix reproduces the mathematical details

of the Dym-Gohberg band-extension method that are necessary
for understanding certain subtleties of our model derivations.

The second paper in this series (which follows this paper
within this issue) investigates 2-D parametric models for Her-
mitian matrices.

II. 2-D MIXED AUTOREGRESSIVE MODEL

The 2-D mixed AR model is designed for data
that is stationary in the temporal dimension only (e.g., airborne
radar ground-clutter data which is stationary in slow time). We
find the covariance matrix for this model by solving a max-
imum-entropy (ME) matrix completion problem. Recall that
in such a problem, a partially specified (incomplete) matrix is
given, and the task is to find the value of all the unspecified el-
ements such that its determinant is maximized [22], [23].

Let be the -variate vector of all (distinct) unspecified co-
variance lags in the -variate complex matrix , then the
covariance matrix for the model is defined by

(9)

given a certain partially specified .
A typical one-dimensional problem might involve an incom-

plete -variate -banded matrix , i.e., only the elements
inside the central band (which has bandwidth

) are specified; then the ME-completion problem would
be to complete the band matrix so as to maximize .
(Some authors call this a “band extension”, others reserve
the term extension for when the dimension of the matrix is
increased.) In this paper, we deal with two-dimensional data
and an -variate Toeplitz-block matrix , and while the
same concept applies, the notation and structure of are a little
more complicated.

Specifically, the structure of our -variate Hermitian
Toeplitz-block matrix (comprising unstructured
blocks, each of elements) is

(10)

i.e., within its “2-D block-band,” has the same (fixed/pre-
scribed) elements as , while outside the “2-D block-band” it
has unspecified elements [24]. For convenience, we let
be the set of indexes that correspond to matrix elements within
the 2-D block-band, with being the complementary set:

(11)

As usual, the spatial (“inner”) indexes op-
erate within each block, while the temporal (“outer”) indexes

operate on blocks. This special matrix structure
is merely a reflection of way the 2-D data is ordered, namely, the

-variate data vector is stacked as lots of data (i.e.,
all antenna sensor outputs in a group, repeated for each slow-
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Fig. 1. Graphical representation of the structure of an example Hermitian
Toeplitz-block matrix with � � ��� � � �� (rather than our usual
� � ��),� � � and � � �, where grayness represents element magnitude.
The elements outside the “2-D block-band” (rendered black) are unspecified.
The “2-D block-band” of specified elements ���� comprises � 	 � � 

elements in the first row of each block, and � 	 � � � blocks in the first row
of blocks.

time). This is the conventional radar ordering, though we shall
see that the complementary ordering (i.e., all slow-time outputs
in a group, repeated for each antenna sensor, producing a block-
Toeplitz matrix) is useful.

Fig. 1 illustrates the structure of an example Hermitian
Toeplitz-block matrix . We see that the (“inner”, “micro-
scopic,” spatial) band within each -variate block (where it
exists) has width , while the (“outer”, “macro-
scopic,” temporal) blockwise-band has bandwidth
blocks. This 2-D block-band structure means that some of
the -variate blocks are partially specified, while others are
completely unspecified.

In general, to define an entire -variate Hermitian
Toeplitz-block matrix, it is (slightly more than) enough to
specify the distinct blocks (the top row, say). For almost
every -variate unstructured block (the top row, say, excluding
the left block), it is necessary to specify all elements; for
the exceptional Hermitian diagonal-block (the top-left block,
say), there are only distinct elements. In our par-
ticular 2-D block-banded ME-completion problem, exemplified
by Fig. 1, let the distinct partially specified blocks be

, where

(12)

so that the unspecified vectors for this first group of blocks
each have length ,

except for the Hermitian block that has length .

Let the remaining distinct fully unspecified blocks
be , where

(13)

so that this second group of unspecified vectors
each have length . With this notation, the definition of
the optimization function in the problem (9) can be recast
as

(14)

where is the operator that forms a Hermitian Toeplitz
matrix using its arguments.

First consider the subproblem that involves only the group of
partially specified blocks

(15)

If we can somehow find the p.d. ME completion,
, then the overall

completion problem (9), (14) (i.e., finding the vectors
) is just the standard multivariate Burg

problem. This suggests that we first deal with the partially
specified blocks by ME-completing the -variate ma-
trix , and then deal with the fully unspecified blocks
by ME-extending to the full-size -variate matrix .

A. Step 1: ME-Completion of

Therefore the overall ME completion of (14) is feasible
if the partially specified Toeplitz-block matrix is able
to be ME-completed

(16)

(17)

Instead of maximizing , we may minimize the
determinant of its inverse, say, which immediately recasts this
ME completion as a linear matrix inequality (LMI) [25], [26].
Due to the convexity of the LMI, existence and uniqueness of the
solution is guaranteed. The following theorem may be viewed
as a special case of in [22, Theorem 1.1], or as a multivariate
generalization of in [27, Theorem 7].

Theorem 1: Let be a partially specified p.d. Toeplitz-block
matrix that admits p.d. completions. For any such that is
invertible, let

(18)
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Then the determinant-maximizing p.d. Toeplitz-block matrix
completion is unique and satisfies

(19)

In other words, the ME completion has the property that all el-
ements in the inverse, in positions corresponding to the same
completed element in the direct matrix, sum to zero.

One outcome of this theorem is that the “top-right block” of
is a band matrix

(20)

(consistent with the fact that the elements in in these
positions are not replicated elsewhere).

Since this is a standard LMI, the solution (“analytic center”)
can be calculated by convex programming techniques, such
as the interior-point methods, given a feasible starting point
[26]. We choose to use the Newton method with Nesterov–Ne-
mirovskii step-management [28]:

(21)

where is the “damping factor”

(22)

We next specify the gradient and Hessian of the ob-
jective function .

Let be the
-variate “element-selection vector”, comprising

a single nonzero element of unity at the position ,
so that the expression evaluates to (merely selects) the
element of in the block at the local position .
Then the gradient vector can be formally expressed as

(23)

and the number of (distinct) variables is
. (The ordering of indexes is immaterial, as

long as it is consistent.) The -variate Hessian matrix is

(24)

Nesterov and Nemirovskii proved that this algorithm con-
verges to the optimal solution , where leads
directly to (19), since

(25)

The Newton–Nesterov–Nemirovskii routine needs to begin
at some feasible initial point. In this paper, we use this rou-
tine to find a parametric model for the given clairvoyant ma-
trix, so naturally we use this as the initial point. Also, note that
our attempts to avoid calculating the Hessian by using the com-
putationally simpler gradient technique proved too demanding
for the problem dimensions relating to KASSPER data (i.e., the
convergence rate was impractically slow).

B. Step 2: ME-Extension of to

Now that we have a (fully specified) -variate ma-
trix , we wish to extend it to a full-size -variate

matrix . As mentioned above, this is the standard multi-
variate Burg problem. The solution can be found using a spe-
cial case of the Dym-Gohberg “band-extension” method (see
the Appendix), and has the property:

(26)

The solution uniquely specifies the mixed 2-D AR
model .

The Dym-Gohberg band-extension theorem applies to any
Hermitian-block matrix. For a more specifically Toeplitz-block
matrix, we have

...
...

(27)

i.e., the “diagonally sliding block” is constant in the Toeplitz
case, so the “full-height stacked matrices” in (68) are iden-
tical: . Let be the

-variate zero matrix, then the “increasingly shorter stacked
matrices” are

...
...

. . .
... ...

(28)

Similarly, for a Toeplitz-block matrix,
, and

...
. . .

...

...

(29)

Then the Dym-Gohberg factorization is

(30)
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(31)

III. 2-D MIXED AUTOREGRESSIVE MODELS

AND

As discussed in Section I, an -variate p.d. Her-
mitian Toeplitz-block-Toeplitz matrix is the covariance matrix
of a causal (stable) 2-D autoregressive model , and
has a unique -variate Toeplitz-block-Toeplitz extension, if
and only if it satisfies the special structural conditions given by
Woerdeman et al. [18, Theorem 2.1]. In this section, we con-
sider models whose covariance matrix can be extended from ar-
bitrary p.d. Toeplitz-block-Toeplitz to -variate.

A. Model

First, suppose that we require the completed -variate
covariance matrix to remain p.d. and Toeplitz-block-Toeplitz.
Then the ME completion problem is formally written as

(32)

In other words, we seek the determinant-maximizing
-variate matrix that retains the (prescribed)

elements of the given matrix within the 2-D
block-band (see Fig. 1), whilst having to-be-determined
elements outside the 2-D block-band. As before, is the

-variate vector of these (distinct) unknown complex numbers
ordered in some arbitrary but consistent fashion.

The necessary and sufficient condition for the existence of a
unique solution to this convex optimization problem (32) fol-
lows easily from the general result of Bakonyi and Woerdeman
[22, Theorem 1.1]; then the solution must satisfy

(33)
where (as before) the matrix has elements
[cf. (19)]. As for the solution to every Toeplitz ME com-
pletion problem, this means that the elements in the inverse
matrix that correspond to the same completed covariance
lag in the direct matrix sum to zero. Hence, the -variate
p.d. Toeplitz-block-Toeplitz ME completion of an arbitrary

-variate p.d. Toeplitz-block-Toeplitz matrix
is generally not an autoregressive matrix, since groups of
elements in the inverse sum to zero, but are not necessarily zero
individually. For this reason, we call this model ,
instead of using the AR nomenclature. While the completion is
not an AR matrix, it does not preclude it from being used for
STAP filter design.

To find the solution , (32) can be reformulated as the
following LMI problem, similarly to the completion problem
(16):

(34)

In order to calculate the gradient and Hessian, we again need a
way to formally describe the matrix as a function of its un-
known variables . We introduce an “element-selection matrix”,
analogous to our definition of the element-selection vector in
the previous section.

Let be an -variate binary matrix whose only unity
elements correspond to the positions of the group of elements
relating to the same covariance lag (the same group mentioned
above):

(35)

where is the Kronecker delta function. Let be the se-
quence of indexes .
Then

(36)

(37)

where the bar denotes complex conjugation. The number of vari-
ables in is

(38)

With respect to the Nesterov–Nemirovskii algorithm, the gra-
dient and Hessian are

(39)

(40)

Again, the convergence condition coincides with the
optimality condition (33).

In summary, our model enforces the Toeplitz-
block-Toeplitz structure of the original covariance matrix onto
the ME completion, but results in a non-AR model. Instead, we
may wish to “approximate ME extensions with models from a
suitably selected model set,” as recommended in [23]. In this
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regard, let us now investigate what happens when we force the
completion to be AR, but allow it to be a Toeplitz-block (not
Toeplitz-block-Toeplitz) matrix.

B. Model

To find an -type ME completion, we first consider
the completion of an -variate Toeplitz-block-Toeplitz
matrix:

(41)

(42)

The unique optimal solution to this LMI problem,

say, can then be -type extended
to an -variate p.d. Toeplitz-block matrix:

(43)

Indeed, the ME (“Burg”) completion may again
be calculated using the Dym-Gohberg band extension
(26)–(31), i.e., we get an -type matrix with -variate
blocks, dependent on the spatial order , generated from the

-variate p.d. Toeplitz-block-Toeplitz matrix.
According to (26), this solution obeys the
property. This means that in the band within each block

, the solution has a Toeplitz-block-Toeplitz
structure, as desired; outside this band, the completed matrices

are arbitrary ones that meet our AR require-
ment.

We call this model . The main difference be-
tween this model and introduced in the previous
section is that is for data that is stationary in both
dimensions, and is represented by an -variate p.d.
Toeplitz-block-Toeplitz covariance matrix, despite the fact that
the property is retained in the slow-time dimension
only. (Strictly speaking, the model should perhaps
already be treated as a “relaxation”, since stationarity in the
space dimension is ignored.) On the other hand, the
model was introduced for data that is stationary only in time,
and is represented by an incomplete -variate Toeplitz-
block matrix.

C. Model

With respect to the model, the symmetry of
space-time properties in a Toeplitz-block-Toeplitz matrix means
that we can also define its dual model, say, which
is represented by the covariance matrix . This dual
matrix is still a Toeplitz-block matrix, but comprises
lots of blocks (instead of vice versa for ).

Indeed, we can first complete the given matrix
to an -variate Toeplitz-block-Toeplitz matrix by cal-
culating the completion of the LMI problem

(44)

(45)

and then build the model using the Dym-Gohberg
technique

(46)

whose covariance matrix obeys the property:

(47)

D. Recap

The three 2-D mixed AR models that we have intro-
duced, and , are each
uniquely defined by the corresponding completion of the given

-variate p.d. Toeplitz-block-Toeplitz matrix.
Only if this matrix satisfies the special structural conditions
given by Woerdeman et al. [18, Theorem 2.1] do all three of
them collapse to the same causal 2-D model whose

-variate p.d. Toeplitz-block-Toeplitz covariance matrix
satisfies

(48)

Table I summarizes the characteristics of the stationary
models introduced in this and the previous section.

IV. TIME-VARYING AUTOREGRESSIVE “RELAXATIONS”
AND

The 2-D TVAR relaxed models (“relaxations”)
and are designed for data that is stationary in
the temporal dimension, while the model is for
data that is stationary in both space and time; and are subop-
timal parametric models associated with the above

and models respectively.
As discussed earlier, the main reason for considering para-

metric models in STAP applications is that the sample sup-
port requirement is reduced. This is due to estimation of an

- or -variate covariance matrix, instead
of an -variate one, with ergodicity allowing training data to
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TABLE I
SUMMARY OF THE 2-D MIXED STATIONARY MODELS. IN EACH CASE, THE GIVEN TEMPORAL COVARIANCE LAGS ARE ��� �� � �. THE FIRST TWO MODELS ARE

FOR 1-D STATIONARY DATA; THE REMAINING THREE ARE FOR 2-D STATIONARY DATA

be averaged over slow time (for 1-D stationary clutter data) or
over both slow time and space (for 2-D stationary clutter).

A straight-forward idea that extends the framework of the
stationary models developed in the previous two sections is to
somehow convert the averaged sample (Hermitian-block) co-
variance matrix or into a p.d. Toeplitz-
block or Toeplitz-block-Toeplitz matrix.

Unfortunately, even for the scalar problem, maximum-likeli-
hood estimation of a p.d. Toeplitz covariance matrix is a difficult
problem that does not have a known closed-form solution [29].
Brute-force approaches such as redundancy-averaging [30] usu-
ally give poor results, so that parametrization methods (e.g.,
reflection coefficients) are widely used. In [7], a p.d. Toeplitz
matrix was reconstructed by estimating its maximum-entropy
spectrum from a sample Hermitian matrix. Computationally, the
problem was solved by factorizing a positive polynomial. In the
multivariate case, the same approach can be taken for a positive
matrix-valued polynomial [31], [32]. However, this method is
complicated and seems to be of little practical value for real-time
STAP applications.

Therefore, this section discusses an alternate approach,
whereby we reconstruct an -variate Hermitian-block
matrix from the given p.d. Hermitian-block sample matrix

or , with properties that are suitable for
STAP applications.

A. Relaxation of the Model

Section II outlines the Dym-Gohberg band-extension
technique for reconstructing an -variate Toeplitz-block

-type matrix given . The reconstruc-
tion has exactly the same multivariate ME spectrum as

, and in fact this equivalence uniquely defines the
-type completion of an -variate Toeplitz-block

matrix. In the scalar case, the ME spectrum is uniquely defined
by the first column of the inverse matrix. In the 2-D case, we
have

...
...

(49)

i.e., the first column-block of the inverse of the Toeplitz-block
matrix defines the ME spectrum, and all nontrivial entries of
this inverse are the same for the reconstructed as for the
original .

Given the -variate Hermitian-block sample matrix
, such that

(50)

where is the expectation operator, we propose constructing an
-variate p.d. Hermitian-block matrix that meets two

requirements. First, is -type covariance ma-
trix:

(51)

Second, the estimate of the multivariate ME (Burg) spectrum
for is the same as for the given sample matrix:

(52)

In fact, these two conditions do not uniquely specify the Her-
mitian extension of a given Hermitian-block matrix. With this
extra freedom, it is important to note that we suggest the re-
construction process of the model is performed
the same as for Toeplitz-block matrices (27)–(31), treating the
Hermitian-block matrix as if it was Toeplitz-block. Indeed, in
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those equations it is simply necessary to replace by
.

The positive-definiteness of the sample matrix
means that for [cf. (28)], hence the
block-lower-triangular matrix [cf. (30)] and, therefore, the
resulting Hermitian-block matrix are p.d.
Note that the above two properties are met by construction.

As before, we can also contemplate the “backward recon-
struction” via , where [cf. (31)] is a block-
upper-triangular matrix. We may even consider computing the
solution as

(53)

Clearly, if the sample matrix was a Toeplitz-block ma-
trix, say, then all three options would yield the same
result. For a merely Hermitian-block sample matrix, the results
may differ, but these should not be statistically significant due
to (50).

Recall that when the clairvoyant Toeplitz-block matrix
is used instead of , we get the conventional
covariance matrix .

B. Relaxation of the Model

The mixed 2-D AR model was introduced
in Section II as the completion of the Toeplitz-block matrix

, followed by an -type extension to an
-variate Toeplitz-block matrix . In the adaptive

setting, the partially specified sample matrix is no longer
Toeplitz-block:

(54)

so that there is no need to retain the Toeplitz properties of
the completed elements in , as in (17), hence the

model’s covariance matrix is found by uncon-
strained ME completion:

(55)

It is simple to show that the Dym-Gohberg band-extension
method is directly applicable in this case.

We solve the problem by first simply reordering the sample
matrix , with its lots of blocks,
into a matrix that has lots of
blocks:

(56)

This just means that we have swapped the spatial and temporal
dimensions in the presentation of the radar data in the block ma-
trix (the “inner” dimension is now temporal, while the “outer”
is spatial). Formally, this transformation is accomplished by

(57)

where is an -variate unitary permutation matrix,
whose columns are appropriately selected from . Our
completion problem is therefore recast as

(58)

which coincides with the Dym-Gohberg band-extension formu-
lation. The unique solution is found in a computation-
ally efficient way, and has the property:

(59)

Then we perform the inverse reordering to obtain the
-variate Hermitian-block matrix (whose 2-D data structure is

returned to usual):

(60)

Note that according to Theorem A.2, all
-variate principal matrices

must be p.d., which for a sample matrix holds with
probability one if ; hence the
sample matrix may be rank deficient.

Finally, given the completed p.d. Hermitian-block matrix
, we compute the -variate -type

covariance matrix using the restoration technique as
for the model. We therefore call this model

.
The main difference between the and

models is noticed when both models are
applied to a Toeplitz-block matrix . In this case, the

model coincides with the one, and
gives an -variate Toeplitz-block matrix ; whereas
the model does not give a Toeplitz-block
matrix when applied to the partially specified . This
is because the Dym-Gohberg band-extension method does
not respect the Toeplitz nature of the -variate blocks ,
and generates non-Toeplitz “missing” blocks that meet the
requirement (59), hence the result in (60) is no longer
a Toeplitz-block matrix.

In the next section, we investigate how detrimental this “re-
laxation” is for STAP SINR performance.

C. Relaxation of the Model

In this case, we have data that is stationary in both dimensions
(space and slow time, in the airborne radar application), and are
given the -variate p.d. Hermitian-block sample
matrix that has been averaged in both dimensions,
i.e., the prototype for this case is an -sensor ULA collecting

periodic pulses.
We use the same approach as in the previous subsection: the

given matrix is expanded in the spatial domain to the dimen-
sion , then convert this -variate into an
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TABLE II
SUMMARY OF THE 2-D MIXED TIME-VARYING AUTOREGRESSIVE “RELAXATIONS.” IN EACH CASE, THE GIVEN TEMPORAL COVARIANCE LAGS ARE

�� � � �� � � � � � � �

-variate -type covariance matrix. Briefly, the
algorithm is to reorder the input matrix

(61)

then restore

(62)

using the “full height stacked matrices”

(63)

and the “increasingly shorter” [see (64) shown at the bottom of
the page], then inverse reorder

(65)

and finally restore the -type -variate covari-
ance matrix .

Naturally, we can also form the dual model
by similarly completing the given sample matrix as an

-variate Hermitian-block matrix (instead

of ), and then extending it to a -type

covariance matrix .
Again, it is important to note that, when applied to the

clairvoyant -variate Toeplitz-block-Toeplitz
matrix, the relaxations and

are different to the models and re-
spectively, mainly because the Dym-Gohberg method does not
retain the Toeplitz-block-Toeplitz structure of the completed

or . Hence, the Toeplitz-block-Toeplitz or
even Toeplitz-block structure is not necessarily retained in the
relaxation covariance matrices or , despite the
2-D stationarity being exploited by sliding-window averaging.

Table II summarizes the characteristics of the four relaxations
introduced in this section.

V. SINR PERFORMANCE OF PARAMETRIC STAP: KASSPER

AND AFRL DATA RESULTS

As discussed in the Introduction, we choose to evaluate dif-
ferent parametric models for STAP applications by analyzing
the SINR loss factor with respect to the optimum (clairvoyant)
Wiener filter (3) for phenomenological clutter covariance ma-
trices, as provided by KASSPER and AFRL datasets. Recall
that the KASSPER model has ULA antenna errors that prevent
the true covariance matrix from being Toeplitz-block-Toeplitz,
whereas the AFRL covariance matrix is based on the same
KASSPER radar scenario, but with simplified electromagnetic
calculations and an ideal ULA.

First, Fig. 2 presents the distribution of optimum STAP filter
gains over the conventional matched filter for the (a) AFRL and
(b) KASSPER model at the fixed elevation angle
that is appropriate for range bin 200. (Recall that the “spatial
aperture” is 11 and the “temporal aperture” is 32 in these
datasets.) These gains are calculated on a discrete 2-D grid that
cover the entire range of azimuthal angle and Doppler fre-
quency ; however, radar scientists sometimes prefer to work

...
...

. . .
... (64)
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Fig. 2. Azimuth-Doppler distribution of optimal STAP gains with respect to
the conventional matched filter for range bin 200 from both datasets.

in terms of and normalized Doppler frequency . The
optimum STAP gain is calculated similarly to (3):

(66)

Fig. 2 shows that the antenna errors present in the KASSPER
data do not significantly affect the optimal STAP gain in the
AFRL data. As expected for a target with zero radial speed,
along the so-called clutter ridge (the long thin dark diagonal fea-
ture) there is no gain, but even in close proximity to the clutter
ridge the gain can exceed 40 dB for KASSPER data. The slightly
different additive-noise power in the AFRL data reduces the
global maximum gain to about 40 dB, instead of about 47 dB
for KASSPER data, but otherwise the distributions in Fig. 2 are
very similar.

Fig. 3 illustrates the SINR losses (3) for the traditional [11],
[12], [13], [15], model of (temporal) order ,
calculated for the clairvoyant matrices for range bin 200 in each
dataset, with almost the same distribution of losses. The max-
imum SINR loss factor for the AFRL Toeplitz-block-Toeplitz
matrix is 1.8 dB, while for the KASSPER Toeplitz-block ma-
trix it reaches 1.9 dB. As expected for a low-order
model, maximum losses occur close to the clutter ridge, whereas

Fig. 3. Clairvoyant (forward-reconstructed) �� ��� SINR losses relative to
optimal STAP filter processing for (a) AFRL and (b) KASSPER data.

away from the ridge the losses drop to only a fraction of a
decibel.

These results confirm the very high potential efficiency of
the models with for STAP applications, as
demonstrated in [12], [13], but also show that this model, which
does not rely on an ideal ULA, responds equally well to the
ideal and perturbed ULA geometries. Unfortunately, we will see
that this equal-responsiveness breaks down as soon as we apply
“spatial averaging” over the clairvoyant covariance matrix.

Indeed, Fig. 4 presents the AFRL/KASSPER comparison
in SINR loss factor for the model with or-
ders and . In the AFRL case (ideal ULA,
Toeplitz-block-Toeplitz covariance matrix), this 2-D para-
metric model results in 2.9-dB maximum losses, which is
only 1.1 dB worse than for the traditional 1-D parametric

model of Fig. 3(a). For the KASSPER data (imperfect
ULA, Toeplitz-block covariance matrix, other antenna errors),
the model (that incorporates spatial averaging)
leads to disastrous SINR losses as great as 27 dB. Clearly,
this particular parametric model that relies on an ideal ULA is
completely unsuitable for an antenna array with such errors,
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Fig. 4. Clairvoyant (forward-reconstructed) ���� ����� SINR losses for
(a) AFRL and (b) KASSPER data.

while could still be applied, and so we hope
that some sample-support reductions may be achieved for the
KASSPER antenna array by considering our new
model and/or its relaxation instead of the
unsuitable .

Fig. 5 shows the SINR losses for the latter two models when
applied to the clairvoyant Toeplitz-block matrix ,
whereby the solutions and differ, as discussed
above. Yet, in terms of SINR losses, this difference is negli-
gible. Fig. 5(a) is for the model that is rigorously
calculated using the Nesterov–Nemirovskii routine for ME
completion; Fig. 5(b) is calculated for the computationally
simpler relaxation. The results are almost
indistinguishable, and in both cases the loss is bounded by

3.4 dB. Since the number of parameters in the
and models is less than in the and

models respectively, we can expect that the greater
model-mismatch losses in the or
model, relative to the or one, are offset
by smaller finite sample-support losses.

A detailed analysis of SINR losses in parametric STAP with
limited samples runs beyond the scope of this study, and so is

Fig. 5. Clairvoyant SINR losses for (a) the “rigorous” Nesterov–Nemirovskii
and (b) ���� ����� models.

to be presented in a separate paper [21]. However, at Fig. 6
we illustrate a sample stochastic (a particular realization of)
SINR loss-factor distribution for i.i.d. training sam-
ples, generated using (4). Here we compare TVAR -based
STAP with one based on the parametric model.
As expected, the maximum SINR loss for the more restrictive

model ( 8.8 dB in this instance) are not as severe
as in the model ( 13.3 dB) that does not impose
any spatial restrictions. Here we average the standard

-variate sample matrix over “temporal
shifts” and i.i.d. training samples, so that the total number
of -variate training samples is , which
marginally exceeds the matrix dimension .

Comparing the accurate stationary (causal)
model performance in Fig. 5(a), and that of its
relaxation for the clairvoyant and sample KASSPER cases
in Fig. 6(a), reveals that relaxation-based STAP is quite effi-
cient for a “real-world” environment, but also that an exact
restoration of the Toeplitz properties in the reconstructed

-variate covariance matrix model is unnecessary for STAP
design. The same conclusion follows from comparing Fig. 3(a)
and Fig. 4(a): while the rigorous model (which is

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:31 from IEEE Xplore.  Restrictions apply. 



5522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

Fig. 6. Sample KASSPER SINR losses for (a) ���� �����, and
(b) ���� ���, for � 	 5 snapshots.

equivalent to the and models when
) leads to 1.8-dB maximum SINR losses, the

model is only 1.1 dB worse. This means that
the large spatial-order reduction from
to , and all possible additional SINR degradations
with respect to the rigorous stationary models

or , all together cost only 1.1 dB
in (maximal) SINR degradation!

This fact, along with Fig. 5, removes any motivation to ana-
lyze SINR losses for the rigorous stationary models for this par-
ticular airborne radar scenario. Yet, at Fig. 7 we show the loss
distributions for the and models calcu-
lated for the clairvoyant matrix that, as expected,
is hardly distinguishable from Fig. 4(a).

Finally, at Fig. 8 we present an example stochastic realization
of SINR losses for i.i.d. training samples calcu-
lated for the relaxation model. Of course, for a
single training snapshot we observe significant SINR losses, up
to 11.6 dB, but already for five samples the SINR losses do
not exceed 3.9 dB.

Fig. 7. Comparison of clairvoyant SINR losses for the rigorous Nesterov-Ne-
mirovskii �
� ��� �� model for the (a) partial ������-variate and (b) full
�� -variate AFRL data.

Clearly, spatial stationarity and ergodicity permit a noticeable
STAP performance improvement, though for the KASSPER/
AFRL radar model with , this improvement is less
profound than the one due to temporal-order reduction

. We may expect different results for applications other than
the KASSPER/AFRL scenario, however, the proposed set of
2-D parametric stationary models and their time-varying autore-
gressive “relaxations” provide a good “tool-box” for parametric
STAP design.

VI. SUMMARY AND CONCLUSION

For a multivariate process that is stationary in its temporal
dimension (“slow time” in the radar application), we have in-
troduced various 2-D parametric models that rely on autore-
gressive and maximum-entropy extension principles, motivated
by their application in STAP radar space–time adaptive pro-
cessing. These parametric models have fewer free parameters
than the model for an arbitrary -variate Hermitian covari-
ance matrix, which results in our goal of a reduced requirement
for training-sample support, but unfortunately also leads to an
extra STAP performance degradation caused by the mismatch
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Fig. 8. Sample AFRL ���� ����� SINR losses for (a) � 	 �, (b) � 	 
, (c) � 	 �, and (d) � 	 � snapshots.

between any true clutter covariance matrix and its parametric
model.

To quantify the performance of the introduced models, we
therefore focused on the STAP filter performance degradation
(SINR loss) due to replacing the true covariance matrix in the
optimum Wiener filter by the estimate from the parametric
model. This criterion enables any invertible covariance ma-
trix model to be considered for STAP design. On the other
hand, meaningful recommendations regarding these parametric
models can only be justified for a particular application and
having a trustworthy high-fidelity phenomenological clutter
covariance matrix provided. For this reason, our performance
analysis has been conducted for the radar clutter covariance
matrix model (DARPA’s “KASSPER Dataset 1”) of an airborne
side-looking radar, with a nominally uniformly spaced linear

antenna array ( sensors) and a periodic waveform
( repetitions). This clutter is stationary in slow time
over the coherent processing interval, and is described by a
range-dependent -variate Toeplitz-block matrix, whose
structure is lots of (“inner”) spatial blocks.
Due to a number of different antenna errors incorporated into
the radar front-end model, these spatial blocks are not Toeplitz
matrices, as would be the case for an ideal ULA.

In order to explore STAP enhancement for a perfect ULA (or
at least sufficiently accurate) geometry, we therefore considered
a complementary model, devised by the AFRL. For the same
KASSPER scenario, this model adopts slightly less sophis-
ticated electromagnetic phenomena, but has flexible antenna
errors, including none. Stationarity (and therefore ergodicity)
in one (slow-time) or both (slow-time and ULA-aperture)
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dimensions, allows us use sliding-window averaging over these
dimensions when estimating covariance matrices. This makes
the traditional choice of the multivariate autoregressive model

natural for slow-time stationarity only, and
the 2-D AR model for an ideal ULA and slow-time
stationarity.

The family of existing parametric STAP models has been
expanded in this paper. For an arbitrary antenna array geom-
etry, we have introduced a “mixed” AR model .
In addition to the well-known properties of the -variate
model , our model considers spatial lags
observed within the limited band , and then the
missing covariance matrix elements are completed in a max-
imum-entropy fashion. Relative to the conventional
model, our model has a reduction in (minimal)
training-sample support by a factor of . The unique
optimum solution for the model (given set of true
covariance lags) has been derived as a convex-programming so-
lution (“analytic center”) of a linear matrix inequality problem.

Whereas the and models can be cal-
culated for an arbitrary -variate p.d. Toeplitz-block
matrix, the 2-D causal model may not exist for an
arbitrary -variate Toeplitz-block-Toeplitz clutter
covariance matrix, where the clutter is stationary in two dimen-
sions. This result was recently proven by Geronimo and Wo-
erdeman, who derived structural conditions that must be met by
a Toeplitz-block-Toeplitz matrix to serve as the covariance ma-
trix of a causal model.

As an alternative to the 2-D model, therefore,
we suggested a new family of parametric models that are
uniquely specified by an arbitrary -variate p.d.
Toeplitz-block-Toeplitz matrix, and introduced them as ME
completions. In particular, we demonstrated that an ME comple-
tion that is also constrained to be Toeplitz-block-Toeplitz is not
necessarily an AR-type matrix (but this does not preclude it for
STAP filter design). In our two other completions
and , we enforced the AR properties in the
completion, but only demanded Toeplitz-block (rather than
Toeplitz-block-Toeplitz) properties, so that some completed
blocks are non-Toeplitz. All the introduced ME completions of
an arbitrary -variate p.d. Toeplitz-block-Toeplitz
matrix collapse to the same model if the necessary
and sufficient conditions given by Geronimo and Woerdeman
are satisfied.

Strictly speaking, the two models and
must be treated as “relaxations” (relaxed models),

since the fundamental Toeplitz-block-Toeplitz property relied
on for sliding-window averaging over both dimensions is no
longer retained in the final covariance matrix model. Yet,
we demonstrated that for AFRL data this deliberate “incon-
sistency” does not lead to a noticeable STAP performance
degradation.

Our sole parametric model performance criterion has been
radar-relevant STAP SINR, and this encouraged us to expand
the (pre-existing but vaguely defined) relaxation idea much fur-
ther. Most studies on parametric STAP consider estimation of
a causal AR model that is consistent with the adopted ergod-
icity properties. In adaptive settings, this means that when con-

structing an accurate Toeplitz-block or Toeplitz-block-Toeplitz
matrix model, the sample Hermitian - or

-variate matrix is first transformed into a p.d. Toeplitz-block
or Toeplitz-block-Toeplitz matrix respectively, and then com-
pleted using the convex programming technique, for example.
While possible, this “rigorous” approach is impractical due to
significant computational requirements.

Rather than Toeplitz-block or Toeplitz-block-Toeplitz so-
lutions, we therefore proposed a new class of Hermitian
TVAR relaxations, that can be directly calculated from the

- or -variate Hermitian sample ma-
trices. When constructing our TVAR relaxations, we followed
the same fundamental principle as for the “rigorous” causal

model. Indeed, the -type -variate
Toeplitz-block matrix extension of a given -variate
p.d. Toeplitz-block matrix may be treated as the unique ex-
tension that retains the multivariate ME (Burg) spectrum of
the given -variate matrix. We have derived a recon-
struction of the -variate Hermitian relaxation
using a Cholesky factorization of its inverse, which mimics
the same factorization of the -variate Toeplitz-block ma-
trix, and therefore retains the same multivariate ME spectrum
estimate in the -variate extended matrix as in the given

-variate sample matrix.
These relaxations were derived for adaptive applications with

- and -variate sample Hermitian-
block matrices, and when applied to the true -variate
Toeplitz block or -variate Toeplitz-block-Toeplitz
matrices, respectively, they generally lead to models different
from or . Yet, for the
KASSPER covariance matrix for range bin 200, the rigorous
mixed model results in 2.88-dB maximum SINR
losses, while its corresponding relaxation has al-
most identical 2.86-dB losses. Similarly, the performance of
the rigorous model calculated for the 200th AFRL
covariance matrix was practically the same as that of its relax-
ation .

This analysis demonstrated that significant spatial-order
reduction from to in the mixed
model increases the model-mismatch losses from

dB in the conventional model to only 2.9
dB, while almost doubling the effective number of training
samples . Spatial averaging for the
ideal ULA geometry (AFRL data) leads to a much more sig-
nificant sample-support increase, while the model-mismatch
losses in the model are practically the same
( 2.9 dB) as in the AR and models
for the perturbed-ULA (KASSPER) data. Unfortunately, the
KASSPER antenna errors lead to a catastrophic SINR perfor-
mance degradation when spatial averaging is used to calculate
the model.

We decided that a detailed statistical analysis of parametric
STAP performance was beyond the scope of this paper, mainly
due to various possible modifications (regularizations) of the

- or -variate sample covariance ma-
trix estimate that could be considered. This analysis, as well as
the antenna array accuracy requirements that permit spatial av-
eraging, is to be presented separately. However, we provided
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a few examples that demonstrate an extremely small training
sample support (five samples, say) gives good performance for
a sufficiently accurate ULA geometry.

Overall, for a high-fidelity trusted phenomenological clutter
covariance matrix model, there is a modest performance degra-
dation associated with our 2-D parametric models which offer
significant reductions in training-sample support requirements
and calculations for STAP filter design.

APPENDIX

DYM-GOHBERG BAND-EXTENSION METHOD

This material is reproduced from in [33, Chapter III]; see also
from [34, Theorem 1.1], and [35].

Theorem A.1: For and let
be a given operator acting from one Hilbert space onto

another , and suppose that

...
... (67)

For let

...
...

...

...

(68)

...
...

...

...

(69)

Let the triangular operator matrices and be defined
by

(70)

Then the operator is the
unique p.d. operator matrix with

and

(71)

Remark: Note that the theorem applies for different dimen-
sions of the Hilbert spaces . For STAP applications,
this means the -variate data vector can be divided into ar-
bitrary blocks.

Theorem A.2: For and let
be a given operator acting from one Hilbert space onto

another . In order that there exists a positive extension of the
band it is necessary and sufficient that (67) holds.

Remark: This can be used to specify the minimum sample
volume required for a p.d. band extension to exist for a sample
matrix.

Corollary A.1: For and let
be a given operator acting from one finite-dimen-

sional Hilbert space onto another , and suppose that (67)
holds. Then for any positive extension of the given band,

, where

...
...

... (72)

with equality holding iff is the unique band extension of the
given band.

Remark: This proves the ME property of the unique band
extension (for a Gaussian ensemble).
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