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Abstract
Target detection serve as one of the primary objectives in a radar system.
From observations, contaminated by receiver thermal noise and interference,
the processor needs to determine between target absence or target presence
in the current measurements. To enable target detection, the observations
are filtered by a series of signal processing algorithms. The algorithms aim to
extract information used in subsequent calculations from the observations. In
this thesis and the appended papers, we investigate two techniques used for
radar signal processing; spectral estimation and space-time adaptive process-
ing.
In this thesis, spectral estimation is considered for signals that can be well

represented by a parametric model. The considered problem aims to estimate
frequency components and their corresponding amplitudes and damping fac-
tors from noisy measurements. In a radar system, the problem of gridless
angle-Doppler-range estimation can be formulated in this way. The main
contribution of our work includes an investigation of the connection between
constraints on rank and matrix structure with the accuracy of the estimates.

Space-time adaptive processing is a technique used to mitigate the influ-
ence of interference and receiver thermal noise in airborne radar systems. To
obtain a proper mitigation, an accurate estimate of the space-time covariance
matrix in the currently investigated cell under test is required. Such an esti-
mate is based on secondary data from adjacent range bins to the cell under
test. In this work, we consider airborne bistatic radar systems. Such systems
obtains non-stationary secondary data due to geometry-induced range varia-
tions in the angle-Doppler domain. Thus, the secondary data will not follow
the same distribution as the observed snapshot in the cell under test. In this
work, we present a method which estimates the space-time covariance matrix
based upon a parametric model of the current radar scenario. The parameters
defining the scenario are derived as a maximum likelihood estimate using the
available secondary data. If used in a detector, this approach approximately
corresponds to a generalized likelihood ratio test, as unknowns are replaced
with their maximum likelihood estimates based on secondary data.

Keywords: Radar Signal Processing, Parametric Spectral Estimation, Space-
Time Adaptive Processing, Maximum Likelihood Estimation.
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CHAPTER 1

Introduction

In 1904 the first radar was patented by Christian Hülsmeyer. It was a pulsed
radar, radiating signals generated from a spark gap. Hülsmeyer’s radar was
based on ideas from experiments done by Heinrich Hertz in 1888, when he
discovered the polarization dependent reflection of electromagnetic waves [1].
Although the first patent was registered in the early 20th century, development
of the radar first took off during the Second World War. Then, many countries
saw the potential to use the radar as a vital tool for detection and tracking of
enemy aircrafts.
In modern day society, radar systems are used for more applications than the

military. Its ability to work in all weather conditions, as well as for both long
and short ranges, makes it to a useful tool in many fields. Thus, radar systems
can be found in air traffic control, for weather forecasting and in remote
sensing. Moreover, the radar is an important sensor which enables ships to
navigate, and provides necessary information for advanced driver assistance
systems and autonomous driving in vehicles. The distribution of the radar
market per application is shown in Fig 1.1 together with a market forecast [2].
Most of the growth in the market is predicted to come from the automotive
industry, strongly connected to the introduction of more autonomous features
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Chapter 1 Introduction

Figure 1.1: Radar market per field of application, and a forecast of the radar mar-
ket in 2025 [2].

in vehicles [2].
Radar systems is defined as the art of providing targets detections. That is,

from electromagnetic waves echoed from the radar surroundings, determine
the presence or the absence of interesting targets. To enable this, a radar sys-
tem is equipped with supporting hardware and software. Various requirements
are set both on the hardware and the software depending on the application
for the radar to provide detections best suited for the field. Waveforms and
directivity of antennas are examples of design choices that may differ between
applications. In this thesis we consider military radar applications. In such
applications, radar technical dominance has been proven to provide crucial
tactical advantages in the field of battle [3]. Consequently, the transmitter
antennas capacity to emit electromagnetic energy into space may affect the
ability of the radar to detect targets. Moreover, algorithms which mitigate
disturbance signals, and usage of various waveforms may infuence the capac-
ity to detect targets at long ranges and with high accuracy. In this thesis
and the appended papers, we will further investigate radar signal processing
algorithms.
Radar signal processing is a collective of various algorithms which aims to

extract the necessary information from radar observations to provide target
detections. This implies that the algorithms need to function for various radar
scenarios and for many different types of radar configurations. To obtain this
flexible behavior, the radar observations are filtered by a chain of signal pro-
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Figure 1.2: Visualization of an airborne bistatic radar configuration.

cessing algorithms. Each algorithm will extract a small piece of information
from the observations that can be used in subsequent calculations. More-
over, the radar signals received will be a signature of a complex environment.
Thus, the signals will be comprised of many scatters, including scattering from
possible targets to be detected and thermal noise from the receiver. To sys-
tematically handle this complex behavior, radar signals are often modeled as
random signals with certain structure described by a parametric probability
density function. Often several parameters describing the radar surrounding
are unknown a priori to the processor. Consequently, the signal processing al-
gorithms must adaptively estimate these unknowns for the system to manage
a broad spectra of radar environments.
Although adaptive radar signal processing algorithms work for various sce-

narios and for different radar systems, knowledge about the scenario and the
system is necessary when designing the algorithms. That because the behav-
ior of the radar observations will depend on both the scenario and the system.
To illustrate this, consider radar observations from an airborne monostatic
radar system, and an airborne bistatic radar system. A monostatic radar
system uses the same antenna to both transmit and receive the electromag-
netic signals. This is the most common configuration for radar systems. In a
bistatic radar system, two antennas that are separated at a large distance in
space cooperate with each other to create a functional radar system. Thus,
one antenna only emit electromagnetic waves, and the other antenna only re-
ceive the echoed signals. A visualization of an airborne bistatic configuration
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Chapter 1 Introduction

is shown in Figure 1.2. The bistatic configuration has some advantages over
the monostatic configuration and has therefore been subject to an increased
research interest in recent years. The increased interest arises from a higher
degree of digitalization in the radar system, e.g. each antenna in an array
is sampled as a separate digital channel, has made it feasible to fully take
advantage of the benefits from the bistatic radar configurations. A few of
the advantages are the possibility for the receiver platform to operate silently
from an electromagnetic point of view. Thus, it will not reveal its position
by emitting a signal. Moreover, in a bistatic radar, the transmitter antenna
can emit the electromagnetic signals constantly and hence increase the total
emitted energy. This since it does not need to shift between emitting and
receiving signals, as a corresponding monostatic system operates.
Although the existing advantages for bistatic radar systems, the configura-

tion require additional functionality of the signal processing algorithms. This
includes the suppression of the direct signal between the transmitter antenna
and the receiver antenna. The direct signal may be of significantly larger
power compared to the echoes, and can therefore be of great concern in radar
signal processing algorithms, as well as require a high dynamic range of the
analog-to-digital converters. Moreover, the processor in the receiver need in-
formation about the currently transmitted waveform to properly filter the
received echoes. As waveforms typically are changed over time this informa-
tion must constantly be updated. Furthermore, the behavior of the received
echos will be dependent on the position and velocity of the transmitting plat-
form. Also, as the receiver and the transmitter are geographically separated,
the dependencies will differ depending on the bistatic range of the signals.
Consequently, a geometry-induced range dependent behavior is present in the
bistatic radar systems. This phenomenon requires additional processing when
mitigating the influence of interference and thermal noise in airborne bistatic
systems. In summary, additional processing is required for bistatic radar con-
figurations compared to corresponding monostatic configurations to be able
to fully harvest the advantages of the bistatic radar system.

1.1 Thesis contribution
The main contributions of this thesis are the following:

• In Paper A three different methods for parametric spectral estimation
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1.2 Outline of the thesis

are investigated. The considered problem formulation concern estima-
tion of frequency components, and their corresponding amplitudes and
damping factors from noisy measurements. In a radar, this problem
formulation corresponds to the gridless range-Doppler-angle estimation
problem. The main contribution of the paper corresponds to an investi-
gation of how rank management and matrix structure affect the accuracy
of the frequency component estimates.

• To mitigate the influence of interference and thermal noise via a space-
time adaptive processing technique, an accurate estimate of the space-
time covariance matrix is required. In a bistatic radar system, such
estimate is non-trivial as the secondary data used for the estimate is non-
stationary. In Paper B and C, a method is presented which estimates the
space-time covariance matrix based upon the current radar scenario. As
the parameters defining the scenario is unknown, the presented method
finds their maximum likelihood estimates using the available observa-
tions, and calculates the covariance matrix via a model describing the
scenario.

1.2 Outline of the thesis
This thesis is divided into two main parts. Part I serves as a general introduc-
tion to the subject of radars and to the methods used in the appended papers.
In Chapter 2, the fundamentals and working principles of a radar system is
introduced. Chapter 3 briefly introduce parametric spectral estimation, and
radar detectors are presented in Chapter 4. Space-time adaptive processing is
presented in Chapter 5. A summary of the appended papers is presented in
Chapter 6. Finally, the thesis is concluded in Chapter 7. In Part II, the three
publications are appended.
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CHAPTER 2

Fundamentals of Radar Systems

This chapter provides a short summary of the fundamental theory of a radar.
For a more comprehensive overview, see e.g. [4].

2.1 Radar signal modelling
A radar system consists of one antenna which emits electromagnetic energy
of some waveform into space, and one antenna that receives the reflections
of the transmitted signals from objects in the environment. To extract the
information from the received signals, the signals needs to be processed. In
this section, relations of a monostatic radar is presented. However, the same
principles also holds for other configurations.
The distance, or range, to an object is measured by the time the emitted

signal takes to travel to the object and back to the receiver antenna. As
electromagnetic waves travel at the speed of light, the range R of a monostatic
system is

R = c∆t
2 (2.1)
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Chapter 2 Fundamentals of Radar Systems

Figure 2.1: Illustration of direction of arrival for an array antenna.

where c is the speed of light and ∆t is the duration in time the pulse travels
back and forth between the platform and the object [4].
Signals that are reflected by a moving object will be compressed or stretched

out in time at the arrival to the receiver. For a narrow band signal this
generates a frequency shift compared to reflections of non-moving objects.
The shift in frequency is caused by the Doppler effect. Thus, the Doppler
frequency is:

fd = 2vR
λ

(2.2)

where fd is the Doppler frequency, λ is the wavelength the emitted signal and
vR is the relative velocity between the receiver platform and the reflecting
object [4].
Signal echoes that originates from long ranges compared to the receiver

antenna size will approach the antenna as a parallel wave [4]. For narrow
band signals an array antenna will observe a linear phase shift of the received
signal between adjacent antenna channels. The phase shift is proportional
to the sine of the angle of arrival which the echoes approached the antenna.
This phenomenon is illustrated in Fig 2.1. In the figure, a uniform linear array
(ULA) is shown with N array channels and distance d between two adjacent
array channels. The angle-of-arrival of the signal to the array is θ.
The signal power that returns to the receiver is given by the radar range
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2.2 Radar Operation Environments

Figure 2.2: Illustration of a radar environment consisting of clutter interference,
jamming interference and a target.

equation:

P = λ2PTσRCS
(4π)3

GT
R2
T

GR
R2
R

(2.3)

where PT is the power of transmitted signal, RT and RR is the range from
the transmitter respectively the receiver to the object. The radar cross sec-
tion of the reflecting object is σRCS . Gain patterns for the transmitting and
receiving antennas are denoted with GT and GR, respectively. The angular
dependancies of GT and GR depends on the type of antenna used, and its
configurations [4].

2.2 Radar Operation Environments
In Fig 2.2 an environment of which an airborne radar system operates in
is illustrated. Consequently, the observations consists of clutter interference,
jamming interference, receiver thermal noise and possible targets. Clutter and
jammers are introduced in the subsequent sections.
To be more specific, we now consider a pulsed radar system where the trans-

mitter emits M coherent pulses and the receiver has an array antenna with
N distinct channels. The pulses are sampled in the receiver, and sorted in
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Chapter 2 Fundamentals of Radar Systems

K range bins depending on the time-of-arrival to the receiver. The range
resolution of the sampled signal may be improved using a pulse compression
scheme [5]. Denote the radar snapshot at range bin k as xk ∈ CNM×1. As-
sume that the snapshot additively is comprised of clutter interference, xk,c ∼
CN (0,Rk,c) ∈ CNM×1, jamming interference, xk,j ∼ CN (0,Rk,j) ∈ CNM×1,
receiver thermal noise, xk,n ∼ CN (0,Rk,n) ∈ CNM×1, and possible targets
xk,s = σssts ∈ CNM×1, where σs is the intensity of the target and sts is a
space-time steering vector. In this thesis, we assume a complex Gaussian dis-
tribution of the response of the clutter interference, the jamming interference
and the thermal noise. This is the most common assumption in the literature
[4]. However, algorithms using other distributions than the complex Gaussian
has been presented. Common for such algorithms is to describe the clutter
interference using more heavy-tailed distributions [6], [7].
In a detector, a test statistics is formed by multiplication of the radar snap-

shot in the cell-under-test with a weight vector. Thus, the test statistics is
yk = |wH

k xk|, where wk is a weight vector and Hermitian transpose is denoted
using the superscript ’H’. Detectors will further be introduced in Chapter
4. However, a useful measure of performance is to consider the signal-to-
interference-and-noise-ratio (SINR) of the test statistics. The SINR is defined
as

SINR = |wH
k xk,s|2

E{|wH
k (xk,j + xk,c) + wH

k xk,n|2}
(2.4)

where E{·} denotes expected value [8]. The SINR has shown to have a one-
to-one relationship with detector performance. Consequently, maximizing the
SINR implies also maximizing the performance of a detector. Therefore, the
SINR is seen as a useful measure to compare the performance of radar signal
processing algorithms [9]–[13].

Clutter interference

Clutter interference is defined as a conglomerate of unwanted radar echos.
Depending on the application, the term clutter includes echos from different
objects. In the radar application considered in this thesis, echoes from the
ground, trees, clouds, mountains and man-made buildings are considered to
be clutter interference [4].

12



2.2 Radar Operation Environments

Jammer interference

Signals that are emitted by another system than the own radar, and interfere
with the radar at the used frequency band, are considered to be jamming
signals. Jamming can both be intentional, as an electronic warfare technique,
and unintentional, as when a friendly radar emits a signal at the same fre-
quency band as the own radar platform. Interference from jamming signals
differs from clutter interference in the sense that jammers originates from
platforms actively emitting signals [4].
A jamming signal is usually observed by the receiver via the direct signal.

A direct signal only travels one way between the emitting platform and the
receiving antenna. Radar echos will travel two ways; to the target and back to
the radar. Thus, jamming signals can cause large problems as they can have
a significantly larger power compared to received target echoes. Moreover,
jamming signals usually originates from a distinct spatial direction and have
a broad Doppler spectra [8].
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CHAPTER 3

Spectral Estimation

In this chapter, spectral estimation is briefly introduced.

3.1 Basic theory
In many applications, the physical processes can be described by a weighted
sum of the individual frequency components of the system. Such processes
can be found in radio astronomy, magnetic resonance imaging (MRI), sonars
and wireless communication applications [14]. For radars, the gridless angle-
Doppler-range estimation problem has this formulation [15]. In line spectral
estimation, the aim is to find the individual frequency components from mea-
surements of such processes. Consequently, this implies to find estimates to
multiple frequencies, and their corresponding amplitudes and possible damp-
ing factors.
Techniques of spectral estimation can be divided into two groups; non-

parametric techniques and parametric techniques [14]. In a non-parametric
technique the frequency spectrum of the signal is analyzed. It can be obtained
via a discrete Fourier transform (DTF) or via the (windowed) periodogram.
From the frequency spectrum, a non-parametric technique obtains the dom-
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Chapter 3 Spectral Estimation

inant frequency components contained in the analyzed signal. A parametric
spectral estimation technique assumes that the signal can be well described
by a model. The aim of such a technique is to fit the model towards the
available measurements. The frequency components can then be derived from
the model. Various parametric techniques for frequency estimation has been
investigated in appended Paper A, and is briefly discussed in the subsequent
section.

3.2 Parametric spectral estimation
Assume that a, noise free, signal y can be described by the time-discrete
model:

y(k) =
n∑
i=1

αie
(jωi+βi)k (3.1)

where ωi ∈ Rn, αi ∈ Cn and βi ∈ Rn are unknown frequencies, amplitudes
and damping factors, respectively. Consequently, from a sequence {y(k)}Kk=1,
the aim is to find ωi, αi and βi for all i ∈ [1, . . . , n].
Several approaches on how to find the frequency components as well as their

amplitudes and possible damping factors has been presented in the literature.
Such approaches includes non-linear least squares minimization and maximum
likelihood techniques [16]. Those techniques usually includes the formation of
a cost function, and a non-linear optimization procedure which finds the opti-
mal solution to the cost function. However, for problems of higher order, such
frameworks may be hard to solve due to local minimums in the cost function,
which may affect the accuracy of the estimate. Therefore, we will further
present subspace methods which may be better suited to solve problems of
higher order.
Introducing the matrix A = diag[e(jω1+β1)k, e(jω2+β2)k, . . . , e(jωn+βn)k], and

the vectors C = [α1, α2, . . . , αn]T and x0 = [1, 1, . . . , 1]T , where diag[·] repre-
sent a diagonal matrix. The signal (3.1) can be rewritten as

x(k + 1) = Ax(k), x(0) = x0 (3.2)
y(k) = Cx(k) (3.3)

Then, let Y0 be a matrix of Hankel structure with m rows that follows
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3.2 Parametric spectral estimation

m > n and K −m+ 1 > n to the sequence {y(k)}Kk=1. The matrix Y0 can be
factorized using the state-space representation as

Y0 = OC (3.4)

where O = [C,CA,CA2, . . . , CAm−1]T and C = [x0, Ax0, . . . , A
K−mx0]T .

Consequently, forming a Hankel structure from the available sequence {y(k)}Kk=1
and performing the factorization (3.4), the unknown parameters can be iden-
tified from the factors of Y0.
In a practical application, the corresponding sequence {y(k)}Kk=1 would be

corrupted by measurement noise. This would imply that the exact factoriza-
tion (3.4) is not possible [17]. To overcome this, several techniques has been
presented which finds an approximation to Y0 in the case of measurement
noise. In the appended Paper A, three techniques which approximates Y0 has
been investigated. Those are ESPRIT [18], [19], a method which relaxes the
rank constraint by a nuclear norm [20] and a method which both follows the
rank constraint and imposing a Hankel structure on the estimate [21]. The
main contribution of Paper A is an illustration of how the problem formulation
and rank constraint management affect the accuracy of frequency component
estimates.
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CHAPTER 4

Detection

Target detection serve as the primary objective of a radar system. In this chap-
ter, we briefly explain binary hypotheses testing, and introduce the matched
filter and the Kelly detector.

4.1 Binary Hypothesis Testing
A detection problem arises from the situation when a measurement can origi-
nate from a number of possible events. The objective of the detection problem
is to find which event that generated the measurement. If the measurement is
seen as a realization of a stochastic variable, a rational framework to determine
between the possible events is to perform hypothesis testing. In hypothesis
testing, the measurement is used to form a test statistics which is evaluated
against different decision boundaries. Depending on the relationship between
the test statistics and the decision boundaries, the measurement is declared
to originate from a specific hypothesis. If two possible events can generate the
measurement, binary hypothesis testing can be performed.
Consider a measurement x that is a realization of two possible events. De-

note the possible events as E0 and E1. To determine which event the mea-
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Chapter 4 Detection

surement is an realization of, we formulate two hypotheses:

H0 : x ∈ E0 (4.1)
H1 : x ∈ E1 (4.2)

where H0 is the null-hypothesis where the measurement x originates from
event E0, and H1 is the alternative hypothesis where the measurement orig-
inates from event E1. As x is seen as a realization of a stochastic variable,
denote the corresponding probability density function in the case of the null-
hypothesis as px|H0(x) and in case of the alternative hypothesis as px|H1(x).
The performance measures of a binary hypothesis test includes the proba-

bility of detection (PD) and the probability of false alarm (PFA). Those are
given by

PD = Pr[H1 chosen|H1 is true] =
∫

x∈Λ(x)>γ
px|H1(x)dx (4.3)

PFA = Pr[H1 chosen|H0 is true] =
∫

x∈Λ(x)>γ
px|H0(x)dx (4.4)

where Λ(x) defines the test statistics of the detector, and γ denotes the deci-
sion threshold between the hypotheses. Figure 4.1 includes a visualization of
the two hypotheses, the decision threshold and corresponding PD and PFA.
Note, as can be seen in Figure 4.1, a given decision threshold defines the
tradeoff between maximizing the PD and minimizing the PFA.
To determine between the two hypotheses, i.e. to determine what the func-

tion Λ(x) is, the Neyman-Pearson criteria (NPC) can be used [9], [16]. The
objective of the NPC is to maximize the PD while keeping PFA < ε, where
ε is the maximum false alarm rate the detector can tolerate. The optimal
solution to the NPC is a decision mechanism known as the likelihood ratio
test (LRT) [16]. It is given by

Λ∗(x) =
px|H1(x)
px|H0(x)

H1
≷
H0

γ (4.5)

where the superscript ’∗’ denotes optimality. Consequently, the LRT evaluates
the ratio of the likelihood functions of the alternative hypothesis and the null-
hypothesis with a threshold. If the test statistics exceeds the threshold, the
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PDPFA

γ (Threshold)

p
x|H0

(x) p
x|H1

(x)

x

Figure 4.1: Illustration of binary hypotheses testing.

processor declares the alternative hypothesis, otherwise it declares the null-
hypothesis.
To evaluate the LRT, the processor needs full knowledge of both px|H1(x)

and px|H0(x). In a practical situation, it is unlikely that the processor holds
that information. Rather, some parameters which defines the probability den-
sity functions are likely to be unknown. In such cases, the unknown parameter
can be replaced by an estimate of the parameter. If the unknown parameter
is replaced by its maximum likelihood estimate, and is used in the framework
(4.5), a generalized likelihood ratio test (GLRT) has been obtained. Thus,
the GLRT is given by

Λ(x) =
maxθ∈Ω1 px|H1(x|θ1)
maxθ∈Ω0 px|H0(x|θ0)

H1
≷
H0

γ (4.6)

where θ0 and θ1 are unknown parameter vectors within the sets Ω0 and Ω1,
respectively. Note, (4.6) may not be an optimal solution to the NPC if Ω0
and/or Ω1 are finite sets [22].

4.2 Detectors used in Radar Systems
Now, consider the binary hypothesis test used in radar systems. Consequently,
a radar system must determine the presence or the absence of a target in the
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Chapter 4 Detection

currently investigated cell-under-test (CUT). If range bin k corresponds to
the CUT, the binary hypotheses becomes

H0 : xk/H0 = xk,c + xk,j + xk,n (4.7)
H1 : xk/H1 = xk,s + xk,c + xk,j + xk,n (4.8)

Thus, under the null-hypothesis a target is absent in range bin k, while under
the alternative hypothesis a target is present in range bin k. Under the as-
sumption of complex Gaussian distributions of the clutter, the jammers and
the thermal noise, as introduced in Chapter 2, the probability density func-
tions for the null-hypothesis is px|H0(xk) = CN (0,Rk) and for the alternative
hypothesis is px|H0(xk) = CN (σssts,Rk). For mutual statistically uncorre-
lated clutter interference, jamming interference and thermal noise, we have
Rk = Rk,c + Rk,j + Rk,n.

The scalar output used in the detector as test statistic is yk = wH
k xk. From

a SINR perspective, the optimal weight vector which mitigates the influence
of interference and thermal noise is wk = µR−1

k sts, where sts is the space-time
steering vector to the currently investigated cell-under-test [11]. The optimal
weight vector wk includes an arbitrary scalar µ. While a particular choice of µ
does not affect the SINR, some are more beneficial in subsequent processing.
A commonly used detector is

|wH
k xk|2 =

|sHtsR−1
k xk|2

sHtsR−1
k sts

H1
≷
H0

γ (4.9)

where µ = 1/
√

sHtsR−1
k sts. This detector is called the matched filter, and have

two useful properties. First, it solves the LRT and is consequently the optimal
detector. Secondly, it has the constant false alarm rate (CFAR) property [23].
It implies a normalization in the test statistics which compensates for the
power of the interference and thermal noise to maintain a constant probability
of false alarm.
Similarly, a GLRT derived by Kelly,

|sHtsR̂−1
k xk|2

sHtsR̂−1
k sts(1 + 1

KxkR̂−1
k xk)

H1
≷
H0

Kγ (4.10)

where R̂k is an estimate of Rk and K is the number of radar snapshots used
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in the estimate R̂k [24]. Further discussions on estimates of Rk is presented
in Chapter 5. The Kelly detector holds the CFAR property, and can be used
when the space-time covariance matrix is not known.
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CHAPTER 5

Space-Time Adaptive Processing

In this chapter we introduce the space-time adaptive processing (STAP) tech-
nique. It can be used to limit the effects of interference in airborne radar
systems.

5.1 Basic Theory
For ground based radar systems, the echoes that originates from the ground,
buildings and other non-moving objects will have a zero Doppler frequency.
Thus, such clutter can trivially be mitigated by applying a notch filter to the
zero Doppler frequency. However, for airborne radar systems the motion of
the radar platform will introduce a relative velocity to the non-moving ob-
jects. Thus, echoes from clutter becomes angle-Doppler dependent, and may
coincide with possible targets at a common Doppler frequency. In this chap-
ter we present, space-time adaptive processing, a commonly used technique
to mitigate the influence of interference in airborne radar systems [25].
A STAP-algorithm is a multidimensional filtering technique which combines

signals from an array antenna with multiple pulses of coherent waveforms.
The main objective of STAP is to find an estimate to the distribution of
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Chapter 5 Space-Time Adaptive Processing

the interference. This to mitigate the interference while still preserving the
strength of the desired signal. If the mitigation is properly performed, possible
targets can be detected more easily [10], [11].
Recall from Chapter 4 that the test statistics used in a radar detector in-

cluded a weight vector, and that the optimal weight vector from a SINR
perspective is wk = µR−1

k sts, where Rk is the space-time covariance matrix
of the two hypotheses. In a practical situation, the covariance matrix Rk may
not be known to the processor and consequently must be estimated. Several
techniques of how the space-time covariance matrix is estimated has been pre-
sented in the literature. In the following sections, we introduce a few of the
different estimation techniques.

5.2 Sample Covariance Matrix Estimate
Consider a set of radar observations x̄ = {xk}Kk=1 from K range bins in a
neighborhood to the CUT. Assume all snapshots in x̄ are complex Gaussian
and statistically independent and identically distributed (IID) with a zero
mean. Thus, xk ∼ CN (0,R) for all k ∈ [1,K]. The set x̄ represents observa-
tions obtained from a monostatic side-looking radar [13].
The maximum likelihood estimate of the space-time covariance matrix is

obtained by solving the following optimization problem:

R̂ML = arg max
R

L(x̄|R) (5.1)

where L(x̄|R) is the associated likelihood function to the distribution of x̄.
The optimal solution to (5.1) is

R̂ = 1
K

K∑
k=1

xkxHk (5.2)

The solution (5.2) is known as the sample covariance matrix (SCM) estimate.
The SCM has been shown to reach a −3 dB SINR loss compared to the SINR
of the clairvoyant covariance matrix if at least K = 2NM snapshots are used
in the SCM estimate [10]. This is known as the Reed-Mallet-Brennan (RMB)
rule.
For radar observations in real world applications, secondary data may not be
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5.2 Sample Covariance Matrix Estimate

IID over the range dimension. Two factors mainly affects the response; clutter
heterogeneity and geometry-induced range variations. The clutter heterogene-
ity arise from landscape variations, which is an effect of shadowing, clutter
reflectivity and terrain discretes. In such cases, the processor can be aided
with information about the current environment. This thesis does not cover
heterogeneous clutter, but it is further explained in [26], [27]. The geometry-
induced effect arises from the relative array configuration compared to plat-
form heading. This introduces variations of the clutter in the angle-Doppler
domain over range. Angle-Doppler variations occur for radar configurations
other than the side-looking monostatic case. Thus, in forward-looking arrays
[25], [28], circular arrays [29] and bistatic configurations [25], [30], [31]. As
STAP-algorithms commonly base the space-time covariance estimate on sec-
ondary data collected from the range dimension, the angle-Doppler variations
degrades the accuracy of such estimates.
Now, consider a new set of secondary data x̃ = {xk}Kk=1 gathered from

K range bins in a neighborhood from the CUT. The distribution of x̃ follows
xk ∼ CN (0,Rk) for all k ∈ [1,K]. Note specifically that the covariance matrix
of x̃ is range dependent. The expected value of a SCM applied to secondary
data x̃ becomes

E[R̂CUT] = 1
K

K∑
k=1

E[xkxHk ] = 1
K

K∑
k=1

Rk (5.3)

Thus, the adaptive filter becomes the average behavior to the covariance ma-
trices of the ingoing secondary data, rather than the best suited for the con-
sidered range bin.
Several algorithms has been presented which addresses the complications

of range dependent secondary data. The algorithms can mainly be divided
into three categories based on their processing technique. In the first cate-
gory, we find algorithms that tries to limit the variations within the secondary
data itself. That can be accomplished by only consider secondary data in a
close vicinity to the CUT, followed by some dimension reduction technique
[31], [32]. In the two other categories, the variations are included in the pro-
cessing. Thus, in the second category, presumed variations in the secondary
data is modeled. That includes a time-varying weight scheme where tempo-
ral variations in the secondary data is modeled [31], [33], [34]. In the last
category, transformations are formed which aims to homogenize the distribu-
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tion of snapshots over range. Such techniques are called Doppler warping.
Several transformations of Doppler warping has been presented [35]–[41]. For
instance, in a registration approach, the direction-Doppler (DD) curve of the
snapshots is adjusted via curve fitting towards a reference DD-curve in an
other range bin [39]. While in the Adaptive Angle-Doppler Compensation
(A2DC) method, the dominant subspace of each range bin is homogenized
towards a common reference subspace. This is accomplished by rotating the
eigenvector corresponding to the dominant eigenvalue in each range bin to-
wards the corresponding dominant eigenvalue in the reference range bin [40],
[41].

5.3 Reduced dimension techniques
In the previous sections, we describe processing techniques applied directly
towards N spatial channels andM coherent pulses. This direct formulation is
known as the joint-domain STAP. However, from an implementation perspec-
tive, the joint-domain STAP is of limited use. Two factors mainly limit the
usability of joint-domain STAP; sample support and computational burden.
As an example, consider the numerical parameters used in the public MCARM
data collection program [42]. There, they have used N = 22 array channels
and M = 128 coherent pulses. To fulfill the Reed Mallet Brennan (RMB)-
rule, the necessary sample support need to be 2NM = 5632 [10]. This heavily
exceeds the available 630 snapshots in the MCARM dataset. Additionally,
the SCM is associated with a computational complexity of O(N3M3). Con-
sequently, using large number of array channels processing multiple pulses
complicates implementations in radar system. To circumvent these limita-
tions, sophisticated techniques which reduce the size of the necessary sample
support and lower the computational burden can be utilized. Here, we will
introduce one of these techniques; reduced-dimension techniques. However,
one other commonly used technique is reduced-rank techniques, where the
low rank nature of clutter and jammers is utilized. This is further presented
in [43], [44]
In a Reduced-Dimension (RD) STAP, the radar observations are filtered

with data-independent transformations before the STAP [13]. The objective
is to reduce the number of adaptive degrees of freedom (DoF), which will
reduce the necessary sample support and computational burden. Thus, for a
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space-time secondary data xk, the transformed data vector becomes

x̆k = TH
k xk (5.4)

where Tk ∈ CNM×J is a transformation matrix. The transformed data vector
x̆k has dimensions J × 1 where J < NM . Corresponding STAP algorithms,
as described in Section 5.2, is then applied to x̆k.
Multiple choices of T are possible. Naturally, the best choice provides an

effective combination of DoFs to mitigate the interference while minimizing
the computational burden, the required sample support and at the same time
not reduce the power of the echo signal from the potential target in the CUT.
Common selections of transformations includes traditional radar signal pro-
cessing building blocks as Doppler processing and beamforming [45], [46].
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A

Jacob Klintberg, Tomas McKelvey
An Improved Method for Parametric Spectral Estimation
Published in IEEE International Conference on Acoustics, Speech and
Signal Processing,
vol. 17, no. 10, pp. 5551–5555, May. 2019.
©2019 IEEE DOI: 10.1109/ICASSP.2019.8683111 .

In this paper, the problem of parametric spectral estimation is considered.
Three different methods are investigated for frequency component estimation
from noisy measurements. The main contribution of the work is an visualiza-
tion of how matrix rank and structure constraints affect the accuracy of the
frequency estimates.
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6.2 Paper B
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
Mitigation of Ground Clutter in Airborne Bistatic Radar Systems
Published in IEEE Sensor Array and Multichannel Signal Processing
Workshop,
pp. 1–5, June. 2020.
©2020 IEEE DOI: 10.1109/SAM48682.2020.9104314 .

Space-time adaptive processing algorithms are dependent on accurate esti-
mates of the space-time covariance matrix to mitigate the influence of inter-
ference and thermal noise. In this paper, we investigate the sensitivity of a
covariance matrix estimate which is based upon the current bistatic radar sce-
nario. Thus, knowledge of the parameters defining the scenario can be used,
via a model, to calculate the covariance matrix. However, in practical ap-
plications the processor may not have knowledge of the scenario parameters.
Therefore, in this work we investigate the sensitivity of the space-time covari-
ance matrix towards deviations in the scenario parameters. The sensitivity is
measured via detector performance, and compared via numerical simulations
with other state-of-the-art covariance matrix estimation methods.

6.3 Paper C
Jacob Klintberg, Tomas McKelvey, Patrik Dammert
A Parametric Approach to Space-Time Adaptive Processing in Bistatic
Radar Systems
Submitted for publication in IEEE Transactions on Aerospace and Elec-
tronic Systems,
Dec. 2020.

This paper considers estimation of the space-time covariance matrix for
airborne bistatic radar systems. As secondary data is range dependent for
such systems, the estimation problem becomes somewhat involved. In this
paper, we present a method which estimates the covariance matrix via the
current radar scenario. As the parameters defining the scenario is unknown
to the processor an maximum likelihood estimate of the scenario is obtained
using all available secondary data. The covariance matrix is given via a model
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6.3 Paper C

describing the scenario. If used in a detector, this approach would approxi-
mately represent a generalized likelihood ratio test as unknowns are replaced
with their maximum likelihood estimates based on secondary data. Numeri-
cal simulations indicates significantly reduced SINR-losses with the presented
method compared to other state-of-the-art methods.

33





CHAPTER 7

Concluding Remarks and Future Work

Target detection serve as one of the primary objectives of a radar system. To
obtain the necessary information for target detections, signal processing algo-
rithms are used to filter the electromagnetic echoes from the radar surround-
ings. In this thesis, two different signal processing algorithms are considered;
spectral estimation and space-time adaptive processing.
The spectral estimation is considered for signals that can be represented

by a parametric model. The objective is to estimate frequency components
and their amplitudes and damping factors. In radar systems, the problem of
gridless angle-Doppler-range estimation of the echoes has this formulation. In
this thesis, we investigate three different methods for this problem. The dif-
ference between the methods are the conditions they impose of the frequency
estimates. The main contribution of this work is a visualization on how man-
agement of matrix rank and structure affect the accuracy of the estimate.

For airborne radar systems, the behavior of the clutter interference will de-
pend on the radar configuration. A side-looking monostatic radar will observe
snapshots that are statistically independent and identically distributed for all
ranges. This implies that a STAP-algorithm can obtain the maximum like-
lihood estimate of the space-time covariance matrix of the interference and
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the thermal noise. However, other radar configurations than the side-looking
monostatic case, will not observe secondary snapshots that are identically dis-
tributed over the range dimension. A maximum likelihood estimate of the
space-time covariance can consequently not be obtained without any addi-
tional processing of the radar snapshots.
In this thesis, we investigate and present a method which estimates the

space-time covariance matrix based upon a model which describes the current
bistatic radar scenario. The current radar scenario is defined by parame-
ters connected to the transmitting platform, the receiving platform and to
the reflectivity of the clutter interference. If the parameters are known, the
space-time covariance matrix can be calculated via the model describing the
scenario. However, the parameters defining the scenario are typically un-
known to the processor in real applications. Therefore, we present a method
which finds a maximum likelihood estimate to the scenario parameters using
the available radar observations. If used in a detector, this approach ap-
proximately would represent a generalized likelihood ratio test as unknowns
are replaced by their maximum likelihood estimates based on all secondary
data. Numerical simulations indicates improved performance of the presented
method compared to other state-of-the-art methods.
In the work regarding mitigation of interference in bistatic systems, several

assumptions has been made upon the response of the clutter interference and
knowledge of the radar models. Thus, we have assumed a homogeneous clutter
response and no mismatch between algorithm model assumptions and the
model generating the radar observations. These assumptions may not be
valid in practical radar use cases. Therefore, the future research directions
of this work aim to investigate deviations from these assumptions and the
possible impacts it will have on the presented method. Consequently, the
presented method will be evaluated on heterogeneous clutter observations, and
a mismatch between the model assumed by the algorithm and the model used
to generate the observations. The intention of such evaluation is to imitate
the behavior of radar responses obtained from real scenarios. Ultimately, the
evaluation will answer the question if the used assumptions are sufficient for
real world applications, or if additional considerations has to be made on the
algorithm for it to be a useful tool in practical applications.
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