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Abstract

This research characterizes forward looking radar performance while noting

differences with traditionally examined sidelooking radar. The target detection prob-

lem for forward looking radar is extremely difficult due to the severe, heterogeneous,

and range dependent ground clutter. Consequently, forward looking radar detection

represents an important but overlooked topic because of the increased difficulty com-

pared to sidelooking radar. This void must be filled since most fighter aircraft use

forward looking radar, making this topic intensely interesting to the Air Force.

After characterizing forward looking radar performance, basic radar concepts

along with advanced adaptive interference suppression techniques improve the output

Signal-to-Interference-plus-Noise Ratio (SINR) and target detection rates using fixed

false alarm for linear arrays. However, target detection probabilities and output

SINR do not improve enough. Although the methods considered are adaptive in

azimuth and Doppler, effective range ambiguous clutter mitigation requires elevation

adaptivity, a feature not offered by linear arrays.

The research continues by examining planar arrays. Elevation adaptivity com-

bined with azimuth and Doppler adaptivity allows suppressing range ambiguous

clutter and significantly increasing output SINR, detection probability, and max-

imum detection range. Specifically, three-dimensional Space-Time Adaptive Pro-

cessing (3D STAP) techniques with adaptivity in elevation, azimuth, and Doppler

achieve detection probability improvements of over 10 dB in required input SINR

compared to two-dimensional (2D) STAP processing. Additionally, 3D STAP im-

proves detection probability versus input SINR curves over 30 dB when compared

to 2D conventional processing techniques.

As a result, forward looking radars using 3D STAP have the capacity to detect

targets that conventional processing might miss.

xiv



FORWARD LOOKING RADAR: INTERFERENCE MODELLING,

CHARACTERIZATION, AND SUPPRESSION

I. Introduction

Airborne radar systems are required to detect increasingly smaller targets ob-

scured by interference. Conventional Doppler filtering separates the target

from the interference in the frequency domain. However, complex interference envi-

ronments mitigate the advantages associated with Doppler filtering because some tar-

gets residing near mainbeam clutter remain difficult to detect. To date, only adaptive

interference suppression techniques offer the improved detection required for these

smaller, obscured targets in clutter limited environments. One form of adaptive in-

terference suppression processing is called Space-Time Adaptive Processing (STAP).

Such processing methods adaptively process radar data both spatially (with respect

to the antenna array) and temporally (with respect to Doppler filtering). STAP

provides improved detection by maximizing output Signal-to-Interference-plus-Noise

Ratio (SINR) .

1.1 Purpose

This research fills a void in the adaptive interference suppression literature base

since most STAP research predominately focuses on the sidelooking array case [1].

Although typical surveillance radar platforms do use the sidelooking array config-

uration, adaptive interference suppression method research is now transitioning to

fighter aircraft and other platforms. These platforms typically use a forward looking

array and exhibit a much stronger interference environment due to aircraft dynamics.

This thesis characterizes the forward looking array, discusses forward looking

array effects on radar performance, and applies basic radar concepts along with

1



advanced STAP techniques to improve output SINR and target detection. Forward

looking and sidelooking array cases are examined and differences noted.

1.2 Organization

Chapter II provides a literature review describing the sidelooking array data

model. This model is based on Ward’s physical model for linear arrays [2] with

extensions to planar arrays by Hale [3] and decorrelation effects by Klemm [1] and

Jaffer [4]. Also, the literature review provides a basic STAP background. The

sidelooking array data model is important because it serves as the framework for the

forward looking data model.

Chapter III develops the forward looking data model. This data model is

developed mathematically using a planar array with the aircraft’s velocity along the

antenna array boresight and using a 90◦ crab angle on the sidelooking data model. A

crab angle occurs when the real velocity vector differs from the aircraft’s longitudinal

axis. Therefore, a 90◦ crab angle on the sidelooking array case alters the velocity

vector such that it lies along antenna array boresight, i.e., it simulates a forward

looking array. The equivalence of these two forward looking array implementations

is shown.

Chapter IV compares the forward looking array to the sidelooking array, illus-

trating a more severe interference environment with more clutter heterogeneities and

multiple clutter ridges due to range ambiguous clutter. Also, decorrelation effects

have a more pronounced effect on the forward looking array case as shown in output

SINR plots.

Chapter V applies STAP to the forward looking case, mitigating the increased

interference environment. Several different STAP technique performance results are

examined including the Matched Filter (MF), Joint Domain Localized (JDL), Para-

metric Adaptive Matched Filter (PAMF) and Factored Time-Space (FTS). Also,

non-adaptive beamforming and conventional Doppler filtering is used and referred

2



to as Signal Match (SM). The SM processing technique is a useful comparison be-

cause it shows radar system performance without STAP, illustrating performance

improvements due to adaptivity. Since maximizing output SINR also maximizes

detection probability performance, output SINR analysis is used to evaluate perfor-

mance [5]. Following the output SINR analysis, antenna beam patterns are shown

for the forward looking array case. Antenna beam patterns allow observation of null

placement with comparison to interference power spectral density surfaces. The idea

is for the antenna beam pattern to null the clutter and the jammer while having a

peak response in the desired look direction. Lastly, Monte Carlo analysis is used to

predict detection probability performance.

Additionally, changing the Pulse Repetition Frequency (PRF) is presented as

a path to changing the target location in the Doppler space. Even with the improve-

ments in SINR, three-dimensional (3D) STAP is needed to improve target detection

around the clutter ridges for the forward looking array case since the forward looking

interference environment is so severe.

Chapter VI examines 3D STAP processing. The elevation adaptivity addition

allows multiple-time around clutter cancellation. Hence, foldover in the forward

looking array case no longer obscures targets. Analysis focuses on how 3D STAP

processing alleviates the decorrelation effects plaguing forward looking radar returns

and improves SINR Loss, detection probability performance, and maximum detection

range.

1.3 Notation

Table 1.1 describes the notation used throughout this thesis. The only ambi-

guity that exists in this notation is whether a quantity is estimated or in fact a unit

vector. Surrounding text clarifies whether quantities are estimated or whether they

are unit vectors when they are introduced.
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Table 1.1: Thesis notation.

Example Definition

x Vectors
X Matrices
x Scalars

k̂ Estimated parameter or unit vector
xH Hermitian Transpose
xT Transpose
x∗ Complex Conjugation
Xn,m nth row and mth column
xn nth vector element
φt Describes “t” is for target
ε[·] Expected value

1.4 Sponsorship

The Air Force Research Laboratory (AFRL) is very interested in applying

STAP to improve target detection in airborne radars using forward looking arrays.

This interest occurs because most fighters use forward looking arrays.

The AFRL Radio Frequency Sensor Technology Division (SNR) conducts re-

search and development programs demonstrating radar target detection and adaptive

radar processing. These programs meet the Air Force’s needs in the targeting, attack,

and weapon delivery areas for vehicles. This thesis supports AFRL/SNR’s mission

of increased target detection and adaptive radar processing for forward looking radar

systems.
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II. Sidelooking Radar Modelling and Adaptive Interference

Suppression

This chapter focuses on modelling sidelooking array radar data and interference

suppression methods. This model then serves as the foundation for modelling

forward looking array data in Chapter III.

Careful consideration should be used by the reader when reading Chapter II.

Although, forward looking arrays are the focus of this thesis, sidelooking arrays

form the bulk of available literature. Understanding sidelooking arrays is critical

to understanding the forward looking array model. The sidelooking array model

presented here is based on the physical model by Ward [2] with extension to planar

arrays by Hale [3] and added decorrelation effects by Klemm [1] and Jaffer [4]. These

three facets are presented in a cohesive framework within this document.

The logical progression when describing Space-Time Adaptive Processing (STAP)

applied to sidelooking arrays includes a quick airborne radar problem overview, data

model description, a basic background on STAP, and fundamental STAP implemen-

tation issues. Section 2.1 gives the airborne radar overview. Section 2.2 describes

the sidelooking array data model. Section 2.3 provides the STAP background. Fi-

nally, Section 2.4 goes over fundamental STAP implementation issues and Section 2.5

reviews another STAP approach using parametric modelling.

2.1 Airborne Radar Problem Overview

Airborne radars must compensate for noise and interference typically several

orders of magnitude larger than target echoes [6]. The traditional way of dealing with

this problem is to take advantage of the Doppler effect, a frequency shift due to a

difference in relative velocity between the airborne radar and its target. Continuous

Wave (CW) radars constantly transmit a sinusoidal waveform and obtain a target

velocity estimate from the Doppler shift. CW radars cannot differentiate the time
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it takes for a particular wave to travel to the target and back to the radar because

all waves are identical resulting in no range information. As a result, radars trans-

mit pulsed waveforms in order to gain both range and velocity information about

potential targets.

Pulsed Doppler radars use a medium-to-high Pulse Repetition Frequency (PRF)

so there are not many Doppler frequency ambiguities but as a result there are some

range ambiguities. The Pulse Repetition Interval (PRI) defines the time between

pulses and is denoted as Tr. The PRI and PRF are inverses of each other and set

the number of range and Doppler ambiguities. Normalized Doppler, ω̄t, is defined

as the Doppler shift, ft, normalized by the PRF, fr,

ω̄t =
ft

fr

. (2.1)

Any normalized Doppler value greater than 0.5 or less than −0.5 is ambiguous.

Therefore, any value lying outside this range is easily discernable as Doppler am-

biguous.

Radars receive these pulses at each antenna element and process them to de-

termine whether a target is present or not. All STAP approaches combine weighted

sums of the pulses from every antenna element to form a scalar quantity. This scalar

is then threshold detected to determine if a target is present. Radar target detection

is a form of Neyman-Pearson testing [7] where the desired false alarm probability

(Pfa) determines the threshold. The weights can be fully adaptive where the pulses

from every antenna element are utilized adaptively or partially adaptive where only

a set number of weights are adaptive.

The clutter returns experience the Doppler shift for airborne radars and con-

sequently radars that use traditional Signal Match (SM) processing may not be able

to separate slow moving targets from mainbeam clutter.
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! Signal Match (SM) processing refers to conventional filtering tech-
niques using non-adaptive beamforming and Doppler filtering.

For this reason, adaptive processing is used to place nulls along the clutter

ridge to increase the Signal-to-Interference-plus-Noise Ratio (SINR) and detection

probability. For sidelooking arrays, the clutter ridge is shown to be linear with sine

of azimuth versus Doppler frequency verifying STAP is required because STAP is

adaptive both spatially and temporally.

2.2 Data Model for Side Looking Arrays

Traditionally, most STAP research focuses on sidelooking arrays for airborne

pulsed radars [1]. Neglecting crab angle and yaw, aircraft with sidelooking arrays

move with a velocity along the positive x-axis. The data model presented below

closely follows the accepted sidelooking model [2, 3].

The planar radar antenna array is composed of P stacked linear arrays with N

equidistant elements. These linear arrays extend along the x-axis and P of them are

placed along the z-axis. These elements are equidistantly separated in azimuth and

elevation with distances dx and dz, respectively. Figure 2.1 shows the planar array

model used in this thesis.

A unit vector pointing to an arbitrary point is expressed in Cartesian coordi-

nates as

k̂(φ, θ) = cos(θ) sin(φ)x̂ + cos(θ) cos(φ)ŷ + sin(θ)ẑ, (2.2)

where k̂ is the unit vector, φ is the azimuth angle, θ is the elevation angle, and x̂, ŷ,

and ẑ are the cartesian unit vectors. The radar coordinate system is similar to the

spherical coordinate system but true azimuth and true elevation are used. Therefore,

θ is negative when pointing towards the ground because it is below radar boresight.

Additionally, φ is zero at radar boresight (along the positive y-axis) and is positive

as φ moves towards the positive x-axis from the positive y-axis. The position vector
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Figure 2.1: Planar array model with P vertical elements
spaced dz apart and N horizontal elements spaced dx apart.

dnp describes the position of element np in the antenna array and is given as

dnp = ndxx̂ + pdzẑ, (2.3)

where n = 0, 1, ..., N − 1 and p = 0, 1, ..., P − 1.

! When P = 1, the planar array reduces to the linear array that is
common in most STAP publications.

2.2.1 Radar Waveform. Since the radar system and geometry have been

described, the discussion changes to the transmit and receive radar waveform. Ulti-

mately, the radar returns are received, frequency down converted, matched filtered,

and digitized before adaptive processing as shown in Fig. 2.2. Using complex expo-
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Figure 2.2: Radar block diagram for data collection.

nential notation, the transmitted radar waveform is modelled as

s(t) = atu(t)ej(ωot+ψ), (2.4)

where at is an amplitude, u(t) is defined in Eqn. (2.5), ωo is the radian carrier

frequency, and ψ is a random phase [3]. The pulsed structure is defined by the pulse

width Tp and PRI [6]. M pulses with width Tp sum together to yield the envelope

function

u(t) =
M−1
∑

m=0

up(t − mTr), (2.5)

where the individual pulses, up(t), are shifted by integer multiples of the PRI, Tr.

The basic pulse used in radar is

up(t) = 1 0 ≤ t ≤ Tp

= 0 otherwise.
(2.6)

The Coherent Processing Interval (CPI) is defined by the finite coherent summation

of M pulses. The transmitted radar pulse train multiplied by the sinusoidal carrier

frequency is shown in Fig. 2.3. For Fig. 2.3, the PRI is 3 seconds and the pulse width

is 1 second.
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Figure 2.3: Transmitted radar pulse train modulating sinu-
soidal carrier.

Next, each antenna element (channel) receives the radar waveform with a time

delay, τnp, and Doppler shift (assumed to be equal at every antenna element) due

to the relative motion between the aircraft and the target. The Doppler frequency

shift is defined as

ft =
2vr

λo

, (2.7)

where vr is the relative velocity between the aircraft and the target and λo is the

radar’s transmit wavelength [8]. At element np, the received waveform is represented

as

snp(t) = aru(t − τnp)e
j2πfo(t−τnp)ej2πft(t−τnp)ejψ, (2.8)

where ar is the received amplitude. The parameter ar accommodates range attenu-

ation and Radar Cross Section (RCS) effects and is calculated using the radar range

equation discussed in [6]. After removing the carrier frequency and match filtering

on a pulse-by-pulse basis, the received signal at a particular npth element, for the
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mth pulse, and from a particular range cell is

χmnp = αte
j2π(nϑx+pϑz)ej2πmω̄t , (2.9)

where are
jψ is replaced by the complex quantity αt. ϑx and ϑz represent spatial

frequencies defined in Section 3.1.2. The return in Eqn. (2.9) represents the return

from a single point scatterer.

2.2.2 Data Format. After the radar signal has been received, down con-

verted, and match filtered, the data needs to be put into some mathematical format

suitable for customary linear algebra operations. This formatting is accomplished

using the Kronecker product [9]. The three-dimensional (3D) space-time snapshot

χt for a given range cell is

χt = αte(ϑz) ⊗ b(ω̄t) ⊗ a(ϑx), (2.10)

where ⊗ is the Kronecker product. e(ϑz), b(ω̄t), and a(ϑx) represent the steering

vectors defined in Section 3.1.4.

The space-time snapshot represents MNP samples for each range cell. There

are L range cells, each of size cTp

2
meters across, representing successive range gates

up to the unambiguous range given in Eqn. (3.38). When P = 1, the data is

conceptually visualized using the datacube as seen in Fig. 2.4. For planar arrays

when P is greater than one, the data is visualized using a hypercube, a difficult

concept to picture.

The 3D steering vector vt is defined as

vt = e(ϑz) ⊗ b(ω̄t) ⊗ a(ϑx). (2.11)
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Figure 2.4: Radar datacube for linear arrays when P = 1.
Other values of P require visualization of a 4D hypercube.

The space-time steering vector physically represents the phase changes on every

channel and pulse return for a single point scatterer at some location in elevation,

azimuth, and normalized Doppler referenced to one of the elements and pulses within

the CPI [10]. Using the steering vector, the space-time snapshot can be represented

as

χt = αtvt. (2.12)

The space-time snapshot physically represents the return from a single point scat-

terer.

In real radar systems, the return due to the target has to compete with unde-

sirable returns. Hence, the received data is represented as

χ = χt + χu, (2.13)
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where the undesirable returns are composed of thermal noise, barrage noise jamming,

and clutter. This model uses a single point scatterer for the target return and

therefore adds in thermal noise, jamming, and clutter to the data.

2.2.3 Thermal Noise Model. Only white Gaussian thermal noise is assumed

present in the data. This noise is internally generated by the receivers, and given

every element has its own receiver, the noise is mutually independent for every

element. The correlation matrix for the noise component is defined as

Rn = ε[χnχ
H
n ]. (2.14)

The correlation matrix for independent random processes is the identity matrix [11].

The thermal noise is assumed to be zero mean, since there is no direct current com-

ponent within the return. For zero mean random processes, the covariance matrix

is equal to the correlation matrix. Therefore, the noise covariance matrix is equal to

Rn = σ2IMNP , (2.15)

where σ2 is the noise power and IMNP is an identity matrix with dimensions MNP ×
MNP . The noise power is equal to NoB, where No is the noise Power Spectral

Density (PSD) and B is the radar bandwidth. It is important to note the thermal

noise guarantees the covariance matrix is non-singular.

2.2.4 Jammer Model. This thesis only takes into account noise jamming.

Noise jammer signals are uncorrelated temporally but correlated spatially. The spa-

tial correlation property creates a spatial relationship between the returns across

the array elements. Similarly, the temporally uncorrelated property destroys any

Doppler information as the returns from pulse-to-pulse are uncorrelated. Since there

is no direct current component in the jammer returns, the jammer covariance matrix

is equivalent to the jammer correlation matrix. Using the properties of the Kronecker
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Figure 2.5: Clutter ring for an airborne radar.

product and following the process in [3], the jammer covariance matrix is

Rj = σ2ξje(ϑz)e
H(ϑz) ⊗ IM ⊗ a(ϑx)a

H(ϑx), (2.16)

where ξj is the Jammer to Noise Ratio (JNR).

2.2.5 Clutter Model. The airborne clutter model established by [3] takes

into account ambiguous clutter returns and planar arrays. This model is an extension

to the physical model developed by [2] with added decorrelation effects by [1] and [4].

Since ground returns are typically much larger than sky clutter, any sky clutter

returns have been ignored. A 4/3 effective radius is used to model the earth as a

sphere.

Due to range ambiguities associated with pulsed radar signals, the radar re-

ceives clutter returns for the same range cell at multiples of the unambiguous range

up to the horizon range. Each range ring consists of clutter patches with a certain

RCS and grazing angle as discussed in [6]. Figure 2.5 shows the clutter ring for an

airborne radar.
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The clutter Doppler frequency fc at any patch is

fc(θi, φk) =
2k̂(θi, φk) • va

λo

, (2.17)

where • is the dot product. Recalling that for sidelooking radar the velocity vector

is totally along the x-axis (assuming zero crab angle), the clutter Doppler frequency

becomes

fSL
c (θi, φk) =

2va cos(θi) sin(φk)

λo

. (2.18)

Notice the mainbeam clutter in the sidelooking array case is range independent,

because the clutter ridge always passes through 0 Hz for the main beam (0◦ azimuth)

regardless of range. The clutter returns are again zero mean so that the covariance

matrix is equal to the correlation matrix. The clutter covariance matrix is then

written as

Rc = σ2

Nc
∑

i=1

Nr
∑

k=1

ξike(ϑz)e
H(ϑz) ⊗ b(ω̄ik)b

H(ω̄ik) ⊗ a(ϑx)a
H(ϑx), (2.19)

where ξik is the Clutter to Noise Ratio (CNR), Nc is the number of clutter patches,

and Nr is the number of ambiguous range rings.

! Important: for ranges less than the altitude, only ambiguous clutter
returns are present.

2.2.5.1 Decorrelation Effects. The data model incorporates real

world effects using decorrelation parameters. The decorrelation effects comprise

Internal Clutter Motion (ICM) [1,4] and System Bandwidth [1]. The decorrelation

effects are applied to the clutter covariance matrix using statistical decorrelation

coefficients from [1] to incorporate ICM and System Bandwidth. ICM represents

clutter motion within a patch, above and beyond the relative velocity from platform

motion. This effect commonly occurs when foliage moves as a result of wind. Real

radars must compensate for this increased clutter bandwidth. System Bandwidth
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accounts for spatial decorrelation across the array resulting from different propaga-

tion times on an element-by-element basis, when the clutter receive signal arrives

at angles other than boresight. Standard array theory aligns receive signals on an

element-by-element basis using phase delays. Therefore, the actual pulse envelope

does not completely align at every element and a loss is incurred. This loss is ac-

counted for using the System Bandwidth decorrelation effect. Both decorrelation

effects result in increased clutter covariance matrix rank. Section 3.4 shows the

actual implementation of the decorrelation effects.

2.2.6 Total Interference plus Noise Covariance Matrix. The next step

consolidates the different components into the total covariance matrix. Typically,

radar returns are assumed to be one of two hypotheses. The H1 hypothesis is

χ = χt + χc + χn + χj, (2.20)

meaning the target is present. The H0 hypothesis occurs when no target is present,

χ = χc + χn + χj. (2.21)

The total covariance matrix is computed under the H0 hypothesis

R = ε[χχ
H ] = Rc + Rj + Rn, (2.22)

where R is the interference plus noise covariance matrix and assuming that the noise,

jammer, and clutter returns are all mutually uncorrelated. The covariance matrix

has dimensions MNP × MNP .

! The ambiguous clutter returns that this model incorporate are very
important but unfortunately usually ignored in traditional STAP research.
Elevation adaptivity can null out ambiguous clutter range rings [3]. Regular
linear arrays lack elevation adaptivity and thus cannot null out ambiguous
clutter as well as planar arrays.
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2.3 Background on STAP

Clutter limited, versus thermal noise limited, target detection remains a diffi-

cult task for any airborne radar [6]. Conventional Doppler filtering offers significant

improvement by placing the target and interference in a domain where they can be

separated based on Doppler shift. However, clutter limited interference environments

mitigate the advantages associated with Doppler filtering techniques. In particular,

slow moving targets residing near mainbeam clutter remain difficult to detect.

Adaptive interference suppression research serves to solve this complex clutter

limited airborne radar problem. Typically, STAP refers to two-dimensional (2D)

spatial and temporal adaptive processing methods. The first publication suggesting

such an approach focused on a fully adaptive method and illustrated optimality by

maximizing the output Signal-to-Interference-plus-Noise Ratio (SINR) using known

interference statistics [12]. This approach became commonly known as the Matched

Filter (MF), not to be confused with conventional matched filtering techniques such

as those discussed in [6]. Such conventional (nonadaptive) matched filtering tech-

niques maximize output Signal-to-Noise Ratio (SNR) given white Gaussian thermal

noise as the interference source.

! The reader should take care to notice there is a fundamental difference
between the MF and a matched filter despite the similarity of the nomen-
clature. The MF is the optimum space-time processing filter used in STAP
whereas a matched filter is a generic filter that seeks to maximize a received
SNR before signal processing.

Unfortunately, interference statistics are not known a priori and must be es-

timated from available data if used in any practical radar system. This realization

resulted in the Adaptive Matched Filter (AMF) [5], where known interference statis-

tics are replaced by a Maximum Likelihood (ML) estimate formulated from received

airborne radar data. The AMF brought about new problems since fully adaptive

methods such as the AMF require large amounts of radar data (possibly more than

is available) when calculating the interference estimate. Due to sample support
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limitations and large computational load, researchers began working on partially

adaptive methods (reduced dimension problems).

Partially adaptive STAP algorithms constrain the Degrees of Freedom (DOF)

available for interference suppression. Such a constraint clearly fails to compete

with fully adaptive methods, but is actually implementable and able to estimate

interference statistics. A wide variety of partially adaptive methods exist. The

most simple partially adaptive algorithm considered is a factored approach, Factored

Time-Space (FTS) [2].

Two other partially adaptive interference suppression methods offer interesting

approaches. The first reduces dimensionality, and subsequently computational load

and sample support requirements, by first projecting the data into a domain where

the target is localized to a single bin or cell. In the ideal radar context, this domain is

angle-Doppler. A small localized processing region is formed around this bin where

localized adaptivity is implemented and target detection achieved. This method is

commonly known as Joint Domain Localized (JDL) [13].

The second method is the Parametric Adaptive Matched Filter (PAMF) [14].

The PAMF offers a truly revolutionary approach to the adaptive interference sup-

pression problem. All previous approaches relied on interference statistics estimates

in the form of covariance matrices. The PAMF approach applies an Auto-Regressive

(AR) model and approaches performance parallelling fully adaptive methods with

extremely small sample support. The primary weakness associated with the PAMF

approach is appropriate AR model selection.

2.4 Implementation of STAP

In general, the output of any radar filter is threshold detected. The filter

output is in general,

y = wH
χ, (2.23)
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where y is threshold detected and w is the weight vector. The optimum space-time

filter, also known as the (MF), weight vector equals

wo = R−1vt. (2.24)

However, the interference plus noise covariance matrix is never known a priori but

the MF serves as a benchmark for comparison. Therefore, STAP seeks to maximize

the SINR adaptively and reach as close as possible to the MF’s optimal performance.

As discussed in Section 2.3 the AMF estimates the covariance matrix and has

the following weight vector,

wamf = R̂−1vt, (2.25)

where R̂ is the ML covariance matrix estimate. Ensuring the covariance matrix

estimate is non-singular requires at least MNP Independent Identically Distributed

(iid) range cells for sample support. The sample support needs to be iid so the

statistics of the covariance matrix can be accurately estimated. The covariance

matrix is estimated using the ML estimate as

R̂ =
1

K

K
∑

k=1

χkχ
H
k , (2.26)

where K is equal to the number of sample support used and χk is the incoming

data vector from the kth secondary support range cell. Also, the estimation of the

covariance matrix impacts AMF performance. Reed’s Rule states for the output

SINR to be within 3 dB of the optimum (known covariance) SINR on average,

twice the number of DOF sample support is required for estimating the covariance

matrix [15,16]. Therefore, AMF requires MNP iid samples to even work but needs

2MNP iid samples for performance to be within 3 dB of the MF’s performance.

JDL is a partially adaptive STAP technique presented by Wang and Cai [13].

JDL offers a beamspace approach that is only adaptive within a Localized Processing
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Figure 2.6: JDL Localized Processing Region (LPR) corre-
sponding to a 3 × 3 LPR with the bin corresponding to the
signal darkened.

Region (LPR). Beamspaces result from forming a beam to bins located at a certain

frequency and angle. The received space-time data must first be transformed to the

angle-Doppler domain. Additionally, for JDL to work under ideal conditions, the

point target must be centered on a bin or the target will “bleed” to adjacent range

cells. Figure 2.6 shows a 3 × 3 LPR with the darkened bin corresponding to the

signal. JDL has the advantage of breaking a large problem into smaller problems

while still achieving close to optimal results. Data is transformed from the element-

time space to the angle-Doppler space by projecting into the LPR. The dimension

reducing transformation matrix, T, used to project into the LPR is

T =
[

e(θ−1) e(θ0) e(θ1)
]

⊗
[

b(ω̄−1) b(ω̄0) b(ω̄1)
]

⊗
[

a(φ−1, θ0) a(φ0, θ0) a(φ1, θ0)
]

, (2.27)
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where ω̄−1 represents a bin below the LPR center for Doppler, ω̄0 represents the LPR

center bin for Doppler, and the other parameters follow in the same manner. The

transformation matrix above represents a 3x3x3 LPR where a generic LPR has size

ηe × ηb × ηa. T has dimensions MNP × ηeηbηa where ηe ≤P, ηb ≤M, and ηa ≤N.

The weight vector for JDL is [17]

wjdl = T(THRT)−HTHvt. (2.28)

FTS is a post Doppler Spatially Adaptive Processing (SAP) techniques. FTS

uses a factored approach that Doppler filters the data first and then adaptively

beamforms the Doppler filtered data second [2]. FTS can be implemented by making

an LPR region with only one Doppler bin. This removes the Doppler adaptivity

present in JDL. The LPR region would consist of all the spatial bins.

The STAP algorithms discussed so far require a matrix inversion of either the

estimated covariance matrix or THR̂T as part of the algorithm. The operations

required for matrix inversion are proportional to the size of the matrix cubed. This

computational complexity poses a problem for fully adaptive STAP because MNP

is usually a very large number in practice. The inversion of THR̂T requires fewer

operations due to the dimension reducing transformation matrix.

The computational complexity is not the only implementation issue for STAP.

The covariance matrix or the dimension reduced covariance matrix must be inverted.

This inversion requires a non-singular matrix (full rank). The dimension of the ma-

trix to be inverted is the number of DOF that are adaptive. This means that the

number of iid samples required for a full rank matrix is the number of DOF. For

example, MNP sample data support is required for the AMF. However, partially

adaptive STAP methods only require the number of DOF, usually much less than

MNP. In reality, MNP iid sample support is never available due to range hetero-

geneities. The different range cells used for estimating the covariance matrix are not
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iid due to range attenuation effects and the simple fact that some areas will not have

the same statistical properties over several km. Additionally for Reed’s Rule to hold,

twice the number of DOF iid sample support must be used further complicating the

sample support and computational complexity problems.

2.5 PAMF

The PAMF uses a multichannel AR model and achieves the clutter and in-

terference suppression desired by traditional STAP algorithms without the massive

secondary support requirements. AR models are a subclass of parametric model

based estimation that assume information about the random process. These inher-

ent assumptions reduce the amount of required estimation data [11].

The primary advantage is the ability to provide N(M − Z) DOF, close to

full adaptivity or NM DOF, with small sample support requirements. The variable

Z is the AR estimating filter order [18], where typically Z ¿ M . Other reduced

sample support methods provide far fewer DOF because of the sample requirements

associated with the full rank covariance matrix estimate.

The covariance matrix R can be represented using a block matrix Lower Di-

agonal Lower (LDL) decomposition, where R = ADAH [14]. The matrix A has

dimensions MN × MN with an inverse given by























IN 0 . . . 0

AH
1 (1) IN . . . 0

AH
2 (2) AH

2 (1) . . . 0

...
...

. . .
...

AH
M−1(M − 1) AH

M−2(M − 2) . . . IN























, (2.29)

where IN is a N ×N identity matrix, 0 is a matrix of zeros of size N ×N , and AH
i (i)

represents the ith order AR filter coefficients used in linear prediction under known

covariance.
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Under known interference statistics, an LDL decomposition of the covariance

matrix R provides the AR filter coefficients. As a result the parametric filter co-

efficients AH
i are known and the resultant PAMF output SINR is mathematically

equivalent to the MF originally developed in [12].

This block decomposition provides the underlying PAMF justification. This

interpretation allows another method for whitening the interference returns: estimate

reduced order parametric filter coefficients instead of the covariance matrix. This

simple fact means the PAMF does not follow Reed’s Rule [15] and required sample

support is not twice the DOF.

There are several different parameter estimation algorithms available in the

literature. This thesis uses the Levinson-Wiggins-Robinson Recursion estimation

algorithm in Appendix A [19]. Additional multichannel parameter estimation theory

and algorithms can be found in [20].

After the prediction error filter coefficients have been estimated for each sample

support range cell, the PAMF whitens the data using the filter coefficients averaged

across the sample support range cells. For analytical convenience, a block matrix

Bnp with dimensions N(M − Z) × NM is defined as [14]























AH
2 (2) AH

2 (1) IN 0 . . . 0

0 AH
2 (2) AH

2 (1) IN . . . 0

0 0 AH
2 (2) AH

2 (1) . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 AH
2 (2) AH

2 (1) IN























. (2.30)

The block vector residual ε can be viewed as the output of a Moving Average

(MA) filter using the estimated prediction error coefficients,

ε = Bnpχ, (2.31)

23



where χ is again the received radar space-time snapshot. Define the residual covari-

ance matrix as

Rε = ε[εεH ]. (2.32)

Following the development in [18], define a Hermitian matrix C as

C = BH
np[IN−Z ⊗ R−1

ε ]Bnp, (2.33)

where ⊗ is the Kronecker product defined in [9]. Finally, the PAMF weight vector

is

wPAMF =
Cv√
vHCv

, (2.34)

where v is the space-time steering vector of [2]. The true strength of the PAMF shows

itself in Chapter V in Monte Carlo analysis under unknown interference statistics.

2.6 Summary

Chapter II presents the current state of the art for sidelooking STAP tech-

niques. The literature review allows a comparison between published sidelooking

array work and forward looking array work in the following chapters. This chapter

first provides a generic airborne radar problem overview. After the problem overview,

Section 2.2 reviews the published sidelooking array data model with added clutter

decorrelation effects. Then, Section 2.3 goes over the basic background on STAP and

Sections 2.4 and 2.5 show some of the implementation issues for STAP. After under-

standing the sidelooking data model, the more difficult forward looking problem is

ready to be discussed.
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III. Forward Looking Radar Modelling

The forward looking radar data model builds upon the sidelooking array data

model introduced in Chapter II. This area represents a void in the available

literature and is ripe for potential applications because most aircraft have forward

looking arrays [1].

Once this forward looking radar data model is established, a comparison to the

sidelooking configuration is offered in Chapter IV. This comparison addresses the

different clutter spectral shapes and the associated loss of homogeneity. Chapter V

examines radar performance when limited to a linear array allowing only azimuth

and Doppler adaptivity, i.e., two-dimensional (2D) target localization. This chapter

illustrates the limited capability to counter the increased interference environment

associated with the forward looking system. Chapter VI evaluates an extension to

include three-dimensional (3D) adaptivity and illustrates a significant performance

improvement.

The current chapter builds a forward looking radar model from fundamental

principles. The radar waveform is examined within the context of transmission and

reflection from a single point scatterer. From this basic single point scatterer return,

an entire interference environment is formed within a statistical context based on

physical constraints.

Section 3.2 addresses this identical problem within the context of a well known

sidelooking radar data model but using a 90◦ crab angle to simulate the forward look-

ing case. As Section 3.3 shows, this second approach is mathematically equivalent

to the first.

The final section introduces decorrelation effects, making the model more re-

flective of real world radar and antenna conditions. As shown in subsequent chapters

and real world data, decorrelation effects significantly degrade nominal radar detec-

tion performance.
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Figure 3.1: Planar array model with P vertical elements
spaced dz apart and N horizontal elements spaced dx apart.
The velocity vector is now oriented along the y-axis.

3.1 Forward Looking Model

The airborne radar considered in this section is pulsed as described in [6]. The

velocity vector in the forward looking array case lies along the positive y-axis. The

radar antenna array consists of P stacked linear arrays with N elements. The linear

arrays extend along the x-axis and P of them are placed along the z-axis. These

elements are equidistantly separated along the x and z axes with distances dx and

dz, respectively. Figure 3.1 illustrates this array configuration.

The following mathematical development parallels that of [2] and [3]. The

development deviates from these models in the velocity vector’s orientation with

respect to array boresight, i.e., from a side looking to a forward looking configuration.

Since the velocity vector is the only factor to change from Chapter II, only model

characteristics dependent on the velocity, i.e. the clutter, change.
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3.1.1 Transmitted Waveform. The transmitted radar waveform is de-

scribed by

s(t) = atu(t)ej(ωot+ψ), (3.1)

where at is the transmitted pulse amplitude, u(t) is the pulse train, ωo is carrier

frequency in radians, and ψ is a random starting phase. The pulse train is composed

of M fundamental pulses up(t) and is given by

u(t) =
M−1
∑

m=0

up(t − mTr), (3.2)

where Tr is the Pulse Repetition Interval (PRI).

3.1.2 Received Waveform. In the same way, the received waveform at

element np has the same general form as Eqn. (2.8). The total delay time to element

np equals the delay due to the round trip time, τt, plus the delay from element np

to the first element to receive the signal return, τ ′
np. This total delay is represented

as

τnp = τt + τ ′
np, (3.3)

where the round trip delay time is simply τt = 2Rt

c
[8]. Rt is the range to the target

and c is the propagation speed of the radar waveform, the speed of light. The delay

to element np is

τ ′
np =

−k̂(θ, φ) • dnp

c
, (3.4)

where dnp is described in Eqn. (2.3). Simplifying Eqn. (3.4) results in

τ ′
np =

−ndx cos(θt) sin(φt) − pdz sin(θt)

c
. (3.5)
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The actual phase delay from the first element to receive the radar signal to the npth

element is equal to

− woτ
′
np =

2πfo[ndx cos(θt) sin(φt) + pdz sin(θt)]

c
. (3.6)

The target spatial frequency is defined to simplify the phase delay as

ϑt =
k̂(φt, θt) • dnp

λo

. (3.7)

After carrying out the dot product, the target spatial frequency can be represented

as

ϑt =
ndx cos(θt) sin(φt) + pdz sin(θt)

λo

. (3.8)

The target spatial frequency is then divided into the x-axis and z-axis components

for analytical simplification,

ϑx =
dx cos(θt) sin(φt)

λo

(3.9)

ϑz =
dz sin(θt)

λo

. (3.10)

The phase delay can now be expressed using the target spatial frequencies as

− woτ
′
np = 2π(nϑx + pϑz). (3.11)

Now, the received signal can be written as

snp(t) = aru(t − τ ′
np − τt)e

j2πfo(t−τ ′

np−τt)ej2πft(t−τ ′

np−τt)ejψ, (3.12)

but τ ′
np is significantly less than the envelope pulse width so τ ′

np can be reasonably

ignored in u(t). Also, using the target spatial frequencies, e−j2πfoτ ′

np = ej2π(nϑx+pϑz).

Finally, the exponentials that are not functions of time or the parameters n and p
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are incorporated into the random phase term with no loss of information. These

three simplifications reduce the received signal to

snp(t) ∼= aru(t − τt)e
j2πfotej2πfttejψej2π(nϑx+pϑz). (3.13)

3.1.3 Receiver Processing. To make the processing easier, the signal is

down converted to baseband so the signal is now

snp(t) ∼= aru(t − τt)e
j2πfttejψej2π(nϑx+pϑz). (3.14)

The down converter filter is assumed to not pass the carrier frequency image fre-

quencies [21]. Matched filters, used in radar, convolve the received signal with the

filter’s impulse response. The matched filter output is

χnp =

∫ ∞

−∞

snp(τ)h(t − τ)dτ, (3.15)

with the impulse response, h(t) = u∗
p(−t). The matched filter output can be ex-

pressed as

χnp
∼=

∫ ∞

−∞

aru(τ − τt)e
j2πftτejψej2π(nϑx+pϑz)u∗

p(τ − t)dτ

∼= are
j2π(nϑx+pϑz)ejψ

∫ ∞

−∞

M−1
∑

m=0

up(τ − τt − mTr)u
∗
p(τ − t)ej2πftτdτ,

(3.16)

where u(t) from Eqn. (2.5) has been used. The next step is to define a change of

variables, z = τ−mTr. Therefore, the substitution τ = z+mTr is used in Eqn. (3.16)

obtaining,

χnp
∼= are

j2π(nϑx+pϑz)ejψ

M−1
∑

m=0

ej2πftmTr

∫ ∞

−∞

up(z−τt)u
∗
p(−t+z+mTr)e

j2πftzdz. (3.17)

29



The integral term in the equation above is a form of the Time-Frequency

Auto-Correlation Function (TFACF) [22]. As long as the radar waveforms remain

Doppler tolerant, the integral term approximately equals one. Doppler tolerance

means a small shift in time in the TFACF does not cause a large Doppler frequency

shift [6]. Due to the Doppler effect, the received signal envelope is actually stretched

or compressed causing a time mismatch in the matched filter [10]. According to

Klemm [1], the mismatch effect is minimal as long as long as 2vrfo ≤ cB, where B is

the bandwidth. This condition is a reasonable assumption for most realistic target

velocities and bandwidths and therefore the radar waveform is considered Doppler

tolerant. Thus, the received signal at element np is

χnp
∼= are

jψej2π(nϑx+pϑz)

M−1
∑

m=0

ej2πω̄tm, (3.18)

where the substitution ω̄t = ftTr is used. The data received at each element repre-

sents a coherent integration of the M pulses in a Coherent Processing Interval (CPI).

The return from pulse m at element np for a given range cell is

χmnp
∼= αte

j2π(nϑx+pϑz)ej2πω̄tm, (3.19)

where αt = are
jψ.

3.1.4 Block Data Format. After the radar signal has been received, down

converted, and match filtered, the data needs to be put into some mathematical

format suitable for customary linear algebra operations. This formatting is accom-

plished using the Kronecker product [9]. First, consider all the returns from the N

azimuth antenna elements in a concatenated vector for a given range cell,

χmp = αte
j2πmω̄tej2πpϑz

[

1 ej2πϑx . . . ej2π(N−1)ϑx

]T

. (3.20)
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Noticing the column vector has a special format to it, define the azimuth steering

vector a as

a(ϑx) =
[

1 ej2πϑx . . . ej2π(N−1)ϑx

]T

. (3.21)

Following the development in [3] used for sidelooking arrays, the temporal steering

vector b and the elevation steering vector e are defined as

b(ω̄t) =
[

1 ej2πω̄t . . . ej2π(M−1)ω̄t

]T

(3.22)

e(ϑz) =
[

1 ej2πϑz . . . ej2π(P−1)ϑz

]T

. (3.23)

Using these steering vectors, the data is formatted as follows below,

χmp = αte
j2πmω̄tej2πpϑza(ϑx). (3.24)

Also, NM returns from the pth elevation bank are expressed as

χp = αte
j2πpϑzb(ω̄t) ⊗ a(ϑx), (3.25)

where ⊗ represents the Kronecker product. Finally, the 3D space-time snapshot χt

for a given range cell is

χt = αte(ϑz) ⊗ b(ω̄t) ⊗ a(ϑx). (3.26)

The 3D steering vector vt has the same form as it did for the sidelooking array case,

vt = e(ϑz) ⊗ b(ω̄t) ⊗ a(ϑx). (3.27)

31



The space-time steering vector physically represents the phase changes on every

channel and pulse return for a single point scatterer at some location in elevation,

azimuth, and normalized Doppler referenced to one of the elements and pulses within

the CPI [10]. Using the steering vector, the space-time snapshot can be represented

as

χt = αtvt. (3.28)

The space-time snapshot physically represents the return from a single point scat-

terer.

In real radar systems, the return due to the target χt has to compete with

undesirable returns. Hence, the received data is represented as

χ = χt + χu, (3.29)

where the undesirable returns χu are composed of thermal noise, barrage noise jam-

ming, and clutter. This model uses a single point scatterer for the target return and

therefore needs to add in thermal noise, jamming, and clutter to the data.

3.1.5 Thermal Noise Model. Only white Gaussian thermal noise is assumed

present in the data. This noise is internally generated by the receivers, and given

every element has its own receiver, the noise is mutually independent for every

element. The correlation matrix for the noise component is defined as

Rn = ε[χnχ
H
n ]. (3.30)

The correlation matrix for independent random processes is the identity matrix [11].

The thermal noise is assumed to be zero mean, since there is no direct current com-

ponent within the return. For zero mean random processes, the covariance matrix
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is equal to the correlation matrix. Therefore, the noise covariance matrix is equal to

Rn = σ2IMNP , (3.31)

where σ2 is the noise power and IMNP is an identity matrix with dimensions MNP ×
MNP . It is important to note the thermal noise guarantees the covariance matrix

is non-singular.

3.1.6 Jammer Model. This thesis only takes into account noise jamming.

Noise jammer signals are uncorrelated temporally but correlated spatially. The spa-

tial correlation property means that returns are correlated across the array. Similarly,

the temporal uncorrelated property means that the returns are uncorrelated from

pulse to pulse. The jamming signals are also assumed to be zero mean so that the

covariance matrix is equivalent to the correlation matrix. Using the properties of the

Kronecker product and following the process as done by [3], the jammer covariance

matrix is

Rj = σ2ξje(ϑz)e
H(ϑz) ⊗ IM ⊗ a(ϑx)a

H(ϑx), (3.32)

where ξj is the Jammer to Noise Ratio (JNR). The JNR equals Jo

No
, where Jo is

the two-sided jammer Power Spectral Density (PSD) that is received and No is the

two-sided noise PSD. The jammer PSD is

Jo =
Sjg(φ, θ)λ2

o

(4πRj)2Lr

, (3.33)

where Sj is the effective jammer radiated PSD that is transmitted, g(φ, θ) is the

element gain, Rj is the range to the jammer, and Lr is the receiver loss.

3.1.7 Clutter Model. The airborne clutter model established by [3] takes

into account ambiguous clutter returns and planar arrays. This model is an extension

to the physical model developed by [2] with added decorrelation effects by [1] and [4].
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Since ground returns are typically much larger than sky clutter, any sky clutter

returns have been ignored. A 4/3 effective radius is used to model the earth as a

sphere.

Due to range ambiguities associated with pulsed radar signals, the radar re-

ceives clutter returns for the same range cell at multiples of the unambiguous range

up to the horizon range. Each range ring consists of clutter patches with a certain

RCS and grazing angle as discussed in [6].

The clutter Doppler frequency at any patch is

fc(θi, φk) =
2k̂(θi, φk) • va

λo

. (3.34)

Remembering that the velocity vector is totally along the y-axis (assuming no crab

angle) means the clutter Doppler frequency becomes

fFL
c (θi, φk) =

2va cos(θi) cos(φk)

λo

. (3.35)

Notice the clutter in the forward looking array case is range dependent, because the

clutter null is at different frequencies for different ranges. The clutter returns are

assumed to be zero mean so that the covariance matrix is equal to the correlation

matrix. The clutter covariance matrix can be written as

Rc = σ2

Nc
∑

i=1

Nr
∑

k=1

ξike(ϑz)e
H(ϑz) ⊗ b(ω̄ik)b

H(ω̄ik) ⊗ a(ϑx)a
H(ϑx), (3.36)

where ξik is the Clutter to Noise Ratio (CNR), Nc is the number of clutter patches,

and Nr is the number of ambiguous range rings. The number of ambiguous range

rings is

Nr =

⌊

Rh

Ru

⌋

, (3.37)
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where Rh is the range to the horizon, Ru is the unambiguous range, and b c is the

floor function that rounds down to the next integer. From [6], the unambiguous

range is

Ru =
cTr

2
. (3.38)

Following the development in [3], the range to the horizon is

Rh =
√

h2
a + 2haae, (3.39)

where ha is the height of the aircraft and ae is the effective radius of the earth. The

CNR for each patch is

ξik =
PtG(θi, φk)g(θi, φk)λ

2
oσik

(4π)3NoBLsR4
i

, (3.40)

where Pt is the transmit power, G(θi, φk) is the array gain, g(θi, φk) is the element

gain, σik is the clutter patch effective radar cross section, Ls is the system loss, and

Ri is the range to the clutter patch. The clutter patch effective radar cross section

is defined by the constant gamma model [6],

σik = γ sin(ψi)Ri∆φ∆R sec(ψi), (3.41)

where γ is the value that defines the constant gamma model, ψi is the grazing angle

from Fig. 2.5, Ri is the range to the clutter patch, ∆φ equals 2π/Nc and ∆R equals

the range resolution c/2B.

! An important point to make is that for ranges less than the altitude,
only ambiguous clutter returns are present.

3.1.8 Total Interference plus Noise Covariance Matrix. The next step

consolidates the different components into the total covariance matrix. Typically,
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radar returns are assumed to be one of two hypotheses. The H1 hypothesis is

χ = χt + χc + χn + χj, (3.42)

which means that the target is present. The H0 hypothesis occurs when no target is

present, that is

χ = χc + χn + χj. (3.43)

The total covariance matrix is computed under the H0 hypothesis

R = ε[χχ
H ] = Rc + Rj + Rn, (3.44)

where R is the interference plus noise covariance matrix and assuming that the noise,

jammer, and clutter returns are all mutually uncorrelated. The covariance matrix

has dimensions MNP × MNP and is full rank due to the white noise component.

! The ambiguous clutter returns that this model incorporate are very
important for forward looking radar because the ambiguous returns cause
multiple clutter nulls and increase the rank of the clutter covariance matrix.

3.2 Sidelooking Data Model with 90◦ Crab Angle

The data model reviewed in Chapter II for sidelooking arrays is now modified

to have a 90◦ crab angle. The crab angle directs the aircraft velocity vector towards

the positive y-axis along the array boresight angle. Therefore, the velocity vector is

expressed as

va = vaŷ, (3.45)
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where va is the aircraft’s speed directed in the positive y-axis. The clutter Doppler

spectrum as already given in Eqn. (2.17) is

fc(θi, φk) =
2k̂(θi, φk) • va

λo

, (3.46)

where λo is the wavelength, and k̂(θi, φk) is the unit vector in angular radar coordi-

nates. The unit vector from Eqn. (2.2) is equal to

k̂(φ, θ) = cos(θ) sin(φ)x̂ + cos(θ) cos(φ)ŷ + sin(θ)ẑ. (3.47)

Using the unit vector and aircraft velocity, the clutter Doppler reduces to

fFL
c (θi, φk) =

2va cos(θi) cos(φk)

λo

. (3.48)

Therefore, the clutter ridge for forward looking arrays implemented using a 90◦ crab

angle is not linear with sin(φ). In fact, it is nonlinear because two different azimuth

angles produce the same Doppler frequency.

3.3 Equivalence

This section shows the equivalence of the two methods used to generate the

forward looking array data model. The first technique is the velocity vector pointing

out along the planar array boresight and the second technique is the 90◦ crab angle

on the sidelooking array data model. The equivalence is shown by pointing out the

two techniques result in identical total interference plus noise covariance matrices.

First, the portion of the total covariance matrix due to receiver thermal noise,

Rn, is equal to σ2IMNP in both the sidelooking and forward looking cases as shown

in Eqns. 2.15 and 3.31. Second, the jammer covariance matrix, Rj is also equivalent

in both cases as shown in Eqns. 2.16 and 3.32. Third, the two different methods both

give the same clutter-Doppler relationship as shown in Eqns. 3.48 and 3.35. Since the
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same azimuth, temporal, and elevation steering vectors are used to create the clutter

covariance matrix, Rc, the sidelooking with a 90◦ crab angle and forward looking

array cases produce the same matrices. Therefore, the two different techniques

give the same total interference plus noise covariance matrix, because the three

undesirable covariance components are identical for both cases.

3.4 Decorrelation Effects

Decorrelation parameters take into account real world effects degrading radar

performance. Clutter fluctuations are accounted for with Internal Clutter Motion

(ICM). ICM accounts for foliage movement due to the wind within a clutter patch on

a pulse-by-pulse basis. System Bandwidth accounts for spatial decorrelation across

the array resulting from different propagation times on an element-by-element basis,

when the clutter receive signal arrives at angles other than boresight. Standard

array theory aligns receive signals on an element-by-element basis using phase delays.

Therefore, the actual pulse envelope does not completely align at every element and

a loss is incurred. Both decorrelation effects result in increased clutter covariance

matrix rank. Figure 3.2 shows the increased clutter rank using eigenvalue analysis

when both ICM and System Bandwidth are taken into account.

ICM fluctuations are assigned a Gaussian Doppler frequency spectrum. Hence,

the temporal autocorrelation function is Gaussian as well [4]. The response from the

ith clutter patch at the kth range ring can be expressed as

χc = αikvik, (3.49)

where each patch is treated as a single point scatterer. The temporal autocorrelation

can then be expressed as

γ(m) = σ2ξik exp

(−B2
c m

2

8

)

, (3.50)
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Figure 3.2: Increased clutter rank when decorrelation param-
eters are taken into account.

where Bc is the Gaussian spectral clutter bandwidth normalized by the PRF [1].

The clutter covariance matrix with ICM added can then be expressed as

Rc = σ2

Nc
∑

i=1

Nr
∑

k=1

ξike(ϑz)e
H(ϑz) ⊗ [ΓICM ¯ b(ω̄ik)b

H(ω̄ik)] ⊗ a(ϑx)a
H(ϑx), (3.51)

where ΓICM is equal to the Toeplitz matrix of the vector
[

γ(0) . . . γ(M − 1)
]

and ¯ is the Hadamard product. The Hadamard product is element-by-element

multiplication. The Toeplitz function creates a Hermitian matrix from a vector

where the first row and first column of the matrix are the vector elements. Figure 3.3

illustrates the correlation function for ICM. Notice the correlation function reverts

back to 1 as Bc goes to 0. Therefore, setting Bc to 0 results in no ICM decorrelation

effect. As Bc gets higher, the clutter returns are more uncorrelated and the clutter

rank significantly increases.
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Figure 3.3: Correlation function for ICM decorrelation effects.
Notice the correlation function equals 1 as Bc equals 0 represent-
ing no ICM decorrelation effect.

The System Bandwidth effect is a spatial decorrelation unlike ICM, a temporal

decorrelation. This effect accounts for the difference in the expected time delay to

element np because phase delays are used in the array processing. The carrier is

modulated by a rectangular function so the spatial decorrelation autocorrelation

function can be expressed as a triangle function or

ρnp = 1 −
| τ ′

np |
Tp

, (3.52)

where τ ′
np is the travel time from the reference element to element np and | τ ′

np | is

always less than or equal to the pulse width, Tp [1]. Figure 3.4 shows the correlation

function for System Bandwidth. Notice the correlation function approaches 1 as the

pulse width gets larger and the correlation function gets smaller as the pulse width

decreases, representing an increase in clutter rank as decorrelation increases.
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Figure 3.4: Correlation function for System Bandwidth decor-
relation effects. Notice the correlation function gets larger as the
pulse width increases representing a smaller System Bandwidth
decorrelation effect.

The travel time due to the phase delay is described in Section 3.1.2, but is

expressed here as

− τ ′
np =

nϑx

fo

+
pϑz

fo

, (3.53)

where fo is the radar transmit frequency. For analytical convenience, τ ′
np is divided

into two components below:

− τx =
nϑx

fo

(3.54)

− τz =
pϑz

fo

. (3.55)

They represent the x-axis and the z-axis time differences in the same manner that the

spatial frequencies, ϑx and ϑz helped to ease the formatting of the data. Therefore,
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the clutter covariance matrix can be written as

Rc = σ2

Nc
∑

i=1

Nr
∑

k=1

ξik[ΓBWz ¯ e(ϑz)e
H(ϑz)] ⊗ [ΓICM ¯ b(ω̄ik)b

H(ω̄ik)]

⊗ [ΓBWx ¯ a(ϑx)a
H(ϑx)], (3.56)

where ΓBWx is the x-axis system bandwidth decorrelation matrix and ΓBWz is the

z-axis system bandwidth decorrelation matrix. These two matrices are equal to

ΓBWx = Toeplitz
[

ρx(0) . . . ρx(N − 1)
]

(3.57)

ΓBWz = Toeplitz
[

ρz(0) . . . ρz(P − 1)
]

, (3.58)

where ρx(n) = 1 − n|ϑx|
Tpfo

and ρz(p) = 1 − p|ϑz |
Tpfo

. Note decorrelation effects are only

applied to the clutter not to the noise and jammer.

3.5 Summary

Chapter III provides the forward looking radar data model used in the rest of

this thesis. The forward looking radar model is developed from fundamental princi-

ples starting with the transmission and reflection from a single point scatterer. Using

the well known sidelooking model from Chapter II with a 90◦ crab angle provides the

same forward looking radar data model. Section 3.3 shows the different approaches

are equivalent mathematically. The addition of decorrelation effects makes the model

more indicative of real world radar performance. Decorrelation effects significantly

degrade radar performance as shown in subsequent chapters.

Since this forward looking radar data model is established, a comparison to the

sidelooking configuration is offered next in Chapter IV. This comparison addresses

the different clutter spectral shapes and the associated loss of homogeneity in the

forward looking case.
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IV. Comparisons Between Forward and Sidelooking Arrays

This chapter compares and contrasts the sidelooking and forward looking ar-

ray cases based on the data models introduced in Chapters II and III. These

characteristics are compared using the Matched Filter (MF) and Noise limited cases.

After the comparisons are noted, Chapter V evaluates radar performance when

limited to a linear array allowing only azimuth and Doppler adaptivity. This chapter

illustrates the limited capability of linear arrays to mitigate the increased interference

environment associated with the forward looking radar system. Chapter VI examines

an extension to include three-dimensional adaptivity and illustrates a significant

performance improvement in the forward looking case using planar arrays.

The current chapter discusses the general clutter-Doppler relationship and

range cell homogeneity and notes the differences between the forward and sidelooking

cases. The discussion on range cell homogeneity naturally leads into the difference

in clutter ridge shape and clutter covariance matrix rank. Additionally, differences

in clutter notches are noted between the two different array orientations.

Section 4.6 illustrates the degradation resulting from the addition of decorre-

lation parameters in the forward and sidelooking array cases.

The simulation parameters used in these comparisons are given in Table 4.1

unless otherwise noted.

4.1 Understanding the Clutter Environment

The generic clutter-Doppler relationship for any array orientation from Eqn. (2.17)

equals

fc(θi, φk) =
2k̂(θi, φk) • va

λo

. (4.1)

Using this clutter-Doppler expression means the Doppler values can be evaluated as

a function of every mainbeam direction, i.e., the sidelooking case corresponds to 0◦
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Table 4.1: Scenario parameters.

Variable Value

M 32
N 11
P 1
fo 1240 MHz
fr 1984 Hz
Tp 0.8 µs
Pt 200 kW
B 800 kHz
Fn (Noise Figure) 3 dB
Nc 361
ha (aircraft altitude) 3073 m

va (aircraft velocity) dxfr

2

R 12 km
γ -3 dB
Array Transmit Gain 22 dB
Element Pattern Cosine
Element Gain 4 dB
Element Backlobe Level -40 dB
dx 0.10922 m
dz 0.1407 m
Transmit Taper Uniform (None)
System Losses Ls 3 dB
Target φ 0◦

Target θ 0◦

Target ω̄ 0.25
Bc

10
fr

ξt 1
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Figure 4.1: General clutter-Doppler values for any array orien-
tation. Sidelooking arrays correspond to 0◦ azimuth and forward
looking arrays correspond to 90◦ azimuth.

azimuth and the forward looking case corresponds to 90◦ azimuth. The 90◦ change

between the two orientations in azimuth also explains why the sin(φ) in Eqn. (4.4)

changes into a cos(φ) in Eqn. (4.2). Figure 4.1 shows the Doppler values for various

mainbeam locations in φ and θ. Notice the Doppler value is 0 for 0◦ azimuth and

remains constant versus θ for the side looking case. This lack of elevation depen-

dency shows the range independence for mainbeam clutter in sidelooking radars.

The Doppler values for 90◦ azimuth vary versus elevation and illustrate the range

dependence for forward looking radar returns.

The clutter-Doppler frequency values in Fig. 4.1 show a bowl shape as discussed

in [23]. The differences in range dependency for the forward and sidelooking array

cases lead into the differences in homogeneity between the two cases.
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4.2 Homogeneity

Space-Time Adaptive Processing (STAP) requires statistical sample support

in order to estimate the interference environment. This statistical approach assumes

Independent Identically Distributed (iid) data across range cells. When the sample

support data is approximately iid, homogeneity is assumed. The lack of homogeneity

is called heterogeneous data.

Sidelooking array sample support remains more homogeneous than forward

looking array data because of range dependency effects. For the reader’s convenience,

the clutter-Doppler relationship for the forward looking case is given again from

Eqn. (3.35) as

fFL
c (θi, φk) =

2va cos(θi) cos(φk)

λo

. (4.2)

By definition, every range cell occurs at different values of θ. This simple fact

means every range cell has different Doppler characteristics and therefore the differ-

ent range cells are not homogeneous in the forward looking case. Basically, forward

looking clutter returns are range dependent and do not meet the iid criteria. Another

viewpoint looks at the clutter-Doppler dependence on the x-axis and z-axis spatial

frequencies from Eqn. (3.9) and Eqn. (3.10) as shown below

fFL
c (θi, φk) =

2va cos(θi) cos(φk)

λo

=
2va cos(θi)

√

1 − sin(φk)2

λo

= 2va

√

cos(θi)2 sin(θi)2d2
z

λ2
od

2
z sin(θi)2

− cos(θi)2 sin(φk)2d2
x

λ2
od

2
x

= 2va

√

cot(θi)2ϑ2
z

d2
z

− ϑ2
x

d2
x

.

(4.3)

Richardson notes the clutter-Doppler spectrum follows the shape of an ellipsoid when

viewed as a function of the spatial frequencies [23].
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Next, the sidelooking clutter-Doppler relationship from Eqn. (2.18) is given

again as

fSL
c (θi, φk) =

2va cos(θi) sin(φk)

λo

. (4.4)

Since the main lobe is formed at 0◦ azimuth (assuming no crab angle), the clutter

ridge always passes through 0 Hz because sin(0) is always 0 regardless of the range

cell θ value. Consequently, the mainbeam clutter returns for sidelooking arrays

are range independent and more homogeneous than the forward looking case. The

clutter-Doppler can also be represented as a simple linear function of the x-axis

spatial frequency

fSL
c (θi, φk) =

2va cos(θi) sin(φk)

λo

=
2vadx cos(θi) sin(φk)

λodx

=
2vaϑx

dx

.

(4.5)

Figure 4.2 illustrates the linear dependence existing the sidelooking array case be-

tween the clutter-Doppler and x-axis spatial frequency.

Clearly, the ellipsoid in the clutter-Doppler versus spatial frequency space for

the forward looking case is significantly more complicated than the linear dependence

existing in the clutter-Doppler versus x-axis spatial frequency for the sidelooking ar-

ray case. Because the forward looking clutter-Doppler depends on the z-axis spatial

frequency, every range cell possesses different clutter-Doppler characteristics depend-

ing on θ. Therefore, the forward looking array case is more heterogeneous than the

sidelooking array case and fewer sample support is available for STAP algorithms

that need iid support data.
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Figure 4.2: Linear dependence between clutter-Doppler and
x-axis spatial frequency for a sidelooking array. The lack of
dependence on the z-axis spatial frequency shows the main beam
range independence for sidelooking arrays.

4.3 Clutter Ridges

The differences existing between the forward and sidelooking array cases with

regards to homogeneity directly result in different clutter ridges. The sidelooking

case clutter-Doppler relationship is linear with the sine of azimuth while the forward

looking case clutter-Doppler relationship varies with the cosine of azimuth as shown

in Eqn. (4.2) and Eqn. (4.4). The sidelooking array case clutter ridge is shown

using the minimum variance representation of the Power Spectral Density (PSD) [1]

for 12 km in Fig. 4.3. The sidelooking array case clutter properties remain more

homogeneous across range cells as shown in Fig. 4.4 at 5 km. The clutter ridge for

the sidelooking case always follows the same general shape regardless of the range in

contrast with the range dependent forward looking case.
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Figure 4.3: Clutter PSD for a sidelooking array at 12 km.
Notice the variation versus sin(φ) for sidelooking arrays.

Figure 4.4: Clutter PSD for a sidelooking array at 5 km.
Notice the clutter PSD is relatively unchanged from Fig. 4.3 at
12 km.
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Figure 4.5 shows the forward looking array case clutter ridge using a PSD plot

for 12 km. As noted in Section 4.2, the forward looking clutter properties change

with range. Figure 4.6 illustrates the clutter spectral properties at 5 km for the

forward looking case. STAP requires iid sample support to accurately estimate the

interference environment, i.e. homogeneous data. As shown in Fig. 4.6, the inter-

ference environment significantly changes versus range in the forward looking radar

case compared to Fig. 4.5 and performance will suffer from using the heterogeneous

data as sample support. In fact, two noticeable clutter ridges exist at 5 km for the

forward looking radar case but only one noticeable clutter ridge at 12 km.

This clutter-Doppler relationship for forward looking arrays results in several

important ramifications. First, two azimuth angles produce the same Doppler fre-

quency because cosine is an even function. Sidelooking arrays do not experience

this phenomenon because for every azimuth angle there is one Doppler frequency

and vice-versa. Second, multiple clutter ridges may appear due to range ambigu-

ous clutter in the forward looking case but range ambiguous clutter does not cause

additional clutter ridges in the sidelooking case.

4.4 Eigenvalue Analysis of Clutter Covariance Matrices

As a result of the differences between the forward looking and sidelooking array

cases with regards to range dependency, clutter covariance matrices have different

ranks for the forward and sidelooking array cases. Clutter covariance rank is an

important concept because the higher the rank, the more difficult the interference

suppression problem is [1]. As a result, interference suppression poses more difficul-

ties in the forward looking case than it does for the sidelooking case. Eigenvalue

analysis shows this difficulty because the number of eigenvalues is equal to the rank

of the clutter covariance matrix. The increased rank for forward looking arrays

arises from the ambiguous range clutter returns. The sidelooking case mainbeam
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Figure 4.5: Clutter PSD for a forward looking array at 12 km.
Notice the variation versus cos(φ) for forward looking arrays.

Figure 4.6: Clutter PSD for a forward looking array at 5
km. Notice the completely different clutter PSD for the forward
looking case as compared to the clutter PSD in Fig. 4.5.
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Figure 4.7: Eigenvalue Analysis for forward and sidelooking
array cases. Notice the sidelooking array case clutter rank is
significantly less than the forward looking array case because
the range ambiguous clutter increases the clutter rank for the
forward looking case.

clutter returns are range independent while the forward looking returns are range

dependent.

Figure 4.7 shows a plot of the eigenvalues for the forward looking case and the

sidelooking case. The rank of the clutter covariance matrix is 126 for the forward

looking case. The difficulty in noticing the exact clutter rank occurs because the

ambiguous clutter returns increase the rank of the clutter matrix but they have

significantly less power than the unambiguous range ring. The clutter rank for linear

sidelooking arrays is predicted by Brennan’s Rule [24], which states the clutter rank

is

rc ≈ bN + (M − 1)βc. (4.6)
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In Eqn. (4.6), β is given as 2vaTr

dx
. Brennan’s rule has not been extended to planar

arrays yet. For the values listed in Table 4.1, the clutter rank should be 42. Figure 4.7

shows Brennan’s rule does indeed accurately predict the clutter rank for sidelooking

linear arrays.

In this scenario, the reader should notice the forward looking array case clutter

rank is three times the sidelooking array case clutter rank in this scenario. This fact

can be explained because there are three total range rings (one unambiguous and

two ambiguous). The ambiguous range rings increase the clutter rank for the range

dependent forward looking case but not the sidelooking case. Next, the concept of

clutter notches is discussed for forward and sidelooking array cases.

4.5 Clutter Notches

Sidelooking and forward looking arrays are very different with regards to clut-

ter notches. Clutter notches are undesirable because they reduce the minimum

detectable velocity for Moving Target Indicator (MTI) radars. Basically, sidelooking

arrays only have one clutter notch because of the range independence of the main

beam. In contrast, forward looking arrays can have multiple clutter notches from

ambiguous clutter as a result of the range dependency. The multiple clutter notches

may only appear for ranges less than 5 times the altitude as reported in [1].

Figure 4.8 shows two clutter notches for the forward looking case at a range

of 12 km using output Signal-to-Interference-plus-Noise Ratio (SINR) analysis. The

first notch is due to the unambiguous range ring while the second visible notch is

due to the ambiguous clutter. There are actually two ambiguous range rings but

the Doppler frequency from these two ranges is approximately the same. This far

range effect occurs because the term cos(θ) in Eqn. (4.2) does not vary much at far

ranges. Figure 4.9 illustrates that the range dependency effects are minimized at

ranges greater than 5 times the altitude for forward looking arrays. There is only

one clutter notch and the optimum SINR is reached in the passband for a range
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Figure 4.8: Multiple clutter notches for the forward looking
array case. The range ambiguous clutter in the forward looking
case causes multiple clutter notches.

of 66 km. The clutter notch is located at the frequency due to the aircraft motion

and the θ corresponding to the range still though. In contrast, the clutter notch for

sidelooking arrays is always at 0 Hz regardless of the range and there is always only

one clutter notch. This effect is illustrated in Fig. 4.10.

4.6 Decorrelation Effects

Decorrelation effects result in increased clutter rank in the clutter covariance

matrix. STAP works by finding statistical correlations in the interference returns

but decorrelation effects increase the interference suppression problem difficulty by

increasing the clutter rank. The increased clutter rank means wider clutter notches

and more Degrees of Freedom (DOF) may be required to suppress the interference.

The forward looking array case clutter environment is very severe and as a result

decorrelation parameters affect results dramatically as shown in Fig. 4.11. One of
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Figure 4.9: Single clutter notch for the forward looking array
case at far range. As the range increases far enough out the
ambiguous clutter is so far out that the range ambiguous clutter
does not create noticeable multiple clutter notches

the reasons decorrelation parameters affect the forward looking case so dramatically

is the multiple clutter notches spread out and there appears to only be one large

clutter notch.

Decorrelation effects result in an increased clutter notch in the sidelooking

case as well but not as dramatically as in the forward looking array case as shown

in Fig. 4.12. The sidelooking array case can still reach the optimum SINR while the

forward looking array case cannot reach the optimum SINR with added decorrelation

effects. Figures 4.11 and 4.12 show the decreased performance due to decorrelation

effects by illustrating the decreased output SINR.
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Figure 4.10: Single clutter notch for the sidelooking array
case. The clutter notch for sidelooking radar is always at 0 Hz
showing the range independence for main beam returns.

4.7 Summary

This chapter compares and contrasts the forward and sidelooking array cases.

First, the differences in range cell homogeneity between the two array orientations

are discussed and naturally lead into the different clutter ridge shapes and clutter

covariance matrix ranks using eigenvalue analysis. The differences in the number of

clutter nulls also directly result from the differences in range dependency between

the forward and sidelooking array cases. Finally, Section 4.6 shows the increased dif-

ficulty involved in interference suppression when decorrelation parameters are added

to the forward and sidelooking array cases. Since the differences between the two

array orientations have been explained, the next step is to start applying STAP in

the forward looking case in Chapter V for linear arrays.
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Figure 4.11: Decorrelation Effects for a forward looking array
shown using output SINR. Notice the two clutter nulls from
Fig. 4.8 blend together as a result of decorrelation parameters.
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Figure 4.12: Decorrelation Effects for a sidelooking array
shown using output SINR. Notice the widened clutter notch
from Fig. 4.10 as a result of the added decorrelation parame-
ters.
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V. Interference Suppression in Forward Looking Linear Arrays

This chapter applies Space-Time Adaptive Processing (STAP) to forward look-

ing linear arrays using adaptive interference suppression based on the data

model introduced in Chapter III and the characteristics presented in Chapter IV.

The goals include narrowing the combined clutter notch widened from the decorre-

lation effects and suppressing barrage noise jammer signals so target detection can

improve for slow moving targets. Additionally, another benchmark for success is

how close the partially adaptive STAP techniques approach the optimum output

Signal-to-Interference-plus-Noise Ratio (SINR).

First, output SINR curves and antenna patterns using the Fourier Transform

evaluate performance with an added barrage noise jammer to the covariance matrix.

Then, Monte Carlo analysis predicts target detection probability for the STAP al-

gorithms. Due to the harsh forward looking array environment, Section 5.4 offers

an approach to change the Pulse Repetition Frequency (PRF) to improve results.

Because of the harsh interference environment and need for further improvement,

Chapter VI analyzes interference suppression using a planar array and notes the

performance improvements.

Chapter V shows the result of adding a barrage noise jammer to the environ-

ment. The radar must adaptively suppress the added jamming spatially in addition

to the harsh forward looking case clutter returns. Table 5.1 lists the jammer param-

eters but all other parameters remain the same from Table 4.1.

5.1 Output SINR

Output SINR is a useful performance metric because maximizing SINR is

equivalent to maximizing detection probability [5]. The output SINR is defined

as

SINR =
σ2ξt|wHvt|2

wHRw
, (5.1)
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Table 5.1: Jammer parameters.

Variable Value

Sj 20 dBm/Hz
Rj 50 km
Lr 1
Ge 4 dB
B 800 kHz
fo 1240 MHz
Element Pattern Cosine
Element Backlobe Level -15 dB
Transmit Taper Uniform (None)
Jammer φ 45◦

Jammer θ 0◦

where ξt is the target signal to noise ratio and vt is the target steering vector from

Eqn. (2.11) [2]. SINR curves in this thesis are under known covariance and show

Doppler straddling losses occurring when a target is in between two different Doppler

filters.

Figure 5.1 shows output SINR curves for a forward looking array operating

under the scenario conditions in Tables 4.1 and 5.1. Figure 5.1 shows output SINR

curves for the Matched Filter (MF), Joint Domain Localized (JDL), Parametric

Adaptive Matched Filter (PAMF), Factored Time-Space (FTS), Signal Match (SM),

and Noise limited cases.

The figure clearly indicates a clutter limited detection scenario. The thermal

noise upper bound is significantly above the output SINR produced by the conven-

tional processing method SM, indicated by the curve with the square marker. The

Noise limited bound represents radar performance with no clutter. Hence, it is not

directly comparable to the other curves in the figure. It’s presence within the figure

illustrates clutter impact on output SINR.

As expected when using a forward looking radar, a sharp dip in output SINR

occurs at a normalized Doppler corresponding to mainbeam clutter [25]. In this
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Figure 5.1: Output SINRs curve with a barrage noise jammer.
Notice the MF does not reach the Noise limited curve due to the
harsh clutter limited environment.

scenario, the performance drop occurs at ω̄ ≈ 0.43. Internal Clutter Motion (ICM)

effects cause broadening of this “null” while System Bandwidth effects reduce the

overall performance across the entire normalized doppler spectrum. The output

SINR “null” occurs because the target resides in a physical location identical to

mainbeam clutter. There is no domain available to the radar, either azimuth or

doppler, where the target can be separated from this mainbeam clutter. Subse-

quently, performance drops.

The MF represents an upper performance bound within the clutter limited

scenario. As shown in [12], the MF provides maximum output SINR given known

interference statistics. The figure illustrates each STAP method obeys this result.

The MF results also indicate an environment with strong clutter infiltration since the

MF curve remains approximately 10 dB below the Noise limited detection scenario.
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Of interest is FTS’s inability to significantly improve output SINR. This result

is expected since FTS is a post-doppler method where adaptivity is only performed

within azimuth. A conventional doppler filter bank is used before azimuth adap-

tivity. Given this insight, the method is not truly STAP since it is not adaptive

within two dimensions. The clutter environment simply overwhelms the approach

and performance suffers.

The other STAP techniques offer excellent performance within this forward

looking scenario. The JDL approach is implemented with a small 3 × 3 Localized

Processing Region (LPR), resulting in 9 DOF. However, by operating within a do-

main where the target is localized to a single bin, a large adaptivity region is not

required as shown by the performance results. Sample support requirements remain

conservative because of the small DOF used. These requirements obey Reed’s Rule

of twice the DOF, meaning only 18 space-time snapshots, e.g., 18 range cells of data,

were required for interference statistics estimation. Performance is within 3 dB of

the MF.

The PAMF using known interference statistics, as in this output SINR analy-

sis, is mathematically equivalent to the MF. The figure clearly indicates this result

holds within the simulation since both curves lie directly on top of each other. The

true advantage of the PAMF is shown in the detection probability analysis, where

interference statistics or filter coefficients must be estimated from available data.

5.2 Antenna Beam Patterns

The antenna beam pattern is a useful performance metric because one can

see what effect the STAP algorithm is having on the array pattern. The Fourier

transform is used to obtain this beam pattern because of the equivalence of the

steering vector to the Fourier transform as shown below [10]. The Discrete Fourier
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Transform (DFT) is defined as [26]

W [k] =
N−1
∑

n=0

w[n]e−j2πkn/N . (5.2)

Substitute into Eqn. (5.2) the azimuth steering vector from Eqn. (3.21) to get

W [k] =
N−1
∑

n=0

a∗[n]w[n] =
N−1
∑

n=0

w[n]e−j2πndxcos(θ)sin(φk)/λo , (5.3)

where k from Eqn. (5.2) equals Ndxcos(θ)sin(φk

λo
. After a DFT shift and using the

linspace command in MatlabR©, the azimuth axis scale becomes

φ = sin−1

[

λo

2dx

linspace(−1, 1 − 1/N,N)

]

. (5.4)

The equivalence of the azimuth steering vector to the DFT has been shown and in

the same way the space-time steering vector is equivalent to the multi-dimensional

DFT.

The optimum beam pattern should place nulls across the clutter ridge and null

the jammer. In addition, it should have a peak response where the radar is looking

for a target. In this case, the radar is looking for a target with a normalized Doppler

of 0.25 at 0◦ azimuth and 0◦ elevation. Figure 5.2 shows the beam pattern for the

MF. The MF beam pattern clearly nulls the clutter ridge and the jammer located at

45◦ in azimuth. Both SM and FTS are not adaptive in Doppler and thus cannot null

out the clutter ridge. FTS does have a null close to 45◦ in azimuth though and this

helps to explain why FTS has slightly better performance than SM in Fig. 5.1. The

beam pattern for FTS and SM are shown in Figs. 5.3 and 5.4 respectively. JDL

places a null at 45◦ in azimuth but only in the Localized Processing Region (LPR)

and also places peak response where the radar is looking for a target. This beam

response, shown in Fig. 5.5, obtains output SINR close to the MF’s response with
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Figure 5.2: Antenna beam pattern for the MF with a noise
jammer. Notice the MF places nulls along the clutter ridge and
the jammer.

far fewer DOF’s. Under known covariance, the PAMF Auto-Regressive (AR) filter

coefficients are known [14]. As a result, the PAMF beam pattern nulls the clutter

ridge and the jammer while placing peak response where the radar is looking for a

target as shown in Fig. 5.6.

5.3 Detection Probability

Monte Carlo analysis predicts detection probability based on threshold cross-

ings for a fixed false alarm rate. All detection curves correspond to 0.01 false alarm

probability (Pfa) and 1, 000 trials. The number of trials used in Monte Carlo anal-

ysis is 10/Pfa [19]. A magnitude squared test statistic is used to provide data for

thresholding, where the threshold is determined from the desired Pfa and χ with no

target present. Clearly, data for detection uses χ with a target present at specified

SINR values.
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Figure 5.3: Antenna beam pattern for FTS with a noise jam-
mer. Notice the lack of Doppler adaptivity means FTS is unable
to place nulls along the clutter ridge.

Monte Carlo simulations model detection probability curves for radars under

estimated interference statistics. The traditional STAP methods use twice the DOF

independent and identically distributed (iid) space-time snapshots for covariance

matrix estimation. This rule of thumb is called Reed’s Rule, shown mathematically

to provide average performance within 3 dB of the known covariance output SINR [5,

16]. Hence, FTS requires 2N = 22 snapshots, the Adaptive Matched Filter (AMF)

requires 2NM = 704 snapshots, and JDL requires twice the product of the LPR

dimensions or 18 snapshots.

The disadvantage of fully adaptive methods becomes immediately clear. The

AMF requires 704 sample support range cells, much larger than the typical number

available. The radar under consideration only has 1/Tpfr = 630 range cells available.

For the purposes of this simulation, a full 704 samples were generated although they

clearly result in AMF performance much better than can be expected in real world

application. The AMF method does offer a performance benchmark and this reason
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Figure 5.4: Antenna beam pattern for SM with a noise jam-
mer. Notice the similarities between SM and FTS in Fig. 5.3.

is why it’s included in these results. For comparison, only 8 snapshots were used to

estimate the AR filter coefficients within the PAMF.

Sample support is a critical issue within adaptive interference suppression. For

sidelooking radar, the clutter structure does not change with range cells, although

it’s amplitude does suffer range attenuation effects. Using this fact, range cells serve

as a dimension where the data is approximately homogeneous and approximately iid

samples are available. Real world effects sometimes destroy this homogeneity when

considering large regions as required in the AMF. However, the assumption still holds

for small regions corresponding to the sample support required for partially adaptive

methods. Based on these observations, the iid assumption works well for partially

adaptive interference suppression techniques applied to sidelooking radar and range

is a suitable dimension for drawing iid samples.

This iid assumption does not hold for forward looking radar. As previously

discussed in Chapter IV, clutter structure changes on a range cell basis. For this
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Figure 5.5: Antenna beam pattern for JDL with 9 DOF and
a noise jammer. Notice JDL is only adaptive within its LPR.

reason, extremely small sample support requirements are needed. Such requirements

allow applying the iid assumption across a very small range extent where it might

apply in an approximate sense. Within this context, the extremely small footprint

represented by the PAMF is highly desirable.

Data in this section is generated using two different approaches. First, Fig. 5.7

offers detection analysis when the actual data is generated as iid, but the clutter

shape corresponds to a forward looking radar at the specified target range. Gener-

ating data in this manner relieves the computational load involved in the simulation

since a single covariance matrix, corresponding to the specified target range and for-

ward looking radar, is used to color white data. This analysis provides information

on how well the different techniques handle the different clutter structure, as opposed

to published results on sidelooking radar.
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Figure 5.6: Antenna beam pattern for the PAMF with a noise
jammer. Notice the PAMF places nulls along the clutter ridge
and the jammer.

Figure 5.7 shows detection probability versus input SINR on a per element,

per pulse basis. Since the interference environment is now estimated, the MF curve

is no longer used and replaced by the AMF.

Discussion focuses on the PAMF since the other curves generally mirror their

counterparts within the output SINR analysis. Note FTS actually performs worse

than conventional processing techniques, a result not predicted by the output SINR

curves. This performance degradation occurs because, under known covariance in

Fig. 5.1, FTS was barely performing better than SM. According to Reed’s Rule

there is a drop in performance when estimating the covariance matrix. Since SM

does not estimate interference statistics, it does not suffer this loss and subsequently

outperforms FTS in this scenario [25]. Noticing when conventional methods like SM

actually outperform FTS is an important point since there are some scenarios when

traditional radar processing is adequate and adaptive methods are not needed.
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Figure 5.7: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 for a forward looking array using iid gen-
erated data.

The sample support advantage of the PAMF becomes clear from Fig. 5.7. The

method offers much better performance than any other method, with the smallest

sample support. Requiring such a small number of space-time snapshots for AR

filter coefficient estimation makes the method much less susceptible to inconsistencies

within the data.

The second data generation approach uses the correct covariance matrix for

each range cell within the sample support of the specified techniques [27]. Corre-

spondingly, this approach is a very computationally intensive simulation but does

provide results faithfully representing true forward looking radar performance. Fur-

thermore, comparison between this method and the results of Fig. 5.7 allow deter-

mining the heterogeneous data impact as shown in Fig. 5.8 for the PAMF, JDL, and

FTS. SM processing is not included because it does not change for either approach

since no sample support is used. AMF is not compared since it is not physically re-
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alizable because there are only 630 range cells available and AMF requires 704. The

results corresponding to iid generation use the solid lines and the results correspond-

ing to the second data generation approach use dash-dot lines. The STAP algorithms

all suffer a performance hit because the data is no longer iid. Even though the AMF

was not simulated, the reader can clearly imagine the AMF performance degradation

would be greater because of the even larger number of sample support used. FTS

suffers the largest performance hit in Fig. 5.8 because it uses the largest number

of sample support, 22. Even though PAMF uses less sample support than JDL,

JDL suffers less of a heterogeneity loss than PAMF. A reason for this discrepancy

may be explained by the differences in approach between the two methods. PAMF

uses an AR model while JDL uses a beamspace approach. The PAMF with only 8

sample support cells still outperforms JDL with 18 sample support in Fig. 5.8. The

PAMF and JDL processing techniques perform the best with regards to detection

probability of the algorithms considered in Chapter V.

Due to the harsh forward looking environment, less sample support meets

the iid assumption compared to the sidelooking array case. As a result, STAP

algorithms experience a loss when used in the forward looking case as compared to

the sidelooking case. Figure 5.9 illustrates this detection loss for the PAMF and JDL

processing techniques. The sidelooking case data uses solid lines and the forward

looking data that accounts for heterogeneities uses dash-dot lines. This detection

loss is the price aircraft pay for operating in the forward looking environment.

5.4 Changing the Pulse Repetition Frequency

STAP for linear arrays does offer tremendous improvement over the SM pro-

cessing approach as shown in 5.1 but the ambiguous clutter returns are not attenu-

ated. The lack of attenuation occurs because two-dimensional STAP is not capable

of nulling ambiguous clutter. Therefore, Wang, Bao, and Peng suggest using mul-

tiple PRFs to get better performance results in STAP for forward looking radar
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Figure 5.8: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 comparing the two different data gener-
ation approaches. The iid generation approach uses solid lines
and the heterogeneity approach uses dash-dot lines.

results [28]. Changing the PRF means the target may change locations with regards

to the clutter ridge in the Doppler space. If the target is no longer obscured by the

clutter in the Doppler bin, then target detection is improved. However, if the PRF

is decreased too much, then Doppler ambiguities occur instead of the range ambi-

guities. Doppler ambiguities are particularly to be avoided though in the forward

looking array case.

5.5 Summary

This chapter uses STAP on forward looking linear arrays for interference sup-

pression and increased target detection. Output SINR results for STAP techniques

show tremendous improvement over traditional SM processing. However, two-dimen-

sional (2D) STAP is not capable of reaching the passband for the forward looking
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Figure 5.9: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 comparing the sidelooking array case with
the forward looking array case. The sidelooking case data uses
solid lines and the forward looking data that accounts for het-
erogeneities uses dash-dot lines.

case even with the MF and the clutter notch is still large enough to degrade slow

moving target detection.

Detection probability curves in general track the output SINR curves with two

exceptions. FTS performance degrades below SM performance because of the loss

associated with estimating the covariance matrix and PAMF performance exceeds

AMF target detection rates. The PAMF and JDL algorithms perform the best out

of the implementable techniques used in Chapter V.

Because of the wide clutter notch, an approach has been proposed to change

the PRF so the target may no longer have to compete with the clutter in the Doppler

space. Unfortunately, changing the PRF may cause Doppler ambiguities while trying

to eliminate range ambiguities. Therefore, three-dimensional (3D) STAP is needed to
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null the range ambiguous clutter while not causing Doppler ambiguities as discussed

in Chapter VI.
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VI. Interference Suppression In Forward Looking Planar Arrays

As discussed in Chapter V, Space-Time Adaptive Processing (STAP) for lin-

ear arrays is not capable of obtaining the output Signal-to-Interference-plus-

Noise Ratio (SINR) results needed for detecting slow moving targets near the main-

beam clutter and nulling range ambiguous clutter. Therefore, three-dimensional

(3D) STAP is used to attenuate the range ambiguous clutter and narrow the clutter

notch by adding elevation adaptivity. This chapter fulfills the ultimate goal in STAP

by successfully attenuating range ambiguous clutter using 3D adaptivity.

Section 6.1 gives the simulation parameters used in Chapter VI and shows the

narrowed clutter null and improved pass band results using output SINR analysis.

Then, Section 6.2 shows SINR Loss analysis to show the improved results by com-

paring two-dimensional (2D) STAP to 3D STAP. The final sections show detection

probability and maximum detection range analysis for 3D STAP.

6.1 3D STAP

Table 6.1 shows the parameters used in this chapter. All of the parameters

are constant from Table 4.1 except for P , the number of elevation elements, which

changes from 1 to 3. The additional elevation elements allow the cancellation of range

ambiguous clutter without having to change the Pulse Repetition Frequency (PRF).

This added adaptivity means 3D STAP can improve slow target detection without

causing Doppler ambiguities that might degrade faster moving target detection. Note

the Parametric Adaptive Matched Filter (PAMF) is not included in Chapter VI

because it has not been extended to planar arrays.

Figure 6.1 shows the narrowed clutter notch and the improved passband output

SINR for 3D STAP. The Matched Filter (MF) actually reaches the Noise Limited

SINR value in the passband and the Joint Domain Localized (JDL) closely approxi-

mates the MF curve with only 27 Degrees of Freedom (DOF). Factored Time-Space

73



Table 6.1: Scenario parameters.

Variable Value

M 32
N 11
P (only change) 3

fo 1240 MHz
fr 1984 Hz
Tp 0.8 µs
Pt 200 kW
B 800 kHz
Fn (Noise Figure) 3 dB
Nc 361
ha (aircraft altitude) 3073 m

va (aircraft velocity) dxfr

2

R 12 km
γ -3 dB
Array Transmit Gain 22 dB
Element Pattern Cosine
Element Gain 4 dB
Element Backlobe Level -40 dB
dx 0.10922 m
dz 0.1407 m
Transmit Taper Uniform (None)
System Losses Ls 3 dB
Target φ 0◦

Target θ 0◦

Target ω̄ 0.25
Bc

10
fr

Sj 20 dBm/Hz
Rj 50 km
Lr 1
Ge 4 dB
Jammer Element Backlobe Level -15 dB
Jammer φ 45◦

Jammer θ 0◦

ξt 1
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Figure 6.1: Output SINR for a forward looking planar array.
Notice the narrowed clutter notch compared to Fig. 5.1.

(FTS) shows tremendous improvement over the output SINR curve from Fig. 5.1.

In Fig. 5.1, the FTS curve is only slightly better than the Signal Match (SM) curve.

By adding elevation adaptivity, FTS has an output SINR curve almost 30 dB higher

than SM! In addition, elevation adaptivity has significantly narrowed the clutter

notch so slow moving target detection is improved. The decorrelation effects cause

a widening of the clutter notch that 2D STAP is incapable of compensating for.

In contrast, 3D STAP with elevation adaptivity is able to significantly narrow the

clutter notch.

6.2 SINR Loss

SINR Loss is a performance metric indicating how closely a processing tech-

nique approaches the coherent integration processing gain (the best an algorithm

can do). This section uses SINR Loss for comparing STAP for linear arrays versus

STAP for planar arrays. The reason SINR Loss is used is because by adding elevation
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Figure 6.2: SINR Loss for a forward looking planar array.
Notice the narrowed clutter notch compared to Fig. 6.3.

elements, more DOF have been added. Since the product MNP is higher for planar

arrays, the output SINR curves are higher for the planar arrays. The reason the

choice was made to increase the number of DOF, instead of reducing the number of

azimuth elements to keep the number of DOF constant, is only one factor is changed

by increasing P to 3. By keeping the number of DOF constant, the elevation and

azimuth beam patterns are changed and this makes a comparison very difficult.

Therefore, SINR Loss is used to compare the 2D and 3D STAP results. SINR

Loss is defined as the coherent integration gain, MNP , minus the output SINR for

the processing techniques. The comparison is based on how closely the algorithm

approaches the optimum coherent processing value. Figure 6.2 shows the SINR Loss

curves for 3D STAP. In contrast, Fig. 6.3 shows the SINR loss curves for 2D STAP.

The clutter notch is clearly narrower for planar arrays and there is actually no SINR
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Figure 6.3: SINR Loss for a forward looking linear array.

loss in the passband for planar arrays whereas there is significant SINR loss for linear

arrays.

Figure 6.4 shows the significantly better performance obtained by adding ele-

vation adaptivity using SINR Loss curves for the MF with P = 1 and P = 3. The

MF curve for P = 3 narrows the clutter notch and reaches the passband by nulling

the range ambiguous clutter.

6.3 Detection Probability

As discussed in Chapter V, Monte Carlo analysis predicts detection probabil-

ity based on threshold crossings for a fixed false alarm rate. All detection curves

correspond to 0.01 false alarm probability (Pfa) and 1, 000 trials. The number of

trials used in Monte Carlo analysis is 10/Pfa [19].
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Figure 6.4: SINR Loss for the MF for forward looking lin-
ear and planar arrays. Notice the narrowed clutter notch and
improved passband for the P = 3 MF curve.

Following Reed’s Rule [12], FTS requires 2NP = 66 snapshots, the Adaptive

Matched Filter (AMF) requires 2MNP = 2112 snapshots, and JDL requires twice

the product of the Localized Processing Region (LPR) dimensions or 54 snapshots.

Once again, the disadvantage of fully adaptive methods becomes immediately

clear. The AMF requires 2112 sample support range cells, much larger than the

typical number available. The radar under consideration only has 1/Tpfr = 630

range cells available. For the purposes of this simulation, a full 2112 samples were

generated although they clearly result in AMF performance much better than can

be expected in real world application. The AMF method does offer a performance

benchmark and this reason is why it’s included in these results.

Sample support is a critical issue within adaptive interference suppression. The

iid assumption does not hold for forward looking radar. As previously discussed in

Chapter V, clutter structure changes on a range cell basis. For this reason, extremely
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small sample support requirements are needed. Such requirements allow applying

the iid assumption across a very small range extent where it might apply in an

approximate sense.

Data in this section is generated using the same two approaches from Chap-

ter V. First, Fig. 6.5 offers detection analysis when the actual data is generated as

iid, but the clutter shape corresponds to a forward looking radar at the specified

target range. Figure 6.5 shows detection probability versus input SINR on a per

element, per pulse basis. Since the interference environment is now estimated, the

MF curve is no longer used and replaced by the AMF.

Note FTS actually performs much better than it did in Chapter V, because

FTS is adaptive both in azimuth and elevation now whereas before it was only

adaptive in azimuth for linear arrays.

The second data generation approach uses the correct covariance matrix for

each range cell within the sample support of the specified techniques. Correspond-

ingly, this approach is very computationally intensive but does provide results faith-

fully representing true forward looking radar performance. Furthermore, comparison

between this method and the results of Fig. 6.5 allow determining the heterogeneous

data impact as shown in Fig. 6.6 for JDL and FTS. SM processing is not included

because it does not change for either approach since no sample support is used.

AMF is not compared since it is not physically realizable because there are only 630

range cells available and AMF requires 2112. The results corresponding to iid gener-

ation use the solid lines and the results corresponding to the second data generation

approach use dash-dot lines. The STAP algorithms both suffer a performance hit

because the data is no longer iid. Even though the AMF was not simulated, the

reader can clearly imagine that the AMF performance degradation would be greater

because of the even larger number of sample support used. FTS suffers the largest

performance hit in Fig. 6.6 because it uses the largest number of sample support,

66. The heterogeneity loss in JDL is noticeably smaller for both linear and planar
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Figure 6.5: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 for a forward looking array using iid gen-
erated data.
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Figure 6.6: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 comparing the two different data gener-
ation approaches. The iid generation approach uses solid lines
and the heterogeneity approach uses dash-dot lines.
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Figure 6.7: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 comparing the sidelooking array case with
the forward looking array case. The sidelooking case data uses
solid lines and the forward looking data that accounts for het-
erogeneities uses dash-dot lines.

arrays than it is for FTS. This smaller loss can be explained because fewer DOF are

used and JDL’s LPR approach is more robust than the factored approach used in

FTS.

Due to the harsh forward looking environment, less sample support meets

the iid assumption compared to the sidelooking array case. As a result, STAP

algorithms experience a loss when used in the forward looking case as compared to

the sidelooking case. Figure 6.7 illustrates this detection loss for the FTS processing

technique and SM. The sidelooking case data uses solid lines and the forward looking

data that accounts for heterogeneities uses dash-dot lines. This detection loss is the

price aircraft pay for operating in the forward looking environment.
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Figure 6.8: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 comparing 3D STAP with 2D STAP using
iid data. The 3D data uses solid lines and the 2D data uses dash-
dot lines.

The ultimate comparison involves detection probability between 2D STAP and

3D STAP. Figure 6.8 compares forward looking radar detection probability rates for

2D and 3D STAP techniques using iid data. The 3D data is plotted using solid lines

and 2D data with the dash-dot lines. Clearly, 3D STAP performs better than 2D

STAP.

3D forward looking detection rates still exceed the 2D detection rates when

the range heterogeneous data approach is used. Figure 6.9 compares the forward

looking radar detection rates using data that accounts for range heterogeneities.

The 3D data is plotted using solid lines and 2D data with dash-dot lines. Clearly,

3D STAP performs better than 2D STAP.

Looking at Fig. 6.9, several interesting facts can be observed. Both adaptive

techniques, JDL and FTS, show improvement versus input SINR by going from
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Figure 6.9: Monte Carlo analysis shows Pd curves for 1, 000
trials with Pfa of 0.01 comparing 3D STAP with 2D STAP using
data that accounts for range heterogeneities. The 3D data uses
solid lines and the 2D data uses dash-dot lines.

2D to 3D of approximately 13 dB and 16 dB respectively. Moreover, the detection

probability versus input SINR curves improve over 30 dB comparing 3D JDL with the

2D conventional processing technique SM. These detection rate improvements show

the value of 3D STAP and the need for elevation adaptivity in the range dependent

forward looking case. As a result of the tremendous improvements in detection rates,

the maximum detection range increases.

6.4 Maximum Detection Range Improvement

The theoretical maximum detectable range for a radar offers another point

of comparison between the different STAP algorithms. The modified radar range
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Table 6.2: Maximum Detection Range in
km for the clutter limited forward looking sce-
nario under consideration.

Algorithm Linear Arrays Planar Arrays

FTS 26.5 85.4
SM 45 63.6
JDL 144 392

equation from [6] gives the theoretical maximum detectable range as

Rmax =

(

PtG(θ, φ)g(θ, φ)λ2σ

(4π)3R(1, 1)LsSINRin

)1/4

, (6.1)

where G(θ, φ) is the array gain, g(θ, φ) is the element gain, σ is the target Radar

Cross Section (RCS), R(1, 1) is the input interference plus noise power and SINRin

is the minimum input SINR value required for detection. A typical RCS for a small

aircraft is 1 m2 [6]. For this analysis, the input SINR value corresponds to a detection

probability of 90 percent when operating in the true forward looking environment, i.e,

heterogenous interference and can be found in Fig. 6.9. Table 6.2 gives the theoretical

maximum range for JDL, FTS, and SM for a 90 percent detection probability to show

the gains obtained using adaptive processing.

The tremendous improvement in maximum range obtained by JDL also shows

the potential STAP possesses for the difficult airborne radar target problem. Note

the ranges in Table 6.2 are a best case scenario and Skolnik notes the maximum

detectable ranges given are not realistic but do provide a measure for comparison [6].

Furthermore, the extension from a linear to a planar array introduces more elements

and hence more target samples although transmit gain is held constant. Receive

gain is allowed to increase with the increased number of elements. Since P = 3

in the scenario under consideration, this increase is a three-fold improvement in

coherent integration. This improvement along with the capability to suppress clutter
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in elevation explains the vastly different maximum detection ranges reflected between

the linear and planar arrays shown in Table 6.2.

Conversely, this whole approach could be reversed with a fixed detection range

and solving for σ to determine an improvement in detectable RCS. This simple

analysis would illustrate a forward looking, i.e., fighter, radar’s ability to detect

stealthy targets.

6.5 Summary

Chapter VI shows the value of elevation adaptivity. Elevation adaptivity is

extremely important for forward looking arrays because the range ambiguous clutter

increases the clutter rank and 3D STAP is capable of attenuating the range am-

biguous clutter. The improvement 3D STAP offers over 2D STAP is shown in the

SINR Loss plots and in detection probability plots. The added elevation adaptivity

counters the broadened clutter notch and improves slow moving target detection as

a result of the narrowed clutter notch. Additionally, the maximum detectable range

also increases when using planar arrays.

In fact, radar performance using linear arrays in the forward looking case may

not meet desired detection rates as shown through the detection probability analysis

comparing 3D and 2D STAP methods. The clutter limited forward looking environ-

ment simply requires elevation adaptivity to attenuate the range ambiguous clutter

to adequately improve radar performance.
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VII. Conclusions

This thesis characterizes the forward looking array radar, models the interference

environment, and presents techniques providing suppression of undesirable in-

terference returns to improve target detection. The adaptive interference suppression

problem is complicated by the airborne platform motion induced Doppler changing

the frequency of the clutter returns. Chapter II gives an overview of the avail-

able literature for sidelooking array radars and uses the background for introducing

the reader to Space-Time Adaptive Processing (STAP). The sidelooking radar data

model is based on the physical model introduced by Ward [2] with extension to pla-

nar arrays by Hale [3] and added decorrelation effects by Klemm [1] and Jaffer [4].

Different STAP techniques used to adaptively suppress interference returns are also

discussed in Chapter II. The background on sidelooking arrays is very important

because the concepts used are extended here to forward looking arrays.

7.1 Forward Looking Data Model

The forward looking array data model is developed using two methods in Chap-

ter III. For the first method, the velocity vector points along the array boresight and

simulates a forward looking model. Adding a 90◦ crab angle to the sidelooking

array data model also models the forward looking radar. These two methods pro-

duce equivalent models as shown in Section 3.3. Additionally, Chapter IV presents

similarities and differences between the forward and sidelooking array data models.

The areas of comparison are differences in homogeneity, decorrelation effects, clutter

ridges, clutter covariance matrix rank and clutter notches.

7.2 STAP Applied to Linear Forward Looking Arrays

STAP algorithms improve the output Signal-to-Interference-plus-Noise Ratio

(SINR) curves over the Signal Match (SM) output SINR curve by placing nulls along
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the clutter ridge. The reason that raising output SINR is a goal for STAP is because

raising output SINR increases target detection probability [5]. Three performance

metrics are introduced in Chapter V: output SINR, antenna beam pattern, and de-

tection probability. The antenna beam pattern can show where the STAP algorithm

is placing nulls and if the algorithm is nulling the clutter ridge and/or the barrage

noise jammer. Unfortunately, STAP for linear arrays is incapable of nulling range

ambiguous clutter and even the Matched Filter (MF) is incapable of reaching the

Noise limited curve. STAP algorithms do significantly increase detection probabil-

ity rates over SM with the exception of Factored Time-Space (FTS). However, slow

moving target detection is decreased by the wide clutter null so Wang, Bao, and

Peng suggest using multiple Pulse Repetition Frequencies (PRF) to get better per-

formance results in STAP for forward looking radar results [28]. Changing the PRF

means that the target may change locations with regards to the clutter ridge in the

Doppler space. If the target is no longer obscured by the clutter in the Doppler bin,

then target detection is improved. However, if the PRF is decreased too much, then

Doppler ambiguities occur instead of the range ambiguities. Doppler ambiguities are

particularly to be avoided though in the forward looking array case and so the array

is extended to give elevation adaptivity to improve results in Chapter VI.

7.3 STAP Applied to Planar Forward Looking Arrays

The STAP algorithms for planar arrays have elevation and azimuth adaptivity

so the range ambiguous clutter is capable of being nulled. As a result, the output

SINR curves improve dramatically over the SINR curves obtained for linear arrays

in Chapter V. However, by adding elevation adaptivity, the number of Degrees of

Freedom (DOF) has changed. Therefore, a new performance metric is introduced in

Chapter VI: SINR Loss. SINR Loss measures how close the STAP algorithm is to

the optimum SINR value regardless of the number of DOF.
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As a result, three-dimensional (3D) STAP successfully adaptively suppresses

the forward looking radar interference returns, increases target detection and extends

the maximum detection range. Detection probability rates significantly increase for

3D STAP over two-dimensional (2D) STAP. Specifically, 3D STAP techniques with

adaptivity in elevation, azimuth, and Doppler achieve detection probability improve-

ments of over 10 dB in required input SINR compared to 2D STAP processing. Ad-

ditionally, 3D STAP improves detection probability versus input SINR rates over 30

dB compared to 2D conventional processing techniques.

As a result, forward looking radars using 3D STAP have the capability to

detect targets that conventional processing might miss.

7.4 Contributions

This thesis makes several important contributions in the adaptive interference

literature base. First, this research develops the forward looking radar data model

with the velocity vector along the array boresight and shows mathematical equiva-

lence to adding a 90◦ crab angle to the sidelooking radar data model. Additionally,

this study fills a void in the literature base for adaptive interference suppression

because most adaptive interference suppression research focuses on the sidelooking

case.

Next, this thesis illustrates the severe, heterogeneous interference environment

for the forward looking case. As a result, sample support is not Independently

Identically Distributed (iid) and this heterogeneous loss is shown using detection

probability curves for linear and planar arrays. Due to the reduced sample support

available from the range heterogeneities, parametric estimation theory is used for

linear arrays to achieve interference suppression in the forward looking case while

using much less sample support than other STAP algorithms. Also due to the range

heterogeneities and different clutter shape in the forward looking case, forward look-
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ing radar detection probability results degrade compared to the approximately iid

sidelooking case.

Finally, this research illustrates the need for elevation adaptivity in the forward

looking case so range ambiguous clutter can be mitigated.

7.5 Future Work

Most of the STAP algorithms used in this thesis are based on obtaining the

Maximum Likelihood (ML) estimate of the covariance matrix. Since the estimated

covariance matrix has to be inverted, the required sample support is two times the

number of DOF. The required sample support may not be available in all scenarios,

especially in the forward looking array case with increased range heterogeneities. For

this reason, parametric estimation theory has been applied to linear arrays to achieve

interference suppression with reduced sample support. As discussed in Chapter V,

this technique is called the Parametric Adaptive Matched Filter (PAMF) [14, 18].

Future work should extend the PAMF to include elevation adaptivity to be capable

of suppressing the range ambiguous clutter in the forward looking array case.
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Appendix A. Levinson-Wiggins-Robinson Recursion Estimation

Algorithm

The Parametric Adaptive Matched Filter (PAMF) uses an Auto-Regressive (AR)

algorithm to estimate the filter coefficients used to whiten the receive signal.

The AR estimation algorithm used in this thesis is the Levinson-Wiggins-Robinson

Recursion Estimation Algorithm with model order 2 [19].

For the first step, the data vector χ [2] is reshaped into a matrix with dimen-

sions N × M for every range cell and denoted X. The forward and backward error

covariance matrices, P
f
0 and Pb

0, respectively, are initialized to RXX(0) = ε
[

XXH
]

resulting in N ×N dimensionality where ε represents the expectation operator [20].

The initial forward prediction error filter estimate is

AH
1 (1) = −∆H

1 (Pb
0)

−1, (1.1)

where ∆p is the cross correlation between the forward and backward error residuals

at filter p. This cross correlation for filter 1 is ∆1 = RXX(1), the autocorrelation of

X with a lag of 1. Similarly, the initial backward prediction error filter estimate is

BH
1 (1) = −∆1(P

f
0)

−1. (1.2)

Upon a cross correlation update,

∆2 = RXX(−2) + BH
1 (1)RXX(−1). (1.3)

The forward and backward error covariance matrices then become

P
f
1 = [IN − AH

1 (1)BH
1 (1)]Pf

0

Pb
1 = [IN − BH

1 (1)AH
1 (1)]Pb

0.
(1.4)
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The forward reflection coefficient matrix is defined as

Γ
f
2 = −∆H

2 (Pb
1)

−1. (1.5)

The estimated forward prediction error filter then becomes [19]

AH
2 (1) = AH

1 (1) + Γ
f
2B

H
1 (1)

AH
2 (2) = Γ

f
2 .

(1.6)

These two expressions serve as the foundation for determining the weight vector in

Eqn. (2.34).
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The index is conceptual and does not designate every occurrence of a
keyword.

Adaptive Matched Filter, 17

antenna beam pattern, 61

appendix, 90

azimuth steering vector, 31

Brennan’s Rule, 52

chapter, 1, 5, 25, 58, 73, 86

clutter, 33

Clutter-Doppler, 15, 34

clutter-to-noise ratio, see CNR

clutter notch, 53

clutter rank, 50

clutter ridge, 48

CNR, 15

comments, 7, 8, 15–17, 35, 36

constant gamma model, 35

coordinate system, 7

covariance matrix, 16, 36

covariance matrix estimate, 19

CPI, 9

decorrelation effects, 54

detection probability, 63

DFT, 62

DOF, 73

Doppler straddling losses, 59

Doppler tolerant, 30

elevation steering vector, 31

Factored Time-Space, 18

false alarm probability, 6, 63

grazing angle, 35

hadamard product, 39

heterogeneous, 47

homogeneity, 46

IF, see frequency

iid, 19

iid data, 46

independent and identically distributed data,

see i.i.d. data

internal clutter motion, 15, 38

jammer-to-noise ratio, see JNR

jamming, 33

JDL, 19

JNR, 14

Joint Domain Localized, 18

Kronecker product, 11

kronecker product, 30

LPR, 20

Matched Filter, 19

maximum likelihood estimate, 19

Monte Carlo, 77

Normalized Doppler Frequency, 6
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Output SINR, 58

PAMF, 68, 90

PRF, 6

PRI, 6

probability of false alarm, see detection prob-

ability, false alarm probability

PSD, 33

pulse repetition frequency, see PRF

pulse repetition interval, see PRI

radar coordinate system, see coordinate sys-

tem

radar cross section, see RCS

RCS, 10, 34

Reed’s Rule, 19, 61, 64, 78

sample support, 21

Signal Match, 3

signal-to-interference plus noise ratio, see

SINR

SINR, 1

SINR Loss, 75

space-time snapshot, 11, 31

STAP, 1

steering vector, 11, 31

system bandwidth effects, 15, 38

target spatial frequency, 28

temporal steering vector, 31

TFACF, 30

thermal noise, 32

toeplitz, 39
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