25 research outputs found

    Modeling Time in Computing: A Taxonomy and a Comparative Survey

    Full text link
    The increasing relevance of areas such as real-time and embedded systems, pervasive computing, hybrid systems control, and biological and social systems modeling is bringing a growing attention to the temporal aspects of computing, not only in the computer science domain, but also in more traditional fields of engineering. This article surveys various approaches to the formal modeling and analysis of the temporal features of computer-based systems, with a level of detail that is suitable also for non-specialists. In doing so, it provides a unifying framework, rather than just a comprehensive list of formalisms. The paper first lays out some key dimensions along which the various formalisms can be evaluated and compared. Then, a significant sample of formalisms for time modeling in computing are presented and discussed according to these dimensions. The adopted perspective is, to some extent, historical, going from "traditional" models and formalisms to more modern ones.Comment: More typos fixe

    Verification of real-time systems: improving tool support

    Get PDF
    We address a number of limitations of Timed Automata and real-time model-checkers, which undermine the reliability of formal verification. In particular, we focus on the model-checker Uppaal as a representative of this technology. Timelocks and Zeno runs represent anomalous behaviours in a timed automaton, and may invalidate the verification of safety and liveness properties. Currently, model-checkers do not offer adequate support to prevent or detect such behaviours. In response, we develop new methods to guarantee timelock-freedom and absence of Zeno runs, which improve and complement the existent support. We implement these methods in a tool to check Uppaal specifications. The requirements language of model-checkers is not well suited to express sequence and iteration of events, or past computations. As a result, validation problems may arise during verification (i.e., the property that we verify may not accurately reflect the intended requirement). We study the logic PITL, a rich propositional subset of Interval Temporal Logic, where these requirements can be more intuitively expressed than in model-checkers. However, PITL has a decision procedure with a worst-case non-elementary complexity, which has hampered the development of efficient tool support. To address this problem, we propose (and implement) a translation from PITL to the second-order logic WS1S, for which an efficient decision procedure is provided by the tool MONA. Thanks to the many optimisations included in MONA, we obtain an efficient decision procedure for PITL, despite its non-elementary complexity. Data variables in model-checkers are restricted to bounded domains, in order to obtain fully automatic verification. However, this may be too restrictive for certain kinds of specifications (e.g., when we need to reason about unbounded buffers). In response, we develop the theory of Discrete Timed Automata as an alternative formalism for real-time systems. In Discrete Timed Automata, WS1S is used as the assertion language, which enables MONA to assist invariance proofs. Furthermore, the semantics of urgency and synchronisation adopted in Discrete Timed Automata guarantee, by construction, that specifications are free from a large class of timelocks. Thus, we argue that well-timed specifications are easier to obtain in Discrete Timed Automata than in Timed Automata and most other notations for real-time systems

    Verification of real-time systems : improving tool support

    Get PDF
    We address a number of limitations of Timed Automata and real-time model-checkers, which undermine the reliability of formal verification. In particular, we focus on the model-checker Uppaal as a representative of this technology. Timelocks and Zeno runs represent anomalous behaviours in a timed automaton, and may invalidate the verification of safety and liveness properties. Currently, model-checkers do not offer adequate support to prevent or detect such behaviours. In response, we develop new methods to guarantee timelock-freedom and absence of Zeno runs, which improve and complement the existent support. We implement these methods in a tool to check Uppaal specifications. The requirements language of model-checkers is not well suited to express sequence and iteration of events, or past computations. As a result, validation problems may arise during verification (i.e., the property that we verify may not accurately reflect the intended requirement). We study the logic PITL, a rich propositional subset of Interval Temporal Logic, where these requirements can be more intuitively expressed than in model-checkers. However, PITL has a decision procedure with a worst-case non-elementary complexity, which has hampered the development of efficient tool support. To address this problem, we propose (and implement) a translation from PITL to the second-order logic WS1S, for which an efficient decision procedure is provided by the tool MONA. Thanks to the many optimisations included in MONA, we obtain an efficient decision procedure for PITL, despite its non-elementary complexity. Data variables in model-checkers are restricted to bounded domains, in order to obtain fully automatic verification. However, this may be too restrictive for certain kinds of specifications (e.g., when we need to reason about unbounded buffers). In response, we develop the theory of Discrete Timed Automata as an alternative formalism for real-time systems. In Discrete Timed Automata, WS1S is used as the assertion language, which enables MONA to assist invariance proofs. Furthermore, the semantics of urgency and synchronisation adopted in Discrete Timed Automata guarantee, by construction, that specifications are free from a large class of timelocks. Thus, we argue that well-timed specifications are easier to obtain in Discrete Timed Automata than in Timed Automata and most other notations for real-time systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modeling and checking Real-Time system designs

    Get PDF
    Real-time systems are found in an increasing variety of application fields. Usually, they are embedded systems controlling devices that may risk lives or damage properties: they are safety critical systems. Hard Real-Time requirements (late means wrong) make the development of such kind of systems a formidable and daunting task. The need to predict temporal behavior of critical real-time systems has encouraged the development of an useful collection of models, results and tools for analyzing schedulability of applications (e.g., [log]). However, there is no general analytical support for verifying other kind of high level timing requirements on complex software architectures. On the other hand, the verification of specifications and designs of real-time systems has been considered an interesting application field for automatic analysis techniques such as model-checking. Unfortunately, there is a natural trade-off between sophistication of supported features and the practicality of formal analysis. To cope with the challenges of formal analysis real-time system designs we focus on three aspects that, we believe, are fundamental to get practical tools: model-generation, modelreduction and model-checking. Then, firstly, we extend our ideas presented in [30] and develop an automatic approach to model and verify designs of real-time systems for complex timing requirements based on scheduling theory and timed automata theory [7] (a wellknown and studied formalism to model and verify timed systems). That is, to enhance practicality of formal analysis, we focus our analysis on designs adhering to Fixed-Priority scheduling. In essence, we exploit known scheduling theory to automatically derive simple and compositional formal models. To the best of our knowledge, this is the first proposal to integrate scheduling theory into the framework of automatic formal verification. To model such systems, we present I/O Timed Components, a notion and discipline to build non-blocking live timed systems. I/O Timed Components, which are build on top of Timed Automata, provide other important methodological advantages like influence detection or compositional reasoning. Secondly, we provide a battery of automatic and rather generic abstraction techniques that, given a requirement to be analyzed, reduces the model while preserving the relevant behaviors to check it. Thus, we do not feed the verification tools with the whole model as previous formal approaches. To provide arguments about the correctness of those abstractions, we present a notion of Continuous Observational Bismulation that is weaker than strong timed bisimulation yet preserving many well-known logics for timed systems like TCTL [3]. Finally, since we choose timed automata as formal kernel, we adapt and apply their deeply studied and developed analysis theory, as well as their practical tools. Moreover, we also describe from scratch an algorithm to model-check duration properties, a feature that is not addressed by available tools. That algorithm extends the one presented in [28].Fil:Braberman, Víctor Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Parameter synthesis for hierarchical concurrent real-time systems

    Get PDF

    Scaling BDD-based timed verification with simulation reduction

    Get PDF
    Digitization is a technique that has been widely used in real-time model checking. With the assumption of digital clocks, symbolic model checking techniques (like those based on BDDs) can be applied for real-time systems. The problem of model checking real-time systems based on digitization is that the number of tick transitions increases rapidly with the increment of clock upper bounds. In this paper, we propose to improve BDD-based verification for real-time systems using simulation reduction. We show that simulation reduction allows us to verify timed automata with large clock upper bounds and to converge faster to the fixpoint. The presented approach is applied to reachability and LTL verification for real-time systems. Finally, we compare our approach with existing tools such as Rabbit, Uppaal, and CTAV and show that our approach outperforms them and achieves a significant speedup.No Full Tex

    Improved Symbolic Model Checking of Real-Time Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Quantitative Timed Analysis of Interactive Markov Chains

    Get PDF
    Abstract This paper presents new algorithms and accompanying tool support for analyzing interactive Markov chains (IMCs), a stochastic timed 1 1 2-player game in which delays are exponentially distributed. IMCs are compositional and act as semantic model for engineering for-malisms such as AADL and dynamic fault trees. We provide algorithms for determining the extremal expected time of reaching a set of states, and the long-run average of time spent in a set of states. The prototypical tool Imca supports these algorithms as well as the synthesis of ε-optimal piecewise constant timed policies for timed reachability objectives. Two case studies show the feasibility and scalability of the algorithms.
    corecore