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Abstract Modeling and verifying complex real-time systems, involving timing
delays, are notoriously difficult problems. Checking the correctness of a system for
one particular value for each delay does not give any information for other values. It is
thus interesting to reason parametrically, by considering that the delays are parameters
(unknown constants) and synthesizing a constraint guaranteeing a correct behavior. We
present here Parametric Stateful Timed Communicating Sequential Processes, a lan-
guage capable of specifying and verifying parametric hierarchical real-time systems
with complex data structures. Although we prove that the synthesis is undecidable in
general, we present several semi-algorithms for efficient parameter synthesis, which
behave well in practice. This work has been implemented in a real-time model checker,
PSyHCoS, and validated on a set of case studies.
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1 Introduction

The specification and verification of real-time systems, involving complex data struc-
tures and timing requirements, are notoriously difficult problems. The correctness of
real-time systems usually depends on the values of these timing requirements. One can
check the correctness for one particular value of each timing requirement using clas-
sical techniques of timed model checking, but in general this does not guarantee the
correctness for other values. Checking the correctness for all possible timing require-
ments, even in a bounded interval, may require an infinite number of calls to a model
checker, because these requirements can have real values. It is therefore interesting to
reason parametrically, by considering that the values of the timing requirements are
unknown constants, or parameters, and to try to synthesize a constraint (i.e., a con-
junction of linear inequalities) on these parameters to guarantee a correct behavior.

1.1 Motivation

We are interested here in the good parameters problem for real-time systems: “find a set
of parameter valuations for which the system is correct”. This problem stands between
verification and control, in the sense that we actually change (the timed part of) the
system in order to guarantee some property. In this paper, the notion of correctness will
generally refer to the validity of a property, e.g., a linear-time property. Furthermore,
we aim at defining a formalism that is intuitive, powerful (with the use of external
variables, structures and user defined functions), and that allows efficient parameter
synthesis and verification.

1.2 Parameter synthesis for timed concurrent systems

Timed automata (TA) (Alur et al. 1994) are finite state automata equipped with clocks.
Clocks are real-valued variables uniformly increasing, and compared with constants in
guards and invariants (Henzinger et al. 1994). TA have been widely used in the last two
decades to verify timed systems, in particular using the Uppaal model checker (Larsen
et al. 1997). The parametric extension of TA (viz., parametric timed automata, or PTA)
allows the use of parameters within guards and invariants (Alur et al. 1993).

The parameter design problem for PTA was formulated in Henzinger and Wong
Toi (1995), where a straightforward solution is given, based on the generation of
the whole state space. Unfortunately, this is unrealistic in most cases. The HyTech
model checker (Henzinger et al. 1997), one of the first for parametric timed (and
more generally hybrid) automata, has been used to solve several case studies. Unfor-
tunately, it can hardly verify even medium sized examples due to arithmetics with
limited precision and static composition of automata, which quickly leads to mem-
ory overflow.1 The parameter synthesis problem has then been applied in particular

1 For example, the PTA model of the SPSMALL memory (Chevallier et al. 2009) is made of 10 PTA in
parallel, but only 31 symbolic states are reachable according to the semantics of Alur et al. (1993). Due
to the static composition of PTA, HyTech crashes by memory overflow even before starting the actual
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to communication protocols (e.g., Bounded Retransmission protocol (D’Argenio et
al. 1997) or Root Contention protocol (Collomb Annichini and Sighireanu 2001) using
TReX (Annichini et al. 2001)) and asynchronous circuits (e.g., Yoneda et al. 2002;
Clarisó and Cortadella 2007). Efficient optimizations and data structures were devel-
oped for timed automata, such as Difference Bound Matrices (DBMs); unfortunately,
most of them do not apply to the parametric setting, or to only partially parameter-
ized systems (e.g., Behrmann et al. 2005, where a non-parametric model is verified
against a parameterized formula), or are much less efficient than their non-parametric
counterpart (e.g., parameterized DBMs (Hune et al. 2002)). In André et al. (2009),
André and Soulat (2013), the inverse method synthesizes constraints for fully parame-
terized systems modeled using PTA. Different from CEGAR-based methods (Clarke
et al. 2000), this semi-algorithm2 is based on a “good” parameter valuation, and syn-
thesizes a constraint to guarantee the same time abstract behavior as for the refer-
ence parameter valuation, and thus to quantify the robustness of the system. As an
interesting consequence, the preservation of the time-abstract behavior guarantees the
preservation of linear time properties (expressed, e.g., in LTL). The authors of Knapik
and Penczek (2012) synthesize a set of parameter valuations under which a given
property specified in the existential part of CTL without the next operator (viz., the
ECTL−X logic) holds in a system modeled by PTA. This is done by applying bounded
model checking techniques to PTA. Semi-algorithms have been proposed in Trao-
nouez et al. (2009) for synthesizing parameters for time Petri nets with stopwatches,
and implemented in Roméo Lime et al. (2009). Different from our setting, the con-
straint satisfies a formula expressed using a non-recursive subset of parametric TCTL;
furthermore, their implementation does not support user defined data structures.

Most problems for parametric timed formalisms are undecidable, including the
emptiness problem (that is, the existence of at least one parameter valuation implying
the reachability of a discrete state). However, this problem is known to be decidable
(actually PSPACE-complete) for L/U PTA, that is a subclass of PTA (Hune et al. 2002)
in which each parameter can be used either as an upped bound, or as a lower bound,
but not both. However, the implementation (based on parametric DBMs) proposed
in Hune et al. (2002) may not terminate. Similarly, the emptiness problem for the
corresponding subclass of parametric time Petri nets, called L/U parametric time Petri
nets (Traonouez et al. 2009), is also decidable. Further problems (universality and
finiteness of the valuation set for infinite runs acceptance properties) have been shown
to be decidable for L/U PTA (Bozzelli and La Torre 2009). Most other problems for
L/U PTA are undecidable, even for even more restricted subclasses such as L-PTA or
U-PTA (Jovanovic et al. 2013). The case of the synthesis of bounded integers (which
is trivially decidable, since it suffices to enumerate all possible parameter valuations)
has also been considered in Jovanovic et al. (2013): it is shown that the problem of the
existence of parameter valuations such that a TCTL property is satisfied is PSPACE-
complete, and can be performed efficiently using symbolic techniques.

exploration; in contrast, Imitator (André et al. 2012a) finishes the analysis within 0.079 s while using only
3.1 MiB of memory. Details are available in http://www.lsv.ens-cachan.fr/Software/imitator/hytech/.
2 A semi-algorithm is a procedure that may not terminate but, if it does, then its result is correct.
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In Kwak et al. (1998, 1999), parametric analyses of scheduling problems are per-
formed, based on the process algebra ACSR-VP. Constraints are synthesized using
symbolic bisimulation methods, guaranteeing the feasibility of a scheduling problem.
These works are closer to our approach, in the sense that they synthesize timing para-
meters in a process algebra; however, they are dedicated to scheduling problems only,
whereas our approach is general.

Although it does not strictly treat the parameter synthesis, the AASAP (Almost As
Soon As Possible) semantics by Raskin et al. is a semantics that considers a parameter
� corresponding to the reaction time of the controller. Hence, this semantics discards
infinitely fast behaviors, that are not realistic in practice. Its most interesting property
is that, once the system has been proved correct for a given �, any implementation
using a faster controller (i.e., with a smaller �) will be correct too. More generally,
the robustness problem consists in studying the influence of infinitesimally small
variations of the timing requirements or the clocks speed on the system correctness;
many such problems are decidable for (subclasses of) timed automata or time Petri
nets (see, e.g., Bouyer et al. 2011; Markey 2011; Jaubert and Reynier 2011; Akshay et
al. 2012; Bouyer et al. 2012, 2013; Sankur and Shrinktech 2013). Parameter synthesis
techniques have also been used to solve robustness problems (e.g., Traonouez 2012).
The inverse method (that we extend to PSTCSP in Sect. 5.3 to show the applicability
of our formalism) can also be used to perform robustness analyses, as shown in the
setting of parametric time Petri nets with stopwatches (André et al. 2013c).

1.3 Stateful Timed CSP

Communicating Sequential Processes (CSP) (Hoare 1985) is a powerful event-based
formalism for describing patterns of interactions in concurrent systems. Timed CSP
(see, e.g., Schneider 2000) extends CSP with timed constructs for modeling real-time
systems. Stateful Timed CSP (STCSP) (Sun et al. 2013) further extends Timed CSP
with more timed constructs and shared variables in the spirit of CSP� (Sun et al. 2009a)
in order to specify hierarchical complex real-time systems. Through dynamic zone
abstraction, finite-state zone graphs can be generated automatically from STCSP mod-
els, which are subject to model checking. Stateful Timed CSP offers an intuitive way
of modeling hierarchical systems, with a textual representation and more flexible
recursive definitions. An advantage of Timed CSP over TA is the lower number of
clocks necessary to verify the systems (Sun et al. 2013), because, unlike TA, clocks
are implicit in STCSP, and are only activated when necessary. STCSP is implemented
into the PAT model checker (Sun et al. 2009b).

1.4 Contribution

Our first contribution is to introduce Parametric Stateful Timed CSP (PSTCSP). This
parameterization of STCSP is a powerful language capable of specifying hierarchi-
cal real-time systems with shared variables and complex, user-defined data struc-
tures, in an intuitive manner. PSTCSP shares similar design principles with integrated
specification languages like Timed Communicating Object Z (TCOZ) (Mahony and
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Dong 1999) and CSP-OZ-DC (Hoenicke and Olderog 2002). The main idea is to
support shared variables and manipulation of global variables (sequential termination
programs) using imperative programing languages. The result is a highly expressive
modeling language that can be automatically analyzed by tools. Although we show
that the expressiveness of PSTCSP is close to the one of PTA, there are key differ-
ences of PSTCSP with PTA. First, clocks are implicit in PSTCSP, thus avoiding errors
when manually writing constraints using clocks and parameters. Second, hierarchy is
a native feature of PSTCSP, allowing the designer to develop the system using nested
components. Many systems can be designed more intuitively using hierarchy, and it
may allow one to handle refinement as well as closed (“black box” or “gray box”)
systems. Third, user defined variables, data structures and functions can be defined and
used in PSTCSP processes, thus making the specification and verification of real-time
systems intuitive.

Although we show that the emptiness problem is undecidable for PSTCSP, our
second contribution is to develop and compare three semi-algorithms for parameter
synthesis. The first one, computing all reachable states, allows the application of finite
state timed model checking techniques defined in Sun et al. (2013), but may not ter-
minate. From the set of reachable states, one can also perform parameter synthesis,
and we give as an example an algorithm that synthesizes all parameter valuations such
that a given process (or a given variable valuation) is reachable. The second one is an
algorithm useful for defining good sets of values for the timing parameters in problems
such as schedulability problems. In the third one, we extend the inverse method (André
et al. 2009; André and Soulat 2013) to PSTCSP, and give a sufficient termination con-
dition; this algorithm behaves well in practice, allowing efficient parameter synthesis
even for fully parameterized systems, i.e., where all timing requirements are paramet-
ric.

Our third contribution is to implement the proposed techniques in a model checker
named PSyHCoS to support both an intuitive modeling facility using a graphical
interface, and efficient algorithms for verification and parameter synthesis.

This paper is an extended version of André et al. (2012b). In addition to the results
of André et al. (2012b), this paper contains all proofs of the theoretical results, refines
several results (in particular makes more clear the notion of emptiness for PSTCSP),
and contains detailed examples. Furthermore, we prove the semantic equivalence
between some syntactic constructs of PSTCSP. We also introduce a new synthesis
algorithm dedicated to problems such as schedulability problems. Finally, the inverse
method for PSTCSP is fully characterized (correctness, confluence, completeness and
termination).

1.5 Plan of the paper

We recall preliminary notions in Sect. 2. We introduce PSTCSP in Sect. 3 and study
its expressiveness and decidability questions in Sect. 4. We introduce algorithms for
parameter synthesis in Sect. 5, and apply them to case studies in Sect. 6 using our
implementation PSyHCoS. We give future directions of research in Sect. 7.
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2 Preliminaries

2.1 Finite-domain variables

We assume a finite set Var of finite-domain variables. Given Var ⊂ Var , a variable
valuation for Var is a function assigning to each variable a value in its domain. We
denote by V(Var) the set of all variable valuations.

2.2 Constraints on clocks and parameters

Let R+ be the set of non-negative real numbers. We assume that X is a set of clocks,
disjoint from Var . A clock is a variable with value in R+. All clocks evolve linearly
at the same rate. Given a finite set X = {x1, . . . , xH } ⊂ X , a clock valuation for X
is a function w : X → R+ assigning a non-negative real value to each clock. We will
often identify a valuation w with the point (w(x1), . . . , w(xH )). Given d ∈ R+, we
use X + d to denote {x1 + d, . . . , xH + d}.

We also assume a fixed set U of parameters (i.e., unknown constants) disjoint
from Var and X . Given a finite set U = {u1, . . . , uM } ⊂ U , a parameter valuation
is a function π : U → R+ assigning a non-negative real3 value to each parameter.
There is a one-to-one correspondence between valuations and points in (R+)M . We
will often identify a valuation π with the point (π(u1), . . . , π(uM )).

Given X ⊂ X and U ⊂ U , an inequality over X and U is e ≺ e′, where≺∈ {<,≤},
and e, e′ are two linear terms of the form

∑
1≤i≤N αi zi +d with zi ∈ X ∪U , αi ∈ R+

for 1 ≤ i ≤ N , and d ∈ R+. We define similarly inequalities over X (resp. U ). A
constraint is a conjunction of inequalities. We denote by KX , KU and KX∪U the sets
of all constraints over X , over U , and over X and U , respectively. In the sequel, we use
the following conventions: w (resp. π ) denotes a clock (resp. parameter) valuation; J
denotes an inequality over U ; D ∈ KX ; K ∈ KU ; and C ∈ KX∪U .

We denote by D[w] the expression obtained by replacing each clock x in D
with w(x). If D[w] evaluates to true, we say that w satisfies D (denoted by w |	 D).
We denote by C[π ] the constraint over X obtained by replacing in C each u ∈ U
with π(u). Likewise, we denote by C[π ][w] the expression obtained by replacing each
clock x in C[π ] with w(x). If C[π ][w] evaluates to true, we write < w,π >|	 C .
If the set of clock valuations that satisfy C[π ] is nonempty, i.e., ∃w :< w,π >|	 C ,
then π satisfies C , denoted by π |	 C . Given C1, C2 ∈ KX∪U , we write C1 ⊆ C2
if ∀w,π :< w,π >|	 C1 ⇒< w,π >|	 C2. We write C1 = C2 if C1 ⊆ C2 and
C2 ⊆ C1.

Similarly to the semantics of constraints over X and U , we say that a parameter
valuation π satisfies K , denoted by π |	 K , if the expression obtained by replacing
in K each u ∈ U with π(u) evaluates to true.

3 In the literature related to parametric timed systems, constants are either in the real or the rational domain.
Here, to maintain consistency with STCSP (Sun et al. 2013), where constants are defined in R+, we choose
reals.
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Given a subset of clocks X ′ ⊆ X , we denote by C↓X ′∪U the constraint obtained
from C after elimination of the clocks not in X ′, i.e., by projecting C onto X ′ ∪
U . This is obtained using variable elimination techniques such as Fourier-Motzkin
elimination (Schrijver 1986). Formally, C↓X ′∪U = {< w,π >| w : X ′ → R+ ∧ π :
U → R+∧ < w,π >|	 C}. In particular, we denote by C↓U the constraint over U
obtained by projecting C onto the parameters, i.e., the constraint obtained from C after
elimination of all clocks. Formally, C↓U = {π | π |	 C}. (Note that, by expanding the
definition of π |	 C , we have that C↓U = {π | ∃w : X → R+ s.t. < w,π >|	 C}.)

Sometimes we will refer to a variable domain X ′, which is obtained by renaming the
variables in X . Explicit renaming of variables is denoted by the substitution operation.
Here, C[X←X ′] denotes the constraint obtained by replacing in C the variables of X
with the corresponding variables of X ′.

We define the time elapsing of C , denoted by C↑, as the constraint over X and U
obtained from C by delaying an arbitrary amount of time. Formally:

C↑ =
(
(C ∧ X ′ = X + d)↓X ′∪U

)

[X ′←X ]

where d is a new parameter with values in R+, and X ′ is a renamed set of clocks. The
inner part of the expression adds a delay d to all clocks; the projection onto X ′ ∪ U
eliminates the original set of clocks X , as well as the variable d; the outer part of the
expression renames clocks X ′ with X .

We show below two simple results that will be useful in the proofs in Sect.4.

Lemma 1 Let C, C1, C2 ∈ KX∪U . If C1↓U ⊆ C↓U , then (C1 ∧ C2)↓U ⊆ C↓U .

Proof By definition of the projection, C↓U = {π | π |	 C}. C1↓U ⊆ C↓U implies
that {π | π |	 C1} ⊆ {π | π |	 C}. Since C1 ∧C2 ⊆ C1, then {π | π |	 C1 ∧C2} ⊆
{π | π |	 C1}. Hence {π | π |	 C1 ∧ C2} ⊆ {π | π |	 C}. ��
Lemma 2 Let C ∈ KX∪U . Then (C↑)↓U = C↓U .

Proof From its definition, time elapsing adds new clock constraints (X ′ = X + d),
removes the clocks X , and renames X ′ with X ; all these operations keep the projection
onto the parameters unchanged. ��

2.3 Events

In the following, τ denotes an unobservable event; � denotes the special event of
process termination; � denotes the set of observable events such that τ /∈ � and
� ∈ �; �τ = � ∪ {τ }. Furthermore, the following event naming convention is
adopted: e ∈ � denotes an observable event; a ∈ �τ denotes an observable event or
τ ; E ⊆ � denotes a set of observable events.

2.4 Labeled transition systems

Labeled transition systems will be used later to define the semantics of PSTCSP.
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Fig. 1 Syntax of PSTCSP
processes P

.= Stop inaction
| Skip termination
| e → P event prefixing
| a{program} → P data operation
| if (b) {P} else {Q} conditional choice
| P Q external choice
| P \ E hiding
| P ;Q sequential composition
| P E Q parallel composition
| Wait[u] delay*
| P timeout[u] Q timeout*
| P interrupt[u] Q timed interrupt*
| P within[u] timed responsiveness*
| P deadline[u] deadline*
| Q process referencing

Definition 1 A labeled transition system (LTS) is a tuple L = (S, s0, Symb,⇒) where
S is a set of states, s0 ∈ S is the initial state, Symb is a set of symbols, and ⇒ :
S × Symb× S is a labeled transition relation.

We write s
a⇒ s′ for (s, a, s′) ∈ ⇒. A run of L is an alternating sequence of states

si ∈ S and symbols ai ∈ Symb in the form of s0
a0⇒ s1

a1⇒ s2 · · · . A state si is reachable
if it belongs to some run r . We denote by Runs(L) the set of runs of L.

A run is said to be maximal if either it is infinite, or it is finite and its last state has
no successor.

3 Syntax and semantics of PSTCSP

3.1 Syntax

PSTCSP models the control logic of the system using a rich set of process constructs.
A process P is defined by the grammar in Fig. 1, where u ∈ U .4 Processes marked
with * are parametric timed processes; they allow the use of parameters instead of
timing constants as in STCSP. P denotes the set of all possible processes. Note that this
grammar allows recursions (and hence cyclic behaviors), since a given process P can
refer to itself; for example, the event prefixing rule allows one to define P

.= e→ P ,
which may lead to an infinite number of e events.

Definition 2 A Parametric Stateful Timed CSP (or PSTCSP) model is a tuple M =
(Var, U, V0, P0, K0) where Var ⊂ Var , U ⊂ U , V0 is the initial variable valuation,
P0 ∈ P is a process, and K0 ∈ KU is an initial constraint.

The initial constraint K0 allows one to define constrained models, where some
parameters are already related. For example, in a timed model with two parameters

4 An alternative could be u ∈ (U ∪ R+). Our implementation actually allows the definition of either
constants or parameters in the timed constructs, but defining u ∈ U simplifies the subsequent reasoning
and proofs.
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min and max, one may want to constrain min to be always smaller or equal to max,
i.e., K0 = {min ≤ max}.

Hierarchy comes from the nested definitions of processes. Each component may
have internal hierarchies, and allow for abstraction and refinement: a subprocess may
be replaced with another equivalent one in some cases. Also, this offers a readable
syntax, starting from the top level of the system, and being more precisely defined
when one goes to lower hierarchical levels.

3.1.1 Valuation of a model

Given a PSTCSP model M = (Var, U, V0, P0, K0) and a parameter valuation
π = (π1, . . . , πM ), M[π ] denotes the valuation of M with π , viz., the model
(Var, U, V0, P0[π ], K ), where P0[π ] denotes process P0 where all occurrences of
a parameter ui were replaced by constant πi in the timed constructs, and K is
K0 ∧ ∧M

i=1(ui = πi ). We say that M is valuated with π . This corresponds to the
PSTCSP model obtained from M by substituting every occurrence of a parameter ui

with constant πi in the timed constructs. Note that M[π ] is a (non-parametric) STCSP
model.

3.1.2 Additional notation

In the following, given a process P , we use �(P) to denote the alphabet of
process P . Hence, �(P) includes all visible events occurring in P and its subprocesses,
including �.

3.1.3 Recursivity

We define below the notion of recursive models (i.e., cyclic dependencies between
processes).

Definition 3 (Recursive model) A PSTCSP model is recursive if at least one process
is referred to in one of its subprocesses.

For example, the model of Fischer’s mutual exclusion protocol introduced in
Sect. 3.3 is recursive, since Active(i) is a subprocess of proc(i), and proc(i) refers
to Active(i).

3.2 Informal semantics

3.2.1 Untimed constructs

We first briefly describe the untimed constructs, which are identical to the ones in
STCSP.

Process Stop does nothing but idling.
Process Skip terminates, possibly after idling for some time.
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Process e → P engages in event e first and then behaves as P . Note that e may
serve as a synchronization barrier, if combined with parallel composition.

In order to seamlessly integrate operations on complex data structures, sequential
programs may be attached to events. By complex data structures, we mean any user-
defined finite-domain structure, such as tuples, lists, but also more complex struc-
tures such as hashtables, or combinations of structures, such as a pair made of a
string hashtable and a list of bounded integers. Process a{program} → P executes
the sequential program whilst generating event a, and then behaves as P . The pro-
gram may be a simple procedure updating data variables (e.g., a{v1 := 5; v2 := 3},
where v1, v2 ∈ Var) or a more complicated sequential program. Our implementation
(see Sect. 6) supports an imperative language (similar to C, C� and Java) to be used
inside program.

A conditional choice is written as if (b) {P} else {Q}. If b is true, then it behaves
as P; otherwise it behaves as Q.

Process P � Q offers an external choice between P and Q. As in CSP, the first
observable event determines which of P and Q is executed. That is, P � Q is resolved
by the first observable event occurring in either P (in which case the process continues
with P) or Q (in which case the process continues with Q).5

Process P; Q behaves as P until P terminates and then behaves as Q immediately.
P \ E hides occurrences of events in E .
The parallel composition of two processes is written as P �E� Q, where P

and Q may communicate via multi-party event synchronization (following CSP
rules Hoare 1985) or shared variables; P and Q synchronize only on events belonging
to the specified set E of events. For example, (a → Skip) �{a}� (a → Skip) will
result in a synchronization on the event a, whereas (a → Skip) �{}� (a → Skip)

will result in an interleaving between both a events.

3.2.2 Timed constructs

We now explain the parametric timed constructs, where parameter u is an unknown
(constant) non-negative real number.

– Process Wait[u] idles for u time units.
– In process P timeout[u] Q, the first observable event of P shall occur no later

than u time units. Otherwise, Q takes over the control after exactly u time units.
– Process P interrupt[u] Q behaves exactly as P until u time units, and then Q

takes over. In contrast to P timeout[u] Q, P may engage in multiple observable
events before it is interrupted. Also note that Q will be executed in any case,
whereas in P timeout[u] Q, process Q will only be executed if no observable
event occurs before u time units.

5 For simplicity, in the following, we leave out general and internal choices from the classic CSP
(Hoare 1985). The terminology is a little ambiguous in the literature: We assume that a general choice
(P | Q) can be resolved by an occurrence of any event; an external choice (P � Q) can be resolved only by
visible events (not τ ); and an internal choice (P � Q) is resolved “immediately”, hence cannot be delayed
(which generates a τ -transition). Although we only consider external choice in the following, all three
constructions implemented in PSyHCoS, and used in our case studies.
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– Process P within[u] must react within u time units, i.e., an observable event
must be engaged by process P within u time units.

– Process P deadline[u] constrains P to terminate, possibly after engaging in
multiple observable events, before u time units.

3.2.3 Discussing the notion of deadline

The deadline timed construct intuitively means that a process must terminate within
a certain amount of time. Different definitions of deadline actually appear in the
literature. In Fidge et al. (1999), a definition of the deadline command is given, and
an instantiation as an extension to the high-integrity Spark programming language is
proposed. In this case, a static analysis is performed during the compiling process and,
in the case where an inability to meet the timing constraints occurs, then an appropriate
error feedback is sent to the programmer. As a consequence, the deadline construction
guarantees that the constrained process will terminate before the specified deadline.

In Qin et al. (2003), the authors use Unifying Theory of Programming in order to
formalize the semantics of TCOZ. As in Fidge et al. (1999), they consider that the
deadline imposes a timing constraint on P , which thus requires the computation of P
to be finished within the time mentioned in the deadline.

In contrast to Qin et al. (2003), Fidge et al. (1999), we choose here to keep a
semantics similar to the one of STCSP (Sun et al. 2013), and we consider a deadline
semantics as an attempt to terminate a process before a certain time. If the process
does not terminate before the deadline, it is just stopped (in that case, time elapsing
may be stopped too). Also observe that the within construct in (P)STCSP has a
similar effect in our setting.

3.2.4 Syntactic sugar

Urgent event prefixing (Davies 1993), written as e � P , is defined as (e →
P) within[0], i.e., e must occur immediately, that is within 0 units of time. Fur-
thermore, we use P ‖ Q for P ��(P) ∩�(Q)� Q.

3.3 Example: Fischer mutual exclusion

We introduce below a simple example6 to show that PSTCSP is expressive enough to
capture hierarchical concurrent real-time models. Although this example is composi-
tional, which reflects the nature of hierarchical systems, it does not feature multiple
hierarchy due to space constraint. Complex STCSP system models have been pre-
sented (Sun et al. 2013), and all the STCSP examples can be parameterized to obtain
a PSTCSP model.

Example 1 Fischer’s mutual exclusion algorithm is modeled as a PSTCSP model
(Var, U, V0, FME, True), where U = {δ, γ }, and Var = {turn, cnt}. The turn variable
indicates which process attempted to access the critical section most recently. The

6 This example is a parametrization of the example from Sun et al. (2013, p. 3:5).
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cnt variable counts the number of processes accessing the critical section. The initial
valuation V0 maps turn to −1 (which denotes that no process is attempting initially)
and cnt to 0 (which denotes that no process is in the critical section initially). Process
FME is defined as follows.

FME
.= proc(1) ‖ proc(2) ‖ · · · ‖ proc(n)

proc(i)
.= if (turn = −1) {Active(i)} else {proc(i)}

Active(i)
.= (update.i{turn := i} → Wait[γ ]) within[δ];
if (turn = i)

cs.i{cnt := cnt + 1} →
exit.i{cnt := cnt − 1; turn := −1} → proc(i)

else
proc(i)

where n is a constant representing the number of processes.
Process proc(i) models a process with a unique integer identifier i . If turn is−1 (i.e.,

no other process is attempting), proc(i) behaves as specified by process Active(i). In
process Active(i), turn is first set to i (i.e., the i th process is now attempting) by event
update.i . Note that update.i must occur within δ time units (expressed bywithin[δ]).
Next, the process idles for γ time units (expressed by Wait[γ ]). It then checks if turn
is still i . If so, it enters the critical section and leaves later. Otherwise, it restarts from
the beginning.

This model is hierarchical, due to the nested definition of the processes; for example,
each process proc(i) is defined using the nested process Active(i). (Actually, this is
a recursive definition since Active(i) is itself defined using proc(i).) This model is
concurrent because the n processes are executed in parallel. And it is real-time since
concurrent timing constraints (Wait[γ ] and within[δ]) for each process may occur
in parallel.

A classical parameter synthesis problem is to find values of δ and γ for which
mutual exclusion is guaranteed. One way to verify mutual exclusion is to show that
cnt ≤ 1 is always true. A solution to this problem will be given in Sect. 6.3.

3.4 Formal semantics

In the following, we introduce the formal semantics for PSTCSP in terms of states
containing a variable valuation, a process, and a constraint over X and U .

Definition 4 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. A (symbolic) state s
of M is a triple (V, P, C) where V is a variable valuation, P ∈ P is a process, and
C ∈ KX∪U .

3.4.1 Clock activation

As in STCSP, clocks in PSTCSP are implicitly associated with timed processes – which
is different from PTA. For instance, given a process P timeout[u] Q, an implicit
clock should start whenever this process is activated. A clock starts ticking once the
process becomes activated. Before defining the semantics, we need to associate clocks

123



632 Real-Time Syst (2014) 50:620–679

with timed processes explicitly. In theory, each timed process construct is associated
with a unique clock. Nonetheless, as in STCSP, multiple timed processes can be
activated at the same time during system execution and, therefore, the associated
clocks always have the same value. Consider the following process:

P
.= (Wait[u1];Wait[u2]) interrupt[u3] Q.

There are three implicit clocks, one associated with Wait[u1] (say x1), one with
Wait[u2] (say x2) and one with P (because of interrupt[u3], say x3). Clocks x1
and x3 start at the same time because the execution of interrupt is linked with
Wait[u1]. In contrast, clock x2 starts only when Wait[u1] terminates. It can be
shown that x1 and x3 always have the same value and thus one clock is sufficient.
In order to minimize the number of clocks, we introduce clocks at runtime so that
timed processes which are activated at the same time share the same clock. Intuitively,
a clock is introduced if and only if one or more timed processes have just become
activated.

We recall from Sun et al. (2013) how to systematically associate clocks with timed
processes. To distinguish from ordinary PSTCSP processes, let Pact denote the set
of processes associated with explicit clocks. We write Wait[u]x (and, similarly,
P timeout[u]x Q, P interrupt[u]x Q, P within[u]x , P deadline[u]x ) to
denote that the process is associated with clock x . Given a process P and a clock x ,
we use function Act(P, x) to define the corresponding process in Pact

Figure 2 presents the detailed definitions of Act(P, x). Rules A1 to A5 state that if
a process is untimed and none of its subprocesses is activated, then it is unchanged.
Rules A6 to A10 state that if the process is timed, then it is associated with x . If a
timed process has already been associated with a clock y, then it will not be associated

Act(Stop, x) = Stop A1
Act(Skip, x) = Skip A2
Act(e → P, x) = e → P A3
Act(a{program} → P, x) = a{program} → P A4
Act(if (b) {P} else {Q}, x) = if (b) {P} else {Q} A5
Act(Wait[u], x) = Wait[u]x A6
Act(P timeout[u] Q, x) = Act(P, x) timeout[u]x Q A7
Act(P interrupt[u] Q, x) = Act(P, x) interrupt[u]x Q A8
Act(P within[u], x) = Act(P, x) within[u]x A9
Act(P deadline[u], x) = Act(P, x) deadline[u]x A10
Act(Wait[u]y, x) = Wait[u]y A11
Act(P timeout[u]y Q, x) = Act(P, x) timeout[u]y Q A12
Act(P interrupt[u]y Q, x) = Act(P, x) interrupt[u]y Q A13
Act(P within[u]y, x) = Act(P, x) within[u]y A14
Act(P deadline[u]y, x) = Act(P, x) deadline[u]y A15
Act(P Q, x) = Act(P, x) Act(Q, x) A16
Act(P \ E, x) = Act(P, x) \ E A17
Act(P ; Q, x) = Act(P, x); Q A18
Act(P E Q, x) = Act(P, x) E Act(Q, x) A19
Act(P, x) = Act(Q, x) if P

.= Q A20

Fig. 2 Clock activation function for PSTCSP
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with the new clock. This is captured by rules A11 to A15, where Wait[u]y denotes
that Wait[u] is associated with clock y. If a subprocess is activated, then function
Act is applied recursively, as captured by rules A7 to A10 and A12 to A19. Rule A20
states that if P is defined as Q, then Act(P, x) can be obtained by applying Act to Q.

We denote by cl(P) the set of active clocks associated with P . For instance, the
set of active clocks associated with P timeout[u]x Q contains x and the clocks
associated with P . Notice that there is no clock associated with Q because it has not
yet been activated.

Example 2 In the Fischer’s mutual exclusion example, assume that there are three
processes. The first and second processes have evaluated the condition “if (turn =
−1)” and become Active(0) and Active(1) respectively, whereas the third process has
not made any move. So the current process is Active(1) ‖ Active(2) ‖ proc(3). Assume
that x is a fresh clock. Then applying function Act with x returns:

(update.1{turn := 1} → Wait[γ ]) withinx [δ]; · · ·
‖ (update.2{turn := 2} → Wait[γ ]) withinx [δ]; · · ·
‖ if (turn = −1) { Active(3) } else { proc(3) }
Clock x is associated with the first process and the second process, but not with the

third process. Note that Wait[γ ] has not yet been activated.

3.4.2 Idling function

We adapt in the following the function idle (initially defined for STCSP in Sun et al.
(2013)) which, given a process in Pact , calculates a constraint expressing how long the
process can idle. Here, the result is in the form of a constraint over the clocks and the
parameters. Figure 3 shows the detailed definition. Rules idle1 to idle5 state that if the
process is untimed and none of its subprocesses is activated, then the function returns
True. Intuitively, it means that the process may idle for an arbitrary amount of time.
Rules idle6 to idle9 state that if subprocesses of the process are activated, then function
idle is applied to the subprocesses. For instance, if the process is a choice (rule idle6)

idle(Stop) = True idle1
idle(Skip) = True idle2
idle(e → P ) = True idle3
idle(a{program} → P ) = True idle4
idle(if (b) {P} else {Q}) = True idle5
idle(P Q) = idle(P ) ∧ idle(Q) idle6
idle(P \ E) = idle(P ) idle7
idle(P ; Q) = idle(P ) idle8
idle(P E Q) = idle(P ) ∧ idle(Q) idle9
idle(Wait[u]x) = x ≤ u idle10
idle(P timeout[u]x Q) = x ≤ u ∧ idle(P ) idle11
idle(P interrupt[u]x Q) = x ≤ u ∧ idle(P ) idle12
idle(P within[u]x) = x ≤ u ∧ idle(P ) idle13
idle(P deadline[u]x) = x ≤ u ∧ idle(P ) idle14
idle(P ) = idle(Q) if P

.= Q idle15

Fig. 3 Idling calculation
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or a parallel composition (rule idle9) of P and Q, then the result is idle(P)∧ idle(Q).
Intuitively, this means that process P � Q (or P �E� Q) may idle as long as both P
and Q can idle. Rules idle10 to idle14 define the cases when the process is timed. For
instance, process Wait[u]x may idle as long as x is less than or equal to u.

3.4.3 Operational semantics

We now define the semantics of PSTCSP in the form of an LTS. Let Y = 〈x0, x1, · · ·〉
be a sequence of clocks.

Definition 5 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. The semantics of
M, denoted by LM, is an LTS (S, s0,⇒, �τ ) where

S = {(V, P, C) ∈ V(Var)× P ×KX∪U },
s0 = (V0, P0, K0)

and the transition relation⇒ is the smallest transition relation satisfying the following.
For all (V, P, C) ∈ S, if x is the first clock in the sequence Y which is not in cl(P),
and (V, Act(P, x), C ∧ x = 0)

a� (V ′, P ′, C ′), where C ′ is satisfiable, then we have:(
(V, P, C), a, (V ′, P ′, C ′↓cl(P ′)∪U )

) ∈ ⇒.

We say that a given variable valuation V is reachable in M if there exists a state
(V, P, C), for some P and some C , that is reachable in LM. We also say that a run
of M passes by V . Similarly, we say that a given process P is reachable in M if there
exists a state (V, P, C), for some V and some C , that is reachable in LM.

The transition relation � is specified by a set of rules, given in Appendix. We
explain below some of the rules defining the transition relation �. Other rules can be
explained similarly.

– Rule await defines the semantics of Wait[u].

(V,Wait[u]x , C)
τ� (V,Skip, C↑ ∧ x = u)

(await)

It states that a τ -transition occurs exactly when clock x is equal to u. Intuitively,
C↑ ∧ x = u denotes the time when u time units elapsed since x has started.
Afterwards, the process becomes Skip.

– Rules ato1, ato2 and ato3 define the semantics of P timeout[u] Q. Rule ato1
states that if a τ -transition transforms (V, P, C) to (V ′, P ′, C ′), then a τ -transition
may occur, giving (V, P timeout[u]x Q, C), if constraint C ′ ∧ x ≤ u is satis-
fiable. Intuitively, this means that the τ -transition must occur before u time units
since x has started.

(V, P, C)
τ� (V ′, P ′, C ′)

(V, P timeout[u]x Q, C)
τ� (V ′, P ′ timeout[u]x Q, C ′ ∧ x ≤ u)

(ato1)
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Similarly, rule ato2 ensures that the occurrence of an observable event e from
process P may occur only if x ≤ u, i.e., before timeout occurs.

(V, P, C)
e� (V ′, P ′, C ′)

(V, P timeout[u]x Q, C)
e� (V ′, P ′, C ′ ∧ x ≤ u)

(ato2)

Rule ato3 states that timeout results in a τ -transition when x is exactly equal to u.
The constraint x = u ∧ idle(P) ensures that process P may idle all the way until
timeout occurs.

(V, P timeout[u]x Q, C)
τ� (V, Q, C↑ ∧ x = u ∧ idle(P))

(ato3)

Let us explain Definition 5 further. First, given a state (V, P, C), a clock x which
is not currently associated with P is picked. Then, the state (V, P, C) is transformed
into (V, Act(P, x), C ∧ x = 0), i.e., timed processes which just became activated are
associated with x , and C is conjuncted with x = 0. Then, a firing rule is applied to
get a target state (V ′, P ′, C ′) such that C ′ be satisfiable (otherwise, the transition is
infeasible). Lastly, clocks which are not in cl(P ′) are pruned from C ′. Notice that one
clock may be introduced and zero or more clocks may be pruned during a transition.

Example 3 Let us consider the following state:

s1 = (V,Wait[u1] interrupt[u2] Skip, u2 < u1).

Activation with x1 gives:

(V,Wait[u1]x1interrupt[u2]x1Skip, u2 < u1 ∧ x1 = 0).

Applying firing rule ait2 gives state (V,Skip, C) with C = {(u2 < u1 ∧ x1 = 0)↑
∧x1 = u2 ∧ idle(Wait[u1]x1)}, viz., u2 < u1 ∧ x1 ≥ 0 ∧ x1 = u2 ∧ x1 ≤ u1. Then,
we remove x1 from C because it does not appear within Skip; this gives the new state
s2 = (V,Skip, u2 < u1).

We can also apply firing rule ait1 (and hence await) to s1, which gives
(V,Skip interrupt[u2]x1, C ′) with C ′ = u2 < u1 ∧ x1 = u1 ∧ x1 ≤ u2.
This constraint is unsatisfiable, hence this state is discarded.

3.5 Traces

We now introduce the notion of trace, that abstracts part of a system’s behavior.
In the literature (see, e.g., Baier and Katoen 2008), the approaches considered are
either state-based (which corresponds here to a sequence of processes) or event-based
(which corresponds here to a sequence of events). As a matter of consistency with
previous works (André et al. 2009), we consider here a combined state- and event-based
approach: That is, we define a trace as an alternating sequence of processes and events.
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The following definition introduces traces for parametric PSTCSP models. Note that,
since an STCSP model is a simplified case of a PSTCSP model, this definition can
also be used for non-parametric models.

Definition 6 (Trace) Given a PSTCSP model M and a run r of LM of the form
(V0, P0, C0)

a0⇒ · · · am−1⇒ (Vm, Pm, Cm), the trace associated with r is the alternating

sequence of processes with variables and events (V0, P0)
a0⇒ · · · am−1⇒ (Vm, Pm). The

trace set of M is the set of all traces associated with the runs of M.

Traces abstract away the constraint C ; hence, all the continuous information (values
of the clocks and of the parameters) is abstracted away.

4 General results for PSTCSP

In this section, we first define a subset of PSTCSP, called regular PSTCSP, so as
to maintain the consistency with regular STCSP (Sect. 4.1). We then show that all
the parametric timed constructs can be defined using two of them only (Sect. 4.2).
We then characterize the expressiveness of regular PSTCSP (Sect. 4.3), study the
(un)decidability of the membership and emptiness problems (Sect. 4.4), and prove
results relating parametric runs and non-parametric runs (Sect. 4.5).

4.1 Regular PSTCSP

The results stated in Sun et al. (2013) are valid for a subset of STCSP called regular
STCSP. “A Stateful Timed CSP model is regular if a process expression is consti-
tuted by finitely many process constructs, for every reachable configuration.” (Sun et
al. 2013) In other words, the discrete part of the reachable states is finite. This can be
seen as equivalent to the finite number of locations in timed automata, or the finite
number of places together with their boundedness in time Petri nets.

We define regular PSTCSP the same way: a PSTCSP model M is regular if P is a
process expression constituted by finitely many process constructs, for every reachable
configuration (V, P, C). Now, since the state space (even symbolic) is infinite for
PSTCSP, we do not need this restriction in our work. However, we will consider
regular PSTCSP when comparing to STCSP, i.e., when considering the expressiveness
(Sect. 4.3) and some of the decidability problems (Sect. 4.4).

4.2 Equivalence of timed constructs

We show here that all timed constructs in the syntax defined in Fig. 1 can actually be
defined using only two timed constructs: Wait and deadline.

As in Davies (1993), the timeout construct can be defined using the Wait con-
struct as follows, where eto is a fresh event.

P timeout[u] Q = (
P � (Wait[u]; eto � Q)

) \ {eto}
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The interrupt construct can be defined using Wait as follows.

P interrupt[u] Q = (
(P ‖ R) �eint� (Wait[u]; eint � Q)

) \ {eint}

with R
.= (

� e∈�(P)(e → R)
)

� (eint → Skip), where eint is a fresh event.
Intuitively, R synchronizes on any observable event of P as many times as necessary,
until event eint occurs, in which case it derives to Skip. From the right part of the
expression, event eint occurs immediately after Wait[u] has completed, i.e., after u
units of time. Then Q takes over. After u units of time, any observable event of P is
blocked due to the fact that R is now Skip, and cannot synchronize with P anymore.
Note that we use � e∈�(P)(e→ R) to denote the process (e1 → R) � . . . � (en →
R), assuming that �(P) = {e1, . . . , en}.

The within construct can be defined using the deadline construct: con-
sidering P within[u], this can be achieved by executing P in parallel with
Q deadline[u]; R, with Q a process synchronizing once on any observable event
with P , and R a process synchronizing, possibly several times, on any observable
event with P . Formally:

P within[u] = P ‖ (Q deadline[u]; R)

with Q
.= � e∈�(P)(e→ Skip) and R

.= (Q; R).
Although we showed that some timed constructs are equivalent, since one of the

advantages of PSTCSP is its conciseness and convenient, user-friendly syntax, we
keep these “syntactic sugar” constructs in our language. Furthermore, this maintains
consistency with STCSP (for which these constructs are also redundant, but this had
not been studied when STCSP was first defined).

4.3 Expressiveness

We consider here the expressive power of regular PSTCSP, i.e., the set of timed words
for any parameter valuation. Timed words are alternating sequences of events and
real-valued timing delays, and usually characterize the language of a formalism to
model real-time systems such as timed automata or time(d) Petri nets. We will show
in the following that the expressive power of regular PSTCSP is equal to parametric
closed timed automata with ε-transitions.

Let us first recall that regular STCSP is equivalent to that of closed timed automata
with ε-transitions. Recall from Ouaknine and Worrell (2003b) that closed timed
automata with ε-transitions are timed safety automata (Henzinger et al. 1994) (i.e.,
timed automata Alur et al. 1994) without acceptance conditions and with location
invariants) augmented with ε-transitions (Bérard et al. 1998), and with the restriction
of exclusively closed guards and invariants (i.e., whose inequalities are of the form
e ≤ e′, with e, e′ linear terms). It is usually considered that this restriction is benign
in practice, due to the fact that any timed automaton can be infinitesimally approxi-
mated by one with closed constraints (Ouaknine and Worrell 2003a; 2003b; Asarin et
al. 1998).
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The following result comes from Sun et al. (2013). Although it is not made explicit
in Sun et al. (2013), the expressive power is understood in this result in terms of timed
words, that is alternating sequences of events and real-valued timing durations.

Lemma 3 (Sun et al. 2013, Section 4.4) The expressive power of regular Stateful
Timed CSP is equal to that of closed timed automata with ε-transitions.

We define parametric closed timed automata with ε-transitions as a parametric
extension of closed timed automata with ε-transitions, following the parameterization
of TA into PTA (Alur et al. 1993), i.e., by allowing parameters within guards and
invariants. We consider here the expressive power as the set of timed words for all
possible parameter valuations.

Proposition 1 The expressive power of regular Parametric Stateful Timed CSP is
equal to that of parametric closed timed automata with ε-transitions.

Proof From the fact that both parametric formalisms are obtained exactly the same
way: regular Parametric Stateful Timed CSP is obtained from regular Stateful Timed
CSP by allowing the use of parameters in place of any constant in the system, and
similarly for parametric closed timed automata with ε-transitions. ��

Since closed timed automata with ε-transitions are a (strict) subclass of timed
automata with ε-transitions (Bérard et al. 1996; Alur and Madhusudan 2004), then
parametric closed timed automata with ε-transitions are a subclass of parametric timed
automata with ε-transitions. From Proposition 1 and the fact that timed automata
with ε-transitions are incomparable with standard TA (Bérard et al. 1996; Alur
and Madhusudan 2004), we can infer that regular PSTCSP is less expressive than
parametric timed automata with ε-transitions, but incomparable with standard PTA.

Remark 1 (Definition of expressiveness) We considered here a (common) definition of
expressiveness that considers the union of all timed words for all parameter valuations.
An alternative definition could be to consider the intersection of all timed words for
all parameter valuations. In that case, the result of Proposition 1 holds too, following
the same reasoning.

We believe that PSTCSP is an interesting formalism because one can make use of
user-defined data structures, and hierarchical composition is supported in PSTCSP,
which is missing in PTA. Furthermore, high level real-time system requirements often
state system timing constraints in terms of deadline, timeout or wait, which can be
regarded as common timing patterns. For example, “task P must complete within
u units of time” is a typical one (deadline[u]). We believe that PSTCSP is well-
suited for specifying the requirements of complex real-time systems because it has
the exact language constructs that can directly capture those common timing patterns.
On the other hand, to express high level real-time requirements in PTA, one often
needs to manually cast those timing patterns into a set of clock variables explicitly
and to carefully design constraints. This is error-prone, in the sense that there is a
risk to forget clocks, or to write ill-formed clock constraints. Now, it may be useful to
provide (parametric) timed automata with timing requirement patterns to simplify the
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modeling (see, e.g., Dong et al. 2008); however, PSTCSP features these patterns in a
native manner.

Furthermore, for hierarchical systems, PSTCSP offers a rich set of system com-
position functions which are inspired by CSP and Timed CSP; as a result, it may be
easier to model a system where components form a hierarchy of more than 2 levels
than using parametric timed automata. Although tools exist for specifying hierarchy
or some data structures for (non-parametric) TA, such as Uppaal (Larsen et al. 1997),
PSTCSP is, to the best of our knowledge, the first parametric real-time formalism com-
bining hierarchical aspects, shared variables and complex data structures in a single
formalism based on an intuitive syntax.

Remark 2 (Expressiveness of the data structures) It has long been known (see for
example Hoare 1985; Roscoe 2001; Sun et al. 2013) that it is possible to model
a finite domain variable (and hence any complex finite-domain data structure) as
a finite-state process in parallel to the one that uses it. As a consequence, the use
of data structures does not increase the expressiveness of regular PSTCSP. Hence,
it would have been possible to define the semantics of PSTCSP without these data
structures. Similarly, (parametric) timed automata (Alur et al. 1994; 1993) are usu-
ally extended with (bounded) integers (or with more complex data structures in
tools such as Uppaal (Larsen et al. 1997)), although their theoretical definition
rarely includes them. However, we believe that this is not satisfactory for two rea-
sons.

First, since PSTCSP is a parametric extension of STCSP (that defines variables
in its semantics), we make the same choice to include the variables in our seman-
tics. Second, some algorithms may need to explicitly access the value of data struc-
tures (this is the case of our algorithm 3VPsynthesis introduced in Sect. 5.2). Hence,
in contrast to the literature on timed automata, where each paper may extend the
original formalism for its own needs (bounded integers, broadcast communication,
use of lists, etc.), we provide here a unified semantics, that we hope to be rich
enough for defining further algorithms making use of variables and data struc-
tures.

4.4 Membership and emptiness problems

We show in this section that parameter synthesis is undecidable in general for regular
PSTCSP.

We consider the following problems, defined in Alur et al. (1993), Jovanovic et al.
(2013) for parametric timed automata, and adapted here to our setting:7

1. EF-membership problem: Given M a PSTCSP model, V a variable valuation and
π a parameter valuation, is V reachable in M[π ]?

7 In parametric timed automata (Jovanovic et al. 2013), the notion of reachable state is based on locations,
viz., discrete control states. In PSTCSP, there are no such discrete control states; hence, we could define
reachability based on a variable valuation, on a given process, or a combination of both. We choose here
the first option to simplify the proof, but our results extend directly to the two other cases (see Remark 3).
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2. EF-emptiness problem: Given M a PSTCSP model and V a variable valuation,
does there exist a parameter valuation π such that V is reachable in M[π ]?

3. AF-membership problem: Given M a PSTCSP model, V a variable valuation and
π a parameter valuation, do all maximal runs of M[π ] pass by V ?

4. AF-emptiness problem: Given M a PSTCSP model and V a variable valuation,
does there exist a parameter valuation π such that all maximal runs of M[π ] pass
by V ?

The two former problems refer to reachability whereas the two latter refer to
unavoidability.
Membership Both membership problems (1 and 3) are obviously decidable for regular
PSTCSP: it suffices to consider the non-parametric regular STCSP model M[π ] and
solve this problem using techniques developed in Sun et al. (2013), e.g., by building
the set of all reachable states, which is finite.

Proposition 2 (Decidability of membership) The EF-membership and AF-member-
ship problems are decidable for regular PSTCSP.

EF-Emptiness. We now show that Problem 2 is undecidable. We first consider the
case of general PSTCSP.

Theorem 1 (Undecidability of EF-emptiness) The EF-emptiness problem is undecid-
able for PSTCSP.

Proof We reduce the halting problem for 2-counter machines (known to be undecid-
able Minsky 1967) to the problem of testing if, given M a PSTCSP process and V
a variable valuation, there exists a parameter valuation π such that V is reachable
in M[π ].

As in Alur et al. (1993), we consider a 2-counter machine CM with two counters C1
and C2. The control variable l of CM ranges over the set {l1, . . . , ln}. Each instruction
of CM can either increment or decrement one of the counters, or test if one of the
counters is equal to 0, and change the location of control. A configuration of CM
is a triple (li , c1, c2), specifying the values of l, C1 and C2, respectively. The initial
configuration of CM is (l0, 0, 0). The halting problem consists of deciding if CM can
reach a given configuration (li , c1, c2).

We construct in the following a PSTCSP model MCM such that there exists a
parameter valuation π such that V is reachable in MCM [π ] if and only if CM halts.
In order to simplify the proof, we consider that no instruction corresponds to control
variable ln (i.e., if the machine reaches ln , it will halt).

In the following, we use a similar reduction to that of Alur et al. (1993), and adapt it to
PSTCSP. Let us first recall the construction used in Alur et al. (1993). That construction
constructs a PTA using three clocks x , y, z and six parameters a, a−1, a+1, b, b−1, b+1
such that a = a−1 + 1 = a+1 − 1 and b = b−1 + 1 = b+1 − 1. A configuration is
encoded using the triple (li , b − y, b − a − z), where y and z are two of the three
clocks used in the construction. Hence, the value of C1 is encoded by b − y, and the
value of C2 by b − a − z. Each control variable is encoded using a dedicated PTA
location. Then, for each instruction, a sequence of locations and transitions is added;
for example, the instruction “if l = li then C1 := C1+1 and l := li ′” is modeled in Alur
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et al. (1993) by adding a path to the PTA modeling CM, using the scheme recalled
in Fig. 4. Indeed, if the initial configuration is (li , b − y, b − a − z) then, after this
sequence of transitions, the configuration when reaching l ′i is (li , b− y−1, b−a− z),
correctly encoding the fact that the location changed from li to l ′i and that C1 was
incremented by 1. The instructions of the form “if l = li then C1 := C1 − 1 and
l := li ′” and “if l = li and C1 = 0 then l := li ′” are encoded in a similar manner (and
similarly for C2).

Our encoding is similar: we also use 6 parameters a, a−1, a+1, b, b−1, b+1,
and we define processes for each different control variable li . The main diffi-
culty when adapting the proof of Alur et al. (1993) to PSTCSP is the fact that
clocks are now implicit. We hence encode the 3 clocks x , y and z of Alur et
al. (1993) using three processes X , Y and Z , respectively, running in parallel
and that ensure that the elapsing of time conforms to the value of clocks in the
proof of Alur et al. (1993). We also define an additional process W in order
to synchronize on events. We finally define a single Boolean variable v, that is
initially set to False, and will be updated to True in only one special process;
then we will show that v = True can be reached if and only if the machine
halts.

We set MCM = (Var, U, V0, PCM , K0), with

– Var = {v};
– U = {a, a−1, a+1, b, b−1, b+1};
– V0 initializes v to False;
– K0 = {a = a+1 − 1 = a−1 + 1 ∧ b = b+1 − 1 = b−1 + 1}; and

– PCM is explained in the following.

For each control variable li of CM, consider the set of instructions starting
in this control variable (i.e., of the form “if l = li then …”). For each con-
trol variable li , let Ii j be the j th instruction starting in the control variable i .
Figure 4 depicts one such instruction Ii j for some j . For each instruction Ii j ,we
will define 4 processes. Consider an instruction of the form “if l = li then C1 :=
C1 + 1 and l := li ′”. The 4 processes defined for this instruction are as follows.

Xi j
.= Wait[b − a]; e4

i j �
(
(e1

i j → Skip)within[a]); e2
i j � Xi ′

Yi j
.= Wait[b+1]; e1

i j � Yi ′

Zi j
.= Wait[b]; e3

i j � Zi ′

Wi j
.= e4

i j → e1
i j → e2

i j → e3
i j → Wi ′

li li

y = b+1
y := 0 x = a

z = b
z := 0

x = b
x := 0

Fig. 4 Undecidability proof of Alur et al. (1993)
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Xij

Yij

Zij

Wij

e4
ij e1

ij e2
ij e3

ij

b − a − c2

c1 + 1

a − c1 − 1
c2

b − a a

Fig. 5 Proof of undecidability: synchronization between processes

The three processes X , Y , Z correspond to the three clocks x , y, z, respec-
tively, of Fig. 4. They synchronize on a set of events, and the order between
the events, which is crucial in order to constrain the parameters, is achieved by
process W . We name those events e1

i j to e4
i j , where ek

i j corresponds to the kth
transition of Fig. 4. The within construct in process X is used in order to
let event e1

i j occur anytime between e4
i j and e2

i j . Figure 5 gives the idea for our
construction, and specifies in particular the duration between any two events for
the sake of better understanding. Note that our construction is slightly different
from that of Alur et al. (1993) in the sense that we start the sequence of tran-
sitions from the point where x is reset, hence technically in the previous tran-
sition in the PTA model of Alur et al. (1993); hence the first event for the j th
instruction in control variable i is e4

i j . This also explains the order of the events
in Wi j .

For an instruction of the form “if l = li then C1 := C1 − 1 and l := li ′”, we define
the four processes in the same way, except Yi j where Wait[b+1] should be replaced
with Wait[b−1].

For an instruction of the form “if l = li and C1 = 0 then l := li ′”, we define the
four processes in the same way, except Yi j where Wait[b+1] should be replaced with
Wait[b], and Xi j is defined as follows.

Xi j
.= Wait[b − a]; e4

i j � e1
i j � Wait[a]; Xi ′

We also define four sets of processes, for i = 1, . . . , n − 1, as follows.

Xi
.=

⋃
Xi j , Yi

.=
⋃

Yi j , Zi
.=

⋃
Zi j , Wi

.=
⋃

Wi j

where
⋃

Xi j denotes a general choice between the m processes starting in control
variable i , i.e., Xi1 | · · · | Xim .
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The final processes Yn , Zn and Wn are all defined as en → Skip. And we define
Xn

.= en → {v := True} Skip. This gives the final synchronization updating v

to True.
The global process encoding our construction scheme is given by:

PCM
.= P0;

(
(Skip; X1) ‖ Y1 ‖ (Skip; Z1) ‖ (Skip;W1)

)

The Skip construction prefixing each process except Y1 allows these processes
to idle for some time before starting, as the four processes are out of phase (see
Fig. 5).

Then, if CM does not halt, there is no way to reach a configuration where v is True,
and there exists no parameter valuation such that this valuation is reachable. If CM
does halt, and suppose the value of C1 (resp. C2) never exceeds some constant c1
(resp. c2), then the set of parameter valuations for which v = True is reachable is
{a = a+1 − 1 = a−1 + 1 ∧ b = b+1 − 1 = b−1 + 1 ∧ a ≥ c1 ∧ b − a ≥ c2}.

��
Now, we show that the problem remains undecidable even for regular PSTCSP,

which directly comes from the expressiveness of regular PSTCSP.

Theorem 2 (Undecidability of EF-emptiness (regular PSTCSP)) The EF-emptiness
problem is undecidable for regular PSTCSP.

Proof The construction in Alur et al. (1993) uses a translation from a 2-counter
machine to a PTA using 3 clocks. This PTA actually belongs to the class of para-
metric closed timed automata, itself a subclass of parametric closed timed automata
with ε-transitions, which has been shown in Sect. 4.3 to be equivalent to regular
PSTCSP. ��

AF-Membership We now show that problem 4 is undecidable too.

Theorem 3 (Undecidability of AF-emptiness) The AF-emptiness problem is unde-
cidable for PSTCSP.

Proof The AF-emptiness problem has been shown to be undecidable for U-
PTA (Jovanovic et al. 2013). The formalism of U-PTA is a subclass of PTA. Fur-
thermore, the proof of Jovanovic et al. (2013) only uses non-strict inequalities; as a
consequence, the U-PTA used for the proof is a parametric closed timed automaton,
and hence a subclass of parametric closed timed automata with ε-transitions. From
Proposition 1, this U-PTA is equivalent to a regular PSTCSP model. As a consequence,
this problem is also undecidable for regular PSTCSP, and hence for full PSTCSP. ��
Remark 3 (Reachability) We considered so far the reachability of a variable valua-
tion V . This notion can be generalized to the reachability of a given process, or to the
reachability of both a given process and a variable valuation. The first case (viz., the
reachability of a given process P) can be obtained from the proof of Theorem 1 by
replacing Xn

.= en → {v := True} Skip with Xn
.= en → P . The second case (viz.,

the reachability of a given process P and a variable valuation V ) can be obtained using
Xn

.= en → {Var := V } P .
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Another interesting problem is to determine, given a PSTCSP model M =
(Var, U, V0, P0, K0), whether there exists a parameter valuation such that P0 can
derive back to P0 in a non-null number of steps. It follows from Remark 3 that this
problem (that could be called return-to-init-emptiness problem) is a subcase of the
EF-emptiness problem (by choosing PCM as P in the proof of Theorem 1), and is thus
undecidable.

4.5 Time-abstract equivalent runs

We prove here theoretical results that relate parametric runs (in PSTCSP) with non-
parametric runs (in STCSP). These results will be needed when proving the correctness
of the inverse method (see Sect. 5.3).

First, we need to recall the syntax and formal semantics of STCSP. (We sometime
adapt the notations and names to our setting.)

4.5.1 Syntax and semantics of stateful timed CSP

An STCSP model (originally defined in Sun et al. 2013, Section 3.1) is a tuple M =
(Var, V0, P0) where Var ⊂ Var , V0 is the initial variable valuation, and P0 ∈ PNP

is a process. The set PNP of all possible non-parametric processes (originally defined
in Sun et al. 2013, Section 3.1) is the set of all processes defined using the grammar
in Fig. 1, with the exception that u ∈ R+. That is, only constant reals (instead of
parameters) are allowed in the timing constructs.

We now recall the non-parametric semantics of STCSP models (called “time-
abstract semantics” in Sun et al. 2013). This semantics relies on the following notion
of non-parametric symbolic states (called “abstract system configurations” in Sun et
al. 2013).

Definition 7 (Non-parametric symbolic state) Given an STCSP model, a non-
parametric symbolic state is a triple (V, P, D), where V is a variable valuation,
P ∈ PNP is a process and D ∈ KX is a constraint on the clocks.

We now adapt to our notations the non-parametric semantics of STCSP models
(originally defined in Sun et al. 2013, Definition 4.2) as follows.

Definition 8 (Non-parametric semantics) Let Y = 〈x0, · · ·〉 be a sequence of clocks.
Let M = (Var, V0, P0) be an STCSP model. The non-parametric semantics of M ,
denoted by LM , is an LTS (S, s0,⇒NP, �τ ) where

S = {(V, P, D) ∈ V(Var)× P ×KX },
s0 = (V0, P0, True)

and the transition relation⇒NP is the smallest transition relation satisfying the fol-
lowing. For all (V, P, D) ∈ S, if x is the first clock in the sequence Y which is not in
cl(P), and (V, ActNP(P, x), D ∧ x = 0)

a�NP (V ′, P ′, D′), where D′ is satisfiable,
then we have:

(
(V, P, D), a, (V ′, P ′, D′↓cl(P ′))

) ∈ ⇒NP.
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In this definition, ActNP denotes the activation function for STCSP. This function
(originally defined in Sun et al. 2013, Figure 3) is identical to the activation function Act
for PSTCSP defined in Fig. 2, with the exception that u denotes a constant real instead
of a parameter. As in PSTCSP, cl(P) denotes the set of active clocks associated with
an STCSP process P . The �NP transition relation for STCSP is defined using a set
of rules. For the sake of conciseness, these rules (defined in Sun et al. 2013, Figure 6)
are not recalled here, but are identical to the firing rules for PSTCSP (defined in
Appendix), with the exception that parameters are replaced with constants.

In the following, we will write s1
a⇒NP s2 for (s1, a, s2) ∈ ⇒NP.

Remark 4 The semantics of a PSTCSP model can now be understood intuitively as
the union of the semantics of the valuated non-parametric STCSP models, for all pos-
sible parameter valuations. For each parameter valuation π , we may view a symbolic
state s = (V, P, C) as the set of triples (V, P, D) such that for all clock valuation w

such that w |	 D, we have < w,π >|	 C .

4.5.2 Results

The main result of this section will be Theorem 4, that relates non-parametric
and parametric semantics. Similar results have been proved for parametric timed
automata (Hune et al. 2002) and parametric time Petri nets Traonouez et al. 2009); we
will reuse here the same reasoning, with some modifications due to the specific nature
of PSTCSP.

Due to the presence of timing constructs in the processes contained in the traces
(in contrast to PTA where traces contain only locations with no timing information),
we define the notion of π -equivalence for traces. A trace of M and a trace of M[π ] are
π -equivalent if they agree on all elements (events, variables), except on the processes,
that must be such that Pπ = P[π ] for each process of the trace.

Definition 9 (π -equivalence) Let M be a PSTCSP model, and π be a parameter val-
uation.

Let t = (V0, P0)
a0⇒ · · · am−1⇒ (Vm, Pm) be a trace of M.

Let tπ = (V π
0 , Pπ

0 )
aπ

0⇒NP · · ·
aπ

m−1⇒NP (V π
m , Pπ

m ) be a trace of M[π ].
We say that t and tπ are π -equivalent if

1. for all 0 ≤ i ≤ m − 1, we have ai = aπ
i , and

2. for all 0 ≤ i ≤ m, we have Vi = V π
i and Pi [π ] = Pπ

i .

We extend the notion of π -equivalence to trace sets, and say that two trace sets are
π -equivalent if each trace of the first one is π -equivalent to a trace of the second one,
and vice-versa. We say that two traces (resp. trace sets) are equivalent if there exists
some π such that they are π -equivalent. We finally define below the notion of time-
abstract equivalence for runs, derived from π -equivalence. The term “time-abstract”
comes from the fact that two runs are time-abstract equivalent if they have the same
traces, hence the same time-abstract behavior. Also note that this notion is equivalent
to the “trace simulation” used in, e.g., Hune et al. (2002), André et al. (2009).
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Definition 10 (Time-abstract equivalence) Let M be a PSTCSP model, and π be a
parameter valuation. Let r be a run of M, and rπ a run of M[π ]. We say that r and rπ

are time-abstract equivalent if their associated traces are π -equivalent.

We will show in Propositions 3 and 4 that, given a parameter valuation π that
satisfies some conditions, each run in M[π ] is time-abstract equivalent to a run in M.

The following lemma states that constraints on the parameters can only become
more restrictive along a run.

Lemma 4 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. Let (V, P, C)
a⇒

(V ′, P ′, C ′) be a transition in the semantics of M. Then C ′↓U ⊆ C↓U .

Proof From the symbolic semantics of PSTCSP, C ′ is obtained from C through the
following steps:

(1) C is first conjuncted with x = 0. For sake of clarity, let C1 = (C ∧ x = 0). From
Lemma 1, we have C1↓U = C↓U .

(2) Then, a constraint (say C2) is obtained from C1 using the transition relation �.
Since the transition relation � is recursive, we need to reason by induction to show
that C2↓U ⊆ C1↓U . Base case: let us show that this holds for the non-recursive
rules (viz., aki , aev, aac, co2, co3, await , ato3, ait2). For all these rules, C2 is
of the form C1

↑ ∧ C ′, where C ′ ∈ KX∪U . (The constraint C ′, possibly equal to
True, is made of a conjunction of inequalities such as x = u or idle(P).) Recall
from Lemma 2 that time elapsing keeps the parametric constraint unchanged.
Since (C1

↑)↓U = C1↓U , then (C1
↑ ∧ C ′)↓U ⊆ C1↓U , from Lemma 1. This

completes the base case.
Induction case: the general form of C2 is C ′ ∧ C ′′ for all recursive rules (except
ase2 and apa3), where C ′ is obtained from C1 by recursively applying transition
relation �, and C ′′ ∈ KX∪U . (The constraint C ′′, possibly equal to True, is
made of a conjunction of inequalities such as x ≤ u or idle(P). For example,
in rule aex1, C ′′ is idle(P).) Assume that C ′↓U ⊆ C1↓U and let us show that
C2↓U ⊆ C1↓U . Since C ′↓U ⊆ C1↓U , and C2 = C ′ ∧ C ′′ then the result is
immediate from Lemma 1. The case for rule ase2 is similar, except that the form
of C2 is C1∧C ′; since C ′↓U ⊆ C1↓U holds (by induction hypothesis), then (C1∧
C ′)↓U ⊆ C1↓U holds from Lemma 1. For rule apa3, C2 is of the form C ′ ∧C ′′,
where both C ′ and C ′′ are obtained from C1 by recursively applying transition
relation �. From the induction hypothesis, C ′↓U ⊆ C1↓U and C ′′↓U ⊆ C1↓U

hence (C ′ ∧ C ′′)↓U ⊆ C1↓U from Lemma 1. This completes the induction step.
(3) Finally, C ′ is obtained from C2 by removing the clocks not in cl(P ′), i.e., by

projecting onto cl(P ′) ∪ U . By definition of the projection, C2↓cl(P ′)∪U =
{< w,π >| w : cl(P ′) → R+ ∧ π : U → R+∧ < w,π >|	 C}.
Since U ⊆ cl(P ′) ∪ U , then (C2↓cl(P ′)∪U )↓U = C2↓U . Since C2↓U ⊆ C1↓U

then (C2↓cl(P ′)∪U )↓U ⊆ C1↓U . This completes the proof.

��
The following lemma relates the initial state in the parametric and non-parametric

semantics.
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Lemma 5 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. Let π |	 K0. Suppose
that (P0, V0, K0) is the initial state of the semantics of M. Then the initial state of the
semantics of M[π ] is (Vπ , Pπ , Dπ ) with Pπ = P0[π ], Vπ = V0, and Dπ = K0[π ].
Proof From the definition of the model valuation, Pπ = P0[π ], and Vπ = V0. From
Definition 5, the initial state of the semantics of M is (V0, P0, K0). From Definition 8,
the initial state of the semantics of M[π ] is (V0, P0[π ], True). Since K0 is a constraint
on the parameters and π |	 K0, then K0[π ] = True. Hence Dπ = K0[π ]. ��

The following two lemmas relate a given transition in the parametric and non-
parametric semantics.

Lemma 6 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. Suppose that
(V, P, C)

a⇒ (V ′, P ′, C ′) is a transition in the semantics of M. Let π |	 C ′. Sup-
pose that (V, P[π ], C[π ]) is a state of the semantics of M[π ]. Then the transition
(V, P[π ], C[π ]) a⇒NP (V ′, P ′[π ], C ′[π ]) belongs to the semantics of M[π ].
Proof First note that, from the definition of a transition in the semantics of M, C ′
is satisfiable. By definition of the safisfiability, there exists at least one π such that
π |	 C ′. The proof of the result then comes from the fact that each firing rule of
PSTCSP (see Appendix) has an equivalent firing rule in STCSP (see Sun et al. 2013,
Figure 6), where a parameter is simply replaced with the corresponding constant in π .
Hence the transition relation is equivalent in both formalisms. ��
Lemma 7 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. Suppose that
(V, Pπ , Dπ )

a⇒ (V ′, P ′π , D′π ) is a transition in the semantics of M[π ]. Let π |	 C ′.
Suppose that (V, P, C) is a state of the semantics of M, with Pπ = P[π ] and
Dπ = C[π ]. Then a transition (V, P, C)

a⇒ (V ′, P ′, C ′) belongs to the semantics
of M, with P ′π = P ′[π ] and D′π = C ′[π ].
Proof As for Lemma 6, the proof comes from the fact the transition relation is equiv-
alent in both formalisms. ��

The following proposition is the equivalent for PSTCSP of Proposition 3.17 in Hune
et al. (2002) in the setting of parametric timed automata.

Proposition 3 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. For each parame-
ter valuation π , if there is a run in the semantics of M reaching state (V ′, P ′, C ′), with
π |	 C ′, then this run is time-abstract equivalent to a run in the semantics of M[π ]
reaching state (V ′, P ′[π ], C ′[π ]).
Proof By induction on the number of transitions in the run.

Base case: From Lemma 5.
Induction step: Assume there exists a run in the semantics of M ending with a
transition (V, P, C)

a⇒ (V ′, P ′, C ′) with π |	 C ′. From Lemma 4, π |	 C . From
the induction hypothesis, there is a run in the semantics of M[π ] leading up to state
(V, P[π ], C[π ]). Sinceπ |	 C ′, by Lemma 6, we have that (V, P[π ], C[π ]) a⇒NP

(V ′, P ′[π ], C ′[π ]) is a transition in the semantics of M[π ]. Hence the run in the
semantics of M is time-abstract equivalent to a run in the semantics of M[π ].

��
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The following proposition is the equivalent for PSTCSP of Proposition 3.18 in Hune
et al. (2002) in the setting of parametric timed automata.

Proposition 4 Let M = (Var, U, V0, P0, K0) be a PSTCSP model. For each parame-
ter valuation π , if there is a run in the semantics of M[π ] reaching state (V ′, P ′π , D′π ),
then this run is time-abstract equivalent to a run in the semantics of M reaching state
(V ′, P ′, C ′), with P ′π = P ′[π ] and D′π = C ′[π ].
Proof By induction on the number of transitions in the run.

Base case: From Lemma 5.
Induction step: Assume there exists a run in the semantics of M[π ] ending with a
transition (V ′, P ′π , C ′π )

a⇒NP (V, Pπ , Dπ ) From the induction hypothesis, there is
a run in the semantics of M[π ] leading up to a state (V, P, C) such that Pπ = P[π ]
and Dπ = C[π ]. By Lemma 7, we have that a transition (V, P, C)

a⇒ (V ′, P ′, C ′)
belongs to the semantics of M, with P ′π = P ′[π ] and D′π = C ′[π ]. Hence the run
in the semantics of M[π ] is time-abstract equivalent to a run in the semantics of M.

��
The following theorem defines the reachability condition of a process, and relates

non-parametric runs and parametric runs. This is the equivalent for PSTCSP of The-
orem 13 in Traonouez et al. (2009) in the setting of parametric time Petri nets.

Theorem 4 Let M = (Var, U, V0, P0, K0) be a PSTCSP model, and let (V, P, C) be
a state of M. Let π be a parameter valuation. Then:

(V, P[π ], C[π ]) ∈ M[π ] iff π ∈ C↓U .

C↓U is called the reachability condition of C.

Proof From Propositions 3 and 4. ��

5 Parameter synthesis

In this section, we define three algorithms, all allowing for synthesizing parameters
for PSTCSP corresponding to various notions of correctness. The first one (Sect. 5.1)
simply explores the set of all reachable states, and can serve as a basis for classical
algorithms for parameter synthesis such as the reachability of a given variable valuation
or process. The second one (Sect. 5.2) synthesizes parameter valuations satisfying a
3-value predicate. The third one (Sect. 5.3) is based on a reference parameter valuation
and synthesizes other parameter valuations having the same time-abstract behavior.

5.1 State space exploration

We first define a semi-algorithm to explore the state space until a fixpoint is reached,
i.e., until no new state can be computed, or all new states have been encountered before.
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Algorithm 1: Algorithm reachAll(M)

input : A PSTCSP model M with initial state s0
output: Set of reachable states

S← {s0}1
while True do2

if PostM(S) ⊆ S then3
return S4
S← S ∪ PostM(S)5

Recall from Definition 1 that a state s is reachable in one step from another state s′ if s
is the successor of s′ in a run. This definition extends to sets of states: Given a PSTCSP
model M, we define PostM(S) (resp. Posti

M(S)) as the set of states reachable from a
set S of states in one step (resp. i steps). Formally, PostM(S) = {s′ | ∃s ∈ S, ∃a ∈
�τ : s

a⇒ s′}. And Post∗M(S) is defined as the set of all states reachable from S in
M (i.e., Post∗M(S) = ⋃

i≥0 Posti
M(S)). We give in Algorithm 1 a semi-algorithm for

computing the set of all reachable states. The inclusion test (used in PostM(S) ⊆ S)
denotes the classical set inclusion, i.e., S ⊆ S′ if ∀s ∈ S, s ∈ S′. This inclusion test can
be implemented using an SMT solver (as it is proposed, e.g., in Hune et al. (2002));
in our implementation PSyHCoS (see Sect. 6), we use the polyhedra inclusion test
provided by the Parma Polyhedra Library (PPL) Bagnara et al. (2008).

5.1.1 Application to an example

We first introduce an example of a PSTCSP model that will be used to show the
application of reachAll (and then of IM in Sect. 5.3).

Example 4 Consider the following PSTCSP model.

Mex
np = (∅,∅,∅, Pnp, True)

This model is actually non-parametric (np stands for non-parametric), with no vari-
ables. Process Pnp is defined as follows.

Pnp .= (a→ Wait[2]; b→ Stop) interrupt[1] c→ Pnp

Intuitively, b never occurs because interrupt occurs before Wait[2] is achieved.
We give in Fig. 6 the set of reachable states in the form of an LTS.

Fig. 6 Reachable states of
process Pnp

s0 s1 s2
a

τ

τ

c
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Now consider the following parametrized version of Mex
np.

Mex = (∅, {u1, u2},∅, P, True)

Process P , still containing no variables, is defined as follows.

P
.= (a→ Wait[u2]; b→ Stop) interrupt[u1] c→ P

Let us apply reachAll to Mex. Since there are no variables in Mex , we denote for
the sake of conciseness the states by the pair (P, C), where P is the current process,
and C the current constraint over X and U . The initial state is s0 = (P, True). Let
〈x1, x2, · · ·〉 be a sequence of clocks. Starting with s0, we pick the first unused clock
(i.e., x1) and apply Act to P with x1 to get:

s′0 = (a→ Wait[u2]; b→ Stop) interrupt[u1]x1 c→ P , x1 = 0

Next, we can apply either rule ait1 or ait2. We apply ait1 (with ase1, aev):

s1 = (Wait[u2]; b→ Stop) interrupt[u1]x1 c→ P , 0 ≤ x1 ≤ u1

By applying rule ait2 to s0, we get s2 = (c→ P, x1 ≥ 0∧x1 = u1). Note that clock x1
becomes irrelevant after the transition. After pruning x1, we get s′2 = (c→ P, True).

Now consider state s1. We pick the first unused clock (x2) and apply Act with x2 to
get:

s′1=(Wait[u2]x2; b→ Stop) interrupt[u1]x1 c→ P , 0≤ x1 ≤ u1 ∧ x2=0

We can apply rule ait1 (with ase1, await) to s′1, and get (after pruning of x2):

s3 = (Skip; b→ Stop) interrupt[u1]x1 c→ P , u2 ≤ x1 ≤ u1

We can also apply rule ait2 (and idle8, idle10) to s′1, and get:

c→ P , 0 ≤ x1 − x2 ≤ u1 ∧ x1 = u1 ∧ x2 ≤ u2

w After pruning of both x1 and x2, we get (c→ P, True), which is equal to s′2.
We can apply rule aev to s′2 to get (P, True), which is equal to s0.
Now consider state s3. We can first apply rule ait1 (with ase2, aki) to get:

s4 = (b→ Stop) interrupt[u1]x1 c→ P , u2 ≤ x1 ≤ u1

We can also apply rule ait2 (with idle8, idle2) to s3 to get:

s5 = c→ P , u2 ≤ x1 ∧ x1 = u1
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Fig. 7 States reachable in
model Mex
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Which gives after pruning of x1: s′5 = c → P , u2 ≤ u1. Note that s′5 is not equal
to s2, because the associated constraint is different.

Now consider state s4. We can first apply rule ait1 (with aev) to get:

s6 = Stop interrupt[u1]x1 c→ P , u2 ≤ x1 ≤ u1

We can also apply rule ait2 (with idle8, idle2) to s4, which gives s5.
From s6, one can only apply rule ait2 (with idle1), which also gives s5.
From state s′5, one can apply rule aev and get: s7 = P, u2 ≤ u1, which is almost

equivalent to s′0 after application of Act with x1, but with the addition of the constraint
u2 ≤ u1.

From s7, one can apply rule ait1 (with ase1, aev) and get, after application of Act
with x2:

s8 = (Wait[u2]x2; b→ Stop) interrupt[u1]x1 c→ P ,

0 ≤ x1 ≤ u1 ∧ x2 = 0 ∧ u2 ≤ u1

From s7, one can also apply rule ait2 (with idle8, idle3), which gives s5.
Then, from s8, one can either apply ait1 (with ase1, await), which gives s4, or

apply ait2 (with idle8, idle10), which gives s5.
We finally reach the fixpoint, and reachAll terminates. The set of reachable states

is now stable, and is depicted in Fig. 7 in the form of an LTS.
The interpretation of the graph is as follows. The projection onto U of the constraint

associated with states s0
′, s1
′ and s2

′ is True. Hence, these states can be reached for any
valuation of u1 and u2. The projection onto U of the constraint associated with the other
states is u2 ≤ u1. Hence, these states can only be reached for parameter valuations
satisfying this inequality. Observe that Pnp can only reach states (equivalent to) s′0, s′1
and s′2. Indeed, we have that Mex

np = Mex[π ], where π = {u1 = 1, u2 = 2}, hence
u1 < u2.

5.1.2 Application to parameter synthesis

We showed in Theorem 1 that parameter synthesis is undecidable for PSTCSP. Still,
from the set of symbolic states computed by reachAll, one can apply classical semi-
algorithms for parameter synthesis. Suppose the result of reachAll is an oriented graph
(in the form of the one depicted in Fig. 7), and let succ(s) be the set of successors
of a given reachable state s. For example, in Fig. 7, we have succ(s′0) = {s′1, s′2}.
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Then, from the result of reachAll, we can for example retrieve the set of parameter
valuations such that a given variable valuation, and/or a given process Q (see Remark 3
on page 3) is reachable. This procedure, that we name EFQ(s, R), can be defined as
follows (following the form defined in Jovanovic et al. (2013)):

EFQ
(
(V, P, C), R

) =

⎧
⎪⎨

⎪⎩

C↓U if P = Q
∅ if (V, P, C)∈ R⋃

s′∈succ(V,P,C)

EFQ
(
s′, R ∪ {(V, P, C)}) otherwise

In this algorithm, Q denotes a process to be reached (the case with a reachable
variable valuation is similar), (V, P, C) denotes the current state explored, and R
denotes the set of states explored so far. Recall from Jovanovic et al. (2013) that the
algorithm is initially called on the initial state of the model (see Definition 5) and on an
empty set of reachable states, viz., EFQ((V0, P0, K0),∅). This algorithm returns the
projection of a constraint onto the parameters if the process P is the one searched for
(case P = Q); otherwise, if the current state has been visited (case (V, P, C) ∈ R), it
stops; otherwise, it returns the union of the recursive application of the algorithm on
all successor states of the current state, and adds the current state to the set of reachable
states. Although this algorithm may be used to synthesize “good” (correct) parameter
valuations, it is usually used to synthesize “bad” ones: usually, the process Q to be
reached is a “bad” process, and the set of correct valuations is then all parameter
valuations except the ones output by EFQ .

Let us now synthesize the set of parameter valuations such that the process
Q

.= (Skip; b → Stop) interrupt[u1]x1 c → P is reachable in the model
of Example 4. Hence, we call EFQ(s′0,∅). Since the process in s′0 is different from Q,
the first case of the algorithm does not apply (recall that the description of states is
available above); since R = ∅, the second case does not apply; from the third case,
and since s′0 has two successors s′1 and s′2, we get EFQ(s′1, {s′0}) ∪ EFQ(s′2, {s′0}). In
the call EFQ(s′1, R{s′0}), the third case will again apply; since s′1 has two successors s′2
and s3, we get EFQ(s′2, {s′0, s′1}) ∪ EFQ(s3, {s′0, s′1}). In the call EFQ(s3, R{s′0, s′1}),
we now have that the process associated with s3 is equal to Q. Hence, this call returns
the projection onto U of the constraint associated with s3, viz., u2 ≤ u1. The remain-
ing calls, after a few more iterations, will return the same constraint. Hence the result
of EFQ(s′0,∅) is {u2 ≤ u1}. If Q is a “bad” process, then the set of good parameter
valuations is u2 > u1.

5.1.3 Non-termination

Proposition 5 (Non-termination) Let M be a PSTCSP model. Then Algorithm reach
all(M) does not terminate in the general case.

Proof See counterexample in Example 5. ��
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Example 5 Consider the PSTCSP model M = (∅, {u1, u2},∅, P, True) where P is
defined as follows.

P
.= Q interrupt[u1] b

Q
.= a→ Wait[u2]; Q

It can be shown that reachAll will go into an infinite loop, by generating in particular
states of the form:

(Skip; Q) interrupt[u1]x1 b→ Skip , i ∗ u2 ≤ x1 ≤ u1

with i growing without bound.

5.1.4 Model checking

When the set of reachable states is finite, i.e., when reachAll terminates, one can
apply to the reachability graph finite-state model checking techniques, such as most
techniques defined in Sun et al. (2013) for STCSP (e.g., model checking with or
without non-Zenoness ass, refinement checking, etc.).

Unfortunately, in most cases, the set of reachable states in PSTCSP (as in other para-
metric timed formalisms) is infinite.8 Hence the techniques (even on-the-fly) defined
in the non-parametric setting do not apply anymore.

5.2 Parameter synthesis based on 3-value predicates

5.2.1 3-Value predicates

We consider here 3-value predicates: these predicates are properties on the model vari-
ables that can be true, false, or neither true nor false. The application is to differentiate
between “good” states, “bad” states and states that are neither good nor bad.

Differentiating between good states, bad states, and neither good nor bad states can
be used to encode observers. Observers are special processes analyzed in parallel with
the system, the discrete state of which depends on the rest of the system’s evolution.
For example, they can monitor a predefined order of events, or check that some dead-
lines are met. A major advantage of observers is that they reduce complex properties
(encoded in the observer process) to reachability testing. In many cases (see, e.g.,
observers for timed automata and STCSP (Aceto et al. 1998a, 1998b; André 2013)),
observers use good states and bad states (the other states being neither good nor bad).
In that case, the property encoded in the observer is true if and only if at least one good
state is reachable, and no bad state is reachable. This is the problem we address here.

More specifically, this can be used when modeling scheduling problems. For exam-
ple, consider an acylic scheduling problem where a set of tasks has to be completed

8 For timed systems, the state space is always infinite because of dense time. Here, we mean that the
number of (symbolic) states (V, P, C) is infinite too.
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Fig. 8 An example of a 3-value predicate applied to a state space

(only once) within a given timing bound; since the model is acyclic, the state space
can be seen as an acyclic directed graph, where each branch encodes one possible
order of the events encoding the starting and ending points of the different tasks. In
this case, only the terminal states (i.e., the last state of each branch) can be said to be
good or bad; the other states are not relevant, in the sense that one does not know (yet)
whether the deadline is met or not. The problem consists in defining sets of values for
the parameters for which the system is guaranteed to meet its deadline.

Given a valuation V of the variables, we write ϕ(V ) = True if the predicate is true,
ϕ(V ) = False if the predicate is false, and ϕ(V ) = Unknown otherwise.

Example 6 Consider the following 3-value predicate on a single integer-valued vari-
able v:

ϕ(v) =
⎧
⎨

⎩

True if v = 2
False if v = 1
Unknown otherwise

An example of the application of this 3-value predicate to a reachability graph
is given in Fig. 8, where the value of v is given to the left of each state. The value
according to the predicate is True for the states s4, s9, and s10 (since v = 2), False
for states s7, s12, s13 and s14 (since v = 1), and Unknown for the other states (since
v = 0).

In the rest of this subsection, we will address the problem of synthesizing parameters
ensuring that at least one good state is reachable, and no bad state is reachable.

Remark 5 We consider 3-value predicates on the variables only. This restriction is not
strong in practice (see Remark 3), and one could easily extend predicates to processes
(e.g., one may want to define a 3-value predicate that is true if the process does not
contain any deadline, or more generally any timed construct).
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5.2.2 Synthesis algorithm

Before describing our synthesis algorithm with respect to 3-value predicates, we make
two asss throughout this subsection. First, we assume that models are non-recursive
(as defined in Definition 3).

Assumption 1 All models are non-recursive.

The recursive case is discussed at the end of the subsection. Our algorithm does not
depend on this ass but, for recursive models, it may not terminate.

Second, we assume that no bad state can occur after a good state on the same run.

Assumption 2 For any model, for any parameter valuation, no bad state can occur
after a good state on the same run.

Hence, a good state must be seen as a kind of terminal state. Our algorithm
relies directly on this ass: synthesizing parameter valuations for models not satis-
fying Assumption 2 would require a different algorithm. Note that this ass is true for
acyclic schedulability problems: only the last state of a run can be said to be good (if
the deadline is met) or bad (otherwise). Hence, no bad state can occur after a good
state.

We introduce our algorithm 3VPsynthesis in Algorithm 2. Given a PSTCSP model M
and a 3-value predicate ϕ, this algorithm synthesizes a set of parameter valuations
guaranteeing the following notion of correctness: at least one good state and no bad
state is reachable according to ϕ.

Algorithm 2: Algorithm 3VPsynthesis(M, ϕ)

input : PSTCSP model M = (Var, U, V0, P0, K0)

input : 3-value predicate ϕ

output: (non-convex) constraint K over the parameters

K ← False ; Kbad ← K0 ; S← {(V0, P0, K0)}1
while True do2

foreach (V, P, C) ∈ PostM(S) do3
if ϕ(V ) = True then4

K ← K ∨ C↓U ;5
6

else if ϕ(V ) = False then7
Kbad ← Kbad ∧ ¬C↓U ;8

else9
S← S ∪ {(V, P, C)} ;10

if PostM(S) ⊆ S then11
return K ∧ Kbad ;12

The algorithm maintains two constraints: the constraint K guaranteeing that at least
one good state (according to ϕ) is reachable, and the constraint Kbad guaranteeing that
no bad state is reachable. The algorithm also maintains the set S of visited states.
Initially, K is set to false (no good state has been reached yet), Kbad is set to the
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initial constraint, and S is set to the initial state (line 1). Then, the algorithm iteratively
computes states in a breadth-first manner. If a new state is such that ϕ(V ) = True,
then the projection onto the parameters of its constraint is added to K as a disjunction
(line 5), so as to allow this state to be reached in at least one run. Conversely, if a
new state is such that ϕ(V ) = False, then the negation of the projection onto the
parameters of its constraint is added to K as a conjunction (line 8), so as to forbid this
state to be reachable in all runs. Otherwise, the state is added to the list of visited states
(line 10), and its successors will be visited at the next iteration. Finally, if no new state
is computed, or all new states have been visited before (fixpoint condition line 11),
then the intersection of K with Kbad is returned (line 12). Note that the resulting
constraint is in general non-convex due to the use of disjunctions.

5.2.3 Application to an example

Example 7 Consider the following example of a PSTCSP model M = (Var, U, V0, P,

K0), where Var = {v}, U = {u1, u2, u3}, V0 assigns v to 0, K0 = True, and P is
defined as follows.

P
.= (P1 � P2)timeout[u3](c{v := 1}� Stop)

P1
.= (Wait[u1]; a{v := 2}� Skip) within[u1]

P2
.= (Wait[u2]; b{v := 2}� Skip) within[u2]

In this example, P1 (resp. P2) is a process that first waits for u1 (resp. u2) time
units; then event a (resp. b) occurs immediately (due to the urgent transition) and sets
v to 2, before deriving to Skip. The main process P is an external choice between
P1 and P2, that will timeout after u3 units of time (i.e., if neither a nor b occur at that
time), in which case v is set to 1, and the process stops. Note that P is non-recursive.

A possible interpretation of this example is that either a task with a duration of
u1 time units or a task with a duration of u2 time units must be completed before a
deadline of u3 time units. The variable v encodes that one task is completed before
the deadline (v = 2) or no task is completed before the deadline (v = 1), which can
be seen as a deadline miss.

It is interesting to know for which values of the parameters it is guaranteed that one
task is completed before the deadline. Hence, let us apply 3VPsynthesis to M and to
the 3-value predicate ϕ defined in Example 6, that assigns True to 2, False to 1, and
Unknown otherwise. The initial assignment (line 1 in Algorithm 2) gives K ← False,
Kbad ← True, and S ← {(v = 0, P0, True)}. Let us now iterate the while loop. The
state space will be the one given in Fig. 8. We store the description of the states in
Table 1 for better readability.

First iteration Let us compute PostM(S). If Wait[u1] finishes first, then state s1
is reached from s0. The value of v is 0 in s1; hence ϕ(v) = Unknown, hence the
algorithm only performs S← S ∪ {s1} (line 10).

If timeout[u3] occurs first, a state s2 is reached from s0. Again, the value of v

is 0 in s2; hence s2 is added to S.
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Table 1 Description of the states in Fig. 8

s v P C

s0 0
(
((Wait[u1]; a{v := 2}�
Skip) within[u1])
� ((Wait[u2]; b{v := 2}�
Skip) within[u2])

)

timeout[u3](c{v := 1}�
Stop)

True

s1 0
(
((Skip; a{v := 2}�
Skip) within[u1]x1 )

� ((Wait[u2]x1 ; b{v := 2}�
Skip) within[u2]x1 )

)

timeout[u3]x1 (c{v := 1}�
Stop)

x1 = u1 ∧ x1 ≤ u2 ∧ x1 ≤ u3

s2 0 c{v := 1}� Stop u3 ≤ u1 ∧ u3 ≤ u2

s3 0
(
((Wait[u1]x1 ; a{v := 2}�
Skip) within[u1]x1 )

� ((Skip; b{v := 2}�
Skip)

)
within[u2]x1 )

timeout[u3]x1 (c{v := 1}�
Stop)

x1 = u2 ∧ x1 ≤ u1 ∧ x1 ≤ u3

s4 2 Skip u1 ≤ u2 ∧ u1 ≤ u3

s5 0
(
((Skip; a{v := 2}�
Skip) within[u1]x1 )

� ((Skip; b{v := 2}�
Skip) within[u2]x1 )

)

timeout[u3]x1 (c{v := 1}�
Stop)

x1 = u1 ∧ x1 = u2 ∧ x1 ≤ u3

s6 0 c{v := 1}� Stop u1 = u3 ∧ u1 ≤ u2

s7 1 Stop u3 ≤ u1 ∧ u3 ≤ u2

s8 0 c{v := 1}� Stop u2 = u3 ∧ u2 ≤ u1

s9 2 Skip u2 ≤ u1 ∧ u2 ≤ u3

s10 2 Skip u1 = u2 ∧ u1 ≤ u3

s11 0 c{v := 1}� Stop u1 = u2 = u3

s12 1 Stop u1 = u3 ∧ u1 ≤ u2

s13 1 Stop u2 = u3 ∧ u2 ≤ u1

s14 0 Stop u1 = u2 = u3

Symmetrically to s1, if Wait[u2] finishes first, a state s3 is reached from s0. Again,
the value of v is 0 in s3; hence s3 is added to S.

All s1, s2 and s3 have successor states that are not yet computed,9 hence we do not
have that PostM(S) ⊆ S (line 11), hence the algorithm goes one iteration further.

9 The test PostM(S) ⊆ S is a classical fixpoint test given in an algorithmic manner. Here, one does not
know yet whether PostM(S) ⊆ S, since PostM(S) will be computed at the next iteration. In practice, this is
handled using a set of “old” states (computed at previous iterations), and a set of “new” states (computed
at the current iteration).
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Second iteration From state s1, there are three possible successors: if a (which is
an urgent event) occurs first, then state s4 is reached. Since v = 2, then ϕ(v) = True;
hence, we perform K ← K∨C4↓U (line 5), and we now have K = u1 ≤ u2∧u1 ≤ u3.
Alternatively, Wait[u2] can complete before a occurs, reaching state s5; since a
is an urgent event, this happens in a 0-time duration, which explains the equal-
ity x1 = u1 = u2 in C5. Alternatively, timeout[u3] can occur first, reaching
state s6; again, there is an equality u1 = u3 in C6 due to the fact that a is an
urgent event. Both s5 and s6 are such that ϕ(v) = Unknown, hence they are stored
within S.

From state s2, there is only one successor s7. This state is such that ϕ(v) = False;
hence, the algorithm performs Kbad ← Kbad ∧ ¬C7↓U (line 8), and we now have
Kbad = ¬(u3 ≤ u1 ∧ u3 ≤ u2).

The successors of s3 are symmetrical to those of s1, and lead to states s8, s5 (already
reached from s1) and s9.

At the end of the second iteration, we have K = u1 ≤ u2 ∧ u1 ≤ u3 ∨ u2 ≤
u1 ∧ u2 ≤ u3, and Kbad = ¬(u3 ≤ u1 ∧ u3 ≤ u2). Some of the new computed states
have successor states that are not yet computed, hence the algorithm goes one iteration
further.

Third iteration From state s5, there are three possible successors: if a (which
is an urgent event) occurs first, then state s10 is reached, with ϕ(v) = True,
hence u1 = u2 ∧ u1 ≤ u3 is added to K (as a disjunction). Similarly, if
b occurs first, then the same state s10 is reached. And if timeout[u3] occurs
first, then state s11 is reached, with ϕ(v) = Unknown; hence, s11 is added
to S.

From state s6, there is one successor s12, where ϕ(v) = False; hence, ¬(u1 =
u3 ∧ u1 ≤ u2) is added to Kbad (as a conjunction).

Symmetrically, from state s8, there is one successor s13, where ϕ(v) = False; hence,
¬(u2 = u3 ∧ u2 ≤ u1) is added to Kbad .

At the end of the third iteration, we have K = (u1 ≤ u2 ∧ u1 ≤ u3) ∨ (u2 ≤
u1 ∧ u2 ≤ u3)∨ (u1 = u2 ∧ u1 ≤ u3), and Kbad = ¬(u3 ≤ u1 ∧ u3 ≤ u2)∧¬(u1 =
u3 ∧ u1 ≤ u2) ∧ ¬(u2 = u3 ∧ u2 ≤ u1). Some of the new computed states have
successor states that are not yet computed, hence the algorithm goes one iteration
further.

Fourth iteration From state s11, there is one successor s14, where ϕ(v) = False;
hence, ¬(u1 = u2 = u3) is added to Kbad .

Now, all states in S have either no successor, or a successor in S. Hence the fixpoint
condition (line 11) is verified, and the algorithm terminates.

At the end of the algorithm, we have K = (u1 ≤ u2 ∧ u1 ≤ u3) ∨ (u2 ≤
u1 ∧ u2 ≤ u3) ∨ (u1 = u2 ∧ u1 ≤ u3), and Kbad = ¬(u3 ≤ u1 ∧ u3 ≤
u2) ∧ ¬(u1 = u3 ∧ u1 ≤ u2) ∧ ¬(u2 = u3 ∧ u2 ≤ u1) ∧ ¬(u1 = u2 =
u3).

The result of the algorithm K ∧ Kbad can be simplified (manually or using a
constraint solver) into (u1 ≤ u2 ∧ u1 < u3) ∨ (u2 ≤ u1 ∧ u2 < u3) ∨ (u1 =
u2 ∧ u1 < u3). It will be shown in Proposition 7 that, for any parameter valuation
satisfying this constraint, the system reaches at least one state where v = 2, and
cannot reach any state where v = 1. An example of a parameter valuation satis-
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fying this constraint is u1 = 1 ∧ u2 = 2 ∧ u3 = 3. We remark that the result-
ing constraint is equivalent to u3 > min(u1, u2); this is consistent with the cor-
rectness condition of this example, i.e., either the task of length u1 time units or
the task of length u2 time units must be completed before the deadline of u3 time
units.

5.2.4 Soundness and completeness

The algorithm trivially terminates under Assumption 1 (non-recursivity).

Proposition 6 (Termination) Let M be a PSTCSP model, and ϕ be a 3-value predicate
on the variables of M. Then 3VPsynthesis(M, ϕ) terminates.

Proof Due to the finite number of possible process derivations coming from Assump-
tion 1. ��

We show below that, for all π |	 3VPsynthesis(M, ϕ), at least one good state is
reachable, and no bad state is reachable. Of course, this result relies on Assumption 2
that states that, once a good state has been reached, no bad state is reachable on the
same run.

The following lemma will be used in the proof of Proposition 7.

Lemma 8 (Unreachability of bad states) Let M be a PSTCSP model, andϕ be a 3-value
predicate on the variables of M. Suppose 3VPsynthesis(M, ϕ) terminates. Consider
the constraint Kbad just before the end of the algorithm. Then for all π |	 Kbad, no
bad state is reachable in M[π ].
Proof By contradiction. Let π |	 Kbad . Suppose a bad state is reachable in M[π ],
i.e., there exists a run rπ reaching a state (V, Pπ , Dπ ) in the semantics of M[π ].
From Proposition 4, this run is time-abstract equivalent to a run r in the semantics
of M reaching state (V, P, C), with Pπ = P[π ] and Dπ = C[π ]. If this bad state
(V, P, C) occurs after a good state on the same run r , then this violates Assumption 2.
Hence, no good state occurs on the run leading to (V, P, C). Suppose without loss of
generality that this bad state (V, P, C) is the first one along r , i.e., no bad state occurs
earlier on the same run. (If this is not the case, then let us consider the first bad state
instead.) Now, recall that Algorithm 2 computes all successor states along a run until
a good or bad state is met. As a consequence, (V, P, C) has been met by Algorithm 2
and¬C↓U has been added to Kbad (line 8). Since π |	 Kbad , then π �|	 C↓U . Hence,
from Theorem 4, no state (V, Pπ , Dπ ) is reachable in M[π ], which contradicts the
initial ass. ��
Proposition 7 (Soundness) Let M be a PSTCSP model, and ϕ be a 3-value predicate
on the variables of M. Suppose 3VPsynthesis(M, ϕ) terminates with result K .

Then for all π |	 K , at least one good state is reachable in M[π ], and no bad state
is reachable in M[π ].
Proof The result of 3VPsynthesis is of the form (K1∨K2∨· · ·∨Kn)∧Kbad . This can
be rewritten K1∧Kbad∨K2∧Kbad∨· · ·∨Kn∧Kbad . Consider Ki∧Kbad for some 1 ≤
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i ≤ n. Observe that Ki characterizes a good state (see line 5 in Algorithm 2). Hence,
from Proposition 3, this good state is reachable for any π |	 Ki . Since Ki∧Kbad ⊆ Ki ,
this good state is also reachable for any π |	 Ki ∧Kbad . Furthermore, from Lemma 8,
no bad state is reachable in M[π ], since Kbad contains the negation of an inequality
associated with each of these reachable bad states. ��

We finally state that 3VPsynthesis is complete, i.e., that it synthesizes all possible
parameter valuations such that at least one good state is reachable and no bad state is
reachable.

Proposition 8 (Completeness) Let M be a PSTCSP model, and ϕ be a 3-value
predicate on the variables of M. Let π be a parameter valuation. Let K =
3VPsynthesis(M, ϕ).

If at least one good state is reachable in M[π ], and no bad state is reachable in
M[π ], then π |	 K .

Proof From Theorem 4, the conjunction of the negated parametric constraints asso-
ciated with the bad states is the minimal constraint (in terms of number of points)
guaranteeing the non-reachability of the bad states. Similarly, from Theorem 4, the
union of all the parametric constraints associated to the good states is the minimal
constraint (in terms of number of points) guaranteeing the reachability of at least one
good state. ��

Recursive models We briefly discuss the case of recursive models. Although
3VPsynthesis is guaranteed to terminate for non-recursive models (due to the finite
number of possible process derivations), there exist models for which 3VPsynthesis
may not terminate. However, if 3VPsynthesis does terminate for a given input, then
its soundness and completeness are still ensured (since none of these proofs require
the ass of non-recursivity). Hence it is a semi-algorithm.

5.3 Parameter synthesis using the inverse method

We extend here the inverse method IM to PSTCSP.
History The inverse method was first proposed in the framework of “time separa-

tion of events” (Encrenaz and Fribourg 2008). The “direct problem” in the framework
of time separation of events can be stated as follows: “Given a system made of sev-
eral connected components, each one entailing a local delay known with uncertainty,
what is the maximum time for traversing the global system?” In Encrenaz and Fri-
bourg (2008), the authors focus on the following inverse problem: “find intervals for
component delays for which the global traversal time is guaranteed to be no greater
than a specified maximum”. The authors then introduce a method, the so-called inverse
method, and show that this method solves the inverse problem in polynomial time. The
inverse method was then formalized and extended to PTA in André et al. (2009), André
and Soulat (2013), guaranteeing that the discrete behavior of the system (what we call
here trace set) is preserved for any parameter valuation satisfying the constraint output
by IM.

123



Real-Time Syst (2014) 50:620–679 661

5.3.1 The inverse method for PSTCSP

Similarly to PTA, the main property of IM for PSTCSP will be the following: Given
a PSTCSP model M and a reference parameter valuation π , IM synthesizes a con-
straint K on the parameters such that, for any π ′ |	 K , the trace sets of M[π ] and
M[π ′] are equivalent. This method guarantees the time-abstract equivalence of the
behaviors. Hence, all linear time properties valid in M[π ] are also valid in M[π ′],
and vice versa. Note that the algorithm IM is somehow independent of the notion of
correctness (e.g., in contrast to 3VPsynthesis that explicitly takes as input a 3-value
predicate). However, if the behavior of the original system M[π ] is correct (for what-
ever criterion of correctness based on the trace set), then M[π ′] is correct for any
π ′ |	 K (and conversely if M[π ] is incorrect).

In IM, we need to check whether the constraint associated with a state is satisfied
by a given parameter valuation. This refers to the following notion.

Definition 11 (π -compatibility) Let M be a PSTCSP model, π be a parameter valu-
ation, and s = (V, P, C) be a state of M. The state s is said to be π -compatible if
π |	 C , and π -incompatible otherwise.

We introduce in Algorithm 3 the inverse method IM(M, π) for PSTCSP. We con-
sider in the following the model M = (Var, U, V0, P0, K0). Starting with a constraint
over the parameters K = K0, we iteratively compute a growing set of reachable
states. When a π -incompatible state (V, P, C) is encountered (i.e., when π �|	 C), K
is refined as follows. A π -incompatible inequality J (i.e., such that π �|	 J ) is selected
within the projection of C onto the parameters U (line 5) and the negation ¬J of J is
added to K (line 6). The procedure is then started again with this new K , and so on,
until a fixpoint is reached, i.e., all states have been visited before, and no new state is
reachable (line 8). The algorithm finally returns the intersection of the projection onto
the parameters U of the constraints associated with all reachable states (line 9).

The two main steps of the algorithm are the following ones:

1. the iterative negation of the π -incompatible states (by negating a π -incompatible
inequality J ) prevents for any π ′ |	 K any behavior different from the admissible
behaviors under π ;

2. the intersection of the constraints associated with all the reachable states guarantees
that all the behaviors under π are allowed for all π ′ |	 K .

5.3.2 Application to Example 4

Let us apply IM to Mex and the following reference parameter valuation: π = {u1 =
1, u2 = 2}. Since Var = ∅, we denote each state by (P, C), where P is the current
process, and C the current constraint on X and U .

We start with i = 0, K = True and S = {s′0}, with

s′0 =
(
(a→ Wait[u2]; b→ Stop) interrupt[u1]x1 c→ P, x1 = 0

)
.

The projection of x1 = 0 onto the parameters gives True; hence, s′0 is π -compatible
and we perform i ← i + 1 and S← S ∪ PostM(S).
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Algorithm 3: Algorithm IM(M, π)

input : PSTCSP model M = (Var, U, V0, P0, K0)

input : Parameter valuation π

output: Constraint K over the parameters

i ← 0 ; K ← K0 ; S← {(V0, P0, K )}1
while True do2

while there are π -incompatible states in S do3
Select a π -incompatible state (V, P, C) of S (i.e., s.t. π �|	 C) ;4
Select a π -incompatible J in C↓U (i.e., s.t. π �|	 J ) ;5
K ← K ∧ ¬J ;6

S←⋃i
j=0 Post j

M({(V0, P0, K )}) ;7

if PostM(S) ⊆ S then8
return

⋂
(V,P,C)∈S C↓U ;9

i ← i + 1 ;10
S← S ∪ PostM(S)11

Now, we have i = 1 and S = {s′0, s′1, s′2}, with

s′1 =
(
(Wait[u2]x2; b→ Stop) interrupt[u1]x1 c→ P, 0 ≤ x1 ≤ u1 ∧ x2 = 0

)

and s′2 = (c→ P, True). The projection onto the parameters of the constraint associ-
ated with both s′1 and s′2 gives True; hence, S is π -compatible and we perform again
i ← i + 1 and S← S ∪ PostM(S).

Now, we have i = 2 and S = {s′0, s′1, s′2, s3}, with

s3 =
(
(Skip; b→ Stop) interrupt[u1]x1 c→ P, u2 ≤ x1 ≤ u1

)
.

The projection onto U of the constraint associated with s3 gives u2 ≤ u1, which is
π -incompatible. As a consequence, we negate this inequality, and add it to K , which
gives K = u2 > u1. Next, we perform

⋃i
j=0 Post j

M({(V0, P0, K )}); this gives a set of
states similar to the last S computed above, except that s3 is now absent from S, and
all three states s′0, s′1, s′2 contain the inequality u2 > u1 in their associated constraint.
The fixpoint is reached, and the intersection of the constraints on the parameters is
returned (viz., u2 > u1).

From Theorem 5 (see below), for all π ′ |	 u2 > u1, the trace set of Mex[π ′] is
equivalent to the one of Mex[π ], depicted in Fig.e 6 page 30.

It can also be shown that the application of IM to Mex and a reference parameter
valuation such that u2 ≤ u1 (e.g., u1 = 2 and u2 = 1) leads to the result u2 ≤ u1.

5.3.3 Correctness

We show in Theorem 5 that IM preserves the equivalence of trace sets.
We first show that π |	 K , where K is the result of IM. In the following, we

consider that M is a PSTCSP model, and π is a parameter valuation.
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Proposition 9 Let K = IM(M, π). Then π |	 K .

Proof By construction, K is the result of intersecting all reachable states of S. Since
there are no π -incompatible states in S after the while loop, then K contains only
π -compatible inequalities. ��

We will show in Proposition 10 the equivalence of trace sets for M[π ′] and M(Kend),
where π ′ |	 K and Kend is the value of constraint K before the end of the algorithm IM,
i.e., the conjunction of π -incompatible inequalities. The following lemma will be used
in the proof of Proposition 10.

Lemma 9 Let K = IM(M, π). Let Kend be the value of constraint K before the end
of the algorithm IM. Let π ′ |	 K . Then for all runs of M(Kend) reaching (V, P, C),
we have π ′ |	 C.

Proof Consider a run of M(Kend) reaching (V, P, C). We have (V, P, C) ∈ S, where
S is the set of states at the end of the algorithm IM, since S = Post∗M({(V0, P0, K )}).
Moreover, we have K =⋂

(V,P,C)∈S C↓U . Hence π ′ |	 C↓U . Hence π ′ |	 C . ��

Proposition 10 Let K = IM(M, π). Let Kend be the value of constraint K before the
end of the algorithm IM. Let π ′ |	 K . Then the trace sets of M(Kend) and M[π ′] are
equivalent.

Proof 1. We first show that each run of M(Kend) is time-abstract equivalent to a run
in M[π ′]. Consider a run of M(Kend) that ends in state (V, P, C). From Lemma 9,
π ′ |	 C . From Proposition 3, this run is time-abstract equivalent to a run in M[π ′].

2. We then show that each run of M[π ′] is time-abstract equivalent to a run in M(Kend).
Since K ⊆ Kend and π ′ |	 K , then π ′ |	 Kend . Hence, from Proposition 4, each
run of M[π ′] is time-abstract equivalent to a run in M(Kend).

Theorem 5 Let K = IM(M, π). Then:

1. π |	 K , and
2. for all π ′ ∈ K , the trace sets of M[π ] and M[π ′] are equivalent.

Proof Item 1. From Proposition 9.
Item 2. Since π |	 K and π ′ |	 K , their trace sets are both equivalent to the trace set
of M(Kend), by Proposition 10. Hence their trace sets are equivalent to each other.

As a consequence, all linear-time properties valid for M[π ] are preserved in M[π ′],
for all π ′ ∈ K . This is not only the case for properties expressed using the Linear
Temporal Logic (LTL) (Pnueli 1977), but also for properties expressed using the SE-
LTL logic (Chaki et al. 2004), which is a linear temporal logic constituted by both
atomic state propositions and events. Furthermore, since the programs modifying the
values of the variables are only attached to events (and do not depend, e.g., on time),
then the values of the variables are the same as well.
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q1 q2

x1 ≤ p2 x2 ≤ p1

a
x1 := 0

x2 = p1
b

x2 := 0

(a)

P
.= X1 X2 Q1

Q1
.= a → Q2

Q2
.= b → Q1

X1
.= (a → X1) within[p2]

X2
.= (Wait[p1]; b → X2) within[p1]

(b)
Fig. 9 Counter-example showing the non-termination of IM. a For PTA. b For PSTCSP

5.3.4 Termination

Similarly to the setting of PTA, termination of IM for PSTCSP is not guaranteed in
the general case. Nevertheless, we give a criterion for termination.

First, consider an example of a PTA, depicted in Fig. 9a, for which IM (in the
setting of PTA) does not terminate. Clocks can have any initial value (viz., x1 ≥
0 ∧ x2 ≥ 0). Consider the following reference valuation π : {p1 = 1, p2 = 2}. Then
no π -incompatible state is found, and an infinite number of states is generated, with
constraints of the form (i + 1) ∗ p2 ≥ i ∗ p1, with i growing without bound.

It is possible to translate this PTA to a PSTCSP model with no variables, as given
in Fig. 9b. For this PSTCSP process, it can be shown that IM does not terminate,
also generating constraints of the form (i + 1) ∗ p2 ≥ i ∗ p1, with i infinitely grow-
ing.

Proposition 11 IM(M, π) may not terminate in the general case.

We now show that the non-recursivity of a model is a sufficient condition to ensure
termination of IM. Note that this condition can be checked syntactically.

Proposition 12 (Termination condition for IM) Let M be a PSTCSP model and π a
valuation of its parameters.

IM(M, π) terminates if M is not recursive.

Proof Since processes have no recursion, only a finite number of events can occur. Fur-
thermore, since our semantics considers symbolic time elapsing (a construct Wait[u]
will lead to only one successor state in the LTS), the LTS will have a finite number of
states.

Now, the inner loop of IM will necessarily terminate since, at one depth (encoded by
variable i), only a finite number of new inequalities can be generated (this is true even
for recursive models). As for the outer loop, since the LTS is finite, it has a bounded
depth, and the algorithm will reach a given i for which no state has any successor. ��

Despite Proposition 11, termination of the inverse method actually occurs for all our
case studies (see Table 2), even those that do not meet the criterion of Proposition 12.
For instance, IM terminates for Example 5, although it contains a recursive definition
(because process P is defined using Q, and Q itself defined using Q). On the other

123



Real-Time Syst (2014) 50:620–679 665

hand, a standard parametric reachability analysis (using reachAll) would go into an
infinite loop, because the recursion is under the parameterizedinterrupt construct,
where u1 can be arbitrarily large when compared to u2. This result is of particular
interest since parameter synthesis is undecidable in general for PSTCSP. Exhibiting
further syntactic criteria for the termination of IM is the subject of future work (see
Sect. 7).

5.3.5 Non-completeness

Non-confluence We first show that IM for PSTCSP is non-confluent. That is, for a
given PSTCSP model M and a given parameter valuation π , the result of IM(M, π) is
not necessarily always the same.

Proposition 13 (Non-confluence) There exist a PSTCSP model M and a valuation π

such that two executions of IM(M, π) may output two different constraints.

Proof Consider the following PSTCSP model M = (∅, {u1, u2, u3},∅, P, True), with
P

.= (((a → P) within[u2]) within[u1]) within[u3]. Consider the following
reference valuation π = {u1 = 1, u2 = 2, u3 = 3}. Then, depending on the nondeter-
ministic selection of the inequality (“J”) to negate, the algorithm will return, besides
the two “trivial” inequalities u1 ≥ 0 ∧ u2 ≤ 0, either u3 > u1 or u3 > u2. Of course,
these two constraints are incomparable. ��

Non-completeness From the result of non-confluence, we infer that IM is not com-
plete; by non-completeness, we mean that there may exist parameter valuations outside
of the constraint output by IM that still have the same trace set as the reference valu-
ation π .

Corollary 1 (Completeness) There exist a PSTCSP model M, a valuation π , and a
valuation π ′ such that

1. π ′ �|	 IM(M, π), and
2. M[π ] and M[π ′] have the same trace sets.

Proof From Proposition 13, there exist a PSTCSP model M and a valuation π such
that two runs of IM(M, π) may output two different constraints. Let K1 and K2 be
two different constraints corresponding to a first and a second run of IM, respectively.
Note that, from the correctness of IM, for any π ′ |	 K1 ∪ K2, the trace set of M[π ′]
is always the same. Since K1 �= K2, then either (1) K1 � K2 or (2) K2 � K1 or (3)
K1 �� K2 and K2 �� K1, where K1 � K2 denotes that K1 is strictly included in K2,
that is K1 ⊆ K2 but we do not have that K1 = K2.

1. If K1 � K2 then there exists π ′ |	 K2 such as π ′ �|	 K1. Hence we have that
π ′ �|	 K1, and M[π ] and M[π ′] have the same trace sets.

2. The case K2 � K1 is dual.
3. If K1 �� K2 and K2 �� K1 then there exists π ′ |	 K2 such as π ′ �|	 K1; hence the

reasoning is the same.
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Actually, non-completeness comes from the fact that the complete set of parameter
valuations having the same trace set as M[π ] can be non-convex (or even disjoint),
whereas IM always outputs a convex constraint. Hence, in general, there may be
no parameter valuation such that IM(M, π) outputs the complete set of parameter
valuations having the same trace set as M[π ].

Although IM is not complete, it remains interesting in practice. First, depending
on the final application, engineers may not be interested in all possible parameter
valuations guaranteeing a good behavior, but only in some of them. Indeed, in the
end, the real system will be implemented using one parameter valuation only; what is
important is to guarantee that the system behaves well around the parameter valuation
(in case of small variability of the valuation in practice), but not necessarily to know
all possible good parameter valuations. Second, even when the resulting constraint
is not the maximum set of parameter valuations such that the system is time-abstract
equivalent to the system under π , it always outputs a dense set of parameter valuations
(see below). Hence, the resulting constraint gives a (possibly partial) measure of the
robustness of the system that can help to understand the system behavior around the
reference parameter valuation (see Sect. 5.3.6).

Density of the resulting constraint We show here that IM always outputs a constraint
non-reduced to a point. A constraint reduced to a point means that the only valuation
in K is the reference valuation π itself. This cannot happen in IM: indeed, the inequal-
ities output come from the parametric reachability of the state space, following the
semantics of PSTCSP. No constant can suddenly “appear” in the inequalities, since
the model is fully parametric (see our ass in footnote 4). Hence, in the worst case, the
inequalities output may be equalities of the form u1 = u2 = · · · = uM . Although this
constraint is not dense (it is not a volume), it is not reduced to a point: this corresponds
to an infinite (hyper)line in M dimensions passing by the origin and by π , and it means
that the reference valuation can scale.

Furthermore, we note that a sufficient (but non-necessary) condition for IM to
output a dense constraint K (non-reduced to a line) is that, in the reference valuation,
all constants be different. (That is, the reference value for u1 must be different from
that of u2, u3, and so on.) Indeed, by correctness of IM, we have that π |	 K , hence
all inequalities in K are π -compatible. Since all parameter valuations are different
in π , one cannot have an equality between two parameters in K , otherwise it would
be π -incompatible.

In all our experiments (see Sect. 6), the set of parameter valuations synthesized is
always dense, that is, not reduced to a (hyper)line.

5.3.6 Discussion

Advantages The efficiency of IM in practice comes from the fact that only a small
portion of the state space is explored; branches are cut as soon as they differ from π .
Furthermore, in contrast to classical model checking techniques, transitions are not
stored in memory; only states are needed (see Algorithm 3). Although IM is not
guaranteed to output the weakest constraint (i.e., the largest set of parameters), it often
does (see Sect. 6.3); and it is always guaranteed to output a set of parameter valuations
in |U | dimensions, both non-null and non-reduced to a point.
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Moreover, the preservation of time-abstract traces is particularly interesting for
PSTCSP: much research in real-time systems concentrated in timed temporal prop-
erties, some of them allowing the use of clocks within the formulas. But because
clocks are implicit in PSTCSP, it does not make much sense to consider properties
based on a relationship between clocks, because they do not appear in the origi-
nal model. As for properties based, e.g., on deadlines (“event a must occur no later
than n units of time”), they can be easily encoded using an observer process. This
process, in parallel with the rest of the system, fires an event success or failure
depending on whether the deadline is met or not. Hence, this becomes a property
on traces.

Last but not least, IM quantifies the robustness (see, e.g., Markey 2011; Bouyer
et al. 2013) of the system: it guarantees that, if the system is correct for π ,
it will also be correct for valuations around π (viz., for all valuations satisfy-
ing IM(M, π)). This gives a quantitative measure of the implementability of a timed
system. Indeed, when a system is implemented, the values appearing in the system
may not be exactly the same as the ones in the model that has been proven cor-
rect. The inverse method allows the designer to formally guarantee the correctness
of the system not only for the reference valuation, but also for neighboring valua-
tions.

Full coverage of the parametric space One may be interested in covering the whole
parametric space. This is unlikely to obtain from a single call to the inverse method:
this would mean that IM returns True, hence that all parameter valuations have exactly
the same trace set. However, one can call several times the inverse method on differ-
ent reference valuations, so as to obtain coverage of the whole parametric space with
a set of tiles; tiles are convex constraints in which the trace set is always the same
(two different tiles have two different trace sets in general). This is the purpose of the
behavioral cartography defined for PTA in André and Fribourg (2010). It was shown
that the behavioral cartography for PTA is usually not able to cover the whole, dense
parametric space using a finite number of calls to the inverse method. However, it is
possible to cover a set of arbitrarily tight points (e.g., integers, or multiple of 0.1 or
0.01, etc.) using a finite number of calls to IM. Although extending the behavioral
cartography to PSTCSP is the object of future work, we believe that these proper-
ties would be the same for PSTCSP due to the close expressiveness between both
formalisms.

Optimized implementation The inverse method for PSTCSP has been defined in
Algorithm 3 in an algorithmic form, so as to ease the proofs. However, it is clearly
not efficient that way, since the algorithm needs to start from the initial state every
time an incompatible inequality J is selected (line 7). It was shown in André (2010)
that it is instead equivalent to just add the negated inequality ¬J to all the reached
states (in S). Note that no state will become inconsistent (that is, with an unsatisfiable
constraint) because ¬J is π -compatible by construction (that is, π |	 ¬J ), and so
are the constraints of all the reached states. It was this optimized version that we
implemented in PSyHCoS.
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6 Implementation and experiments

6.1 Implementation within PSyHCoS

This work has been implemented in a tool, PSyHCoS (standing for Parameter
SYnthesis for Hierarchical COncurrent Systems), which is a self-contained frame-
work to support composing, simulating and automatically verifying parametric
hierarchical concurrent real-time systems (André et al. 2013b). PSyHCoS comes
with user friendly interfaces, a feature-rich model editor and an animated simula-
tor.

The implementation of PSTCSP within PSyHCoS allows in particular the use
(within process definitions) of complex data structures, such as counters, lists, sets,
and more generally any user-defined structure and function.

One of the major issues in the synthesis of timing parameters is the handling of
constraints on both clocks and parameters. Operations on such constraints (intersec-
tion, variable elimination, satisfiability, etc.) are far more complex than equivalent
operations on constraints on clocks, because the latter benefit from the efficient rep-
resentation using DBMs. Unfortunately, most optimizations defined for DBMs do not
apply to parametric timed constraints. In our setting, each state is implemented in the
form of a pair (process id, constraint id), both stored as strings. This is an implementa-
tion choice. Although not everything is represented using strings in PSyHCoS, some
identifiers use strings. An advantage of the string representation is that the constraint
equality test (when checking whether this new state has been met before) reduces to
string equality.

We present in the remainder of this section an optimization for state space reduction,
as well as a set of case studies.

6.2 State space reduction

In PSTCSP, some states considered as different are actually equivalent. Consider the
following two states:

s1 = (∅,Wait[u1]x1deadline[u2]x2 , x1 ≤ x2 ≤ u2)

s2 = (∅,Wait[u1]x2deadline[u2]x1, x2 ≤ x1 ≤ u2)

It is obvious that s1 = s2, except the names of clocks. Merging these states may
lead to an exponential decrease of the number of states. Hence, we implemented a
technique of state normalization based on anonymization of the clock: first, the clocks
in the process are renamed so that the first one (from left to right) is named x1, the
second x2, and so on. Second, the variables in the constraint are swapped accordingly.
This technique solves this problem at the cost of several nontrivial operations (lists
and strings sorting). We denote by reachAll+ (resp. IM+) the version of reachAll
(resp. IM) using this technique.
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Table 2 Application of algorithms for parameter synthesis using PSyHCoS

Case study reachAll reachAll+ IM IM+
|U | |X | |S| |T | t |S| |T | t |S| |T | t |S| |T | t

Mex 2 2 8 14 0.008 8 14 0.006 3 5 0.004 3 5 0.005

M′ex 2 2 8 14 0.008 8 14 0.006 8 14 0.016 8 14 0.008

Bridge 4 2 – – OoM – – OoM 2.8k 5.5k 253 2.8k 5.5k 455

Fischer4 2 4 – – OoM – – OoM 11k 31k 41.9 2k 5.8k 8.65

Fischer5 2 5 – – OoM – – OoM 133k 447k 1,176 13k 44k 84.5

Fischer6 2 6 – – OoM – – OoM – – OoM 86k 342k 1,144

Jobshop 8 2 14k 20k 21.0 12k 17k 18.1 1,112 1,902 17.1 877 1,497 22.8

RCS2 4 4 52 64 0.038 52 64 0.059 52 64 0.091 52 64 0.147

RCS3 4 4 233 296 0.186 233 296 0.300 233 296 0.310 233 296 0.513

RCS4 4 4 1,070 1,374 1.74 1,070 1,374 1.58 1,070 1,374 1.40 1,070 1,374 2.38

RCS5 4 4 5.6k 7.2k 10.5 5.6k 7.2k 9.54 5.6k 7.2k 7.83 5.6k 7.2k 16.7

RCS6 4 4 34k 43k 91.7 34k 43k 54.5 34k 43k 60.4 34k 43k 91.3

TrAHV 6 6 7.2k 13k 14.2 7.2k 13k 15.8 227 321 0.555 227 321 0.655

6.3 Experiments

We give in Table 2 the example name, the number |U | of parameters, the maximum
number |X | of clocks required,10 and, for each algorithm, the number |S| (resp. |T |)
of states (resp. transitions),11 and the computation time t on a Windows XP desktop
computer with an Intel Quad Core 2.4 GHz processor with 4 GiB memory. “OoM” in
a cell denotes “out of memory”. Binaries, sources, models and results are available in
PSyHCoS’ Web page.12

6.3.1 Description of the models

Bridge is a classical bridge crossing problem for four persons within 17 min. Fischeri

is the mutual exclusion protocol for i processes. Jobshop is a scheduling problem (Fri-
bourg et al. 2012). TrAHV is the train example from Alur et al. (1993). RCSi is a
railway control system with i trains (Yi et al. 1995).

When reachAll (resp. reachAll+) terminates, one can apply classical model check-
ing techniques: for instance, we checked that all models are deadlock-free (except
Jobshop which is in fact acyclic). When reachAll does not terminate (Bridge, Fis-
cher), IM is interesting because it synthesizes constraints even for infinite symbolic

10 In theory, nothing guarantees that the maximum number of clocks is the same for reachAll, reachAll+,
IM and IM+. Nevertheless, since it is always the same for all experiments, we factor it to save some space
in the columns.
11 Recall that IM does not need to maintain transitions. Hence, the transition number for IM and IM+ is
only an integer maintained within the program for statistics purpose.
12 http://lipn.univ-paris13.fr/~andre/software/PSyHCoS/.
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state space case studies; and when reachAll terminates slowly (TrAHV), IM may syn-
thesize constraints quickly. The reference valuation used for IM either is the standard
valuation for the considered problem (Bridge, Jobshop, RCSi , TrAHV) or has been
computed in order to satisfy a well-known constraint of good behavior (Fischeri ).

6.3.2 Interpretation of the resulting constraint

First, the synthesized constraint by IM solves the good parameter problem, and may
even output all possible correct parameter valuations. For instance, the constraint
synthesized for Fischer (δ < γ ) is known to be the weakest constraint guaranteeing
mutual exclusion. (We used δ = 3 and γ = 4 as reference valuation.)

Second, it always gives a quantitative measure of the system robustness, by defining
a safety domain around each parameter, guaranteeing that the system will keep the
same (time-abstract) behavior, as long as all parameters remain within K . As opposed
to a simple “ball” output by robust timed automata techniques, this domain is a convex
constraint in |U | dimensions.

Third, it happens that the constraint is True (e.g., RCSi for all i). In this case, one
can safely refine the model by removing all timing constructs: Wait, deadline
and within can be directly removed, whereas interrupt and timeout can be
replaced with non-deterministic choice. In that case, techniques for untimed systems
(usually more efficient) can be applied to the system. Although this refinement might be
checked for one particular parameter valuation using refinement techniques designed
for STCSP, we prove it here for any possible parameter valuation; indeed, since the
discrete behavior is the same for any parameter valuation satisfying True, hence for
any parameter valuation, the timed constructs can be safely dropped.

6.3.3 Performance

The number of clocks is significantly smaller than equivalent models for PTA for some
case studies: for instance, the Bridge case study would obviously require four clocks
because there are four independent processes in parallel. Similarly, the RCSi case
study would require at least i clocks, one for each train (plus some other clocks for
the environment); however, in our setting, the maximum number of clocks is constant,
and equal to 4, for all i . Beyond the fact that it has been shown that the fewer clocks,
the more efficient real-time model checking is Bengtsson and Yi (2004), a smaller
number of clocks implies a more compact state space in our setting: constraints are
represented using arrays and matrices; the fewer clocks, the smaller the constraints
are, the more compact the state space is.

Table 2 shows that, when IM+ indeed reduces the number of states, it is much more
efficient than IM, not only w.r.t. memory, but also w.r.t. time (e.g., Fischeri for all i).
However, with no surprise, when no state duplication occurs (e.g., Bridge), i.e., when
the state space is not reduced using this technique, the computation time is longer.
Although reducing this computation is a subject of ongoing work, we do not consider
it as a significant drawback: parameter synthesis’ largest limitations are usually non-
termination and memory saturation. Slower analyses for some case studies (up to
+80 % for Bridge) are acceptable when others benefit from a dramatic memory (and
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time) reduction (−90 % for Fischer5), allowing parameter synthesis even when IM
runs out of memory (Fischer6).

The implementation of PSTCSP within PSyHCoS seems to be efficient: some case
studies (e.g., Fischer5, Fischer6, RCS6) handle several dozens or hundreds of thousands
symbolic states in a reasonable amount of time, which, to the best of our knowledge, is
unheard of for parametric timed frameworks: We did not find publications mentioning
tools for parameter synthesis handling more than a few thousands states.

6.3.4 Comparison with Imitator

To the best of our knowledge, no other tool performs parameter synthesis for timed
extensions of CSP; as for other formalisms, fair comparisons would be difficult due
to model translations: whereas translations between PTA and Petri Nets are rather
straightforward, their translation into process algebra is much trickier. We actually
tried to perform a comparison with Imitator 2.5, the implementation of the inverse
method for PTA (André et al. 2012a). Unfortunately, this comparison (performed using
the same machine with Ubuntu 11.10 64 bits) did not give accurate results. Indeed, the
(manual) translation of models from PTSCP to PTA (and conversely) is difficult: in all
cases, the tool for which the model was initially designed performs much better than
the tool that runs on a translated model. For example, Jobshop (8.96 s) and TrAHV
(0.097 s) are quicker on Imitator, for which they were initially designed. Conversely,
Imitator does not terminate for Fischeri for all i because of the explicit representation
of the clocks in PTA (constraints of the form x2 ≥ j ∗ε+x1, with j infinitely growing,
are generated), whereas the implicit clocks in PSTCSP prevent this. We did not find a
better way to encode an equivalent PTA model of our Fischer example for PSTCSP.
Other models (Bridge, RCSi ) are too large to be manually translated. An automated
efficient translation mechanism, that could ease such a comparison, is the subject of
future work. Unfortunately, nothing guarantees that encoding complex data structures
from PSTCSP into PTA is practicable. And, in any case, some features specific to
PSTCSP, such as hierarchy and implicit clocks, would be lost by the translation.

6.3.5 Application to scheduling problems

The case studies we considered include protocols (Fischeri ), common puzzles (Bridge)
and train control systems (RCSi , TrAHV). These models naturally fit with process
algebras, as similar case studies have been used in the literature in the setting of (timed
or untimed) process algebras. We also included one scheduling problem (more pre-
cisely a jobshop problem) (Fribourg et al. 2012). PSTCSP can indeed model paramet-
ric schedulability problems, that consists in deciding whether there exists a parameter
valuation for which a given number of tasks can be executed on a set of processors
within a given (constant) time. Recall that schedulability problems can be modeled
(among other formalisms) using timed automata or timed automata extended with
stopwatches (Adbeddaïm and Maler 2002; Adbeddaïm et al. 2006). Stopwatches add
the power of stopping time, which is necessary to handle preemptive jobs, where a
task with a higher priority can (temporarily) stop another one, that will resume once
the higher priority task is completed. PSTCSP cannot express the power of stop-
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ping time, and hence is not able (in general) to model task preemption; however,
PSTCSP can model non-preemptive schedulability problems. Indeed, these problems
can be expressed and solved using parametric timed automata without strict constraints
(see, e.g., Fribourg et al. 2012), that have a smaller expressiveness than PSTCSP (see
Sect. 4.3).

7 Conclusion and future work

7.1 Conclusion

We introduced here Parametric Stateful Timed CSP, an intuitive formalism for reason-
ing parametrically in hierarchical real-time concurrent systems with shared variables
and complex data structures. A simple semi-algorithm reachAll computing the set of
reachable states is not guaranteed to terminate, as we showed that parameter synthe-
sis is undecidable. We then adapted the inverse method IM, which synthesizes a set
of parameters around a reference parameter valuation, guaranteeing the same time
abstract behavior (in term of traces), and providing the system with a measure of
robustness. IM behaves well in practice, and we give a simple sufficient termination
condition. We also introduce an algorithm 3VPsynthesis synthesizing a set of parame-
ter valuations guaranteeing that at least one good state and no bad state is reachable
according to a 3-value property. Our implementation within PSyHCoS leads to effi-
cient parameter synthesis, and handles more than 100,000 reachable symbolic states
in a very reasonable amount of time.

7.2 Future work

Among the theoretical questions is the decidability of the membership problem for
non-regular PSTCSP. This problem is actually not related to parameter synthesis, but
rather to the existence or not of a finite abstraction of the state space of a non-regular
STCSP model; this could be solved using techniques for infinite-state systems.

We wish to improve the state space representation, following the lines of the opti-
mization of Sect. 6.2, and develop further state space reduction techniques, such as
the merging technique developed in André et al. (2013a).

Beyond the algorithms developed in Sect. 5, we are interested in further algorithms
for parameter synthesis. An interesting problem is the existence of (at least) one para-
meter valuation for which at least one unbounded run is guaranteed to occur (and that
we could name “EG-emptiness” problem). Other synthesis algorithms should also be
developed or adapted, for instance following the lines of algorithms for PTA (Knapik
and Penczek 2012; Jovanovic et al. 2013). Furthermore, parametric refinement check-
ing is the subject of future work.

It is also interesting to note that, although IM does not terminate in the general case,
it does for all of our case studies, even when they do not meet the termination criterion
of Proposition 12. As a consequence, it would be of interest to exhibit a syntactical
criterion that ensures termination in PSTCSP.

Improving our implementation PSyHCoS, and in particular implementing Algo-
rithm 3VPsynthesis, is also in our agenda.

123



Real-Time Syst (2014) 50:620–679 673

Finally, although PSTCSP provides the designer with a rather high-level syntax,
an interesting future work will be to define higher-level patterns dedicated to specific
applications such as scheduling. For example, defining a set of patterns modeling
scheduling processes, schedulers with or without preemption, is of interest so as to
allow designers to model a system by just assembling predefined PSTCSP language
blocks, in the line of Khatib et al. (2001) (for models) or André (2013) (for properties).
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Appendix: A firing rules for PSTCSP

Given a program program and a valuation V , the valuation obtained by executing
program with V is denoted as program(V ). Let active(V, P) be the set of enabled
events given P and V , i.e., the set of events that can be fired at the current state (and
which lead to states with satisfiable constraints). We give below all firing rules for
PSTCSP.

(V,Skip, C)
�� (V,Stop, C↑)

(aki)

(V, e→ P, C)
e� (V, P, C↑)

(aev)

(V, a{program} → P, C)
a� (program(V ), P, C↑)

(aac)

V � b

(V,if b then {P} else {Q}, C)
τ� (V, P, C↑)

(co2)

V �� b

(V,if b then {P} else {Q}, C)
τ� (V, Q, C↑)

(co3)

(V, P, C)
e� (V ′, P ′, C ′)

(V, P � Q, C)
e� (V ′, P ′, C ′ ∧ idle(Q))

(aex1)

(V, Q, C)
e� (V ′, Q′, C)

(V, P � Q, C)
e� (V ′, Q′, C ′ ∧ idle(P))

(aex2)
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(V, P, C)
a� (V ′, Q′, C ′)

(V, P \ E, C)
a� (V ′, Q′, C ′)

(ahi1)

(V, P, C)
a� (V ′, Q′, C ′) , active(V, P, C) ∩ E �= ∅ , a /∈ E

(V, P \ E, C)
a� (V ′, Q′, C ′ ∧ C)

(ahi2)

(V, P, C)
a� (V ′, Q′, C ′), active(V, P, C) ∩ E �= ∅ , a ∈ E

(V, P \ E, C)
τ� (V ′, Q′, C ′ ∧ C)

(ahi3)

(V, P, C)
a� (V ′, P ′, C ′) , � /∈ active(V, P, C)

(V, P; Q, C)
a� (V ′, P ′; Q, C ′)

(ase1)

(V, P, C)
�� (V ′, P ′, C ′)

(V, P; Q, C)
τ� (V, Q, C ∧ C ′)

(ase2)

(V, P, C)
a� (V ′, P ′, C ′) , a /∈ E

(V, P �E� Q, C)
a� (V ′, P ′ �E� Q, C ′ ∧ idle(Q))

(apa1)

(V, Q, C)
a� (V ′, Q′, C ′) , a /∈ E

(V, P �E� Q, C)
a� (V ′, P �E� Q′, C ′ ∧ idle(P))

(apa2)

(V, P, C)
e� (V, P ′, C ′) , (V, Q, C)

e� (V, Q′, C ′′) , e ∈ E

(V, P �E� Q, C)
e� (V, P ′ �E� Q′, C ′ ∧ C ′′)

(apa3)

(V, Q, C)
a� (V ′, Q′, C ′) , P

.= Q

(V, P, C)
a� (V ′, Q′, C ′)

(ade)

(V,Wait[u]x , C)
τ� (V,Skip, C↑ ∧ x = u)

(await)

(V, P, C)
τ� (V ′, P ′, C ′)

(V, P timeout[u]x Q, C)
τ� (V ′, P ′ timeout[u]x Q, C ′ ∧ x ≤ u)

(ato1)

(V, P, C)
e� (V ′, P ′, C ′)

(V, P timeout[u]x Q, C)
e� (V ′, P ′, C ′ ∧ x ≤ u)

(ato2)

(V, P timeout[u]x Q, C)
τ� (V, Q, C↑ ∧ x = u ∧ idle(P))

(ato3)
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(V, P, C)
a� (V ′, P ′, C ′)

(V, P interrupt[u]x Q, C)
a� (V ′, P ′ interrupt[u]x Q, C ′ ∧ x ≤ u)

(ait1)

(V, P interrupt[u]x Q, C)
τ� (V, Q, C↑ ∧ x = u ∧ idle(P))

(ait2)

(V, P, C)
τ� (V ′, P ′, C ′)

(V, P within[u]x , C)
τ� (V ′, P ′ within[u]x , C ′ ∧ x ≤ u)

(awi1)

(V, P, C)
e� (V ′, P ′, C ′)

(V, P within[u]x , C)
e� (V ′, P ′, C ′ ∧ x ≤ u)

(awi2)

(V, P, C)
a� (V ′, P ′, C ′) , a �= �

(V, P deadline[u]x , C)
a� (V ′, P ′ deadline[u]x , C ′ ∧ x ≤ u)

(adl1)

(V, P, C)
�� (V ′, P ′, C ′)

(V, P deadline[u]x , C)
�� (V ′, P ′, C ′ ∧ x ≤ u)

(adl2)
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