9,528 research outputs found

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration

    Full text link
    We present an overview of quantum key distribution (QKD), a secure key exchange method based on the quantum laws of physics rather than computational complexity. We also provide an overview of the two most widely used commodity security protocols, IPsec and TLS. Pursuing a key exchange model, we propose how QKD could be integrated into these security applications. For such a QKD integration we propose a support layer that provides a set of common QKD services between the QKD protocol and the security applicationsComment: 12Page

    Clock synchronization by remote detection of correlated photon pairs

    Full text link
    We present an algorithm to detect the time and frequency difference of independent clocks based on observation of time-correlated photon pairs. This enables remote coincidence identification in entanglement-based quantum key distribution schemes without dedicated coincidence hardware, pulsed sources with a timing structure or very stable reference clocks. We discuss the method for typical operating conditions, and show that the requirement in reference clock accuracy can be relaxed by about 5 orders of magnitude in comparison with previous schemes.Comment: 14 pages, 6 figure

    Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    Full text link
    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating secure key while experimentally emulating the varying channel losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21570 bits of secure finite-sized key in just a single upper-quartile pass.Comment: 12 pages, 7 figures, 2 table

    QuNetSim: A Software Framework for Quantum Networks

    Full text link
    As quantum internet technologies develop, the need for simulation software and education for quantum internet rises. QuNetSim aims to fill this need. QuNetSim is a Python software framework that can be used to simulate quantum networks up to the network layer. The goal of QuNetSim is to make it easier to investigate and test quantum networking protocols over various quantum network configurations and parameters. The framework incorporates many known quantum network protocols so that users can quickly build simulations and beginners can easily learn to implement their own quantum networking protocols.Comment: 11 pages, 6 figure
    corecore