291 research outputs found

    Solving Hard Graph Problems with Combinatorial Computing and Optimization

    Get PDF
    Many problems arising in graph theory are difficult by nature, and finding solutions to large or complex instances of them often require the use of computers. As some such problems are NPNP-hard or lie even higher in the polynomial hierarchy, it is unlikely that efficient, exact algorithms will solve them. Therefore, alternative computational methods are used. Combinatorial computing is a branch of mathematics and computer science concerned with these methods, where algorithms are developed to generate and search through combinatorial structures in order to determine certain properties of them. In this thesis, we explore a number of such techniques, in the hopes of solving specific problem instances of interest. Three separate problems are considered, each of which is attacked with different methods of combinatorial computing and optimization. The first, originally proposed by ErdH{o}s and Hajnal in 1967, asks to find the Folkman number Fe(3,3;4)F_e(3,3;4), defined as the smallest order of a K4K_4-free graph that is not the union of two triangle-free graphs. A notoriously difficult problem associated with Ramsey theory, the best known bounds on it prior to this work were 19leqFe(3,3;4)leq94119 leq F_e(3,3;4) leq 941. We improve the upper bound to Fe(3,3;4)leq786F_e(3,3;4) leq 786 using a combination of known methods and the Goemans-Williamson semi-definite programming relaxation of MAX-CUT. The second problem of interest is the Ramsey number R(C4,Km)R(C_4,K_m), which is the smallest nn such that any nn-vertex graph contains a cycle of length four or an independent set of order mm. With the help of combinatorial algorithms, we determine R(C4,K9)=30R(C_4,K_9)=30 and R(C4,K10)=36R(C_4,K_{10})=36 using large-scale computations on the Open Science Grid. Finally, we explore applications of the well-known Lenstra-Lenstra-Lov\u27{a}sz (LLL) algorithm, a polynomial-time algorithm that, when given a basis of a lattice, returns a basis for the same lattice with relatively short vectors. The main result of this work is an application to graph domination, where certain hard instances are solved using this algorithm as a heuristic

    Partitioning 2-edge-colored graphs by monochromatic paths and cycles

    Get PDF
    We present results on partitioning the vertices of 22-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of S\'ark\"ozy: the vertex set of every 22-edge-colored graph can be partitioned into at most 2α(G)2\alpha(G) monochromatic cycles, where α(G)\alpha(G) denotes the independence number of GG. Another direction, emerged recently from a conjecture of Schelp, is to consider colorings of graphs with given minimum degree. We prove that apart from o(V(G))o(|V(G)|) vertices, the vertex set of any 22-edge-colored graph GG with minimum degree at least (1+\eps){3|V(G)|\over 4} can be covered by the vertices of two vertex disjoint monochromatic cycles of distinct colors. Finally, under the assumption that G\overline{G} does not contain a fixed bipartite graph HH, we show that in every 22-edge-coloring of GG, V(G)c(H)|V(G)|-c(H) vertices can be covered by two vertex disjoint paths of different colors, where c(H)c(H) is a constant depending only on HH. In particular, we prove that c(C4)=1c(C_4)=1, which is best possible

    Reducing Graph Transversals via Edge Contractions

    Get PDF
    For a graph parameter ?, the Contraction(?) problem consists in, given a graph G and two positive integers k,d, deciding whether one can contract at most k edges of G to obtain a graph in which ? has dropped by at least d. Galby et al. [ISAAC 2019, MFCS 2019] recently studied the case where ? is the size of a minimum dominating set. We focus on graph parameters defined as the minimum size of a vertex set that hits all the occurrences of graphs in a collection ? according to a fixed containment relation. We prove co-NP-hardness results under some assumptions on the graphs in ?, which in particular imply that Contraction(?) is co-NP-hard even for fixed k = d = 1 when ? is the size of a minimum feedback vertex set or an odd cycle transversal. In sharp contrast, we show that when ? is the size of a minimum vertex cover, the problem is in XP parameterized by d

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Master index of volumes 161–170

    Get PDF
    corecore