5,021 research outputs found

    Comparative evaluation QoS of FTP over LEO and GEO Satellite Networks with diffserv architecture

    Get PDF
    This paper presents studies of the end-to-end QoS of IP over integrated terrestrial and NGSN (next generation satellite network) for file transfer service using FTP. The authors compare between LEO and GEO satellites constellations for the QoS parameters (i.e., delay, jitter, loss rate and throughput) of file transfer between one server in London and a client in Boston. The authors model the file transfer with multiple connections and file size variation according to exponential and Pareto distributions respectively. The authors create the scenario with error model to simulate transmission loss environment using the NS-2 simulation software. A Diffserv (differentiated services) queue interface is placed in the server side to regulate the traffic flows across the narrow bandwidth of the satellite links. The authors compare the empirical TCP throughput traces with analytical model for validation. The results showed the performance evaluation and presented a good comparison of the QoS parameters involved in the data transfer across LEO and GEO satellites systems

    Multiple Objective Co-Optimization of Switched Reluctance Machine Design and Control

    Get PDF
    This dissertation includes a review of various motor types, a motivation for selecting the switched reluctance motor (SRM) as a focus of this work, a review of SRM design and control optimization methods in literature, a proposed co-optimization approach, and empirical evaluations to validate the models and proposed co-optimization methods. The switched reluctance motor (SRM) was chosen as a focus of research based on its low cost, easy manufacturability, moderate performance and efficiency, and its potential for improvement through advanced design and control optimization. After a review of SRM design and control optimization methods in the literature, it was found that co-optimization of both SRM design and controls is not common, and key areas for improvement in methods for optimizing SRM design and control were identified. Among many things, this includes the need for computationally efficient transient models with the accuracy of FEA simulations and the need for co-optimization of both machine geometry and control methods throughout the entire operation range with multiple objectives such as torque ripple, efficiency, etc. A modeling and optimization framework with multiple stages is proposed that includes robust transient simulators that use mappings from FEA in order to optimize SRM geometry, windings, and control conditions throughout the entire operation region with multiple objectives. These unique methods include the use of particle swarm optimization to determine current profiles for low to moderate speeds and other optimization methods to determine optimal control conditions throughout the entire operation range with consideration of various characteristics and boundary conditions such as voltage and current constraints. This multi-stage optimization process includes down-selections in two previous stages based on performance and operational characteristics at zero and maximum speed. Co-optimization of SRM design and control conditions is demonstrated as a final design is selected based on a fitness function evaluating various operational characteristics including torque ripple and efficiency throughout the torque-speed operation range. The final design was scaled, fabricated, and tested to demonstrate the viability of the proposed framework and co-optimization method. Accuracy of the models was confirmed by comparing simulated and empirical results. Test results from operation at various torques and speeds demonstrates the effectiveness of the optimization approach throughout the entire operating range. Furthermore, test results confirm the feasibility of the proposed torque ripple minimization and efficiency maximization control schemes. A key benefit of the overall proposed approach is that a wide range of machine design parameters and control conditions can be swept, and based on the needs of an application, the designer can select the appropriate geometry, winding, and control approach based on various performance functions that consider torque ripple, efficiency, and other metrics

    Optimisation de la Conception du Moteur Synchrone à Excitation Hybride pour Véhicules Électriques à Haut Performance

    Get PDF
    Since 1970, the ever-growing concerns of human community for the life-threatening environmental changes have pushed the policy makers to decarbonize those sectors with high energy demands, including the transportation industry. Optimal designs of Electric Vehicles (EVs) can contribute to today’s exigent car market, and take the leading role for future sustainable transportation of human and goods. At the heart of electromechanical energy conversion lays the electrical machines, which have attracted lots of interests and efforts for efficiency increase and cost reduction. In this thesis, a methodology is proposed and implemented to design and optimize the cost and efficiency of a Hybrid Excitation Synchronous Machine (HESM) for a given vehicle and a desired driving cycle. Hybridization in the excitation system can combine the favorable qualities of high-torque at low-speed with superior overloading capability, exceptional flux weakening and extended Constant Power Speed Range (CPSR), high efficiency, and flexible controllability in motoring and generation modes. With HESM technology, we can also shift from the rare-earth magnets towards the cheap ferrite magnets and guaranty the supply for motor industry. The designed HESM in this work responds to three requirements of the vehicle, namely, the maximum cruising speed, acceleration time, and gradeability, with the least or null overdesign in the drivetrain. At the same time, it will have the maximum global efficiency over the driving cycle, and the minimum cost for the material. The optimization is conducted at either of the component and system levels. The optimization at component-level is developed based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). A new formulation for the objective functions is proposed, which deals with the design optimization and cost minimization, simultaneously. To maximize the efficiency, a system-level search is conducted to find the optimum HESM with the highest global efficiency over a given driving cycle. Due to the 3D direction of magnetic flux in the selected HESM topology, the Finite Element Analysis (FEA) was very time- and process-consuming. To be able to evaluate the objective functions during the optimization, a new model has been developed based on a 3D Magnetic Equivalent Circuit (MEC) network. This model predicts well the non-linearity of magnetic materials, as compared with the FEA simulations. At last, the final optimized HESM is evaluated by the virtue of FEA technique.Depuis 1970, les préoccupations de l’humanité envers les changements climatiques ont poussé les chercheurs à faire des études approfondies pour optimiser les machines électriques pour avoir des véhicules électriques plus performants et moins énergivores. La conception optimale de véhicules électriques (EV) peut contribuer pour un marché automobile plus exigeant et jouer un rôle principal pour le futur du transport durable des biens et des personnes. Les machines électriques se trouvent au cœur de la conversion d'énergie électromécanique, qui ont suscité beaucoup d'intérêts et d’efforts pour augmenter leur rendement et réduire leur coût. Cette thèse propose une méthodologie et une mise en œuvre pour minimiser le coût et maximiser l’efficacité d’une machine synchrone à excitation hybride (HESM) pour un véhicule donné et un cycle de conduite sélectionné. L'hybridation du système d’excitation peut combiner les qualités favorables comme un couple élevé à basse vitesse avec une capacité de surcharge supérieure, un défluxage exceptionnelle et une plage de vitesse prolongée de puissance constante (CPSR), une efficacité élevée et une contrôlabilité flexible dans les modes de traction et de freinage régénératif. Avec la technologie HESM, nous pouvons également passer des aimants de terres rares aux aimants en ferrite bon marché, et garantir l’approvisionnement pour l’industrie automobile. Le HESM conçu dans ce travail répond à trois exigences du véhicule : la vitesse de croisière maximale, le temps d’accélération et la capacité de monter une pente, avec un surdimensionnement minimal ou nulle de la chaîne de traction. Une optimisation multiniveau avec une interaction entre la vision composant et la vision système est proposée et validée. L’optimisation au niveau du composant est développée sur la base de l’algorithme génétique de tri non dominé (NSGA-II). Une nouvelle formulation pour les fonctions objectives est proposée pour l’optimisation simultanée de la conception de la machine et de la minimisation de son coût. Après avoir optimisés onze HESM au niveau du composant, pour maximiser l’efficacité, une optimisation au niveau du système est réalisée pour trouver le HESM optimal avec le plus haut rendement global sur le cycle de conduite donné. Une validation de la conception finale de la HESM présente un meilleur rendement global sur le cycle de conduite de 18,65% en relation à une machine synchrone à excitation séparée équivalente et 15,8% en relation à une à aiment permanent. En raison de la direction 3D du flux magnétique dans la topologie HESM sélectionnée, l’analyse par éléments finis (FEA) prenait beaucoup de temps et de ressources computationnelles. Afin d’évaluer les fonctions objectives lors de l’optimisation, un nouveau modèle a été développé basé sur un réseau de circuits magnétiques équivalents 3D (MEC). Ce modèle prédit bien la non-linéarité des matériaux magnétiques, par rapport aux simulations FEA. Enfin, le HESM optimisé final est évalué grâce à la technique FEA

    Simulation analysis of ultrasonic testing in steel-based butt weld joint

    Get PDF
    Within this study, a simulation analysis based on Ultrasonic Testing (UT) is made using Comsol Multiphysics. Comsol Multiphysics is a software that can simplify many aspects of building UT method and also can be used to obtain a fast understanding of the results of altering the fundamental parameters. The software program has useful features which can help in technique development especially for UT inspectors in Non- destructive Testing (NDT) field. The focus of this study is to conduct a simulation analysis of internal weld defects by developing the model of defects in a weld structure sample configured using the software. The model is developed based on actual parameters and characterization of weld structure sample and internal weld defects. The results of analysis show that each type of defects which are incomplete penetration, slag inclusion and lack of fusion have different signal pattern and signal amplitude which are depended on the characterizations of those defects themselves

    Design of segmental rotor and non-overlap windings in single-phase fefsm for low torque high speed applications

    Get PDF
    In this research, a new structure of single-phase field excitation flux switching motor (FEFSM) using segmental rotor structure and non-overlap windings arrangement is proposed in order to overcome the drawbacks of low torque and small power performances due to their longer flux path in the single-phase FEFSM using salient rotor structure and overlap windings arrangement. The objectives of this study are to design, analyse and examine performance of the proposed motor, to optimize the proposed motor for optimal performances, and to develop the proposed motor prototype for experimental performance validation. The design and analyses thru 2Dfinite element analysis (FEA) is conducted using JMAG Designer version 15, while deterministic optimization method is applied in design optimization process. To validate the 2D-FEA results, the motor prototype is developed and tested experimentally. Based on various rotor poles analysis, a combination of 12 pole 6 pole (12S-6P) has been selected as the best design due to their highest torque and power capability of 0.91 Nm and 277.4 W, respectively. Besides, the unbalance armature magnetic flux of the proposed FEFSM using segmental rotor has been resolved by using segmental rotor span refinement. The balanced armature magnetic flux amplitude ratio obtained is 1.002, almost 41.2% reduction from the initial design. In addition, the optimized motor has increased maximum torque and power by 80.25% to 1.65 Nm, and 43.6% to 398.6W, respectively. Moreover, copper loss of the optimized design has decreased by 9.7%%, hence increasing the motor efficiency of 25.3%. Finally, the measured results obtained from the prototype machine has reasonable agreement with FEA results, proving their prospect to be applied for industrial and home appliances

    Design and Control of Electrically Excited Synchronous Machines for Vehicle Applications

    Get PDF
    Electrically excited synchronous machines (EESMs) are becoming an alternative to permanent magnet synchronous machines (PMSMs) in electric vehicles (EVs). This mainly attributes to the zero usage of rare-earth materials, as well as the ability to achieve high starting torque, the effectiveness to do field weakening and the flexibility to adjust power factor provided by EESMs. Furthermore, in case of converter failure at high speed, safety can be improved by shutting down the field current in EESMs. The purpose of this study is to investigate the potential application of EESMs in EVs. To achieve this aim, several topics are covered in this study. These topics are studied to confront the challenges before EESMs could become prevalent and to maximumly use the advantages of EESMs for EV applications. In control strategies, the challenge is to properly adjust the combination of stator and field currents so that high power factor and minimum copper losses can be achieved. To tackle this, control strategies are proposed so that reactive power consumption and total copper losses are minimized. With the proposed strategies, the output power is maximized along the torque-speed envelope and high efficiency in field-weakening is achieved. In dynamic current control, due to the magnetic couplings between field winding and stator winding, a current rise in one winding would induce an electromagnetic force (EMF) in the other. This introduces disturbances in dynamic current control. In this study, a current control algorithm is proposed to cancel the induced EMF and the disturbances are mitigated. In machine design, high starting torque and effective field weakening are expected to be achieved in the same EESM design. To realize this, some criteria need to be satisfied. These criteria are derived and integrated into the design procedure including multi-objective optimizations. A 48\ua0V EESM is prototyped during the study. In experimental verification, a torque density of 10 N\ub7m/L is achieved including cooling jacket. In field excitation, a contactless excitation technology is adopted, which leads to inaccessibility of the field winding. To realize precise control of field current in a closed loop, an estimation method of field current is proposed. Based on the estimation, closed-loop field current control is established. The field current reference is tracked within an error of 2% in experimental verifications. The cost of an EESM drive increases because of the additional converter used for field excitation. A technique is proposed in which the switching harmonics are extracted for field excitation. With this technique, both stator and field windings can be powered using only one inverter. From all the challenges tackled in this study, it can be concluded that the application of EESMs in EVs is feasible

    Overview of Sensitivity Analysis Methods Capabilities for Traction AC Machines in Electrified Vehicles

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.A robust design in electrified powertrains substantially helps to enhance the vehicle's overall efficiency. Robustness analyses come with complexity and computational costs at the vehicle level. The use of sensitivity analysis (SA) methods in the design phase has gained popularity in recent years to improve the performance of road vehicles while optimizing the resources, reducing the costs, and shortening the development time. Designers have started to utilize the SA methods to explore: i) how the component and vehicle level design options affect the main outputs i.e. energy efficiency and energy consumption; ii) observing sub-dependent parameters, which might be influenced by the variation of the targeted controllable (i.e. magnet thickness) and uncontrollable (i.e. magnet temperature) variables, in nonlinear dynamic systems; and iii) evaluating the interactions, of both dependent, and sub-dependent controllable/uncontrollable variables, under transient conditions. Hence the aim of this study is to succinctly review recent utilization of SA methods in the design of AC electric machines (EM)s used in vehicle powertrains, to evaluate and discuss the findings presented in recent research papers while summarizing the current state of knowledge. By systematically reviewing the literature on applied SAs in electrified powertrains, we offer a bibliometric analysis of the trends of application-oriented SA studies in the last and next decades. Finally, a numerical-based case study on a third-generation TOYOTA Prius EM will be given, to verify the SA-related findings of this article, alongside future works recommendations.Peer reviewe

    Advanced Power Loss Modeling and Model-Based Control of Three-Phase Induction Motor Drive Systems

    Get PDF
    Three-phase induction motor (IM) drive systems are the most important workhorses of many industries worldwide. This dissertation addresses improved modeling of three-phase IM drives and model-based control algorithms for the purpose of designing better IM drive systems. Enhancements of efficiency, availability, as well as performance of IMs, such as maximum torque-per-ampere capability, power density, and torque rating, are of major interest. An advanced power loss model of three-phase IM drives is proposed and comprehensively validated at different speed, load torque, flux and input voltage conditions. This model includes a core-loss model of three-phase IMs, a model of machine mechanical and stray losses, and a model of power electronic losses in inverters. The drive loss model shows more than 90% accuracy and is used to design system-level loss minimization control of a motor drive system, which is integrated with the conventional volts-per-hertz control and indirect field-oriented control as case studies. The designed loss minimization control leads to more than 13% loss reduction than using rated flux for the testing motor drive under certain conditions. The proposed core-loss model is also used to design an improved model-based maximum torque-per-ampere control of IMs by considering core losses. Significant increase of torque-per-ampere capability could be possible for high-speed IMs. A simple model-based time-domain fault diagnosis method of four major IM faults is provided; it is nonintrusive, fast, and has excellent fault sensitivity and robustness to noise and harmonics. A fault-tolerant control scheme for sensor failures in closed-loop IM drives is also studied, where a multi-controller drive is proposed and uses different controllers with minimum hand-off transients when switching between controllers. A finite element analysis model of medium-voltage IMs is explored, where electromagnetic and thermal analyses are co-simulated. The torque rating and power density of the simulated machine could be increased by 14% with proper change of stator winding insulation material. The outcome of this dissertation is an advanced three-phase IM drive that is enhanced using model-based loss minimization control, fault detection and diagnosis of machine faults, fault-tolerant control under sensor failures, and performance-enhancement suggestions

    Design Simulation and Experiments on Electrical Machines for Integrated Starter-Generator Applications

    Get PDF
    This thesis presents two different non-permanent magnet machine designs for belt-driven integrated starter-generator (B-ISG) applications. The goal of this project is to improve the machine performance over a benchmark classical switched reluctance machine (SRM) in terms of efficiency, control complexity, torque ripple level and power factor. The cost penalty due to the necessity of a specially designed H-bridge machine inverter is also taken into consideration by implementation of a conventional AC inverter. The first design changes the classical SRM winding configuration to utilise both self-inductance and mutual-inductance in torque production. This allows the use of AC sinusoidal current with lower cost and comparable or even increased torque density. Torque density can be further increased by using a bipolar square current drive with optimum conduction angle. A reduction in control difficulty is also achieved by adoption of standard AC machine control theory. Despite these merits, the inherently low power factor and poor field weakening capability makes these machines unfavourable in B-ISG applications. The second design is a wound rotor synchronous machine (WRSM). From FE analysis, a six pole geometry presents a lower loss level over four pole geometry. Torque ripple and iron loss are effectively reduced by the use of an eccentric rotor pole. To determine the minimum copper loss criteria, a novel algorithm is proposed over the conventional Lagrange method, where the deviation is lowered from ± 10% to ± 1%, and the simulation time is reduced from hours to minutes on standard desktop PC hardware. With the proposed design and control strategies, the WRSM delivers a comparable field weakening capability and a higher efficiency compared with the benchmark SRM under the New European Driving Cycle, where a reduction in machine losses of 40% is possible. Nevertheless, the wound rotor structure brings mechanical and thermal challenges. A speed limit of 11,000 rpm is imposed by centrifugal forces. A maximum continuous motoring power of 3.8 kW is imposed by rotor coil temperature performance, which is extended to 5 kW by a proposed temperature balancing method. A prototype machine is then constructed, where the minimum copper loss criteria is experimentally validated. A discrepancy of no more than 10% is shown in back-EMF, phase voltage, average torque and loss from FE simulation

    Traction axial flux motor-generator for hybrid electric bus application

    Get PDF
    Tato dizertační práce se zabývá návrhem původního motor-generátoru s axiálním tokem a buzením permanetními magnety, zkonstruovaným specificky pro hybridní elektrický autobus. Návrhové zadání pro tento stroj přineslo požadavky, které vedly k této unikátní topologii tak, aby byl dosažen výkon, účinnost a rozměry stroje. Tato partikulární topologie motor-generátoru s axiálním tokem je výsledkem literární rešerše, kterou následoval výběr koncepce stroje s představeným návrhem jako výsledkem těchto procesů. Přístup k návrhu stroje s axiálním tokem sledoval „multi-fyzikální“ koncepci, která pracuje s návrhem elektromagnetickým, tepelným, mechanickým, včetně návrhu řízení, v jedné iteraci. Tím je v konečném návrhu zajištěna rovnováha mezi těmito inženýrskými disciplínami. Pro samotný návrh stroje byla vyvinuta sada výpočtových a analytických nástrojů, které byly podloženy metodou konečných prvků tak, aby samotný návrh stroje byl přesnější a spolehlivější. Modelování somtného elektrického stroje a celého pohonu poskytlo představu o výkonnosti a účinnosti celého subsytému v rozmanitých operačních podmínkách. Rovněž poukázal na optimizační potenciál pro návrh řízení subsystému ve smyslu maximalizace účinnosti celého pohonu. Bylo postaveno několik prototypů tohoto stroje, které prošly intensivním testováním jak na úrovni sybsytému, tak systému. Samotné výsledky testů jsou diskutovány a porovnány s analytickými výpočty parametrů stroje. Poznatky získané z prvního prototypu stroje pak sloužily k představení možností, jak zjednodušit výrobu a montáž stroje v příští generaci. Tato práce zaznamenává jednotlivé kroky během všech fází vývoje elektrického stroje s axiálním tokem, počínaje výběrem konceptu stroje, konče sumarizací zkušeností získaných z první generace prototypu tohoto stroje.This thesis deals with a design of a novel Axial-Flux Permanent Magnet Motor-Generator for a hybrid electric bus application. Thus, the design specification represents a set of requirements, which leads toward a concept of a unique topology meeting performance, efficiency and dimensional targets. The particular topology of the Axial-Flux Permanent Magnet Motor-Generator discussed in this work is an outcome of deep literature survey, followed by the concept selection stage with the layout of the machine as an outcome of this processes. The design approach behind this so-called Spoke Axial-Flux Machine follows an idea of multiphysics iterations, including electromagnetic, thermal, mechanical and controls design. Such a process behind the eventually proposed design ensured a right balance in between all of these engineering disciplines. A set of bespoke design and analysis tools was developed for that reason, and was backed up by extensive use of Finite-Element Analysis and Computational Fluid Dynamics. Therefore, the actual machine design gained higher level of confidence and fidelity. Modelling of the machine and its drive provided understanding of performance and efficiency of the whole subsystem at various operational conditions. Moreover, it has illustrated an optimization potential for the controls design, so that efficiency of the machine and power electronics might be maximized. Several prototypes of this machine have been built and passed through extensive testing both on the subsystem and system level. Actual test results are discussed, and compared to analytical predictions in terms of the machine's parameters. As a lesson learned from the first prototype of this machine, a set of redesign proposals aiming for simplification of manufacturing and assembly processes, are introduced. This work records steps behind all phases of development of the Axial Flux Machine from a basic idea as an outcome of concept selection stage, up to testing and wrap-up of experience gained from the first generation of the machine.
    corecore