976 research outputs found

    Parameter Settings for Reconstructing Binary Matrices from Fan-Beam Projections

    Get PDF
    The problem of reconstruction of binary matrices from their fan-beam projections is studied. A fan-beam projection model is implemented and used in systematic experiments in order to determine the optimal parameter values for data acquisition and reconstruction algorithm. The fan-beam model, the reconstruction algorithm, the simulation experiments, and the results are discussed in the paper

    Reconstruction of binary matrices from fan-beam projections

    Get PDF
    The problem of the reconstruction of binary matrices from their fan-beam projections is investigated here. A fan-beam projection model is implemented and afterwards employed in systematic experiments to determine the optimal parameter values for a data acquisition and reconstruction algorithm. The fan-beam model, the reconstruction algorithm which uses the optimization method of Simulated Annealing, the simulation experiments, and the results are then discussed in turn

    A diszkrét tomográfia új irányzatai és alkalmazása a neutron radiográfiában = New directions in discrete tomography and its application in neutron radiography

    Get PDF
    A projekt során alapvetően a diszkrét tomográfia alábbi területein végeztük eredményes kutatásokat: rekonstrukcó legyezőnyaláb-vetületekből; geometriai tulajdonságokon alapuló rekonsrukciós és egyértelműségi eredmények kiterjeszthetőségének vizsgálata; újfajta geometriai jellemzők bevezetése; egzisztenica, unicitás és rekonstrukció vizsgálata abszorpciós vetületek esetén; 2D és 3D rekonstrukciós algoritmusok fejlesztése neutron tomográfiás alkalmazásokhoz; bináris rekonstrukciós algoritmusok tesztelése, benchmark halmazok és kiértékelések; a rekonstruálandó kép geometriai és egyéb strukturális információinak kinyerése közvetlenül a vetületekből. A kidolgozott eljárásaink egy részét az általunk fejlesztett DIRECT elnevezésű diszkrét tomográfiai keretrendszerben implementáltuk, így lehetőség nyílt az ismertetett eljárások tesztelésére és a különböző megközelítések hatékonyságának összevetésére is. Kutatási eredményeinket több, mint 40 nemzetközi tudományos közleményben jelentettük meg, a projekt futamideje alatt két résztvevő kutató is doktori fokozatot szerzett a kutatási témából. A projekt során több olyan kutatási irányvonalat fedtünk fel, ahol elképzeléseink szerint további jelentős elméleti eredményeket lehet elérni, és ezzel egyidőben a gyakorlat számára is új jellegű és hatékonyabb diszkrét képalkotó eljárások tervezhetők és kivitelezhetők. | In the project entitled ""New Directions in Discrete Tomography and Its Applications in Neutron Radiography"" we did successful research mainly on the following topics on Discrete Tomography (DT): reconstruction from fan-beam projections; extension of uniqueness and reconstruction results of DT based on geometrical priors, introduction of new geometrical properties to facilitate the reconstruction; uniqueness and reconstruction in case of absorbed projections; 2D and 3D reconstruction algorithms for applications in neutron tomography; testing binary reconstruction algorithms, developing benchmark sets and evaluations; exploiting structural features of images from their projections. As a part of the project we implemented some of our reconstruction methods in the DIRECT framework (also developed at our department), thus making it possible to test and compare our algorithms. We published more than 40 articles in international conference proceedings and journals. Two of our project members obtained PhD degree during the period of the project (mostly based on their contributions to the work). We also discovered several research areas where further work can yield important theoretical results as well as more effective discrete reconstruction methods for the applications

    Network Flow Algorithms for Discrete Tomography

    Get PDF
    Tomography is a powerful technique to obtain images of the interior of an object in a nondestructive way. First, a series of projection images (e.g., X-ray images) is acquired and subsequently a reconstruction of the interior is computed from the available project data. The algorithms that are used to compute such reconstructions are known as tomographic reconstruction algorithms. Discrete tomography is concerned with the tomographic reconstruction of images that are known to contain only a few different gray levels. By using this knowledge in the reconstruction algorithm it is often possible to reduce the number of projections required to compute an accurate reconstruction, compared to algorithms that do not use prior knowledge. This thesis deals with new reconstruction algorithms for discrete tomography. In particular, the first five chapters are about reconstruction algorithms based on network flow methods. These algorithms make use of an elegant correspondence between certain types of tomography problems and network flow problems from the field of Operations Research. Chapter 6 deals with a problem that occurs in the application of discrete tomography to the reconstruction of nanocrystals from projections obtained by electron microscopy.The research for this thesis has been financially supported by the Netherlands Organisation for Scientific Research (NWO), project 613.000.112.UBL - phd migration 201

    Entanglement and Coherence in Classical and Quantum Optics

    Get PDF
    We explore the concepts of coherence and entanglement as they apply to both the classical and quantum natures of light. In the classical domain, we take inspiration from the tools and concepts developed in foundational quantum mechanics and quantum information science to gain a better understanding of classical coherence theory of light with multiple degrees of freedom (DoFs). First, we use polarization and spatial parity DoFs to demonstrate the notion of classical entanglement, and show that Bell\u27s measure can serve as a useful tool in distinguishing between classical optical coherence theory. Second, we establish a methodical yet versatile approach called \u27optical coherency matrix tomography\u27 for reconstructing the coherency matrix of an electromagnetic beam with multiple DoFs. This technique exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Third, we report the first experimental measurements of the 4 x 4 coherency matrix associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young\u27s double slit to spatial parity and orbital angular momentum modes. In the quantum domain, we use the modal structure of classical fields to develop qubits and structure Hilbert spaces for use in quantum information processing. Advancing to three-qubit logic gates is an important step towards the success of optical schemes for quantum computing. We experimentally implement a variety of two- and three- qubit, linear and deterministic, single-photon, controlled, quantum logic gates using polarization and spatial parity qubits. Lastly, we demonstrate the implementation of two-qubit single-photon logic using polarization and orbital angular momentum qubits

    Acta Cybernetica : Volume 17. Number 2.

    Get PDF

    Multivalued Discrete Tomography Using Dynamical System That Describes Competition

    Get PDF
    Multivalued discrete tomography involves reconstructing images composed of three or more gray levels from projections. We propose a method based on the continuous-time optimization approach with a nonlinear dynamical system that effectively utilizes competition dynamics to solve the problem of multivalued discrete tomography. We perform theoretical analysis to understand how the system obtains the desired multivalued reconstructed image. Numerical experiments illustrate that the proposed method also works well when the number of pixels is comparatively high even if the exact labels are unknown

    Error bounds for discrete tomography

    Get PDF
    Discrete tomography deals with the problem of reconstructing a an image, with a few number of different grey values, from its projections. In particular, there is a focus on highly underdetermined reconstruction problems for which many solutions may exist. In such cases, it is important to have a quality measure for the reconstruction with respect to the unknown original image. In this thesis, we derive a series of computable upper bounds that can be used to guarantee the quality of a reconstructed binary image. This technique can be used with arbitrary projection model, number of projections and direction. This technique is also valid for bounding the error on higher resolution binary reconstructions from low resolution scans. When studying the problem of generating error bounds for binary tomography, we obtained a sufficient condition for the existence of binary solutions for the reconstruction problem. This condition allowed us to create a feature detection technique which is independent of a particular recontruction. We also developed and experimented a discrete reconstruction algorithm which guarantees that the projections of the reconstructed discrete image are close to the given set of projections.Erasmus Mundus Programme and Leiden UniversityUBL - phd migration 201

    Latest developments in the improvement and quantification of high resolution X-ray tomography data

    Get PDF
    X-ray Computed Tomography (CT) is a powerful tool to visualize the internal structure of objects. Although X-ray CT is often used for medical purposes, it has many applications in the academic and industrial world. X-ray CT is a non destructive tool which provides the possibility to obtain a three dimensional (3D) representation of the investigated object. The currently available high resolution systems can achieve resolutions of less than one micrometer which makes it a valuable technique for various scientific and industrial applications. At the Centre for X-ray Tomography of the Ghent University (UGCT) research is performed on the improvement and application of high resolution X-ray CT (µCT). Important aspects of this research are the development of state of the art high resolution CT scanners and the development of software for controlling the scanners, reconstruction software and analysis software. UGCT works closely together with researchers from various research fields and each of them have their specific requirements. To obtain the best possible results in any particular case, the scanners are developed in a modular way, which allows for optimizations, modifications and improvements during use. Another way of improving the image quality lies in optimization of the reconstruction software, which is why the software package Octopus was developed in house. Once a scanned volume is reconstructed, an important challenge lies in the interpretation of the obtained data. For this interpretation visualization alone is often insufficient and quantitative information is needed. As researchers from different fields have different needs with respect to quantification of their data, UGCT developed the 3D software analysis package Morpho+ for analysing all kinds of samples. The research presented in this work focuses on improving the accuracy and extending the amount of the quantitative information which can be extracted from µCT data. Even if a perfect analysis algorithm would exist, it would be impossible to accurately quantify data of which the image quality is insufficient. As image quality can significantly be improved with the aid of adequate reconstruction techniques, the research presented in this work focuses on analysis as well as reconstruction software. As the datasets obtained with µCT at UGCT are of substantial size, the possibility to process large datasets in a limited amount of time is crucial in the development of new algorithms. The contributions of the author can be subdivided in three major aspects of the processing of CT data: The modification of iterative reconstruction algorithms, the extension and optimization of 3D analysis algorithms and the development of a new algorithm for discrete tomography. These topics are discussed in more detail below. A main aspect in the improvement of image quality is the reduction of artefacts which often occur in µCT such as noise-, cone beam- and beam hardening artefacts. Cone beam artefacts are a result of the cone beam geometry which is often used in laboratory based µCT and beam hardening is a consequence of the polychromaticity of the beam. Although analytical reconstruction algorithms based on filtered back projection are still most commonly used for the reconstruction of µCT datasets, there is another approach which is becoming a valuable alternative: iterative reconstruction algorithms. Iterative algorithms are inherently better at coping with the previously mentioned artefacts. Additionally iterative algorithms can improve image quality in case the number of available projections or the angular range is limited. In chapter 3 the possibility to modify these algorithms to further improve image quality is investigated. It is illustrated that streak artefacts which can occur when metals are present in a sample can be significantly reduced by modifying the reconstruction algorithm. Additionally, it is demonstrated that the incorporation of an initial solution (if available) allows reducing the required number of projections for a second slightly modified sample. To reduce beam hardening artefacts, the physics of the process is modelled and incorporated in the iterative reconstruction algorithm, which results in an easy to use and efficient algorithm for the reduction of beam hardening artefacts and requires no prior knowledge about the sample. In chapter 4 the 3D analysis process is described. In the scope of this work, algorithms of the 3D-analysis software package Morpho+ were optimized and new methods were added to the program, focusing on quantifying connectivity and shape of the phases and elements in the sample, as well as obtaining accurate segmentation, which is essential step in the analysis process is the segmentation of the reconstructed sample. Evidently, the different phases in the sample need to be separated from one another. However, often a second segmentation step is needed in order to separate the different elements present in a volume, such as pores in a pore network, or to separate elements which are physically separated but appear to be connected on the reconstructed images to limited resolution and/or limited contrast of the scan. The latter effect often occurs in the process of identifying different grains in a geological sample. Algorithms which are available for this second segmentation step often result in over-segmentation, i.e. elements are not only separated from one another but also separations inside a single element occur. To overcome this effect an algorithm is presented to semi-automically rejoin the separated parts of a single element. Additionally, Morpho+ was extended with tools to extract information about the connectivity of a sample, which is difficult to quantify but important for samples from various research fields. The connectivity can be described with the aid of the calculation of the Euler Number and tortuosity. Moreover, the number of neighbouring objects of each object can be determined and the connections between objects can be quantified. It is now also possible to extract a skeleton, which describes the basic structure of the volume. A calculation of several shape parameters was added to the program as well, resulting in the possibility to visualize the different objects on a disc-rod diagram. The many possibilities to characterize reconstructed samples with the aid of Morpho+ are illustrated on several applications. As mentioned in the previous section, an important aspect for correctly quantifying µCT data is the correct segmentation of the different phases present in the sample. Often it is the case that a sample consists of only one or a limited number of materials (and surrounding air). In this case this prior knowledge about the sample can be incorporated in the reconstruction algorithm. These kind of algorithms are referred to as discrete reconstruction algorithms, which are used when only a limited number of projections is available. Chapter 5 deals with discrete reconstruction algorithms. One of these algorithms is the Discrete Algebraic Reconstruction Technique, which combines iterative with discrete reconstruction and has shown excellent results. DART requires knowledge about the attenuation coefficient(s) and segmentation threshold(s) of the material(s). For µCT applications (resulting in large datasets) reconstruction times can significantly increase when DART is used in comparison with standard iterative reconstruction, as DART requires more iterations. This complicates the practical applicability of DART for routine applications at UGCT. Therefore a modified algorithm (based on the DART algorithm) for reconstruction of samples consisting out of only one material and surrounding air was developed in the scope of this work, which is referred to as the Experimental Discrete Algebraic Reconstruction Technique (EDART). The goal of this algorithm is to obtain better reconstruction results in comparison with standard iterative reconstruction algorithms, without significantly increasing reconstruction time. Moreover, a fast and intuitive technique to estimate the attenuation coefficient and threshold was developed as a part of the EDART algorithm. In chapter 5 it is illustrated that EDART provides improved image quality for both phantom and real data, in comparison with standard iterative reconstruction algorithms, when only a limited number of projections is available. The algorithms presented in this work can be subsequently applied but can also be combined with one another. It is for example illustrated in chapter 5 that the beam hardening correction method can also be incorporated in the EDART algorithm. The combination of the introduced methods allows for an improvement in the process of extracting accurate quantitative information from µCT data
    • …
    corecore