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Multivalued discrete tomography involves reconstructing images composed of three or more gray levels from projections. We
propose a method based on the continuous-time optimization approach with a nonlinear dynamical system that effectively utilizes
competition dynamics to solve the problem of multivalued discrete tomography. We perform theoretical analysis to understand
how the system obtains the desired multivalued reconstructed image. Numerical experiments illustrate that the proposed method

also works well when the number of pixels is comparatively high even if the exact labels are unknown.

1. Introduction

Multivalued (or nonbinary) discrete tomography involves the
reconstruction of images composed of three or more gray lev-
els from projections. Compared with computed tomography;,
it is possible to reduce the number of projections by using
prior knowledge about a set of gray levels. This is important
for medical use as it is the basis for identifying characteristic
regions in tomographic images [1, 2]. Conventional methods
for discrete tomography include the iterative reconstruction
method involving an iterative algorithm and image segmen-
tation [3], an optimization algorithm based on minimizing
an energy function to discretize multiple intensity values
[4], and various other methods [5-8]. In this paper, we
propose a dynamical method based on the continuous-time
optimization approach with nonlinear differential equations
[9-13] that are capable of obtaining a desired tomographic
image through convergence to a limit set of the differential
equations. Our method utilizes the competition dynamics of
generalized Lotka-Volterra systems [14] to solve the problem
of multivalued discrete tomography. A nonlinear term that
conducts the competitive behavior of a solution is incorpo-
rated into differential equations to ensure that the solution

orbit starting from an appropriate initial value converges
satisfactorily to the desired solution.

We propose two differential equations to represent an
autonomous system and a nonautonomous system that have
similar structures. For the autonomous system, it has been
proven theoretically that the stable equilibria corresponding
to the ideal solution and the undesired solution coexist
and that a saddle-type equilibrium exists that plays an
important role in the behavior of the solutions. We investigate
the mechanism behind this behavior through a numerical
example. The results of numerical experiments show that the
proposed method works well even if the number of pixels
is comparatively high. Further numerical experiments show
that the nonautonomous system can be applied in cases in
which the exact label set is not given.

2. Problem Description

Let R, be a set of positive real numbers, with projection y €
R! and projection operator A € R/ both given in advance.
Define a set £ = {g;, g,,..., g} of labels g; € (0,1], j =
1,2,...,L, that are the gray values [15]. Assume that

0<g,<gp << 4gp. 1
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Define also a vector g = (g;,s-..,g;) and the corre-

sponding matrix
G=Uyeg' €[0,1]", (2)

where U; is a J x J identity matrix, T indicates the transpose
of a vector or matrix, and ® is the Kronecker product. A pixel
vector ¢ = (¢, G-, ¢) > ¢; € [0,1], is given by

¢ = Gx. (3)

With the above preliminaries, the discrete tomography
described in this paper involves solving the following equa-

tion for unknown vector x € [0, 1]~
y = AGx. (4)

Note that Gx represents the gray values in a reconstructed
image. Ideally, each element of x should be a binary number,
but, here, we assume it is a real number in the interval [0, 1]
to accommodate cases in which g; is given incorrectly or the
inverse problem is well posed.

If the problem is consistent, a true solution of (4) is
denoted as e € {0, 1}F. Then, the matrix elements are given
as

dip=ej e j=12..0.), €=12..,L (5

that is,
d11 d12 dlL
d21 dzz d2L
D= | erR™, (6)
dfl d}z d]L
where
L
Ydj=1 7)
£=1

for any jth row. However, if the corresponding pixel is in the
background of an image, we have

L
Ydj=0. (8)
=1

To solve (4), we utilize a dynamical system approach; that
is, we rewrite the problem as an initial value problem of a
differential equation:

dx
- =X (UL -X)((AG)" (y - AGx) - ¥x),
g ©)
x(0) = x°,
where X = diag(x) is a diagonal matrix whose diagonal

elements are those of the vector x. The matrix ¥ is written
as

Vo= %U] ® (ggT - diag (g)) . (10)
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Note that, for the true vector e, the definition of ¥ guarantees
that

diag (e) Ve = 0. 11)

Therefore, e is definitely included as an equilibrium point of
(9).

We can rewrite the dynamical system in (9) as

dw;
718 =wje (1-wy)

g, L (12)
e
((AG)T)(]'_DLHZ ()’ - AGx) - f Z gkwjk >
o
where j=1,2,...,], £€=1,2,...,L,and
Wie = X(j-1)L+e- (13)
If we provide a matrix,
Wy Wyp oo Wyp
Wy Wy - Wy L
W = e R, (14)
w]l LU]2 cee w]L
then the following equation holds.
Gx = Wg. (15)

In (9), without ¥x, the dynamics is based on gradient
systems proposed for binary tomography inverse problems
in [9, 11]. In the former reference, a dynamical system is
provided whose vector field resembles that of a logistic
equation, and the convergence of solutions is demonstrated
theoretically. In the latter reference, a further term X(U — X)
is appended in anticipation of the solution x(¢) wandering
inside of the subspace (0, 1) and converging either to the true
value zero or to unity.

In this paper, we treat multivalued discrete tomography as
an extension of the binary tomography problems addressed
in [9, 11]. Equation (9) shows that the proposed system,
including the term (-¥x), is inspired by the generalized
Lotka-Volterra equation [14] to ensure

L
ije t) —1, t— o0 (16)
=1

namely, for some ¢,

L
Z wy (t) — 0,
+
7)

t — 00

in (12) for j such that the condition in (7) is satisfied.
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3. Theoretical Analysis

We rewrite (9) as

dx

A (18)
and assume that A and y are nonnegative. Equation (18)
has equilibria that include the zero vector, the vector whose
elements are all unity, and a constant nonzero vector that
corresponds to the desired reconstructed image, assuming
that the projection data are complete, consistent, and noise-
free.

Proposition 1. If we choose initial value x° € (0,1)F in the
switched dynamical system in (9), then the solution ¢(t, x°)
stays in (0,1)'" for all t € R,.

Proof. As the system can be written as dx;/dt = f;(x),
we see that, on the subspace where x; = 0 or x; = 1,
the solution satisfies d¢;/dt = 0 for any j. Therefore, the
subspace is invariant, and trajectories cannot pass through
every invariant subspace, according to the uniqueness of
solutions for the initial value problem. This leads to any
solution ¢(t, x°) of the system in (9) with initial value X e
(0,1)’" being in (0,1)’" for all t € R,. O

The Jacobian or the derivative of f with respect to x is

of

o (x)

= —X (U, - X) (AG)T AG + ¥) (19)
+(Uy, - 2X) diag (AG) " (y — AGx) - ¥x).

We can prove propositions concerning local stability as
follows.

Proposition 2. Each of the all-zeros and all-ones equilibria of
(9) is locally unstable.

Proof. From (19), the Jacobian matrices at the all-zeros
equilibrium and all-ones equilibrium, say u, are, respectively,
of

5;“»=dMg«AGf}0=dmg«AfoKkL

% (u) = diag ((AG)" (~y + AGu) + Yu)

(20)

= diag ((AG)" AG (u—e) + Yu).

We see that all of the eigenvalues of each matrix are nonneg-
ative, and accordingly, both equilibria are unstable. OJ

Let us define the set
S§ = {s e [0,1)": y —AGs =0, diag(s)¥s = 0}. (21)

Note that the exact equilibrium e belongs to . Besides the
true equilibrium, other false equilibria exist in &, described

by
(Uy®H)e, (22)

while satisfying g" H = g'. Examples of H are

0 0
92

for L =2 and

0 0 O

0O 0 O

9 9 4

93 93

0O 0 O

% 0 0 X (24)

2

0o %2
93
0 00

9

D>

0 01

for L = 3. Next, we consider the sets for the true and false
equilibria, respectively,

T =8 nio, 1",
(25)
F=8\T.

Proposition 3. If there exists an equilibrium in 8 of (9), then
it is locally half-stable.

Proof. When the equilibrium e is in 7, which is a subset of
&, the Jacobian at point e is given by

d
8_f (e) = — (Uj, — 2 diag (e)) diag (Ve) = — diag (Ye) (26)
X
because diag(e)(U;; — diag(e)) = 0 and diag(e)¥e = 0.
A diagonal matrix with nonpositive diagonal elements has
nonpositive eigenvalues. This implies that the equilibrium
e € 7 is half-stable. However, for s € %, we have the Jacobian
atsas
of

e (s) = —diag (s) (U;, — diag (s)) ((AG)" AG)

0 (27)

— diag (s) (U}, — diag (s)) ¥ — diag (¥s) .

The eigenvalues of the Jacobian are the sum of the eigenvalues
of each of the three terms in (27); note that the second term
has all-zero eigenvalues. The first term in (27) is a negative
semidefinite matrix because diag(s)(U]L—diag(s))((AG)TAG)
has the same eigenvalues as the matrix S(AG) " (AG)S, which
is a positive semidefinite matrix, where S denotes a diagonal
matrix satisfying §% = diag(s)(Uj, — diag(s)). Then, all of the
eigenvalues of the Jacobian are nonpositive and, therefore, s
is a half-stable equilibrium. O



Numerous saddle-type equilibria exist in the system, and
these play an important role in separating trajectories that

Z:
Z:

Some elements of Z € Z are in {0, 1}, and the relationship
betweenz € Z andz € Z is

diag (z) (U;, - diag (z)) ((AG)' AG+V¥)(z-2) =0 (29)

if Z and Z are nonempty sets.

Proposition 4. If Z contains an equilibrium of (9), then it is
a saddle-type equilibrium.

Proof. The local stability of the equilibrium z € Z is
determined by the eigenvalues of the Jacobian as

0

o (2)

ox (30)

= —diag (2) (U;, - diag (2)) ((AG)" AG +Y¥).
From the definition of G and V¥, this can be rewritten as

5}
% (2) = —diag (z) (U;, — diag(2))

. <<ATA + %U]> ® (ggT)) + diag (2) (31)
(U, - diag (2)) <%U] ® diag’ (g)) .

‘We see that the matrix of the first term has rank J and all its
eigenvalues are nonpositive. The second term is a diagonal
matrix of full rank with positive eigenvalues, so the Jacobian
has positive eigenvalues. However, from (7), with ¥ having
zero diagonal elements, the sum of the eigenvalues is the
trace of 0f/0x(z) or equivalently the trace of the matrix
(~diag(z)(Uy, - diag(2))((AG)" AG)), which is negative.
Therefore, the eigenvalues include both the positive and
negative values, meaning that the equilibrium is a saddle. [

4. Promotion of Distinction

Our proposed system in (9) can obtain a solution that resolves
the tomographic inverse problem of y = AGx and satisfies
the conditions in (7) or (8), when assumed that the exact
label set is given. To relax the assumption and satisfy (7)
or (8) even if no exact label set is given, that is, realize
image segmentation based on the labels with a small range
of gray values rounded to the nearest gray label, we propose a
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converge to true and false stable equilibria. We consider the
two equilibrium sets

={z €0, )"\ $:(4G)" y - ((AG)T AG +¥) z =0},

(28)

={ze[0, )"\ {s U0yt u {1} : diag (2) (U}, - diag (2)) (AG)" y - ((AG)" AG+¥)Z = 0}.

nonautonomous system that is an improvement of the system
given by (9):

dx
e XU, -X) (32)
(a @) (AG)" (y - AGx) — (1 -« (1)) ¥x),
where

o (t) = exp <—£) (33)

By multiplying («(t)) or (1 — «(t)), the effects of the term
(AG)T( y — AGx) or the term (-Wx) are emphasized or
restrained by the parameter 7.

In the system given by (32), at early times ¢, the orbit is
affected by the term (AG)T( y — AGXx); thus, Wg approaches
the nondiscrete reconstructed image Dg. This effect is grad-
ually restrained as the effect of the term (-¥x) becomes
dominant as t grows. Consequently, the state variables from
which a pixel value is structured begin to compete with each
other. Therefore, one of the state variables is enforced to be
nonzero, and the others are zeros. We refer to this effect as
self-adjusting labeling.

5. Numerical Experiments

5.1 Simplest Numerical Experiment. We begin with the sim-
plest possible example, that of a (2x2)-pixel case. We set | = 4,
I =6,and L = 2, and defined g as

B 0.5 34
(%) o

According to the above settings, we have

051 0000 0 O
00051 00 0 0
= 000005100 [
00000 0051
0 025 0 0 0 0 0 O
025 0 0 0 0 0 0 0 (35)
0 0 0 025 0 0 0 O
0 0 025 0 0 0 0 O
=160 0 0 0o 0 025 0 o
0 0 0 0 025 0 0 0
0 0 0 0O 0 0 0 025
0 0 0 0 0 0 025 0
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FIGURE 1: (2 x 2)-pixel phantom. White, gray, and black pixels are unity, 0.5, and zero values, respectively.

The projection operator is given as

1010
0101
1001
A= (36)
0011
1100
0110
Now, we suppose a true solution as
e e 10
e; e 01
e : (37)
es e 01
e, eg 00

Figure 1(a) shows an example of a (2 x 2)-pixel phantom
image, and Figures 1(b) and 1(c) show true discrete images
corresponding to g, and g,, respectively. Each pixel value
¢, where i = 1,2,3,4, was determined by (3); that is, a
pixel was expressed as a linear combination of unknowns
x = (x;,%y...,xg)" and labels g, and g,. Given that we
knew the true solution e = (e;,e,,...,eg) " in advance, we
could compute the projection data y = (y;, y5,..., ¥s)' =
(1.5,1,0.5,1,1.5,2)" by evaluating y = AGe. Let us describe
the problem in this paper again, with A and G given. We solve
for unknowns x from the projection y given by a measure-
ment. Consequently, we obtain discrete reconstructed images
corresponding to labels g, and g,. These images are given as

<x1 XS>
3

X5 X7
<x2 x4)
bl

X6 Xg

and the image composed of them is expressed as

c X, + g,x X3 + g,X
C:<1Cz>:(911 G2X2 G1%X3 T 9> 4). (39)
G G 91%s + GoXs G1%X7 + grXs

(38)

The trajectory x obeying (9) starts from arbitrary initial
values, and if the orbit converges to a stable equilibrium point,
we expect that the system will offer the true solution x = e.

5
1 T
0.8 \
X1
0.6
g 04
2 X2
2 02¢H /
0 n n n
0 50 100 150 200

| ——

FIGURE 2: Time response of x, and x, starting from x° = 0.85 in
subdivisions according to pixels.

X2

FIGURE 3: Equilibria and attractors projected on x,-x, phase plane.

Because no clues as to the initial values can be obtained a
priori, all elements of the initial value are simply aligned with
the same value. Let us denote x? = uforany jas x) = u.

We solved (9) by using the MATLAB function ode113.
Figure 2 shows the time responses of the orbits x,(¢) and
x,(t) for x° = 0.85. The orbit transiently approached and left
the saddle z and asymptotically converged toward the stable
equilibrium e.

Let us discuss the initial value dependency of (9) for this
example. Figure 3 shows a phase portrait in the x,-x, plane
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(c)

(d)

FIGURE 4: (a) Phantom image, (b) pixel value of each segment, (c) sinogram, and (d) reconstructed image obtained by FBP.

with two different initial values. The blue curve starting from

x% = 0.77 approaches the saddle equilibrium point z once

*
before finally converging to the true solution e. The green and
magenta dotted lines are the stable and unstable manifolds of
z, respectively, and the red curve shows an orbit starting from
x% = 0.72. First, the red curve runs along the separatrix and
approaches z; however, it later turns to an equilibrium s € &

corresponding to a false solution. The location of s is

S; S, 0 0.5
S3 S 0 1
M . (40)
S5 Sg 0 1
S, Sg 0 0

From Proposition 4, the term (—W¥x) in (9) means that
quite a few equilibria were turned into saddle-type ones
that belonged in Z. In other words, many possibilities
for the system becoming trapped at an equilibrium in Z
were excluded. Theoretically, the saddle separatrices split
the (0, 1)t space in (9) definitively into several domains of
attraction. However, we could not find an appropriate set of
initial values in the domain of attraction for e because the
system was high dimensional. Instead, for this experiment, we
checked the domain of attraction by brute force. By rewriting
the initial value as x° = x*, we found that, for 0.7443 < x* <
0.9950, the system converged to e by ¢ = 400. The resolution
used for x* was 10™*. Even if the initial value takes the same
value for each element of x°, a wide interval is available for the

domain of attraction, which makes it reasonable for practical
use.

5.2. (64 x 64)-Pixel Image Reconstruction. We prepared a
(64 x 64)-pixel digital phantom based on the Shepp-Logan
model [16]; see Figure 4(a). Figure 4(b) illustrates the pixel-
value distribution of each segment. We simulated a scanner
that is equipped with 95 X-ray detectors per row and
acquired parallel-beam projection data over 180° every 2°.
Thus, there were 90 directions in total; that is, I = 95 x
90. The projection operator A was obtained by computing
the discrete Radon transform. Figure 4(c) shows the corre-
sponding sinogram. The reconstructed image obtained by the
filtered back-projection (FBP) [17] with the Ramachandran-
Lakshminarayanan filter from the sinogram is shown in
Figure 4(d). Since the total number of projections was not
sufficient, the reconstructed image did not match with the
phantom image completely. The labels are defined as

(05 "
9—(1)- (41)

We used the solver ode113 to simulate (9). The initial value
was x2 = 0.85.

From the above setup, we obtained the segmented images
shown in Figures 5(a) and 5(b) according to the label values
by computing W (¢)(1,0)" and W(¢)(0, 1), respectively. This
figure was computed by using various initial values 0 < x° <
1. The pixel values in Figures 5(a) and 5(b) are either black or
white; thus, the solutions x belong to {0, 1VL. Indeed, these
solutions are in the true equilibrium solution set 7.
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(@ (b) (©

FIGURE 5: Reconstructed image. (a) Image of W(t)(1,0)", (b) image of W(£)(0,1)", and (c) image of W(t)g with xE = 0.85att = 10,000.

Gray value

1t .

0.5 [—\ [ﬁ 1
0 1 1
20 40 60

Horizontal position

(a)

Gray value

O J —

20 40 60
Horizontal position

()

FIGURE 6: Density profiles. Gray values of (a) phantom image and (b) images with proposed method and FBP. Green, red, and blue lines
indicate gray values of images shown in Figures 4(a), 4(d), and 5(c), respectively.

Figure 5(c) shows a composited image obtained by com-
puting W(t)g. For comparison, let us show the density
profile of the 26th row in each image. Figure 6(a) shows the
density profile in the phantom image Figure 4(a), while, in
Figure 6(b), the red and blue lines show the density profiles of
the corresponding rows in Figures 4(d) and 5(c), respectively.
It was clarified that the edges of our proposed method
were sharper than the FBP’. In fact, the total difference
with L1-norm between Figures 4(a) and 4(d) was 87; in
comparison, the difference between Figures 4(a) and 5(c) was
1.3. Therefore, our proposed method generated a composited
image, providing evidence that discrete tomography can
produce accurate results.

5.3. (64 x 64)-Pixel Image Reconstruction with Self-Adjusting
Labeling. In the previous experiments, we assumed that the
exact label set was given. The proposed nonautonomous
system in (32), which is without this assumption, is aimed
at reconstructing segmented binary images on the basis of
given labels. Namely, we expect the system to automatically
round a pixel that is not listed in the label set distinguished
to the nearest label. Instead of using the system proposed

in (9), we employed the system proposed in (9) to show
the reconstruction result, wherein some pixel values do not
match any element in the label set.

Let us provide a phantom that contains four different
pixel values: 0.5, 0.6, 0.9, and 1; see Figure 7(a). Figure 7(b)
illustrates the distribution of the pixel value of each segment.
The parameter T was 1,000. The other conditions remained
unchanged from those in Section 5.2. Figure 7(c) shows the
corresponding sinogram. The reconstructed image obtained
by the FBP from the sinogram is shown in Figure 7(d). The
Dg image corresponding to the given label set g = (0.5,1)" is
shown in Figure 7(e). This figure is the objective image for the
composited images generated by the discrete tomography.

The results are shown in Figures 8(a) and 8(b), where it
was confirmed that the segmented images were obtained as
intended by the nonautonomous system (32). As expected, in
Figure 8(c), the gray values 0.6 and 0.9 were rounded to labels
0.5 and 1, respectively. When we compared the composited
image in Figure 8(c) with the objective image composited
in Figure 7(e), the difference with L1-norm was 1I. This
relatively small value shows that self-adjusting labeling can
be realized.



(a)

(d)

Mathematical Problems in Engineering

(c)

(e)

FIGURE 7: (a) Phantom image, (b) pixel value of each segment, (c) sinogram, (d) reconstructed image obtained by FBP, and (e) objective

composited image.

()

()

(c)

FIGURE 8: Reconstructed image. (a) Image of W(£)(1,0)", (b) image of W(£)(0,1)", and (c) image of W(t)g with x? = 0.85and T = 1,000 at

t = 400,000.

6. Conclusion

We proposed a novel method for solving the problem of
multivalued discrete tomography. Our method is based on
the initial value problem of a nonlinear differential equation,
which is inspired by the Lotka-Volterra competitive activity
that enforces exclusivity among the state variables from which
pixel values are constructed.

We proved the stability of all equilibria when the tomo-
graphic inverse problem was well posed. The equilibrium
corresponding to the desired reconstructed image was sta-
ble; however, other false stable equilibria corresponding to
undesired images coexisted. Therefore, a solution orbit that

converged to a true or false equilibrium was determined by
the initial value.

From the numerical experiments, we observed that a
solution starting from the same uniform initial value con-
verged to the true equilibrium, regardless of the pattern or
the size of an image. Moreover, we proposed a modified
system that is aimed at realizing self-adjusting labeling by
adding a nonautonomous term. We confirmed that the
nonautonomous system automatically classifies pixels that are
not listed in the label set distinguished to the nearest label.
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