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Chapter 1

Introduction

In this chapter we introduce the concept of discrete tomography and explain the basic con-
cepts involved in this thesis. Furthermore, we describe the key problems considered in this
thesis and outline the main results.

1.1. Discrete Tomography

Tomography is a technique for reconstructing an image from a series of projections of it.
Such projections are acquired from a range of viewing angles. Images can be continuous
or discrete in space. Space continuous 2-D images are often discretized in small squares,
named pixels, which are assumed to have only one intensity value associated with it. Space
discrete 2-D images are defined on a subset of Z2 and its points (or pixels) are assigned
an intensity value. In both cases, reconstructed images are represented as a finite vector
with each entry representing one pixel of the reconstruction region. All pixels outside of the
region of interest are assumed to have zero intensity.

In this thesis, the term discrete tomography refers to the reconstruction of images with
intensity values belonging to a small discrete subset of R and either continuous or discrete
in space. Images with intensity values restricted to {0,1} are called binary images. We refer
to the corresponding reconstruction techniques as binary tomography.

The projection process is defined by the projection model and the set of angles and
can be represented by a linear transformation. Given a set of projections, finding an image
satisfying these projections is an inverse problem for which the existence and uniqueness
of the solution is, in general, not guaranteed. The problem of finding an image from a set
of projections is known as the reconstruction problem. Methods to find a solution to the
reconstruction problem often yield an image that approximately satisfies the given set of
projections. A solution or approximate solution of the reconstruction problem is called a
reconstruction. If only a few projection angles are available, there may be large differences
between the solutions of the discrete reconstruction problem, the reconstruction problem in
discrete tomography.

An application of discrete tomography is the reconstruction of nano-crystals at atomic
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2 1. Introduction

resolution. In this problem, discrete atoms are positioned on a regular grid (in this case, it is
a 3-D image). By using an electron microscope, 2-D projections are acquired from various
angles, as displayed in Fig. 1.1(a) [1, 31].

Another application of binary tomography can be found in the imaging of diamonds.
Diamonds are structures composed of only one element: carbon. The problem of recon-
structing a diamond is a binary tomography problem where the carbon corresponds with the
foreground and its absence corresponds with the background. Fibrous diamonds, however,
may have cracks containing material with a small number of different densities [51]. In Fig.
1.1(b) we show a slice of a 3-D reconstruction of a diamond on a cylindrical holder. In
Chapter 5 we present experiments with projections of a raw diamond.

(a) 2-D projections of a gold nano-
particle, reproduced with permission from
[1].

(b) Tomographic reconstruction of a dia-
mond from X-ray micro-CT data; cour-
tesy of DiamCAD, Antwerp.

Figure 1.1: Discrete tomography examples.

There are also applications of discrete tomography in medical imaging, despite of its
restricted use. Discrete tomography can be applied when some physical property of the
organ of interest can be enhanced as compared to the surrounding tissue. As an example,
see [29] for angiographic applications.

1.2. Difference between reconstructions

Despite the strong constraint imposed on the grey values in discrete tomography, many
solutions of the reconstruction problem can exist, all corresponding to the same set of pro-
jections. If the projections are obtained by performing measurements on some unknown
ground truth image, the reconstruction can then deviate substantially from the original im-
age, as exemplified in Fig. 1.2. As a consequence, there is a need for a measurement on the
difference between solutions of the reconstruction problem. As the ground truth is a solu-
tion by itself, this would also yield a bound on the reconstruction error with respect to the
ground truth.
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Figure 1.2: All images have equal line sums in the vertical and horizontal directions.

For images represented on a discrete grid, both lower and upper bounds have been ob-
tained for the magnitude of changes in discrete solutions when the projections are slightly
perturbed [2–4, 46]. For the case of binary image reconstruction from just two projections,
horizontal and vertical, bounds on the difference between binary images having the same
projections have been obtained by Van Dalen [44, 45].

In this thesis, we develop a series of computable upper bounds on the difference between
reconstructions of binary images. Our approach is based on ideas initially proposed by
Hajdu and Tijdeman [22]. When computing the absolute difference between correspond-
ing pixels of two known binary images, one can identify whether such pixels differ or not,
which allows the classification of a pixel of an image as correct or wrong with respect to
the other image. Despite the fact that our methodology can be adapted to compute the cited
bounds for non-binary images with small number of different grey values, we have restricted
its development to binary images only.

In Chapter 2 we demonstrate that for parallel beam tomography, some projection models
yield the property that the total intensity of all binary solutions of the reconstruction problem
must be the same, and it can be computed directly from the projection data. Furthermore, all
binary solutions lie on a hypersphere of which the center and radius are known. Based on
these observations, a methodology is derived to compute an upper bound on the difference
between any two binary solutions. As reconstruction algorithms may find an approximate
solution, we also derive a bound on the difference between a given binary reconstruction
and any binary solution.

Similar to the tomography problem, we investigate the problem of image reconstruction
from low resolution scans. Video recordings, picture cameras and other devices record im-
ages subject to resolution restrictions. A sequence of recordings may be used to acquire an
image with higher resolution than each recording individually. For such settings, Chapter 3
presents error bounds on the higher resolution reconstructed images.

Chapter 4 extends the previously developed bounds to deal with noise in the projection
data. When perturbing the projection data, the reconstruction problem is likely to be incon-
sistent, having no solution. When solving inconsistent reconstruction problems, one finds
solutions of an approximate problem. In this case, the set of solutions of the reconstruction
problem may change significantly, yielding big differences between reconstructions due to
the ill-posed nature of these inverse problems. Furthermore, the set of solutions may not
contain the original image which generated the projection data. The error bounds developed
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in this chapter provide bounds on the image error with respect to the solutions of the noise-
less reconstruction problem, for which the projections are not known. Intending to make the
error bounds useful in practice, we introduce parametrized approximations in these bounds
in Chapter 5. The parameters are based on experiments with images in a controlled en-
vironment and then applied to a similar problem with real projection data. The resulting
approximate bounds are no longer mathematical bounds, but still follow the same general
behaviour as the true errors measured for phantom images.

So far, the error bounds were restricted to projections models with the property of con-
servation of total intensity of binary solutions. As a consequence, all binary solutions have
the same total intensity. Chapter 6 studies the general case where any projection model can
be used to compute reconstruction error bounds. In fact, these techniques can be used for
any application modelled as an algebraic linear system of equations with binary solutions.

1.3. Discrete reconstruction algorithms
Discrete reconstruction algorithms exploit prior knowledge about the discreteness of the im-
age that is being reconstructed. This can improve the reconstruction quality, or reduce the
number of projections required while keeping the reconstruction quality the same. Another
advantage of discrete tomography reconstruction algorithms is that the resulting reconstruc-
tion is an image that is already segmented.

A range of reconstruction algorithms for discrete tomography have been proposed in the
literature, [6,9,28,40], however none of them comes with a guarantee that an exact solution
of the discrete tomography problem is found for the general problem, from more than two
directions. At the same time, the results of computational experiments show many cases of
a near-optimal approximate solution, or even a reconstruction that is completely identical to
the original image from which the projections were taken.

A major problem with these algorithms is the fact that the error - both in the recon-
structed image (with respect to the ground truth image) and in the projected reconstructed
image (with respect to the given projections) - depends on the particular problem instance
and cannot be bounded sharply. We are not aware of any algorithm for which non-trivial
bounds have been described for the difference between the projections of the reconstructed
(discrete) image and the given projections.

In Chapter 7, we present a discrete approximate reconstruction algorithm that comes
with such guarantees. The algorithm computes an image that has only grey values belonging
to the given finite set (prior knowledge). It also guarantees that the difference between the
given projections and the projections of the reconstructed discrete image is bounded. The
bound is independent of the image size and proportional to the number of projection angles.

1.4. Feature detection
As mentioned in Section 1.2, the reconstruction problem may allow the existence of binary
solutions that are substantially different from each other. Furthermore, Section 1.3 indicates
how discrete reconstruction algorithms may not find an exact solution of the reconstruction
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problem, but an approximation of it. When one is interested in finding a specific feature in
binary tomography images, a specific reconstruction (either a solution or an approximate
one) may not truly represent the original ground truth image. As an example, Figure 1.3
presents three different reconstructions of a ring-like shaped original image in which it is
very difficult to determine, based on these reconstructions, whether the bottom right part of
the ring is open.

(a) A continuous reconstruction (b) A binary reconstruction (c) Another binary reconstruction

Figure 1.3: Reconstructions of a ring-like shaped object using three different reconstruction meth-
ods. Is the “ring” open?

Even in cases when insufficient information is available to compute an accurate recon-
struction of the complete image, it may still be possible to answer certain questions about
the original image, or to determine certain features of it. Although finding a binary solution
of the reconstruction problem is typically hard, it is often easier to prove that a solution
with a specific feature cannot exist. For example, if the projections do not satisfy certain
consistency conditions, a solution will certainly not exist.

When developing the error bounds for binary tomography, an existence condition for
binary solutions of the reconstruction problem was found. In Chapter 8 we study the case
where a pre-defined binary structure is enforced in the reconstruction problem and then a
consistency condition for binary solutions is checked. By applying this methodology, it can
be determined whether such a substructure can possibly occur, or whether it can certainly
not occur in any binary image of the solution set.

1.5. Overview
As a conclusion of this introduction, we now provide a brief overview of the material con-
tained in each of the next chapters.

In Chapter 2, we derive a series of upper bounds that can be used to guarantee the quality
of a reconstructed binary image. The bounds limit the number of pixels that can be incorrect
in the reconstructed image, in binary tomography, with respect to the original image. We
provide several versions of these bounds, ranging from bounds on the difference between
any two binary solutions of a tomography problem to bounds on the difference between
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approximate solutions and the original object.

In Chapter 3, we consider the problem of reconstructing a high-resolution binary image
from several low-resolution scans. Each of the pixels in a low-resolution scan yields the
value of the sum of the pixels in a rectangular region of the high-resolution image. For any
given set of such pixel sums, we derive an upper bound on the difference between a certain
binary image which can be computed efficiently and any binary image that corresponds with
the given measurements. We also derive a bound on the difference between any two binary
images having these pixel sums.

In Chapter 4 we expand the theory of error bounds for binary tomography of Chapter
2 to the case of noisy projection data. Despite the fact that the noiseless projection data
is not available, we develop error bounds with respect to the solution set of the noiseless
reconstruction problem.

In Chapter 5 we show how the error bounds of Chapter 2 can be adapted to be useful for
bounding the quality of experimental images. Our experimental results suggest that even
though approximations have to be made due to noise and other errors in the data, the result-
ing bounds can still provide guidance on estimating the reconstruction quality in practice.

In Chapter 6, we present a series of computable bounds that can be used with any projection
model. The approach developed in Chapter 2 is restricted to projection models where the
corresponding matrix has constant column sums. We generalize these results and thereby
broaden their applicability to include fan beam and cone beam projection models. In fact,
the study presented here is not restricted to tomography and works for more general linear
systems. We report the results of computational experiments for several phantom images,
focused on parallel and fan beam projection models.

In Chapter 7, we develop a discrete approximate reconstruction algorithm. Our algorithm
computes an image that has only grey values belonging to a given finite set. It also guar-
antees that the difference between the given projections and the projections of the recon-
structed discrete image is bounded. The bound, which is computable, is independent of the
image size.

In Chapter 8, we present a computational technique for discovering the possible presence of
features (such as straight boundaries or homogeneous regions) in the unknown original im-
age from its projections. We show that it is often possible to accurately identify the presence
of certain features, even when insufficient information is available to compute an accurate
reconstruction of the complete image.



Chapter 2

Bounds on the quality of
reconstructed images in binary
tomography

This chapter (with minor modifications) has been published as: K. J. Batenburg, W. For-
tes, L. Hajdu, and R. Tijdeman. Bounds on the quality of reconstructed images in binary
tomography. Discrete Applied Mathematics, Vol. 161(15), 2236–2251, 2013.

2.1. Introduction

Tomography is a technique for reconstructing an image of an object from a series of pro-
jections of this object, acquired from a range of viewing angles. The projection images are
typically recorded using a scanning device, which can employ various types of beams (e.g.,
X-rays, neutrons, electrons) that traverse the object, after which a detector measures the res-
ult of the beam-object interaction. Provided that a large number of high-quality projections
are available, sampled from a full range of angles, an accurate reconstruction of the object
can be computed using a tomographic reconstruction algorithm [25, 33].

In practice, the set of angles for which projections are acquired is often limited. Due to
dose constraints, it can be desirable to record as few projection images as possible, while still
attaining sufficient image quality. Also, the angular range can be restricted by the particular
scanning setup, such as in electron tomography, where the shape of the sample holder limits
the angular range of the projections [36]. The resulting image reconstruction problems,
based on just a small number of projections, are known as limited data problems.

For tomographic reconstruction from severely limited data, classical algorithms based
on analytical inversion of the Radon transform, such as the Filtered Backprojection al-
gorithm, often yield inferior reconstructions that are polluted by strong artefacts. In such
cases, it makes sense to exploit available prior knowledge of the unknown object. Incorpor-
ation of this knowledge in the reconstruction algorithm can potentially result in a reduction

7



8 2. Bounds on the quality of reconstructed images in binary tomography

of the required number of projections, increased accuracy of the reconstruction, or an im-
proved ability to deal with noisy projection data. A prior that has received much attention
recently concerns the sparsity of the image, or of its gradient, which is exploited in the field
of Compressed Sensing [14, 16, 41, 42].

A related, but more strict type of prior knowledge is exploited in Discrete Tomography,
which focuses on the reconstruction of images that consist of a small, discrete set of grey
values [27, 28]. The actual set of grey levels is typically assumed to be known in advance.
Here, we focus specifically on the reconstruction of binary images, which consist of just
two grey levels, 0 and 1. Several reconstruction algorithms have demonstrated the ability
to reconstruct binary images from a very small number of projections, often even less than
6 [4, 6, 40].

Despite the strong constraint imposed on the grey values in discrete tomography, many
valid solutions of the reconstruction problem can exist, all corresponding to the same set of
projections. If the projections are obtained by performing measurements on some unknown
ground truth object, the reconstruction can then deviate substantially from the true object.
As a consequence, there is a need for an upper bound on the difference between binary
solutions of the reconstruction problem. As the ground truth is a solution by itself, this
would also yield a bound on the reconstruction error with respect to the ground truth.

A related problem in discrete tomography is the so-called stability problem, which deals
with the question how the reconstruction changes if the projections are slightly perturbed.
For images represented on a discrete grid, both lower and upper bounds have been obtained
for the magnitude of such changes [2–4, 46]. For the case of binary image reconstruction
from just two projections, horizontal and vertical, bounds on the difference between binary
images having the same projections have been obtained by Van Dalen [44, 45].

In this chapter, we present a series of bounds which are highly general. Our bounds
can be computed for any set of projections and in different geometrical settings, for lattice
images as well as discretized continuous images. A key idea in deriving these bounds is an
observation first made by Hajdu and Tijdeman in [22], concerning the fact that all binary
solutions of the reconstruction problem must lie on a certain hypersphere, of which both
the center and radius can be computed. The center of this hypersphere, which we call the
central reconstruction, is the shortest real-valued solution of the tomography problem. This
hypersphere construction leads directly to a simple bound on the distance between any two
binary solutions, based on the triangle inequality. Stronger bounds can be derived by fo-
cusing on the distance between binary solutions of the tomography problem and the binary
image that is obtained by rounding the central reconstruction. We derive several bounds
that combine properties of the real-valued solution with combinatorial properties that are
satisfied by the binary solutions. In particular, the fact that the sum of the pixel values in the
unknown image is fully determined by the projection data can be used to improve the error
bounds for binary images.

The structure of this chapter is as follows. Our notation is introduced in Section 2.2, after
which a general class of reconstruction problems is introduced. We then discuss two specific
examples of such problems, based on the grid model and strip model for computing the pro-
jections. In Section 2.3, the central reconstruction is introduced, which plays an important
role in all results that follow. We discuss two different strategies for its computation. Section
2.4 contains the main results of this chapter: a series of quality bounds for binary solutions
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of the tomography problem. It is divided in three parts: in Section 2.4.1, a general bound
is derived on the difference between two binary images having a given set of projections.
Section 2.4.2 deals with bounds that are based on properties of the binary images that are
obtained by rounding the central reconstruction. These bounds are subsequently refined in
Section 2.4.3 by including the knowledge of the total number of 1’s in any binary solution,
which can be determined from the projection data.

Section 2.5 presents a series of simulation experiments and their results. From these
results, the practical value of the proposed bounds can be evaluated for different types of
images. The results are further discussed in Section 2.6. Section 2.7 concludes the chapter.

2.2. Notation and model
Throughout the discrete tomography literature, several imaging models have been con-
sidered. In the grid model, an image is formed by assigning a value to each point in a
regular grid. In the case of binary images, each point is assigned a value of either 0 or 1.
Here, we consider square grids of the form A = {(i, j) ∈ Z2 : 1 ≤ i, j ≤ s} for s ∈ N, s ≥ 1;
see Fig. 2.1(a). For the grid model, we refer to the points in A as pixels. A binary image
defined on A can be represented by a map A→ {0,1}. A projection of an image f is formed
by considering the set of parallel lines through one or more grid points in a certain direction
(a,b) ∈ Z2, with a ≥ 0 and (a,b) coprime, and summing the values of the points on each line.
For a line given by the equation ax−by = t (t ∈ Z), the line projection p is defined as

p =
∑

(x,y)∈A:ax−by=t

f (x,y).

The grid model can be used to model nanocrystals, that consist of discrete atoms positioned
in a regular grid [1, 31].

(a) Grid model (b) Strip model

Figure 2.1: Two different projection models.

In many tomography applications, a continuous representation of the object is more
realistic, as there is no intrinsic grid structure. In such cases, the unknown image is typically
approximated by an image defined on a discrete pixel grid, using square pixels. A common
model for computing the projections of such a pixelized image is the strip model [33, section
7.4.1], [50]. In the strip model, a projection is computed by considering a set of parallel
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strips in a given direction and for each strip computing the weighted sum of all the pixels
which intersect that strip with a weight equal to the intersection area of the strip and the
pixel.

We now define some general notation. An image is represented by a vector x = (xi) ∈Rn.
We refer to the entries of x as pixels, which correspond to unit squares in the strip model
and to points in the grid model. The derivation of our main results does not depend on the
particular projection model. Throughout this chapter we assume that all images are square,
consisting of c rows and c columns, where n = c2. A binary image corresponds with a vector
x̄ ∈ {0,1}n.

For a given set of k projection directions, the projection map maps an image x to a vector
p ∈ Rm of projection data, where m denotes the total number of line measurements. As the
projection map is a linear transformation, it can be represented by a matrix W = (wi j) ∈Rm×n,
called the projection matrix. Entry wi j represents the weight of the contribution of x j to
projected line i. Note that for the grid model the projection matrix is a binary matrix, while
for the strip model its entries are real values in [0,1]. The projection matrix W and vector p
can be decomposed into k blocks as

W =


W1

...

Wk

 , p =


p1

...

pk

 , (2.1)

where each block Wd (d = 1, . . . ,k) represents the projection map for a single direction and
each block pd represents the corresponding projection data.

From this point on, we assume that the projection matrix has the property that∑m
i=1 wi j = k for all j = 1, . . . ,n. This property is certainly satisfied for the grid model, as

every x j is counted with weight 1 for exactly one line in each projection direction. The
property is also satisfied for the strip projection model, as the total pixel weight for each
projection angle is equal to the area of a pixel, which is 1. For most other projection models
commonly used in tomography, such as the line model, where the weight of a pixel is de-
termined by the length of its intersection with a line, this property is approximately satisfied,
but not always exactly.

The general reconstruction problem consists of finding a solution of the system Wx = p
for given projection data p, i.e., to find an image that has the given projections. In binary
tomography, one seeks a binary solution of the system. For a given projection matrix W and
given projection data p, let S W(p) = {x ∈ Rn : Wx = p}, the set of all real-valued solutions
corresponding with the projection data, and let S̄ W(p) = S W(p)∩ {0,1}n, the set of binary
solutions of the system. As the main goal of incorporating prior knowledge of the binary
grey levels in the reconstruction is to reduce the number of required projections, we focus on
the case where m is small with respect to n, such that the real-valued reconstruction problem
is severely underdetermined.

Despite the strong constraint that each pixel value xi must belong to the set {0,1}, the
binary reconstruction problem often does not have a unique solution. Instead of posing the
uniqueness problem as a yes/no question, we focus in this chapter on the number of different
pixels between different binary solutions. For example, if the reconstruction problem has no
unique solution, but all pairs of solutions have at most 4 different pixels, then one can say
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that any such solution must be close to the original object from which the projections have
been obtained, even if the exact set of differences cannot be determined.

For any two vectors ū, v̄ ∈ {0,1}n, define the difference set D(ū, v̄) = {i : ūi , v̄i} and the
number of differences d(ū, v̄) = #D(ū, v̄), where the symbol # denotes the cardinality operator
for a finite set. Note that d(ū, v̄) = ‖ū− v̄‖1.

2.3. The central reconstruction
As the projection matrix is typically not a square matrix, and also does not have full rank, it
does not have an inverse. Recall that the Moore-Penrose pseudo inverse of an m×n matrix A
is an n×m matrix A†, which can be uniquely characterized by the two geometric conditions

A†b ⊥N(A) and (I− AA†)b ⊥ R(A) for all b ∈ Rm,

where N(A) is the nullspace of A and R(A) is the range of A, [12, page 15].
Let x∗ = W†p. Then x∗ has the property (see Chapter 3 of [11]) that it is the real-valued

solution of minimal Euclidean norm of the system Wx = p, provided that the latter system
is solvable. We call x∗ the central reconstruction of p. The central reconstruction plays an
important role in the bounds we derive for the binary reconstruction problem. We will show
in the next section that all binary solutions of the system have equal distance to x∗, so that
one can consider the central reconstruction as lying “in the middle” of all binary solutions.

As all bounds presented in this chapter depend on x∗, accurate computation of x∗ is
necessary to compute the corresponding difference bounds. One approach to computing
the central reconstruction of a consistent system Wx = p is to use the QR decomposition
of WT . We will only sketch the computation here and refer to [5] for details. For clarity of
presentation, we assume that W has full row rank. In fact, this assumption is not satisfied for
tomography, and the extended QR decomposition should be used. The QR decomposition
factorizes the matrix WT into an orthogonal matrix Q and an uppertriangular matrix R of
full column rank, as

WT = Q
(
R
0

)
.

The central reconstruction is then given by x∗ = Q(RT )−1 p, which can be computed effi-
ciently by first solving the system RT y = p for y by back substitution, and then computing
x∗ = Qy.

However, due to the size of the matrix W, calculation of the QR decomposition is usually
unpractical for large images. For the case m < n, the QR decomposition requires O(n3) oper-
ations. Moreover, the n×n matrix Q is typically dense, requiring a vast amount of computer
memory. As an alternative, an iterative method for solving the system Wx = p, called CGLS
(Conjugate Gradient Least Squares), can be used [39]. The CGLS algorithm can effectively
exploit the sparse structure of the projection matrix to reduce the required computation time,
and does not require storage of large, dense matrices. Apart from numerical errors, applying
CGLS to the system Wx = p results, after convergence, in the computation of W† p, while
not computing the matrix W† explicitly (see also [47]). For all experiments in Section 2.5,
the time required to compute the central reconstruction varied from a few seconds up to two
minutes on a standard PC, depending on the number of projections and image size.
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2.4. Quality bounds for binary solutions
In all the results in the following subsections, we consider a fixed system Wx = p corres-
ponding to a binary tomography problem, and refer to the central reconstruction of this
system as x∗.

As a substantial number of bounds will be given throughout this chapter, we introduce
the following notation that will be further defined in the remainder of the chapter:

• The expressions a(i) (i = 1,2,3,4) will represent bounds on the number of pixel dif-
ferences between any two binary solutions of the reconstruction problem.

• The expressions b(i) (i = 1,2,3,4) will represent bounds on the number of pixel differ-
ence between a certain given binary image (not necessarily a solution) and any binary
solution of the reconstruction problem.

• The expressions c(i) (i = 1,2) will represent bounds on the number of pixel differences
between the rounded central reconstruction r̄ and any binary solution.

The bounds within each class a, b, and c represent upper bounds for the same distance
measure and can therefore be compared.

2.4.1. Elementary bounds based on the central reconstruction
In this subsection, a first set of bounds are derived. They follow from the fact that the Eu-
clidean distance between the central reconstruction and any binary solution of the recon-
struction problem can be determined from the projections. We start by noticing that the
Euclidean norm of any binary solution of the tomography problem is determined by the
projection data:

Lemma 1. Let x̄ ∈ S̄ W(p). Then, ‖x̄‖22 =
‖p‖1

k .

Proof. By the definition of the `1-norm, ‖p‖1 =
∑m

i=1 |pi| =
∑m

i=1 pi, since pi ≥ 0 (i = 1, . . . ,n).
Also,

m∑
i=1

pi =

m∑
i=1

 n∑
j=1

wi j x̄ j

 =

n∑
j=1

 m∑
i=1

wi j

 x̄ j =

n∑
j=1

kx̄ j, (2.2)

and therefore ‖p‖1 = k
∑n

j=1 x̄ j.

As x̄ ∈ {0,1}n, we have ‖x̄‖22 = ‖x̄‖1 =
∑n

j=1 x̄ j =
‖p‖1

k .
�

The following lemma illustrates the importance of the central reconstruction, the
shortest real-valued solution in S W(p), by showing that the binary solutions are the shortest
among all integer solutions of the system.

Lemma 2. Let x̄ ∈ S̄ W(p) and y ∈ S W(p)∩Zn. Then ‖x̄‖2 ≤ ‖y‖2, with equality if and only
if y ∈ S̄ W(p).
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Proof. Note that the statement is proved in [22], see Problem 2 and the subsequent para-
graph. However, for the convenience of the reader we give the proof here.

We have

||x̄||22 =

n∑
i=1

x̄2
i =

n∑
i=1

x̄i =

n∑
i=1

yi =
‖p‖1

k
. (2.3)

Observing that
n∑

i=1

yi ≤

n∑
i=1

y2
i = ||y||22, (2.4)

with equality if and only if y is binary, yields the result.
�

Lemma 3. Let x̄ ∈ S̄ W(p). Then ‖x̄− x∗‖2 =

√
‖p‖1

k −‖x∗‖
2
2.

Proof. From the definition of x∗ we have (x̄− x∗) ∈ N(W), and x∗ ⊥ (x̄− x∗). Applying
Pythagoras’ Theorem and Lemma 1 yields

‖x̄− x∗‖22 =
‖p‖1

k
−‖x∗‖22. (2.5)

�

Define R =

√
‖p‖1

k −‖x∗‖
2
2. We will use this constant throughout the remainder of this

chapter, and refer to R as the central radius. According to Lemma 3, any binary solution of
the reconstruction problem is on the hypersphere centered in x∗ with radius R.

Supposing the existence of at least two different binary solutions, Lemma 3 allows us to
derive an upper bound for the number of pixel differences between those solutions.

Theorem 1. Let x̄, ȳ ∈ S̄ W(p) and put a(1) = 4R2. Then d(x̄, ȳ) ≤ a(1).

Proof. According to Lemma 3, we have ‖x̄− x∗‖2 = ‖ȳ− x∗‖2 = R. Therefore,

‖x̄− ȳ‖2 ≤ ‖x̄− x∗‖2 + ‖ȳ− x∗‖2 = 2R.

As x̄ and ȳ are binary, we have d(x̄, ȳ) = ‖x̄− ȳ‖1 = ‖x̄− ȳ‖22. �

Using the triangle inequality, a simple bound can also be given for the distance between
any binary image and a solution of the reconstruction problem, as follows:

Corollary 1. Let v̄ ∈ {0,1}n be a given binary image and put b(1) = (R + ‖v̄− x∗‖2)2. Then
for any binary image x̄ ∈ S̄ W(p), we have d(x̄, v̄) ≤ b(1).
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2.4.2. Bounds based on rounding the central reconstruction
The fact that all elements of S̄ W(p) have equal distance to the central reconstruction x∗,
combined with the facts that binary solutions are the shortest solutions among all integer
solutions (Lemma 2) and that x∗ is the shortest real-valued solution, suggests that binary
solutions can often be found near x∗. It is therefore natural to consider the image that is
obtained by rounding each entry of x∗ to the nearest binary value. In this section, we will
derive several bounds based on the number of differences between a binary solution of the
reconstruction problem and a binary image obtained by rounding x∗.

For α ∈ R, let bin(α) = min(|α|, |1−α|). Put T =

√∑n
i=1 bin2(x∗i ), i.e., the Euclidean dis-

tance from x∗ to the nearest binary vector. We will use this constant throughout this chapter
and refer to T as the central rounding distance.

Corollary 2. If R < T, then S̄ W(p) = ∅.
If R = T, then all solutions in S̄ W(p) can be obtained by rounding the values in x∗ to the

nearest binary values, and variations are only possible for the entries i where x∗i = 1
2 .

Let T = {v̄ ∈ {0,1}n : ‖v̄− x∗‖2 = T } and let r̄ ∈ T , i.e., r̄ is among the binary vectors that
are nearest to x∗ in the Euclidean sense.

If R > T and R−T is small, it is possible to say that a fraction of the rounded values
are correct, i.e., to provide an upper bound on the number of pixel differences between any
solution in S̄ W(p) and r̄. In most cases we can not say which rounded values are correct.

Lemma 4. Let r̄ ∈ T and let v̄ ∈ {0,1}n be any binary vector.
Then ‖v̄− x∗‖22 = T 2 +

∑
i∈D(v̄,r̄) |2x∗i −1|.

Proof. We have the following identities:

‖v̄− x∗‖22 = ‖v̄− r̄ + r̄− x∗‖22
= ‖r̄− x∗‖22 + 2〈r̄− x∗, v̄− r̄〉+ 〈v̄− r̄, v̄− r̄〉

= T 2 + 2〈r̄− v̄, x∗〉+ ‖v̄‖22−‖r̄‖
2
2

= T 2 + 2
n∑

i=1

(r̄i− v̄i)x∗i +

n∑
i=1

v̄i−

n∑
i=1

r̄i

= T 2 +

n∑
i=1

(r̄i− v̄i)(2x∗i −1)

= T 2 +
∑

i∈D(v̄,r̄)

|2x∗i −1|.

�

Lemma 4 can be interpreted as follows: consider the set of entries where r̄ and v̄ are
different. If we transform r̄ into v̄ by performing a sequence of single-entry changes (either
from 0 to 1, or from 1 to 0), each time an entry i of r̄ is changed the squared Euclidean
distance from the current vector to x∗ increases by si = |2x∗i −1|.

Let π be a permutation of {1, . . . ,n} such that sπ(1) ≤ sπ(2) ≤ . . . ≤ sπ(n), which can be
obtained by sorting the entries si in increasing order.
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Corollary 3. Let r̄ ∈ T and let v̄ ∈ {0,1}n be any binary vector. Then

‖v̄− x∗‖22 ≥ T 2 +
∑̀
i=1

sπ(i),

where ` = d(r̄, v̄).

Proof. According to Lemma 4 we have

‖v̄− x∗‖22 = T 2 +
∑

i∈D(r̄,v̄)

si ≥ T 2 +
∑̀
i=1

sπ(i).

�

As the Euclidean distance from x∗ to any x̄ ∈ S̄ W(p) is R, a bound can now be derived
on the maximal number of pixels in r̄ that must be changed to move from r̄ to x̄.

Theorem 2. Let r̄ ∈ T , x̄ ∈ S̄ W(p). Put

c(1) = max

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2−T 2

 .
Then d(x̄, r̄) ≤ c(1).

Proof. As x̄ ∈ S̄ W(p), we have ‖x̄− x∗‖22 = R2. Applying Lemma 4, we find that

R2−T 2 =
∑

i∈D(x̄,r̄)

si ≥

d(x̄,r̄)∑
i=1

sπ(i),

which implies that d(x̄, r̄) ≤ c(1). �

The proof of Theorem 2 can be interpreted as follows: consider the set of entries where
r̄ and x̄ are different. If we transform r̄ into x̄ by performing a sequence of single-entry
changes (either from 0 to 1, or from 1 to 0), each time an entry i of r̄ is changed the squared
Euclidean distance from the current vector to x∗ increases by si = |2x∗i − 1|. As all binary
solutions of the reconstruction problem are on a hypersphere centered in x∗ with radius R,
we know that once we have crossed the boundary of this hypersphere, a binary solution can
no longer be obtained by changing the values of additional entries that have not yet been
changed. An upper bound on the number of differences between r̄ and x̄ can be obtained by
counting the number of steps required to cross the hypersphere, each time choosing a pixel
which results in the minimal increase of the distance to x∗. The following two Corollaries
follow directly from Theorem 2:

Corollary 4. Let r̄ ∈ T , x̄, ȳ ∈ S̄ W(p) and let a(2) = 2c(1) with c(1) defined as in Theorem
2. Then d(x̄, ȳ) ≤ a(2).

Corollary 5. Let r̄ ∈ T and let v̄ ∈ {0,1}n be a given binary image and let b(2) = c(1)+d(r̄, v̄)
with c(1) defined as in Theorem 2. Then d(x̄, v̄) ≤ b(2).
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In fact, the bound from Corollary 4 can be sharpened by noting that we can assume that
the sets D(r̄, x̄) and D(r̄, ȳ) are disjoint, as entries that occur in both sets do not contrib-
ute to the number of differences between x̄ and ȳ. This observation leads to the following
Theorem:

Theorem 3. Let r̄ ∈ T , x̄, ȳ ∈ S̄ W(p). Put

a(3) = max

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ 2(R2−T 2)

 .
Then d(x̄, ȳ) ≤ a(3).

Proof. Define x̂ by x̂i = r̄i if x̄i = ȳi, and x̂i = x̄i otherwise. Define ŷ analogously. Then
d(x̂, ŷ) = d(x̄, ȳ), ‖x̂− x∗‖22 ≤ R2, and ‖ŷ− y∗‖22 ≤ R2. Hence,

2R2 ≥ ‖x̂− x∗‖22 + ‖ŷ− y∗‖22 = 2T 2 +
∑

i∈D(r̄,x̂)

si +
∑

i∈D(r̄,ŷ)

si.

As D(r̄, x̂) and D(r̄, ŷ) are disjoint, we have 2R2−2T 2 ≥
∑d(r̄,x̂)+d(r̄,ŷ)

i=1 sπ(i). This implies that
d(x̄, ȳ) = d(x̂, ŷ) ≤ d(r̄, x̂) + d(r̄, ŷ) ≤ a(3). �

A similar bound can be derived for the case where a particular binary image v̄, not
necessarily a solution of the tomography problem, is given. For this, we transform v̄ into r̄
and then we perform a sequence of single-entry changes in r̄ with the exclusion of the pixels
that differ between v̄ and r̄ because they have already been counted as wrong pixels of v̄.

Theorem 4. Let r̄ ∈ T and let v̄ ∈ {0,1}n be a given binary image. Consider the sequence
(φ(1),φ(2), . . . ,φ(ñ)) defined by removing all numbers i for which v̄i , r̄i from the sequence
(π(1), . . . ,π(n)). Put

U = max

0 ≤ ` ≤ ñ :
∑̀
i=1

sφ(i) ≤ R2−T 2


and let b(3) = U + d(r̄, v̄). Then for any binary image x̄ ∈ S̄ W(p), we have d(x̄, v̄) ≤ b(3).

Proof. Define x̂ by x̂i = r̄i if x̄i = v̄i, and x̂i = x̄i otherwise. Similarly, define v̂ by v̂i = r̄i if
x̄i = v̄i, and v̂i = v̄i otherwise. Then d(x̂, v̂) = d(x̄, v̄), d(v̂, r̄) ≤ d(v̄, r̄), and ‖x̂− x∗‖22 ≤ R2.
Hence, R2 ≥ ‖x̂ − x∗‖22 = T 2 +

∑
i∈D(r̄,x̂) si. As D(r̄, x̂) and D(r̄, v̄) are disjoint, we have

R2−T 2 ≥
∑d(r̄,x̂)

i=1 sφ(i). This implies that d(x̄, v̄) = d(x̂, v̂) ≤ d(x̂, r̄) + d(r̄, v̂) ≤ U + d(r̄, v̄). �

2.4.3. Bounds involving the number of ones in binary solutions
The fact that the `1-norm ‖x̄‖1 of any binary solution is determined by the projection data,
can possibly be exploited to tighten the bounds on the number of differences between any
binary solution of the reconstruction problem and the rounded central reconstruction. As the
number of ones in both x̄ ∈ S̄ W(p) and r̄ ∈ T can be computed, the number of elements in
D(r̄, x̄) for which r̄ is 0 determines the number of elements in this set for which r̄ is 1.
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For any two vectors ū, v̄ ∈ {0,1}n, define the sets D0(ū, v̄) = {i : ūi = 0 ∧ v̄i = 1} and
D1(ū, v̄) = {i : ūi = 1∧ v̄i = 0}. We also define d0(ū, v̄) = #D0(ū, v̄) and d1(ū, v̄) = #D1(ū, v̄).

If ‖x̄‖1 = ‖r̄‖1, we have d0(r̄, x̄) = d1(r̄, x̄) = d(r̄, x̄)/2. In other words, in order to trans-
form r̄ into x̄, the number of pixels of r̄ assigned to 0 that must be changed to 1 is
equal to the number of pixels of r̄ assigned to 1 that must be changed to 0. In general,
when ‖x̄‖1 = ‖r̄‖1 is not necessarily true, let t = ‖x̄‖1 − ‖r̄‖1. Hence, d0(r̄, x̄) = d1(r̄, x̄) + t,
which gives d0(r̄, x̄)− t/2 = d1(r̄, x̄) + t/2 = d(r̄, x̄)/2. Therefore, d0(r̄, x̄) = d(r̄, x̄)/2 + t/2
and d1(r̄, x̄) = d(r̄, x̄)/2− t/2.

Theorem 5. Let r̄ ∈ T and t = ‖x̄‖1−‖r̄‖1. Construct the sequence (π0(1),π0(2), . . . ,π0(n0))
by removing all numbers i for which r̄i = 1 from the sequence (π(1), . . . ,π(n)). Similarly,
construct the sequence (π1(1),π1(2), . . . ,π1(n1)) by removing all numbers i for which r̄i = 0
from the sequence (π(1), . . . ,π(n)). Let

c(2) = max

` : `+ t is even and
min((`+t)/2,n0)∑

i=1

sπ0(i) +

min((`−t)/2,n1)∑
i=1

sπ1(i) ≤ R2−T 2

 .
Then for any binary image x̄ ∈ S̄ W(p), we have d(r̄, x̄) ≤ c(2).

Proof. Let x̄ ∈ S̄ W(p). Put ˜̀ = d(r̄, x̄). Then

R2−T 2 =
∑

i∈D(r̄,x̄)

si =
∑

i∈D0(r̄,x̄)

si +
∑

i∈D1(r̄,x̄)

si ≥

( ˜̀+t)/2∑
i=1

sπ0(i) +

( ˜̀−t)/2∑
i=1

sπ1(i)

with ( ˜̀+ t)/2 ≤ n0 and ( ˜̀− t)/2 ≤ n1, which implies that ˜̀ = d(r̄, x̄) ≤ c(2). �

Corollary 6. Let c(2) be as defined in Theorem 5 and define a(4) = 2c(2). Then for any pair
of binary images x̄, ȳ ∈ S̄ W(p), we have d(x̄, ȳ) ≤ a(4).

Corollary 7. Let v̄ ∈ {0,1}n be a given binary image and let b(4) = c(2) + d(r̄, v̄) with c(2)
as defined in Theorem 5. Then for any binary image x̄ ∈ S̄ W(p), we have d(v̄, x̄) ≤ b(4).

2.5. Experiments and results
A series of experiments have been performed to investigate the practical value of the bounds
given in the several theorems and corollaries presented, for a range of images. The experi-
ments are all based on simulated projection data obtained by computing the projections of
the test images (so-called phantoms) in Fig. 2.2:

Phantom 1 represents a very simple, convex shaped object.

Phantom 2 represents an object with a more complex boundary. Also, the object is not
convex and the boundary is fairly complex.

Phantom 3 represents a cross-section of a cylinder head in a combustion engine. It con-
tains many holes and, as will become apparent from the results, it is more difficult to
reconstruct accurately.
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Figure 2.2: Original phantom images used for the experiments.

Phantom 4 was constructed from a micro-CT image of a rat bone, acquired with a SkyScan
1072 cone-beam micro-CT scanner.

All phantom images have a size of 512×512 pixels. To perform images with varying image
size (smaller than 512×512), the phantoms have been downscaled to obtain binary images
of the appropriate sizes.

In each experiment, the central reconstruction x∗ was first computed using the CGLS
algorithm. For some of the bounds, it is necessary to compute the rounded central recon-
struction r̄ which was performed by rounding x∗ to the nearest binary vector, choosing r̄i = 1
if x∗i = 1

2 . Based on x∗ and r̄, the various upper bounds described in Sections 2.4.1–2.4.3
were computed.

When presenting the results, we express the bounds on the pixel differences between
two images as a fraction of the total number of image pixels. This allows for more straight-
forward interpretation of the results than using the absolute number of pixel differences. To
aid in the identification of the bounds, Tables 2.1–2.3 provide a summary of all bounds and
their respective theorems/corollaries.

d(x̄, ȳ) Result Mathematical expression

a(1) Theorem 1 4R2

a(2) Corollary 4 2max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2−T 2
}

a(3) Theorem 3 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ 2(R2−T 2)
}

a(4) Corollary 6 2max
{
` : `+ s is even and

(`+s)/2∑
i=1

sπ0(i) +
(`−s)/2∑

i=1
sπ1(i) ≤ R2−T 2

}
Table 2.1: List of symbolic expressions used for the bounds on the number of pixel differences
between binary solutions, their respective theorems/corollaries and mathematical expressions.
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d(v̄, x̄) Result Mathematical expression

b(1) Corollary 1 (R + ‖v̄− x∗‖2)2

b(2) Corollary 5 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2−T 2
}

+ d(r̄, v̄)

b(3) Theorem 4 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sφ(i) ≤ R2−T 2
}

+ d(r̄, v̄)

b(4) Corollary 7 max
{
` : `+ s is even and

(`+s)/2∑
i=1

sπ0(i) +
(`−s)/2∑

i=1
sπ1(i) ≤ R2−T 2

}
+ d(r̄, v̄)

Table 2.2: List of symbolic expressions used for the bounds on the number of pixel differences
between a given v̄ ∈ {0,1}n and any binary solution, their respective theorems/corollaries and math-
ematical expressions.

d(r̄, x̄) Result Mathematical expression

c(1) Theorem 2 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2−T 2
}

c(2) Theorem 5 max
{
` : `+ s is even and

(`+s)/2∑
i=1

sπ0(i) +
(`−s)/2∑

i=1
sπ1(i) ≤ R2−T 2

}
Table 2.3: List of symbolic expressions used for the bounds on the number of pixel differences
between r̄ and any binary solution, their respective theorems/corollaries and mathematical expres-
sions.

All graphs presented in the following subsections use a logarithmic scale for the error
bounds. In some cases, the bound may become very small, or even 0, resulting in a point
on the graph that cannot be plotted. These points are simply removed from the plot, causing
the graph to be disconnected.

The remainder of this section is structured as follows. First, the concepts of central re-
construction, central radius, and rounded central reconstruction are illustrated for a concrete
example in Section 2.5.1. Next, experimental results for the grid model and the strip model
are presented in Sections 2.5.2 and 2.5.3, respectively. In Section 2.5.4, we consider a scen-
ario where a binary reconstruction has been computed by a certain reconstruction algorithm,
and we are interested in bounding the error with respect to the phantom for this particular
reconstruction.

2.5.1. Concepts and interpretation

Fig. 2.3(a) shows the central reconstruction x∗ of size 128×128, based on k = 4 projections
of the binary image x̄ corresponding to Phantom 2. The projection matrix W was formed
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using the grid model for the directions {(0,1), (1,0), (1,1), (1,−1)}. The central reconstruc-
tion was computed using the CGLS algorithm, as explained in Section 2.3. The difference
between the phantom image and the central reconstruction is shown in Fig. 2.3(b), where
the grey levels are scaled between −1 (black) and 1 (white). Note that this difference vec-
tor x̄− x∗ is in the nullspace of W, as x̄ and x∗ are both solutions of the system Wx = p.
Therefore, the difference image can be considered as a switching component in the sense
that it can be added to any other image without changing the projections in the four chosen
directions.

The central radius R corresponds to the Euclidean norm of the difference vector x̄− x∗,
which is around 31.3152 in this case. Fig. 2.3(c) shows the rounded central reconstruction
r̄, which is formed by rounding each pixel of x∗ to the nearest binary value. The central
rounding distance T corresponds with the Euclidean norm of the difference r̄− x∗, which is
around 25.5704 in this case. Note that r̄ is usually not a solution of the system Wx = p. The
difference between the phantom x̄ and the image r̄ is shown in Fig. 2.3(d). This difference
image is a three-valued image, with pixel values from the set {−1,0,1}. The bounds from
Section 2.4.2 and onwards are based on bounding the norm of this difference image.

Similar images for the case of k = 16 projections are shown in Fig. 2.3e-h, based on the
direction set {(1,0), (0,1), (1,1), (1,−1), (1,2), (1,−2), (2,1), (2,−1), (1,3), (1,−3), (2,3),
(2,−3), (3,1), (3,−1), (3,2), (3,−2)}. It can be clearly observed that, as the number of pro-
jections increases, the central reconstruction and the rounded central reconstruction both
become better approximations of the phantom image. For the case of 16 projections, the
difference between x̄ and r̄ is already surprisingly small (approximately 0.45% of the total
number of pixels), even though the system Wx = p is highly underdetermined.

(a) k = 4 : x∗ (b) k = 4 : x̄− x∗ (c) k = 4 : r̄ (d) k = 4 : x̄− r̄

(e) k = 16 : x∗ (f) k = 16 : x̄− x∗ (g) k = 16 : r̄ (h) k = 16 : x̄− r̄

Figure 2.3: Illustration of various images that are related to the bounds.
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2.5.2. Error bounds for the grid model

In the grid model, a projection direction is represented by a pair of integers (a,b) ∈ Z2,
such that gcd(a,b) = 1 and a ≥ 0. Let A be the set of all such pairs. For any positive in-
teger c, put Ac := {(a,b) ∈ A : max(a, |b|) = c} and order the elements of Ac, firstly by
increasing value of a, secondly by increasing value of |b|, and thirdly by decreasing value
of b. For example, A3 = {(1,3), (1,−3), (2,3), (2,−3), (3,1), (3,−1), (3,2), (3,−2)}. For any
positive integer c, the ordered set Dc is formed by concatenating A1, . . . ,Ac; for example,
D3 = {(0,1), (1,0), (1,1), (1,−1), (1,2), (1,−2), (2,1), (2,−1), (1,3), (1,−3), (2,3), (2,−3),
(3,1), (3,−1), (3,2), (3,−2)}. To perform an experiment with k projection angles, the first k
directions were selected from the set D20. This means that when the number of directions
is increased, the old set of directions is always included in the new set of directions.

Experiments have been performed based on the three phantom images, scaled to sizes
of 32×32, 128×128 and 512×512 respectively, varying the number of projection directions.
The maximum number of projection directions for each image size is of 16, 64 and 200,
respectively.

The first set of results are shown in Fig. 2.6, where bounds on the distance between any
two binary solutions of the reconstruction problem, bounds on the number of differences
between r̄ and the phantom image x̄, and the exact error between r̄ and the phantom image
x̄ are jointly plotted. The bounds a and c were obtained by computing the minimum of
all bounds in Tables 2.1 and 2.3 for each test case, i.e., a = min{a(1),a(2),a(3),a(4)} and
c = min{c(1),c(2),c(3),c(4)}. In Fig. 2.7, the individual bounds a(1)–a(4) are shown for the
same experiments.

2.5.3. Error bounds for the strip model

The experiments for the strip model have been performed using projection angles selec-
ted to coincide with the projection directions specified for the grid model. The projection
angles were selected in this way to make the two models comparable. Projections have been
computed based on sets of parallel strips, each strip having a width that equals the pixel
size.

Experiments have been performed based on the four phantom images, scaled to sizes
of 32×32, 128×128 and 512×512 respectively, varying the number of projection directions.
The maximum number of projection directions for each image size is of 16, 64 and 200,
respectively.

For the sake of compactness, we include the results for Phantoms 1 and 4. We did not
observe strong deviations in the general behaviour of the bounds for the two other phantoms.

The first set of results are shown in Fig. 2.8, where bounds on the distance between any
two binary solutions of the reconstruction problem, bounds on the number of differences
between r̄ and the phantom image x̄, and the exact error between r̄ and the phantom image
x̄ are jointly plotted. The bounds a and c were obtained by computing the minimum of
all bounds in Tables 2.1 and 2.3 for each test case, i.e., a = min{a(1),a(2),a(3),a(4)} and
c = min{c(1),c(2),c(3),c(4)}. In Fig. 2.9, the individual bounds a(1)–a(4) are shown for the
same experiments.
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2.5.4. Error bounds for a particular reconstruction

So far, the experiments were focused on bounding the difference between any two binary
solutions, or the difference between r̄ and any binary solution. In practice, it can also be
important to know bounds on the difference between any binary solution and a particular
binary image, computed by a certain reconstruction algorithm. As the problem of computing
a binary solution of the reconstruction problem is usually very hard, we will not assume that
such a binary reconstruction is an exact solution to the reconstruction problem.

Several algorithms have been proposed in the literature for reconstructing binary im-
ages from their projections, see, e.g., [6, 9, 28, 40]. As an example, we focus here on the
Discrete Algebraic Reconstruction Technique (DART), which has recently been proposed
as a promising reconstruction algorithm for discrete tomography [7, 9]. The binary recon-
struction computed by DART is not guaranteed to be an exact solution of the tomography
problem.

(a) k = 4 (b) k = 6 (c) k = 8 (d) k = 10

Figure 2.4: DART reconstructions of Phantom 3 from 4, 6, 8 and 10 projections.

DART reconstructions have been computed for Phantoms 1, 2 and 3, using the strip
model with projection angles equally distributed between 0 and 180 degrees. As an illus-
tration of the reconstruction results, Fig. 2.4 shows reconstructions of Phantom 3 for an
increasing number of projections.

The bounds b(1), . . . ,b(4) were computed, which bound the fraction of different pixels
between the DART reconstruction and the original phantom. The results are shown in Fig.
2.5. The figure also contains graphs for the actual fraction of pixel differences Eb between
the DART reconstruction v̄ and the phantom.

It can be observed that the true number of pixel differences between the DART recon-
structions and the corresponding phantom images is much lower than the bounds. For the
bounds b(2), b(3) and b(4), this can be understood from the fact that the construction of the
bounds involves using the triangle inequality to go from v̄ to x̄ through r̄. For a small number
of projection images, the rounded central reconstruction r̄ is much further away from the
phantom than the DART reconstruction. Still, meaningful guaranteed error estimates can be
obtained from these bounds. For example, for Phantom 2, the graph shows that if just 10
projections are available, a guarantee can be given that no more than 10% of the pixels in
the DART reconstruction are wrong with respect to the unknown phantom image.



2.6. Discussion of the results 23

1 2 3 4 5 6 7 8
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o
n

 o
f 

p
ix

e
ls

 

 

b(1)

b(2)

b(3)

b(4)
E

b

(a) Phantom 1

2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of angles
F

ra
c
ti
o

n
 o

f 
p

ix
e

ls

 

 

b(1)

b(2)

b(3)

b(4)
E

b

(b) Phantom 2

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

b(1)

b(2)

b(3)

b(4)
E

b

(c) Phantom 3

Figure 2.5: Error bounds for DART reconstruction of the three phantoms (size 512×512) as function
the number of projection angles. Note that the graphs for b(2), b(3), and b(4) have strong overlap and
can hardly be distinguished.

2.6. Discussion of the results

Despite the facts that the four phantoms have strong differences in shape and morphology,
and that the grid and strip models are quite different, the results shown in Figs. 2.6–2.9 are
surprisingly consistent throughout all experiments. Most of the bounds become smaller as
the number of projection directions is increased but monotonicity is not a property of all the
bounds presented in Section 2.4.

From the difference between the bounds presented in Section 2.4.1 and the bounds based
on the rounded central reconstruction, we see that in most cases the phantom x̄ is substan-
tially closer to r̄ than to x∗.

In Figs. 2.6 and 2.8, it can be observed that the true fraction of pixel differences between
the phantom image x̄ and the rounded central reconstruction r̄, denoted by Ec, is often
approximated quite well by the bound c, in particular for the grid model. This indicates that
with respect to r̄, the bounds presented in this chapter can be quite sharp.

In Fig. 2.8(a), parts of the graphs for the bounds a and c, for more than 6 projections,
are missing. In fact, in this case all of them are zero, such that they cannot be displayed in
the logarithmic scale. This illustrates that our theorems for bounding the distance between
any two binary solutions can be used to prove uniqueness of a binary solution, even when
the corresponding real-valued system of equations is underdetermined.

In most of the experiments, the graphs for a(2) and a(4) are almost indistinguishable and
the bound a(3) is smaller than a(4) but it can happen, as in Fig. 2.9(a), that this is not the
case. In Fig. 2.9(a) the bound a(4) proves uniqueness from 6 projection directions or more
while the bound a(3) does not for 12, 14 and 16 projections. Although a(3) is the sharpest
bound in most of the experiments, this is not true in general and all bounds should be used
to obtain the best result. The bounds a(2), a(3) and a(4) use similar principles and their
computation can be performed simultaneously.
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2.7. Outlook and conclusions
In this chapter, we have presented a range of general bounds on the accuracy of recon-
structions in binary tomography, with respect to the unknown original object. The bounds
can be computed within reasonable time and give guarantees on the number of pixels that
can be different between any two binary solutions of the tomography problem, on the dif-
ference between an image obtained by rounding the central reconstruction and any binary
solution, and on the difference between any binary image and any binary solution. The
experimental results show that by using these bounds, one can prove that the number of dif-
ferences between binary reconstructions must be very small, even when the corresponding
real-valued system of equations is severely underdetermined. In order to make these bound
practically useful, our results will have to be extended to deal with noisy projection data,
which we will incorporate in future research.
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(c) Phantom 1, 512×512
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(f) Phantom 2, 512×512
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0 50 100 150 200
10

−6

10
−4

10
−2

10
0

Number of angles

F
ra

c
ti
o
n
 o

f 
p
ix

e
ls

 

 

a

c
E

c

(i) Phantom 3, 512×512
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(l) Phantom 4, 512×512

Figure 2.6: Grid model: computed bounds as a function of the number of projection directions.



26 2. Bounds on the quality of reconstructed images in binary tomography

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(a) Phantom 1, 32×32

0 20 40 60 80
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of angles
F

ra
c
ti
o

n
 o

f 
p

ix
e

ls
 

 

a(1)

a(2)

a(3)

a(4)

(b) Phantom 1, 128×128

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

Number of angles

F
ra

c
ti
o
n
 o

f 
p
ix

e
ls

 

 

a(1)

a(2)

a(3)

a(4)

(c) Phantom 1, 512×512

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(d) Phantom 2, 32×32

0 20 40 60 80
10

−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(e) Phantom 2, 128×128

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

Number of angles
F

ra
c
ti
o
n
 o

f 
p
ix

e
ls

 

 

a(1)

a(2)

a(3)

a(4)

(f) Phantom 2, 512×512

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(g) Phantom 3, 32×32

0 20 40 60 80
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(h) Phantom 3, 128×128

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o
n
 o

f 
p
ix

e
ls

 

 

a(1)

a(2)

a(3)

a(4)

(i) Phantom 3, 512×512

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(j) Phantom 4, 32×32

0 20 40 60 80
10

−4

10
−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

a(1)

a(2)

a(3)

a(4)

(k) Phantom 4, 128×128
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Figure 2.7: Grid model: computed bounds as a function of the number of projection directions. Note
that the graphs for a(2) and a(4) have strong overlap and can hardly be distinguished.
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(f) Phantom 4, 512×512

Figure 2.8: Strip model: computed bounds as a function of the number of projection directions for
Phantoms 1 and 4.
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Figure 2.9: Strip model: computed bounds as a function of the number of projection directions for
Phantoms 1 and 4. Note that the graphs for a(2) and a(4) have strong overlap and can hardly be
distinguished.





Chapter 3

Error bounds on the
reconstruction of binary images
from low resolution scans

This chapter (with minor modifications) has been published as: W. Fortes and K. J. Baten-
burg. Error bounds on the reconstruction of binary images from low resolution scans. In
Berciano, A., DÃŋaz-Pernil, D., Kropatsch, W., Molina-Abril, H., Real, P. (eds.), Proceed-
ings of the Fourteenth International Conference on Computer Analysis of Images and Pat-
terns (CAIP), Lecture Notes in Computer Science, Vol. 6855, 152–160. Heidelberg, 2011.
Springer.

3.1. Introduction

Black-and-white images, also called binary images, occur in a wide range of imaging ap-
plications. In many such applications, the images are actually acquired as grey level images
by a scanning device. When scanning text, for example, binary characters are often scanned
by a grey level scanner. When taking pictures of numberplates using a low resolution digital
camera, the structure of the binary characters may even be unrecognizable in the resulting
grey level images. Another example can be found in the single-pixel camera, which has
recently been proposed within the framework of compressive sensing. Instead of recording
individual fine-resolution pixels, such a camera records the total intensity over various areas
of the object being photographed [34, 49].

If several such grey level images are available, each representing a low resolution scan
of some unknown "original" binary image, one can attempt to reconstruct the binary image
by combining the information from multiple scans [8, 17, 18]. In particular, if the relative
position of the different scans is well-known, this may lead to a high quality reconstruction.
However, if the number of low resolution images available is relatively small in compar-
ison with the resolution needed to properly represent the binary image, this reconstruction
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problem can be highly underdetermined. In such cases, many binary images can exist that
correspond with the same scanned grey level data. At present, no useful bounds are avail-
able that can guarantee that the reconstructed image is actually close to the unknown original
image.

In Chapter 2, we presented bounds for binary image reconstruction in tomography (i.e.
from projection data) that allow to bound the error between any two binary solutions, and
therefore the error between the reconstructed binary image and the unknown original image.
The proposed methodology is quite general and can potentially be extended to other imaging
problems. As an intermediate step towards a general framework for bounding errors in bin-
ary image reconstruction, we apply the key concepts here to the problem of reconstructing
binary images from low resolution scans.

3.2. Notation and concepts

Let A ⊂ Z2 be a finite set, called the reconstruction area. We consider the problem of re-
constructing a binary image defined on A, represented by a function F : A→ {0,1}. A high
resolution binary image defined on A will be reconstructed from several low resolution
scans. The value of each pixel in such a scan corresponds with the summed intensity over
all pixels in the corresponding region of the binary image. For simplicity, we assume here
that the boundaries of the low resolution pixels coincide exactly with pixel boundaries in
the high resolution binary image. We call a set S ⊂ A a window of the reconstruction area.
Let S = 2A, the set of all windows of A. We call a set S ⊂ S of windows a partition of A if
(i) S ∩T = ∅ for all S ,T ∈ S and
(ii)

⋃
S∈S S = A. We are also interested in the subsets of S which satisfy the property (i) but

do not necessarily satisfy (ii). Such a subset will be called a partial partition. For S ⊂ A,
define

PF(S ) =
∑

(i, j)∈S

F(i, j). (3.1)

We refer to the values PF(S ) as window-sums. Note that our model for computing the win-
dow sums does not take certain properties of the imaging system, such as the detector point
spread function, into account. However, the proposed methodology can easily be extended
to include such effects, as long as they are linear. The reconstruction problem consists of
finding an image F that has prescribed window-sum for a set S of windows. The existence
and uniqueness of the solution of the general reconstruction problem is not guaranteed, in
general.

To simplify the notation, the reconstruction problem can be formulated using linear
algebra notation, which will be used in the forthcoming sections. Since there is an one-
to-one mapping, say χ, from A to {1, . . . ,n}, the image F can be represented as a vector
x = (x j) ∈ Rn, where n = #A is the cardinality of A. We refer to the entries of x as pixels. A
binary image on A corresponds with a vector x̄ ∈ {0,1}n.

For a given set S ⊂ S and an image x ∈ Rn, the combined set of window sums results
in a vector p = (pi) ∈ Rm, where m represents the number of window-sums taken. As the
operator PF(S ) is linear, the mapping from an image to its window sums can be represented
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by a matrix W = (wi j) ∈ Rm×n, which we call the scan matrix. The entry wi j represents the
weight of the contribution of x j to the window-sum i.

Then, the general reconstruction problem can be stated as finding a solution of the sys-
tem

Wx = p

for given window-sum data p. In the binary image reconstruction problem, one seeks a
binary solution of the system. For a given scan matrix W and a window-sum vector p, let
TW(p) := {x ∈Rn : Wx = p}, the set of all real-valued solutions corresponding with the given
data, and let T̄W(p) := TW(p)∩{0,1}n, the set of binary solutions of the system.

As the scan matrix is typically not a square matrix, and also does not have full rank,
it does not have an inverse. We recall that the Moore-Penrose pseudo inverse of an m× n
matrix A is an n×m matrix A†, which can be uniquely characterized by the two geometric
conditions

A†b ⊥N(A) and (I− AA†)b ⊥ R(A) ∀b ∈ Rm,

where N(A) is the nullspace of A and R(A) is the range of A, [12, page 15].
Let x∗ = W†p. Then x∗ also has the property (see Chapter 3 of [11]) that it is the minimal

Euclidean norm solution of the system Wx = p, if it exists. We call x∗ the central recon-
struction of p. The central reconstruction plays an important role in the bounds we derive
for the binary reconstruction problem.

The description of the general reconstruction problem given above is quite broad and we
will now specify the scan model by which we define the scan matrix W and the window-sum
vector p, in order to model the problem of reconstructing high resolution images from low
resolution scans.

Put A = {(i, j) ∈ Z2| 0 ≤ i < l,≤ j < h}. Let 1 ≤ p ≤ l, and 1 ≤ q ≤ h. For 0 ≤ i < l, 0 ≤ j < h,
define a rectangular set of pixels of size p×q by

S p,q
i, j = {(i + c, j + r)| 0 ≤ c < p,0 ≤ r < q}.

Each pixel in a low resolution scan corresponds to a window in our framework. It provides
information about the summed intensity in a rectangular set of pixels of the scanned high
resolution image. Adjacent low resolution pixels are connected and do not overlap. For
0 ≤ a < p and 0 ≤ b < q, define

Sa,b = {S p,q
a+ip,b+ jq| a + ip < l,b + jq < h}. (3.2)

Each set Sa,b is a partial partition. Its elements correspond to pixels of the low resolution im-
age. Let us now assume that several such low resolution images are available. Then the total
set S of window-sums consists of the union of partial partitions Sd := Sad ,bd for d ∈ {1, . . . ,k}.
These concepts are illustrated in Fig. 2.1. Fig. 2.1a shows a single window S a,b, whereas
Fig. 2.1b shows the corresponding partial partition Sa,b formed by a tiling of its translates,
where windows that cross the boundary of the image are not allowed. Fig. 2.1c shows two
windows that are in separate partial partitions.

For 1 ≤ d ≤ k, define the set of indices of the pixels x j that were scanned by a partial
partition Sd as Id := { j| χ−1( j) ∈ ∪S∈Sd S } and its complement Īd := {1, . . . ,n}\Id.
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(a) Scan window. (b) A partial partition
formed by translates of a
scan window.

(c) Scan windows for two
different pairs (a,b).

Figure 3.1: Rectangular scanning.

As already mentioned, this linear scanning model can be modeled by a linear system of
equations Wx = p. The matrix W and the window-sum p can be decomposed into k blocks
as

W =


W1

...

Wk

 , p =


p1

...

pk

 , (3.3)

where each block Wd (d = 1, . . . ,k) represents the scanning of the image with a rectangular
window as defined by Sd and each block pd represents the corresponding window-sums
PF(S ) for S ∈ Sd.

3.3. Error bounds
Without loss of generality, we assume that all pixels in A are contained in at least one
window. Clearly, no bounds can be given for those pixels that are not scanned at all, and
they are removed from the analysis. As each set Sd samples a collection of disjoint subsets
of A, the norm of the scanned binary image can be bounded from above by the available
window-sums:

Proposition 1. Let x̄ ∈ T̄W(p). Then, ‖x̄‖22 = ‖x̄‖1 ≤ ‖pd‖1 + #Īd for all 1 ≤ d ≤ k.

The norm of any binary solution can therefore be estimated by summation of the
window-sums in pd and its accuracy increases with the number of scanned pixels included
in the partial partition Sd.

In the next Theorem we will use Prop. 1 to show that all binary solutions of the linear
system Wx = p have bounded distance to the central reconstruction x∗.

Lemma 5. Let x̄ ∈ T̄W(p) and x∗ = W† p. Put R := min1≤d≤k Rd, where

Rd :=
√
‖pd‖1 + #Īd −‖x∗‖22. Then, ‖x̄− x∗‖2 ≤ R.

Proof. From the definition of x∗ we have (x̄− x∗) ∈ N(W), and x∗ ⊥ (x̄− x∗). Combining
Pythagoras’ theorem and Prop. 1 yields the theorem. �
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We will now consider the image that is obtained by rounding each entry of x∗ to the

nearest binary value. Let 〈α〉 = min(|α|, |α−1|) for α ∈ R, and put U =

√∑n
i=1〈x

∗
i 〉

2, i.e., the
Euclidean distance from x∗ to the nearest binary vector.

Let r̄ ∈ {0,1}n such that ‖r̄− x∗‖2 = U, i.e., r̄ is among the binary vectors that are nearest
to x∗ in the Euclidean sense. If R > U and R−U is small, it is possible to say that a fraction
of the rounded values are correct, i.e., to provide an upper bound on the number of pixel
differences between any solution in T̄W(p) and r̄.

In most cases we can not say which rounded values are correct. Suppose that x̄ ∈ T̄W(p)
and that r̄i = 1 whereas x̄i = 0. Note that we have x∗i ≥

1
2 . Put r̃ := r̄ and then set r̃i to 0.

We then have ‖r̃− x∗‖22 = ‖r̄− x∗‖22− |x
∗
i −1|2 + |x∗i |

2 = ‖r̄− x∗‖22 +2x∗i −1. Similarly, if r̄i = 0,
then the squared Euclidean distance increases by 1− 2x∗i by setting pixel i to 1. Each time
an entry i of r̄ is changed, the squared Euclidean distance to x∗ increases by bi := |2x∗i −1|.

As the Euclidean distance from x∗ to x̄ is no greater than R, a bound can now be derived
on the maximal number of pixels in r̄ that must be changed to move from r̄ to x̄.

Let us order the values bi (i = 1, . . . ,n) such that bi ≤ bi+1 for 1 ≤ i ≤ n− 1. Assuming
that T̄W(p) , ∅, we have R ≥ ‖r̄− x∗‖2 and the change of s entries of r̄ would increase the
distance between r̄ and x∗ such that R2 ≥ ‖r̄− x∗‖22 +

∑s
j=1 b j.

Theorem 6. Let r̄, x̄ and bi (i = 1, . . . ,n) be as defined above. Choose s such that

s∑
i=1

bi ≤ R2−‖r̄− x∗‖22 <
s+1∑
j=1

b j. (3.4)

Then at most s pixels can have the wrong value in r̄ with respect to x̄ and at least n− s pixels
must have the correct value.

Proof. Due to the increasing order of the bi’s, changing more than s pixels in r̄ will result
in a vector r̃ for which ||r̃− x∗||2 > R, which cannot be an element of T̄W(p). �

Theorem 6 bounds the number of pixel differences between x̄ and r̄, and between ȳ and
r̄. When using these two bounds to determine an upper bound on the number of differences
between x̄ and ȳ, we can assume that these two sets of pixel differences are disjoint, as
otherwise the difference between x̄ and ȳ will only be smaller. This observation leads to the
following corollary:

Corollary 8. Let r̄ and bi (i = 1, . . . ,n) be as defined above. Let x̄, ȳ ∈ T̄W(p). Choose t such
that

t∑
i=1

bi ≤ 2(R2−‖r̄− x∗‖22) <
t+1∑
j=1

b j. (3.5)

Then at most t pixels can be different between x̄ and ȳ.

3.4. Experiments and results
A series of experiments were performed to investigate the practical value of the bounds
given in Theorem 6 and Corollary 8, for several test images. The experiments are all
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based on simulated data obtained by computing the scanning of the test images (so-called
phantoms) in Fig. 3.2. All phantoms have a size of 512×512 pixels.

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3

Figure 3.2: Original phantom images used for the experiments.

In each experiment, the central projection x∗ was first computed using the CGLS al-
gorithm [39]. The binary vector r̄ was computed by rounding x∗ to the nearest binary vector
(choosing r̄i = 0 if x∗i = 1

2 ). The upper bound s from Theorem 6 on the number of differ-
ences between r̄ and the phantom image x̄ was then computed, followed by a bound on the
fraction of pixel differences U := s

n , and the actual fraction of differences E := e
n , where e

is the number of pixel differences between r̄ and x̄. The upper bound t from Corollary 8 on
the number of differences any two binary solutions of Wx = p was then computed, followed
by the computation of the fraction of pixel differences V := t

n . Due to space limitations, we

(a) 4 points-regular (b) 16 points-regular (c) 4 points-random (d) 16 points-random

Figure 3.3: Distribution of starting points in a first scan-window of size 8×8.

only show the results for Phantom 3. The results for the other two phantoms are in line with
the observations made for the third phantom. In all experiments, a square window was used.
Note that the position of a partial partition Sa,b with respect to the high resolution image is
completely determined by the pair (a,b), which we call a starting point. Each low resolution
image of the high resolution binary image corresponds to a different starting point. In the ex-
periments, we distinguish between regularly and randomly distributed starting points, where
the regular case corresponds to a low resolution scanner that is gradually shifted across the
high resolution image, and the random case corresponds to a device that moves irregularly
(or an object that moves in such a way); see Fig. 3.3. In Fig. 3.4, the three error measures V ,
U and E are plotted as a function of the number of starting points for window size of 8×8



3.5. Outlook and conclusions 35

and 32×32 and for both regularly and randomly distributed starting points. Note that for a
larger window size, more starting points are required to obtain similar error bounds.

Various observations can be made from the graphs in Fig. 3.4. Even if the number of
starting points is much smaller than the number of pixels in the window, meaning that the
reconstruction problem is severely underdetermined, it is still possible to guarantee that only
a limited fraction of pixels can be different between binary solutions. Although the given
bounds U are clearly not sharp when compared to the real error E, rounding the central
reconstruction yields a binary image that is in many cases guaranteed to be rather close to the
original image. For example, for window size 8×8 and randomly distributed starting points,
having just 16 low resolution images available (resulting in a system of equations that is
underdetermined by a factor of 4) can still guarantee that the rounded central reconstruction
is within 10% of the original binary image.

Fig. 3.5 illustrates the key concepts involved in the proposed bounds. The top row shows
the central reconstruction for window sizes 8×8 and 32×32, with regularly and randomly
distributed starting points. Here, the number of starting points is chosen as a fixed fraction of
1
4 times the number of pixels in the window. In this way, all four reconstruction problems can
be described by roughly the same number of equations. The middle row shows the difference
images between the central reconstruction and the phantom, whereas the bottom row shows
the difference images between the rounded central reconstruction and the phantom.

3.5. Outlook and conclusions
In this chapter, we have presented general bounds on the accuracy of reconstructions of
binary images from several low resolution graylevel scans, with respect to the unknown
original image. The bounds can be computed efficiently and give guarantees on the num-
ber of pixels that can be different between any two binary reconstructions that satisfy given
window-sums, and on the difference between a particular binary image, obtained by round-
ing the central projection to the nearest binary vector, and any binary image satisfying the
window-sums. The experimental results show that by using these bounds, one can prove
that the number of differences between binary reconstructions must be small, even when
the corresponding real-valued system of equations is severely underdetermined. This work
represents an extension of the methodology set up in Chapter 2, which is a step towards a
set of general bounds for binary image reconstruction problems that allow various forms of
image sampling and incorporation of noisy measurements.
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(a) window: 8×8, regular (b) window: 32×32, regular

(c) window: 8×8, random (d) window: 32×32, random

Figure 3.4: computed bounds as a function of the number of partial partitions for Phantom 3; V:
bound on the distance between any two binary solutions from Cor. 8; U: bound on the distance between
any binary solution and the rounded central reconstruction r̄ from Thm. 6; E: true error between the
rounded central reconstruction and the binary phantom x̄.

Figure 3.5: Illustrations of the key concepts for Phantom 3; From left to right: 8×8 window, regular;
32×32 window, regular; 8×8 window, random; 32×32 window, random; From top to bottom: central
reconstruction; difference between the central reconstruction and the phantom; difference between the
rounded central reconstruction and the phantom.



Chapter 4

Bounds on the difference between
solutions in noisy binary
tomography

4.1. Introduction

In Computed tomography one wants to find an image which satisfies a given set of projec-
tions. When this set of projections is obtained from a real scanning device, the projections
are usually corrupted with noise and other artefacts. Due to this data perturbation, it is highly
likely that there is no image satisfying the projection set. In any attempt to reconstruct an
image which approximately satisfies the acquired measurements, the data perturbation is
propagated into the reconstructed image which may not truly represent the original scanned
object.

In Chapter 2 we studied error bounds for binary tomography with noiseless data, which
are not applicable for noisy projection data. In this chapter, we aim to develop error bounds
on the difference between binary solutions of the noiseless reconstruction problem even
though the available projection set is perturbed. Also, following the bounds of Chapter 2,
we bound the number of wrong pixels of a certain binary reconstruction with respect to the
binary solutions of the noiseless problem.

A key idea of this chapter also relies on the fact that all binary solutions of the noiseless
reconstruction problem must lie on a certain hypersphere. However, the center and radius
of this hypersphere cannot be computed. Nevertheless, we compute the center and radius
of a hypersphere which contains the set of binary solutions of the noiseless reconstruction
problem. The center of this hypersphere is the least squares solution of the noisy tomography
problem. Its radius is computed taking into account a bound on the distance between the
centers of the two mentioned hyperspheres.

This chapter is structured as follows. Our notation is introduced in Section 4.2, after
which a general class of reconstruction problems is introduced. In Section 4.3 we bound

37
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the difference between any two binary solutions of the noiseless reconstruction problem by
bounding the Euclidean norm of the binary solutions of the noisy problem and the minimum
norm solution of the noiseless reconstruction problem. Section 4.4 deals with bounds that
are based on properties of the binary images that are obtained by rounding the central re-
construction. Section 4.5 presents the computational challenges and Section 4.6 concludes
the chapter.

4.2. Notation and model
Throughout the discrete tomography literature, several imaging models have been con-
sidered: the grid model, the strip model, the line model, etc. [33, section 7.4.1]. We now
define some general notation. An image is represented by a vector x = (xi) ∈ Rn. A binary
image corresponds with a vector x̄ ∈ {0,1}n. For a given set of k projection directions, the
projection map maps an image x to a vector p ∈ Rm of projection data, where m denotes
the total number of line measurements. As the projection map is a linear transformation, it
can be represented by a matrix W = (wi j) ∈ Rm×n, called the projection matrix. Entry wi j
represents the weight of the contribution of x j to projected line i. From this point on, we
assume that the projection matrix has the property that

∑m
i=1 wi j = k for all j = 1, . . . ,n, i.e.,

constant column sums.
The general reconstruction problem consists of finding a solution of the system Wx = p

for given projection data p, i.e., to find an image that has the given projections. In binary
tomography, one seeks a binary solution of the system. For a given projection matrix W and
given projection data p, let S W(p) = {x ∈ Rn : Wx = p}, the set of all real-valued solutions
corresponding with the projection data, and let S̄ W(p) = S W(p)∩ {0,1}n, the set of binary
solutions of the system. As the main goal of incorporating prior knowledge of the binary
grey levels in the reconstruction is to reduce the number of required projections, we focus on
the case where m is small with respect to n, such that the real-valued reconstruction problem
is severely underdetermined.

For this chapter, the given projection vector q̂ is perturbed by noise with q̂ = p + η
where p is the unknown noiseless projection data and η is the unkown vector of noise.
As the system Wx = q̂ is typically inconsistent, one may try to solve the it approximately.
Alternatively, it can be useful to consider a consistent linear system with a righthand side
that is different, but close to p. We therefore study the consistent linear system Wx = q,
where q is the orthogonal projection of q̂ onto the range of W. As p is not available, we
consider the use of an estimated upper bound for the distance between p and q measured by
some norm, i.e., δ ≥ ‖p− q‖ is given for a defined norm.

4.3. A bound on the difference between all binary solutions
Lemma 3 from Chapter 2 allows us to compute the radius of the hypersphere which contains
all binary solutions of the noiseless problem. The computation of the radius depends on
‖x∗‖2 and ‖x̄‖2, the Euclidean norm of the minimum norm solution and the Euclidean norm
of any binary solution of Wx = p, respectively. Recall that all binary solutions of Wx = p
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have the same length, given by ‖x̄‖22 =
‖p‖1

k as proved in Lemma 1.
This section starts by showing that the Euclidean norm of any binary solution of Wx = p

can be bounded even if p itself is not available, but only a perturbed version of p.

Lemma 6. Let p, q ∈ Rm and x̄ ∈ S̄ W(p). Assume that δ1 ≥ ‖p − q‖1 and define

U x̄ =

√
‖q‖1+δ1

k . Then ‖x̄‖2 ≤ U x̄.

Proof. Write p = q + p− q and use the triangle inequality to obtain

‖p‖1 ≤ ‖q‖1 + ‖p− q‖1, (4.1)

and therefore
‖p‖1 ≤ ‖q‖1 +δ1. (4.2)

Using Eq. (4.2) with ‖x̄‖22 =
‖p‖1

k and applying Lemma 1 of Chapter 2, we find that

‖x̄‖22 ≤
‖q‖1 +δ1

k
, (4.3)

as required. �

The next two lemmas are meant to develop a lower bound for ‖x∗‖2.

Lemma 7. Let p, q ∈ Rm, x∗ = W†p and z∗ = W†q, where W† denotes the Moore-Penrose
inverse of W [12].. Assume that ‖p− q‖2 ≤ δ2. Then ‖x∗− z∗‖2 ≤ ‖W†‖2δ2.

Proof. As the `2-norm is a subordinate norm, the following inequality property holds

‖W†(p− q)‖2 ≤ ‖W†‖2‖p− q‖2 ≤ ‖W†‖2δ2. (4.4)

�

Lemma 8. Let p, q ∈ Rm, x∗ = W†p and z∗ = W†q. Assume ‖p− q‖1 ≤ δ1 and ‖p− q‖2 ≤ δ2.
Define

Lx∗ = max
{
‖z∗‖2−‖W†‖2δ2,0

}
.

Then Lx∗ ≤ ‖x∗‖2.

Proof. A reverse triangle inequality is used to give∣∣∣‖z∗‖2−‖x∗− z∗‖2
∣∣∣ ≤ ‖x∗‖2. (4.5)

From Lemma 7 we have ‖x∗− z∗‖2 ≤ ‖W†‖2δ2 which in combination with Eq. (4.5) gives
the bound ‖x∗‖2 ≥ ‖z∗‖2−‖W†‖2δ2. Hence

max
{
‖z∗‖2−‖W†‖2δ2,0

}
≤ ‖x∗‖2. (4.6)

�

Supposing the existence of at least two different binary solutions of the reconstruction
problem Wx = p, Lemmas 6 and 8 allow us to derive an upper bound for the Euclidean
distance between those solutions.



40 4. Bounds on the difference between solutions in noisy binary tomography

Theorem 7. Let p, q ∈ Rm, x̄, ȳ ∈ S̄ W(p) and x∗ = W†p. Define U x̄ as in Lemma 6, and Lx∗

as in Lemma 8. Define R2
p = U2

x̄ −L2
x∗ . Then ‖ȳ− x̄‖2 ≤ 2Rp.

Proof. From Theorem 3 of Chapter 2, we have ‖x̄− x∗‖22 = ‖x̄‖22 − ‖x
∗‖22. Using the bound

U x̄ for ‖x̄‖2 of Lemma 6 and the bound Lx∗ for ‖x∗‖2 of Lemma 8, both depending on q, we
have

‖x̄− x∗‖22 ≤ R2
p. (4.7)

Equation 4.7 says that any x̄ ∈ S̄ W(p) is not outside of the n-dimensional hypersphere
with radius Rp and center x∗. Therefore,

‖x̄− ȳ‖2 ≤ ‖x̄− x∗‖2 + ‖ȳ− x∗‖2 = 2Rp. (4.8)

�

Corollary 9. Let x̄, ȳ ∈ S̄ W(p) and define Rp as in Theorem 7. Then d(x̄, ȳ) ≤ 4R2
p.

Proof. As x̄ and ȳ are binary, we have d(x̄, ȳ) = ‖x̄− ȳ‖22 ≤ 4R2
p. �

4.4. Bounds based on rounding
The first result of this section shows that any binary solution of Wx = p is not outside of a
hypersphere centered in z∗, the minimal Euclidean norm solution of Wx = q, of which the
radius can be computed based on the given perturbed projection data.

Theorem 8. Let p, q ∈ Rm, x∗ = W† p and z∗ = W†q. Suppose that x̄ ∈ S̄ W(p). Put

R =

√
‖x∗− z∗‖22 + ‖x̄− x∗‖22. Then ‖x̄− z∗‖2 = R.

Proof. As Wx∗,W z∗ ∈ R(W) = {Wx : x ∈Rn}, we also have (Wx∗−W z∗) ∈ R(W). Therefore
x∗− z∗ = W†(p− q) is the minimal Euclidean norm solution of Wx = (p− q). Consequently,
(x∗− z∗) ⊥ (x̄− x∗) ∈ N(W).

Using Pythagoras’ theorem we have

‖x̄− z∗‖22 = ‖x∗− z∗‖22 + ‖x̄− x∗‖22. (4.9)

�

Although we cannot compute the radius R =

√
‖x∗− z∗‖22 + ‖x̄− x∗‖22 from Theorem 8,

we are going to bound it from above. In order to do that, we need to find a way to bound the
term ‖x∗ − z∗‖2. Notice that an upper bound for the term ‖x̄− x∗‖22 is given in the proof of
Theorem 7.

Corollary 10. Let x̄ ∈ S̄ W(p), x∗ = W† p, z∗ = W†q, and Rp defined as in Theorem 7. Then

‖x̄− z∗‖2 ≤ Rq, where Rq =

√[
min

{
‖W†‖2δ2,

√
‖q‖1+δ1

k + ‖z∗‖2
}]2

+ R2
p.
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Proof. In Theorem 8 we have shown that

‖x̄− z∗‖22 = ‖x∗− z∗‖22 + ‖x̄− x∗‖22. (4.10)

Using the upper bounds from Lemma 7 and the proof of Theorem 7,

‖x̄− z∗‖22 ≤
min

‖W†‖2δ2,

√
‖q‖1 +δ1

k
+ ‖z∗‖2


2

+ R2
p, (4.11)

completing the proof. �

Let 〈α〉= min(|α|, |α−1|) for α ∈R, and put Tq =

√∑n
i=1〈z

∗
i 〉

2, i.e., the Euclidean distance
from z∗ to the nearest binary vector. Let T = {v̄ ∈ {0,1}n : ‖v̄− z∗‖2 = Tq} and let r̄ ∈ T , i.e.,
r̄ is among the binary vectors that are nearest to z∗ in the Euclidean sense.

If Tq < Rq and Rq−Tq is small, it is possible to say that a fraction of the rounded values
are correct, i.e., to provide an upper bound on the number of pixel differences between any
solution in S̄ W(p) and r̄. In most cases we can not say which rounded values are correct.

For any two vectors ū, v̄ ∈ {0,1}n, define the difference set D(ū, v̄) = {i : ūi , v̄i} and the
number of differences d(ū, v̄) = #D(ū, v̄), where the symbol # denotes the cardinality operator
for a finite set. Note that d(ū, v̄) = ‖ū− v̄‖1.

Lemma 9. Let r̄ ∈ T and let v̄ ∈ {0,1}n be any binary vector.
Then ‖v̄− z∗‖22 = T 2

q +
∑

i∈D(v̄,r̄) |2z∗i −1|.

Proof. We have the following identities:

‖v̄− z∗‖22 = ‖v̄− r̄ + r̄− z∗‖22
= ‖r̄− z∗‖22 + 2〈r̄− z∗, v̄− r̄〉+ 〈v̄− r̄, v̄− r̄〉

= T 2
q + 2〈r̄− v̄, z∗〉+ ‖v̄‖22−‖r̄‖

2
2

= T 2
q + 2

n∑
i=1

(r̄i− v̄i)z∗i +

n∑
i=1

v̄i−

n∑
i=1

r̄i

= T 2
q +

n∑
i=1

(r̄i− v̄i)(2z∗i −1)

= T 2
q +

∑
i∈D(v̄,r̄)

|2z∗i −1|.

�

Define si = |2z∗i −1| and let π be a permutation of {1, . . . ,n} such that sπ(1) ≤ sπ(2) ≤ . . . ≤ sπ(n),
which can be obtained by sorting the entries si in increasing order.

Theorem 9. Let r̄ ∈ T , x̄ ∈ S̄ W(p). Put

U = max

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2
q−T 2

q

 .
Then d(x̄, r̄) ≤ U.
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Proof. As x̄ ∈ S̄ W(p), we have ‖x̄− z∗‖22 ≤ R2
q. Applying Lemma 9, we find that

R2
q−T 2

q ≥
∑

i∈D(x̄,r̄)

si ≥

d(x̄,r̄)∑
i=1

sπ(i),

which implies that d(x̄, r̄) ≤ U. �

Similarly to Theorem 9, another bound on the difference between any two binary solu-
tions of Wx = q can be derived.

Theorem 10. Let r̄ ∈ T , x̄, ȳ ∈ S̄ W(p). Put

V = max

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ 2(R2
q−T 2

q)

 .
Then d(x̄, ȳ) ≤ V.

Proof. Define x̂ by x̂i = r̄i if x̄i = ȳi, and x̂i = x̄i otherwise. Define ŷ analogously. Then
d(x̂, ŷ) = d(x̄, ȳ), ‖x̂− z∗‖22 ≤ R2

q, and ‖ŷ− z∗‖22 ≤ R2
q. Hence,

2R2
q ≥ ‖x̂− z∗‖22 + ‖ŷ− z∗‖22 = 2T 2

q +
∑

i∈D(r̄,x̂)

si +
∑

i∈D(r̄,ŷ)

si.

As D(r̄, x̂) and D(r̄, ŷ) are disjoint, we have 2R2
q−2T 2

q ≥
∑d(r̄,x̂)+d(r̄,ŷ)

i=1 sπ(i). This implies that
d(x̄, ȳ) = d(x̂, ŷ) ≤ d(r̄, x̂) + d(r̄, ŷ) ≤ V . �

4.5. Computations
In several intermediate bounds developed in this chapter, and in particular in Corollary 10,
the computation of the `2-norm of W†, the Moore-Penrose pseudo-inverse of the projection
matrix, is required. Computing the pseudo-inverse W† is expensive in terms of number of
operations and memory requirements. A computer equipped with 8 GB memory ran out of
memory when computing the matrix W† for images larger than 64×64. There is, however,
a way to compute ‖W†‖2 without computing W† explicitly.

A matrix norm based on a vector norm satisfies certain properties that are analogous to
properties of this vector norm [30]. As the `2- matrix norm is unitary invariant, using the
SVD decomposition of W† we have

‖W†‖2 = ‖VΣ†UT ‖2 = ‖Σ†‖2 = σmax(W†),

where V ∈ Rn×n is unitary, Σ† ∈ Rn×m is a rectangular diagonal matrix with non-negative
entries, UT ∈ Rm×m is unitary, and σmax(W†) is the largest singular value of W†. The matrix
Σ† is the pseudo-inverse of Σ, which is formed by replacing every non-zero diagonal entry
by its reciprocal and transposing the resulting matrix. The diagonal entries of Σ are the
singular values of W. Therefore,

‖W†‖2 =
1

σmin(W)
.
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There are computational techniques for computing the smallest singular value of a mat-
rix without a complete SVD decomposition, such as the power iteration [48] (also known as
Von Mises iteration) applied to the shifted matrix WWT −λmaxI with λmax being the largest
eigenvalue of WWT . The singular values of W are the square roots of the non-negative ei-
genvalues of WWT . However, due to the ill-posed nature of the reconstruction problem, the
smallest singular value can often not be distinguished from small values originated from
numerical errors.

4.6. Conclusions
The nature of the reconstruction problem and the numerical errors in the computation make
the computed smallest singular value of W unsuitable for effective use in the bounds presen-
ted in this chapter. Very small computed values for σmin, which can possibly be attributed to
numerical errors, result in computed upper bounds that are too big to be useful in practice.
In an attempt to overcome this problem, we will demonstrate in the next chapter how ap-
proximations can be made that avoid the computation of ‖W†‖2, resulting in non-guaranteed
bounds that can still be useful in practice.





Chapter 5

Practical error bounds for binary
tomography

This chapter (with minor modifications) has been published as: W. Fortes, J. Sijbers and K.
J. Batenburg. Practical error bounds for binary tomography. In the proceedings of the 1st
International Conference of Tomography of Materials and Structures, 97–100, 2013.

5.1. Introduction
In Computed Tomography (CT), an image of a scanned object is formed by reconstructing
an image of the object from a series of its projections. The image represents some physical
property of the original object, usually the attenuation coefficient, which in turn is related
to the compositions of the object [26]. The reconstructed image is typically not an exact
representation of the original object, for various reasons. Firstly, the measured data itself is
noisy and may contain various imaging artefacts, propagating into the reconstructed image.
Secondly, the reconstruction algorithm itself may not be exact, such that even for noise-
less projections it does not result in a reconstructed image that matches these projections.
Finally, when using a relatively small number of projections, the reconstruction problem
is inherently underdetermined. This means that many solutions may exist, each satisfying
the projection data [35]. To draw quantitative conclusions about the scanned object based on
the reconstructed image, it is essential to determine how well the reconstruction corresponds
with the original object, which we refer to as the accuracy of the reconstruction. At present,
there is a gap in the ability to determine reconstruction accuracy. Based on the point-spread-
function of forward projection and consecutive reconstruction, resolution estimates can be
derived for the reconstructed image [15]. However, such a local resolution measure does not
impose any bound on the global difference between the reconstructed image and the ground
truth. If a large number of projections are available, linear algebra arguments can be used to
test if the pixelized reconstruction is uniquely determined by the measured data [37, p.27]. If
only a small number of projections are available, experimental validation of reconstruction
accuracy, using known phantoms, is the only option.

45
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In Chapter 2, we have developed a mathematical approach that enables the computation
of upper bounds on the reconstruction accuracy when the original object is homogeneous,
i.e. corresponding to a binary image. These error bounds cannot be used directly on exper-
imental images, as they are based on the assumption of perfect, noiseless projection data.
In this chapter we show how one of these error bounds can be adapted to be useful for
bounding the quality of experimental images.

5.2. Approach
The reconstruction problem in tomography can be approximated by a system of linear equa-
tions Wv = p where v ∈Rn denotes a vector of unknown pixel values, p∈Rm denotes a vector
containing the measured projection data and W ∈ Rm×n denotes the discretized projection
operator [33, Chapter 7].

In Chapter 2, it was demonstrated that for parallel beam tomography, the norm ‖x‖2
of all binary solutions of the system Wv = p must be the same, and it can be computed
directly from the projection data. This can be seen from the fact that the sum of the projected
intensities in any direction equals the sum of the image pixels. So, we can determine the sum
of the pixel values based on the projection data. As 02 = 0 and 12 = 1, this sum is equal to
the sum of squared pixel values for any binary image x, and therefore the norm of all binary
solutions is identical.

In fact, it was shown in Chapter 2 that all binary solutions x ∈ {0,1}n lie on a hypersphere

centered in the minimum norm solution x∗ and having radius R =

√
‖x‖22−‖x

∗‖22; see Fig.
5.1. Based on these observations, a methodology was derived to compute an upper bound
on the difference between any two binary solutions, as well as an upper bound on the differ-
ence between a given binary image and any binary solution, all based on the computation
of x∗ and R. The computation of the bounds depends on the hypersphereâĂŹs center x∗,
corresponding to the shortest real-valued solution of the tomography equations. If the pro-
jection data contains no noise or other errors, this solution can be computed efficiently using
iterative methods, such as the Conjugate Gradient Least Squares (CGLS) algorithm [39].

Now suppose that b ∈ {0,1}n represents the ground truth and p = Wb represents the
ideal projections of this object. In practice, the measured projection data q is contaminated
with noise and therefore x∗ cannot be computed, as it requires knowledge of p. Instead, we
consider a different hypersphere containing all binary solutions of the noiseless problem.
This hypersphere is centered in z∗, the minimum norm least squares solution of the available
reconstruction problem Wx = q, and with radius S based on the theorem below:

Theorem 11. S 2 = ‖z∗‖22−2‖x∗‖2‖z∗‖2 cosθ+ ‖x‖22.

Proof. Based on Theorem 8 we know that ‖x− z∗‖22 = ‖x∗ − z∗‖22 + ‖x− x∗‖22. From Chapter
2 we have ‖x− x∗‖22 = ‖x‖22 − ‖x

∗‖22. Furthermore, as the `2-norm is an inner product with
underlying field R, we have

S 2 = ‖x− z∗‖22
= ‖x∗‖22−2‖x∗‖2‖z∗‖2 cosθ+ ‖z∗‖22 + ‖x‖22−‖x

∗‖22

= ‖z∗‖22−2‖x∗‖2‖z∗‖2 cosθ+ ‖x‖22.
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Figure 5.1: All binary solutions x lie on a hypersphere centered in x∗.

�

The theorem expresses the value of S as a function of several terms that can be approx-
imated based on the noisy projection data q. The angle θ refers to the angle between the
vectors x∗ and z∗. As we cannot compute ‖x∗‖2, cosθ and ‖x‖2, we approximate these three
terms. We assume that the noise has a mean value of 0, such that the total summed intensity
of any binary solution can still be computed approximately from the projections as ‖q‖1k ,
where k denotes the number of projections. Moreover, we approximate the norm ‖x∗‖2 by
‖z∗‖2. Finally, cosθ was experimentally computed for several different settings yielding a
value close to 1, which depends on the noise level, image size, and the general shape of the
object. The radius S is then approximately given by

S 2 ≈ (α−1)‖z∗‖22 +
‖q‖1

k
,

where α is a value close to 0 which depends on the specific problem setting and has to be
calibrated based on simulation experiments using phantom images that have similar noise
characteristics and similar general shape as the true object.

The computation of the bounds are the same as given in Chapter 2, but using the hyper-
sphere centered in z∗ and radius S as given above.

5.3. Experiments
Simulation experiments have been performed to determine if the error bounds for noiseless
data can be computed based on noisy projection data. Here we present the result of one such
experiment.

One of the bounds in Chapter 2 concerns an upper bound on the number of pixel dif-
ferences between any binary solution of the tomography problem Wv = p and the rounded
shortest real-valued solution r. The image r can be computed from the projection data by
applying the CGLS algorithm and rounding each entry of the result to the nearest binary
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number. The advantage of this particular bound, is that it can be verified without knowledge
of all binary solutions. Other bounds given in the same chapter deal with the differences
between any two binary solutions, but these bounds cannot be verified based on a single
phantom image. Therefore, we focus here on the bound with respect to r.

Simulated projections were computed based on downsampled versions of the phantom
in Fig. 5.2(a), using a strip model for the projection operator [33, Section 7.4.1] and equian-
gular projections. The phantom was downsampled to binary images of size 32× 32 and
128× 128, respectively, and all experiments were carried out at both these sizes. A mod-
erate amount of additive Gaussian noise was then applied to the projections, yielding the
vector q, to be used for computing the bounds.

The vector z∗ was computed using the CGLS algorithm. The parameter α was found
to be dependent on image size, type of phantom, noise level and number of projections; it
was set to two different values, 0 and 0.02, in our experiments. In Fig. 5.2(b) and 5.2(c),
we show the relative number of pixels (as a fraction of the total number) that differ between
the phantom image in Fig. 5.2(a) and the result of rounding z∗ to the nearest binary image,
which is marked by the label “true error" (red curve), as a function of the number of pro-
jection angles. The estimated error bound for the two values of α are labelled by B0 (α = 0,
blue curve) and B0.02 (α = 0.02, black curve). The blue curve could not be plotted for most
of the angles, as the resulting squared radius S 2 became negative. The black curve, however,
can be computed for all angles and tracks the true error rather well: although the shape of
the curve is somewhat irregular, the estimated error stays within an order of magnitude from
the true error for all experiments.

(a) Binary phantom of size
512×512

(b) Computed error bounds for a down-
scaled phantom of size 32×32

(c) Computed error bounds for down-
scaled phantom of size 128×128

Figure 5.2: Error bounds for simulated noise projection data.

In Fig. 5.3, some results are shown for an experimental micro-CT dataset of a diamond,
acquired using a Scanco micro-CT 40 X-ray scanner based on 500 projections. Fig. 5.3(a)
shows a FBP-reconstructed slice based on all 500 projections, while Fig. 5.3(b) and 5.3(c)
show binary reconstructions computed by applying CGLS and rounding the result based on
10 and 20 projections, respectively. The corresponding approximated error as a function of
the number of projection angles is shown in Fig. 5.3(d), based on a value of α = 0.02.
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(a) Slice of a diamond
from an experimental
micro-CT dataset

(b) Binary reconstruc-
tion from 10 projec-
tions

(c) Binary reconstruc-
tion from 20 projec-
tions

(d) Computed error bound on the differ-
ence between the binary reconstruction and
the true image, as function of the number of
angles

Figure 5.3: Reconstructions and error bounds for a slice of diamond

5.4. Discussion and Conclusions
The approach provided here is the first technique for estimating a global image error in
binary image reconstruction that can be applied to a set of noisy projections. The exper-
imental results demonstrate that error estimates for binary tomography can be computed
based on noisy, non-ideal projection data. The computed estimates have similar properties
to the theoretical estimates that can only be computed if perfect, noiseless projection data
is available. Further research is needed to establish how the factor α should be chosen in
various scenarios, to further validate the approach, and to scale it up to larger images.





Chapter 6

Quality bounds for binary
tomography with arbitrary
projection matrices

This chapter (with minor modifications) has been submitted for publication as: K. J.
Batenburg and W. Fortes. Quality bounds for binary tomography with arbitrary projection
matrices. Discrete Applied Mathematics, Special Issue: DGCI 2013.

6.1. Introduction

Binary tomography deals with the problem of reconstructing a binary image from its pro-
jections [28]. Projection images of an object are typically recorded using a scanning device,
which employs a beam that is transmitted through the object (e.g. photons, electrons). An
array of detectors records the beam intensity after the beam-object interaction, resulting in
a projection of the object. Due to dose constraints or geometrical constraints on the angles
for which projections can be acquired, the set of angles for which projections are acquired
is often limited [25, 33]. By exploiting the fact that the reconstructed image must be bin-
ary, it is often possible to compute useful reconstructions even if just a few projections
are available [28]. However, such underdetermined binary tomography problems can have
a large number of binary solutions, making it important to have a quality measure for the
reconstruction with respect to the unknown original image.

Our results are related to the stability problem in discrete tomography, which has been
studied by several authors [2–4, 44–46] for specific projection models or specific sets of
projection directions.

In Chapter 2, more general results were obtained allowing the computation of error
bounds between images in binary tomography for any number of projection angles but lim-
ited to projection models for which the associated projection matrix has constant column
sums (i.e. identical sums for all columns). The property of constant column sums holds in

51
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particular cases (e.g. the strip model for parallel beam tomography), but limits the applica-
tion of the results to restricted cases. Although the bounds can still be approximated if this
assumption is not completely satisfied, it is then no longer clear if they really provide a
quality guarantee.

In this chapter, we derive error bounds that are more general than those in Chapter 2,
as they can be applied to basically any problem modelled as an underdetermined algebraic
linear system of equations. Although our focus is on tomography, our results are more gen-
eral. We therefore consider the following general problem, of finding a binary vector that
satisfies

Ax = b, (6.1)

a consistent and underdetermined linear system of algebraic equations with A = (ai j) ∈Rm×n,
m < n, the vector of unknowns x = (x j) ∈ Rn and the right-hand side b = (bi) ∈ Rm.

Finding a binary solution of Eq. (6.1) is often a very difficult problem and several binary
solutions may exist. A given binary solution does not have to be close to another binary
solution. In practice, the righthand side vector b is often obtained from an original binary
vector x by a certain measurement procedure, modelled as the matrix A. For a given meas-
urement vector b, it is unlikely that all binary solutions are representative solutions of the
specific problem which yielded b, since some solutions of Eq. (6.1) may be meaningless for
physical problems. In such cases, it can be important to know how different these solutions
can be. If one can give a bound on the maximum difference between two solutions, this also
bounds the maximum difference between the ground truth vector, from which the vector of
measured data b was obtained, and any other solution.

This chapter is structured as follows. In Section 6.2, we establish the notation which will
be used throughout this chapter. In Section 6.3, different versions of bounds on the Euclidean
norm of binary solutions are introduced. In Section 6.4, a general bound is derived on the
difference between two binary solutions. Section 6.5 deals with bounds that are based on
properties of the binary vectors that are obtained by rounding the minimum norm solution.
These bounds are refined with a different approach in Section 6.6. Section 6.7 presents a
series of simulation experiments for fan and parallel beam binary tomography and their
results. From these results, the practical value of the proposed bounds can be evaluated for
different kinds of problems. Section 6.8 concludes the chapter.

6.2. Notation and the minimum norm solution
For a given matrix A and given right-hand side b, let S A(b) = {x ∈Rn : Ax = b}, the set of all
real-valued solutions corresponding with the given data. A binary vector corresponds with
a vector x̄ ∈ {0,1}n. Let S̄ A(b) = S A(b)∩{0,1}n, the set of binary solutions of the system.

Throughout this chapter, we use the vector 0t ∈ R
t (for an integer t > 0), to denote a

column vector consisting of t 0’s, the vector 1t ∈ R
t to denote a column vector consisting

of t 1’s and the identity matrix It ∈ R
t×t. However, we often use the vectors 0 and 1 and

the identity matrix I without specifying their dimension, as it does not compromise the
understanding and clarity of the proofs.

For any two vectors ū, v̄ ∈ {0,1}n, define the difference set D(ū, v̄) = {i : ūi , v̄i} and the
number of differences d(ū, v̄) = #D(ū, v̄), where the symbol # denotes the cardinality operator
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for a finite set. Note that d(ū, v̄) = ‖ū− v̄‖1.
For the following sections, consider the problem of finding a binary solution of a fixed

linear system Ax = b called the binary solution problem.
As the matrix A is not a square matrix, and may not have full rank, it does not have

an inverse. Recall that the Moore-Penrose pseudo inverse of an m× n matrix A is an n×m
matrix A†, which can be uniquely characterized by the two geometric conditions

A†b ⊥N(A) and (I− AA†)b ⊥ C(A), ∀b ∈ Rm,

where N(A) is the nullspace of A and C(A) is the column space of A [12, page 15].
Let x∗ = A†b. Then x∗ also has the property (see Chapter 3 of [11]) that it is a real-

valued solution of minimal Euclidean norm of the system Ax = b, provided that such a
solution exists. The minimum norm solution plays an important role in the bounds we will
derive for the binary solution problem. Several methods are available for the computation
of the minimum norm solutions. One approach is computing the QR decomposition of AT ,
see [5] for details. However, in several cases an iterative method, such as CGLS [39], is
more suitable.

6.3. The Euclidean norm of binary solutions

The bounds on the difference between binary solutions that will be introduced in the up-
coming sections are functions of the Euclidean norm of the solutions of the binary solution
problem (6.1). In this section we present lower and upper bounds on the Euclidean norm
(also referred to as length) of all binary solutions of the equation system (6.1).

If the matrix A has constant column sum k, the length of any binary solution can be
determined directly from the data b, as shown in Chapter 2. Let x̄ ∈ {0,1}n and b = Ax̄.
Then

m∑
i=1

bi = 1T
mb = 1T

m Ax̄ = k1T
n x̄ = k

n∑
j=1

x̄ j.

and hence ‖x̄‖22 =

∑n
j=1 bi

k . This result also proves that if there is more than one binary vector
satisfying Ax = b, all of them have the same length. However, if the matrix A does not have
the property of constant column sums, the binary solutions of problem (6.1) may differ in
length.

There are cases in which the matrix A almost has the property of constant column sums
except for a very small discrepancy. It happens, for instance, due to numerical approxima-
tions. For such cases, there is a trivial way to obtain upper and lower bounds for the length
of any binary solution, provided that a few conditions on b and A are satisfied:

Theorem 12. Let
∑m

i=1 bi ≥ 0, x̄ ∈ S̄ A(b) and put vT = 1T A. Define δ+ = max1≤i≤n vi and
δ− = min1≤i≤n vi, the maximum and the minimum column sums of A, respectively. Suppose

that δ− > 0. Then
⌈∑m

i=1 bi
δ+

⌉
≤ ‖x̄‖22 ≤

⌊∑m
i=1 bi
δ−

⌋
.
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Proof.
m∑

i=1

bi = 1T b = 1T Ax̄ = vT x̄ =

n∑
j=1

v j x̄ j, (6.2)

and therefore ∑m
i=1 bi

δ+
≤

n∑
j=1

x̄ j ≤

∑m
i=1 bi

δ−
. (6.3)

As x̄ ∈ {0,1}n, we have ‖x̄‖22 = ‖x̄‖1 =
∑n

j=1 x̄ j and⌈∑m
i=1 bi

δ+

⌉
≤ ‖x̄‖22 ≤

⌊∑m
i=1 bi

δ−

⌋
. (6.4)

�

However, if the difference
⌊∑m

i=1 bi
δ−

⌋
−

⌈∑m
i=1 bi
δ+

⌉
is not very small, the bounds computed

by Theorem 12 can be very different from the length of a binary solution x̄. In order to
overcome this restriction, we introduce, in the following theorems, bounds on the length of
any binary solution which will be used in the remainder of this chapter.

Lemma 10. Let x̄ ∈ S̄ A(b), x∗ = A†b and eT = 1T (I− A†A). Then ‖x̄‖22 = 1T x∗+ eT x̄.

Proof. Let yT
LS = 1T A† be the transpose of the minimum norm least squares solution of the

linear system AT y = 1. We have
AT yLS = 1− e,

with e = 1− AT yLS = (I− A†A)T 1, the residual. Note that in the case of constant column
sums we have e = 0.

Left-multiplying the equality Ax̄ = b by the vector yT
LS , we obtain

yT
LS Ax̄ = (1T − eT )x̄ = yT

LS b,

which yields

1T x̄ = yT
LS b + eT x̄

= 1T x∗+ eT x̄.

Since x̄ ∈ {0,1}n, we have 1T x̄ = ‖x̄‖1 = ‖x̄‖22. �

Lemma 10 can be interpreted as follows: any solution of the underdetermined problem
(6.1) can be written as the sum of a vector orthogonal to N(A) (i.e., the minimum norm
solution) and the orthogonal projection of itself ontoN(A). Hence, the sum of the elements
of a solution is equal to the sum of the elements of the minimum norm solution plus the sum
of the elements of the orthogonal projection of this solution onto the null space of A. The
orthogonal projector onto N(A) is given by P = (I− A†A).

Define eT = 1T (I− A†A), a correction vector, which will be frequently used throughout
this chapter.

Lemma 10 states that ‖x̄‖22 = 1T x∗ + eT x̄, which cannot be computed exactly without
knowing x̄. However, it is possible to bound ‖x̄‖22 as follows:
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Theorem 13. Let x̄ ∈ S̄ A(b) and x∗ = A†b. Then1T x∗+
∑

i∈{ j:e j<0}

ei

 ≤ ‖x̄‖1 ≤
1T x∗+

∑
i∈{ j:e j>0}

ei

 .
Proof. By Lemma 10, we have ‖x̄‖22 = 1T x∗+ eT x̄, allowing ‖x̄‖22 to be bounded as

1T x∗+

n∑
i=1

min
ȳi∈{0,1}

eiȳi ≤ ‖x̄‖22 ≤ 1T x∗+

n∑
i=1

max
ȳi∈{0,1}

eiȳi, (6.5)

resulting in
⌈
1T x∗+

∑
i∈{ j:e j<0} ei

⌉
≤ ‖x̄‖22 ≤

⌊
1T x∗+

∑
i∈{ j:e j>0} ei

⌋
, as desired. �

The bounds given in Theorem 13 are based on the idea of implicitly selecting binary
vectors to minimize or maximize the sum of the elements of the correction vector e. How-
ever, this approach does not consider using the number of ones of these binary vectors to
bound the length of the binary solutions.

Let ρ be a permutation of {1, . . . ,n} such that eρ(1) ≥ eρ(2) ≥ . . . ≥ eρ(n), which can be
obtained by sorting the entries ei in non-increasing order.

Theorem 14. Let x̄ ∈ S̄ A(b)\{0,1}. Suppose that 1T x∗+eT 1< n. There is a unique 1≤ ` < n
such that

(C1) `+ 1 > 1T x∗+

`+1∑
j=1

eρ( j) and

(C2) ` ≤ 1T x∗+
∑̀
j=1

eρ( j).

For this `, we have ‖x̄‖1 = ‖x̄‖22 ≤ `.

Proof. From Lemma 10, we have

‖x̄‖1 = 1T x∗+ eT x̄ = 1T x∗+

n∑
i=1

ei x̄i = 1T x∗+
∑

i∈{ j:x̄ j=1}

ei ≤ 1T x∗+

‖x̄‖1∑
i=1

eρ(i). (6.6)

Consider the concave function f (`) = 1T x∗ +
∑`

i=1 eρ(i) and the function g(`) = `, for
` = 1, . . . ,n− 1. From Eq. (6.6), we know that g(‖x̄‖1) ≤ f (‖x̄‖1), and from the assump-
tion of the Theorem, we have f (n) = 1T x∗ + eT 1 < n = g(n). As we want an upper bound
for ‖x̄‖1, we now try to find the largest value of ` for which g(`) ≤ f (`). We distinguish the
following cases:

(i) g(`) > f (`) for all ` = 1, . . . ,n. Then there is no ` satisfying condition (C2), therefore
this case cannot occur.

(ii) g(`) ≤ f (`) for ` = 1, . . . , s and g(`) > f (`) for ` = s + 1, . . . ,n. Then (C1) and (C2) are
jointly satisfied only for ` = s.
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(iii) g(`) > f (`) for ` = 1, . . . , t−1; g(`) ≤ f (`) for ` = t, . . . , s; g(`) > f (`) for ` = s+1, . . . ,n.
Then (C1) and (C2) are jointly satisfied only for ` = s.

If g(`) < f (`) for all ` = 1, . . . ,n− 1, then 1T x∗ + eT 1 ≮ n, which does not satisfies the
assumptions of the Theorem. �

Example 1. Consider the linear system of equations Ax = b with the set of binary solutions
S̄ A(b) = {x̄(1), x̄(2), x̄(3)} such that

A =

(
1 1 0 1 0
0 1 1 0 1

)
, b =

(
2
1

)
, x̄(1) =


0
1
0
1
0

 , x̄(2) =


1
1
0
0
0

 and x̄(3) =


1
0
1
1
0

 .

In order to apply Theorem 14 and obtain an upper bound on the Euclidean norm of any
binary solution of the given linear system, the correction vector e = (I− A†A)T 1 must be
computed. The explicit computation of the pseudo-inverse A† is not necessary, as indicated
in the proof of Lemma 10. Hence, we have eT =

(
0.25 -0.5 0.25 0.25 0.25

)
and

x∗T =
(

0.625 0.75 0.125 0.625 0.125
)
.

We check the conditions (C1) and (C2) of Theorem 14 for 1 ≤ ` < 5, and find that they
are satisfied only for ` = 3 :

4 > 1T x∗+

4∑
i=1

eρ(i) = 2.25 + 1 = 3.25 and 3 ≤ 1T x∗+

3∑
i=1

eρ(i) = 2.25 + 0.75 = 3

which gives, for any x̄ ∈ S̄ W(p), ‖x̄‖22 ≤ 3.

6.4. A bound based on the minimum norm solution

In this section, a first bound is derived on the distance between solutions of the binary
reconstruction problem, which follows from the fact that the Euclidean distance between
the minimum norm solution and any binary solution of Eq. (6.1) can be bounded by an
expression based on the minimum norm solution and the elements of the correction vector.

Lemma 11. Let x̄ ∈ S̄ A(b). Then ‖x̄− x∗‖2 =

√
‖x̄‖22−‖x

∗‖22.

Proof. From the definition of x∗ we have (x̄− x∗) ∈ N(A), and x∗ ⊥ (x̄− x∗). Applying
Pythagoras’ Theorem and Lemma 10 yields

‖x̄− x∗‖22 = ‖x̄‖22−‖x
∗‖22. (6.7)

�
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For x̄ ∈ {0,1}n, define RA,b(x̄) =

√
1T x∗+ eT x̄−‖x∗‖22. Notice that if x̄ ∈ S̄ A(b) we have

RA,b(x̄) =

√
‖x̄‖22−‖x

∗‖22. The function RA,b(x̄) will be used throughout this chapter, and
we refer to RA,b(x̄) as the central radius of x̄. According to Lemma 11, any binary solution
x̄ of problem (6.1) is on the hypersphere centered in x∗ with radius RA,b(x̄). Notice that
different binary solutions of problem (6.1) may lie on different hyperspheres.

In further theorems, we are interested in computing R ∈ R such that R ≥ RA,b(x̄) for all
x̄ ∈ S̄ A(b), i.e, we want an upper bound for all RA,b(x̄) with x̄ ∈ S̄ A(b). To this end, the
bound R can be computed by Lemma 11 combined either with Theorem 12, 13 or 14. If
we also consider the lower bound from Theorem 13 (or 12), we obtain two radii defining a
spherical shell centered in x∗ containing all binary solutions.

Supposing the existence of at least two different binary solutions, the upper bound R of
the central radius allows us to derive an upper bound for the number of entry differences
between those solutions.

Theorem 15. Let x̄, ȳ ∈ S̄ A(b) and R ≥ RA,b(ū), for all ū ∈ S̄ A(b). Then d(x̄, ȳ) ≤ 4R2.

Proof. According to Lemma 11, we have ‖x̄ − x∗‖2 = RA,b(x̄) and ‖ȳ − x∗‖2 = RA,b(ȳ).
Therefore,

‖x̄− ȳ‖2 ≤ ‖x̄− x∗‖2 + ‖ȳ− x∗‖2 = RA,b(x̄) +RA,b(ȳ) ≤ 2R. (6.8)

As x̄ and ȳ are binary, we have d(x̄, ȳ) = ‖x̄− ȳ‖1 = ‖x̄− ȳ‖22. �

6.5. Bounds based on rounding the minimum norm solution
In this section we repeat several results of Chapter 2 (without their proof), which can be
extended to the case of non-constant column sums of the projection matrix, simply by using
an upper bound on the central radius instead of using the exact central radius (as in Chapter
2). In the experiments of Section 6.7, these bounds will be compared to the new bounds
introduced in Section 6.6. The results of this section are expressed as theorems and are
illustrated by an example.

The fact that the elements of S̄ A(b) surround the minimum norm solution x∗, suggests
that binary solutions can often be found near x∗. It is therefore natural to consider the vector
that is obtained by rounding each entry of x∗ to the nearest binary value. The following
bounds are based on the number of differences between a binary solution of problem (6.1)
and a binary vector obtained by rounding x∗.

Let T = {w̄ ∈ {0,1}n : ‖w̄− x∗‖2 ≤ ‖ū− x∗‖2, for all ū ∈ {0,1}n} and let r̄ ∈ T , i.e., r̄ is
among the binary vectors that are nearest to x∗ in the Euclidean sense. Put T = ‖r̄− x∗‖2,
i.e., the Euclidean distance from x∗ to the nearest binary vector. If R > T and R−T is small,
it is possible to say that a fraction of the rounded values are correct, i.e., to provide an upper
bound on the number of entry differences between any solution in S̄ A(b) and r̄. In most
cases we cannot say which rounded values are correct.

Lemma 12. Let r̄ ∈ T and x̄ ∈ S̄ A(b). Then R2
A,b(x̄)−T 2 =

∑
i∈D(x̄,r̄) |2x∗i −1|.

Define βi = |2x∗i − 1| and let π be a permutation of {1, . . . ,n} such that
βπ(1) ≤ βπ(2) ≤ . . . ≤ βπ(n), which can be obtained by sorting the entries βi in increasing order.
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Theorem 16. Let r̄ ∈ T and R ≥ RA,b(ū), for all ū ∈ S̄ A(b). Put

U = max

0 ≤ ` ≤ n :
∑̀
i=1

βπ(i) ≤ R2−T 2

 .
Then for any x̄ ∈ S̄ A(b), we have d(r̄, x̄) ≤ U.

Example 2. Using the same data as given in Example 1, we compute

x∗ =


0.65
0.75

0.125
0.625
0.125

 , r̄ =


1
1
0
1
0

 , β =


0.25
0.5
0.75
0.25
0.75

 and βπ =


0.25
0.25
0.5
0.75
0.75

 ,
where r̄ is obtained by rounding the entries of x∗ to binary values. Then, we compute
T 2 = ‖r̄− x∗‖22 = 0.375 and, from Lemma 11 and Example 1, R2 = 1.625 ≥ ‖x̄‖22−‖x

∗‖22.
Applying Theorem 16, we verify, for 0 ≤ ` ≤ 5, that

3∑
i=0

βπ(i) = 1 ≤ 1.25 = R2−T 2 and
4∑

i=0

βπ(i) = 1.75 � 1.25 = R2−T 2.

Then for any x̄ ∈ S̄ A(b), we have d(r̄, x̄) ≤ 3.

Theorem 17. Let x̄, ȳ ∈ S̄ A(b), r̄ ∈ T and R ≥ RA,b(ū), for all ū ∈ S̄ A(b). Put

U = max

0 ≤ ` ≤ n :
∑̀
i=1

βπ(i) ≤ 2
(
R2−T 2

) .
Then d(x̄, ȳ) ≤ U.

6.6. Bounds based on a subsequent radius reduction
In this section we do not use the upper bound for the length of binary solutions
given by Theorem 12 or 14, but the one from Theorem 13 only. Recall from the
proof of Theorem 13 that a binary vector z̄ can be constructed (not necessarily a
solution of the binary solution problem), which maximizes the central radius, i.e.,
z̄ ∈ {w̄ ∈ {0,1}n : RA,b(w̄) ≥ RA,b(ū), for all ū ∈ {0,1}n}. After computing the largest cent-
ral radius RA,b( z̄), a radius reduction is performed based on a function depending on the
correction vector e and the binary vector r̄ closest to the minimum norm solution x∗ (the
center of the hypersphere containing all binary solutions). For the next theorems, recall that
eT = 1T (I− A†A) and T = ‖r̄− x∗‖2.

Lemma 13. Let x̄, ȳ ∈ {0,1}n. Then, R2
A,b(x̄) = R2

A,b(ȳ)−
∑n

i=1 ei(ȳi− x̄i).
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Proof. As R2
A,b(x̄) = 1T x∗+ eT x̄−‖x∗‖22 and R2

A,b(ȳ) = 1T x∗+ eT ȳ−‖x∗‖22, we have

R2
A,b(ȳ)−R2

A,b(x̄) = eT (ȳ− x̄).

Hence, R2
A,b(x̄) = R2

A,b(ȳ)−
∑n

i=1 ei(ȳi− x̄i). �

Lemma 14. Let x̄ ∈ S̄ A(b), r̄ ∈ T and α̂i = ei(z̄i− x̄i), for i = 1, . . . ,n. Then

R2
A,b( z̄)−T 2 ≥

∑
i∈D(r̄,x̄)

(α̂i +βi).

Proof. From Lemma 11, we have ‖x̄− x∗‖22 = R2
A,b(x̄). Applying Lemma 12, we find that

R2
A,b(x̄)−T 2 = RA,b( z̄)−

n∑
i=1

α̂i−T 2 =
∑

i∈D(r̄,x̄)

βi.

It is straightforward to check that α̂i ≥ 0 and
∑

i∈{ j:x j=z j} α̂i = 0. Hence we have

R2
A,b( z̄)−T 2 =

n∑
i=1

α̂i +
∑

i∈D(r̄,x̄)

βi

=
∑

i∈D(x̄, z̄)
⋃

D(r̄,x̄)

α̂i +
∑

i∈D(r̄,x̄)

βi

≥
∑

i∈D(r̄,x̄)

(α̂i +βi).

�

Lemma 15. Let x̄ ∈ S̄ A(b), r̄ ∈ T and αi = ei(z̄i− |r̄i−1|), for i = 1, . . . ,n. Then

R2
A,b( z̄)−T 2 ≥

∑
i∈D(r̄,x̄)

(αi +βi).

Proof. By the definition of α,

αi = ei(z̄i− |r̄i−1|) = ei(z̄i− x̄i) = α̂i, for all i ∈ D(x̄, r̄). (6.9)

From Lemma 14 and Eq. (6.9), we find that

R2
A,b( z̄)−T 2 ≥

∑
i∈D(r̄,x̄)

(α̂i +βi) =
∑

i∈D(r̄,x̄)

(αi +βi),

as desired. �

Let γi = αi + βi and φ be a permutation of {1, . . . ,n} such that γφ(1) ≤ γφ(2) ≤ . . . ≤ γφ(n),
which can be obtained by sorting the entries γi in increasing order.
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Theorem 18. Let x̄ ∈ S̄ A(b) and r̄ ∈ T . Define αi = ei(z̄i − |r̄i − 1|) and γi = αi + βi, for
i = 1, . . . ,n. Put

U = max

0 ≤ ` ≤ n :
∑̀
i=1

γφ(i) ≤ RA,b( z̄)2−T 2

 .
Then d(r̄, x̄) ≤ U.

Proof. From Lemma 15 we have

R2
A,b( z̄)−T 2 ≥

∑
i∈D(r̄,x̄)

(αi +βi) ≥
d(r̄,x̄)∑
i=1

γφ(i),

which implies that d(r̄, x̄) ≤ U. �

Theorem 18 is based in the following: consider the set of entries where r̄ and x̄ are
different. If we transform r̄ into x̄ by performing a sequence of single-entry changes, each
time an entry i of r̄ is changed the squared Euclidean distance from the current vector to x∗
increases by βi = |2x∗i −1| and the current central radius reduces by αi = ei(z̄i− |r̄i−1|).

Example 3. Using the same data given in Example 1, we compute R2
A,b( z̄), the largest

central radius that can be obtained by z̄ ∈ {0,1}n, as given by Theorem 13.

z̄ =


1
0
1
1
1

 , α =


0.25

0
0

0.25
0

 , γ =


0.5
0.5

0.75
0.5

0.75

 and γφ =


0.5
0.5
0.5

0.75
0.75

 .

With R2
A,b( z̄)−T 2 = 1.875−0.375 = 1.5, we apply Theorem 18 and verify, for 0 ≤ ` ≤ 5, that

3∑
i=0

γφ(i) = 1.5 ≤ 1.5 and
4∑

i=0

γφ(i) = 2.25 � 1.5.

Then for any x̄ ∈ S̄ A(b), we have d(r̄, x̄) ≤ 3.

Theorem 19. Let x̄, ȳ ∈ S̄ A(b) and r̄ ∈ T . Define αi = ei(z̄i − |r̄i − 1|) and γi = αi + βi, for
i = 1, . . . ,n. Put

U = max

0 ≤ ` ≤ n :
∑̀
i=1

γφ(i) ≤ 2
(
R2

A,b( z̄)−T 2
) .

Then d(x̄, ȳ) ≤ U.

Proof. From Lemma 15 we have

2
(
R2

A,b( z̄)−T 2
)
≥

∑
i∈D(r̄,x̄)

γi +
∑

i∈D(r̄,ȳ)

γi =
∑

i∈D(x̄,ȳ)

γi +
∑

i∈D(r̄,x̄)
⋂

D(r̄,ȳ)

2γi. (6.10)
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As γi ≥ 0, for all i = 1, . . . ,n, then

2
(
R2

A,b( z̄)−T 2
)
≥

∑
i∈D(x̄,ȳ)

γi ≥

d(x̄,ȳ)∑
i=1

γφ(i), (6.11)

which implies that d(x̄, ȳ) ≤ U. �

6.7. Numerical experiments
A series of experiments was performed to investigate the practical value of the bounds given
in the theorems and corollaries presented in the previous sections, where the bounds were
evaluated for a range of problems. The experiments have been performed for two basic
acquisition geometries: parallel beam and fan beam tomography. All experiments are based
on simulated projection data obtained by computing the projection data from the test images
(so-called phantoms) in Fig. 6.1. We refer to Chapter 2 for information on the origin of these
phantoms.

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Figure 6.1: Original phantom images used for the experiments.

All phantoms have a size of 512×512 pixels. To perform experiments for images with
varying image size (smaller than 512×512), the phantoms have been downscaled to obtain
binary images of the appropriate sizes.

The remainder of this section is structured as follows. Brief descriptions of parallel
beam tomography and fan beam tomography are presented in section 6.7.1. The quality
of the bounds on the length of binary solutions is evaluated in section 6.7.2. Experiments
with bounds on the difference between binary solutions for the tomography problem are
presented in section 6.7.3.

6.7.1. Tomography models
Throughout the tomography literature, several imaging models have been considered [33,
section 7.4.1]. The unknown image is often approximated by an image defined on a discrete
pixel grid. In parallel beam tomography, a projection is computed by considering a set
of parallel rays in a given direction and computing a weighted sum of all the pixels that
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intersect with each ray, see Fig. 6.2(a). We select projection angles equally spaced between
0°and 180°.

(a) Parallel beam geometry (b) Fan beam geometry

Figure 6.2: Tomography geometry

In fan beam tomography, a point source emits a set of rays in all directions and an array
of detectors measures the weighted sum of all the pixels that intersect with each ray, see Fig.
6.2(b). In our case, we assume that the detector is flat, i.e., all measurements are performed
on a detector that follows a straight line. The phantom image is centered around the point of
rotation of the source and detector. As the source and detector are positioned further away
from the center of ration, the the fan beam geometry becomes more and more similar to a
parallel beam geometry. We select projection angles equally spaced between 0°and 360°.

The intersection between a pixel and a ray can be computed in different ways, each
leading to a different model for the imaging process. A common model for computing the
projections of a pixelized image is the line model. In the line model, the weight ai j, defined
by the intersection between beam i and pixel j is equal to the intersection length between
the line (beam) and the pixel, Fig. 6.3(a).

In parallel beam tomography, for the case where the projection is aligned with the hori-
zontal and vertical axis, the weight function of the line model has two discontinuities. Due
to floating point errors, these can easily lead to pixel weights set to 0, where in fact they
should be set to 1, or vice versa. The weighting scheme introduced by Joseph [32] does not
have this drawback. Here, the weights ai j are the interpolation coefficients obtained when
tracing the line row by row (or column by column, depending on the projection angle), and
applying linear interpolation between the centers of the two adjacent pixels, as shown in
Fig. 6.3(b).

The strip model differs from the line model because the beam is a strip instead of a line.
The weight ai j is determined by the intersection area between strip i and the pixel j. For
both line and Joseph’s models, the column sums of their respective projection matrix is not
constant while it is constant for the strip model in parallel beam tomography. Despite the
fact that a projection matrix for the line model in parallel beam tomography does not have
constant column sums, the variance of the column sums is small. The line model in fan beam
tomography shows stronger difference as compared with the line model from parallel beam
tomography. To show this, we have computed the correction vector e and plotted the sum
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(a) Line model (b) Joseph’s model (c) Strip model

Figure 6.3: Projection models

of the absolute value of its entries divided by its number of entries for several projection
angles, as shown in Fig. 6.4. Recall that when the projection matrix has constant column
sums, the vector e is a null vector.

(a) Image size: 32×32 (b) Image size: 64×64 (c) Image size: 128×128

Figure 6.4: Relative `1-norm of the correction vector e for the line model in parallel and fan beam
tomography.

We will show experimental results for parallel beam tomography with the three projec-
tion models presented (line, Joseph’s and strip). For fan beam tomography we use only the
line model.

6.7.2. Bounds on the number of ones in binary solutions

The linear system (6.1) may have binary solutions with different lengths. In Section 6.4 we
have presented different ways of computing an upper bound for the length of any binary
solution. The expressions D(i), (i = 1,2,3) represent the difference between the computed
upper bound for the number of ones of any binary solution (Theorems 12, 13 and 14, respect-
ively) and the actual number of ones of the binary image used to construct the projections.
A comparison between these bounds is shown in Fig. 6.5 for Phantom 4 with size 512×512.
Fig. 6.5 includes three graphs, each one for a different parallel beam tomography model.

The graph in Fig. 6.5(a) corresponds to the strip model, for which the projection matrix
has the property of constant column sums except for numerical errors. Figures 6.5(b) and
6.5(c) correspond to the line and Joseph’s models.
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(a) Strip model
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(b) Line model
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(c) Joseph’s model

Figure 6.5: Absolute difference between the bound for the number of ones in any binary solution and
the number of ones in the phantom.

It can be observed that for the strip model, the most basic bound is typically smaller than
the other two, more refined, bounds. However, the number of pixels by which this bound
differs from the other bounds is very small compared with the total number of pixels. The
graphs for the line and Joseph’s models show that the bound given in Theorem 12 can give
very high bounds with a significant difference with respect to the other two bounds, which
are close to each other. The bounds for the line and Joseph’s model can be better visualized
in Fig. 6.6. A comparison between these bounds is shown in Fig. 6.6 for Phantom 4 with
size 512× 512 for parallel beam tomography. Fig. 6.6 also includes the same bounds for
Phantom 4 of size 128×128 with the line model for fan beam tomography.

0 50 100 150 200
50

100

150

200

250

300

350

400

450

500

550

Number of angles

N
u

m
b

e
r 

o
f 

p
ix

e
ls

 

 

D(2)

D(3)

(a) Parallel beam: line model
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(b) Parallel beam: Joseph’s model
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(c) Fan beam: line model

Figure 6.6: Absolute difference between the bound for the number of ones in any binary solution and
the number of ones of the phantom.

The upper bound for the number of ones in binary solutions given in Theorem 14 is
computed by the intersection of two functions. One of these functions is the linear function
g(`) = `, which corresponds with the number of ones in a binary solution, while the other
function is a concave function, which defines an upper bound on the number of ones. An ex-
ample of a plot of these two functions can be seen in Fig. 6.7 for Phantom 4, using Joseph’s
model. The Phantom used for Fig. 6.7(a) has size 32× 32 and 10 projection angles were
used. For Fig. 6.7(b) the Phantom has size 128×128 with 32 projection angles. The results
for fan beam tomography are somewhat similar to the ones of parallel beam tomography
and are not shown here. Note that the graphs of the linear function g are almost vertical, due
to the scale of the plots.
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From Fig. 6.7(a), we have 300< f (`)< 302 for 0≤ ` < n, so ‖x̄‖1 = 301. For the example
in Fig. 6.7(b) the bound bound is not exact, but it is very close to the actual number of ones
(4615) of the original phantom.

(a) Phantom 4 (32×32), 10 projections (b) Phantom 4 (128× 128), 32 projec-
tions

Figure 6.7: Intersection between the two functions determines an upper bound for the length of any
binary solution.

There is no guarantee that increasing the number of projection angles decreases the
bound for the number of ones in the binary solutions. This implies that the bound for the
number of ones can be recomputed every time a new angle is added and the smallest selected
to generate the error bounds. This has not been done in the graphs of this chapter.

6.7.3. Bounds on the difference between binary solutions and binary ap-
proximate solutions

We now focus on the computation of the actual quality bounds for solutions of the binary
reconstruction problem. In each experiment, the minimum norm solution x∗ was first com-
puted using the CGLS algorithm. For some bounds, it is necessary to compute the rounded
central reconstruction r̄ which was performed by rounding x∗ to the nearest binary vector,
choosing r̄i = 1 if x∗i = 1

2 . Based on x̄ and r̄, the various upper bounds described in Sections
6.3-6.6 were computed.

When presenting the results, we express the bounds on the pixel differences between
two images as a fraction of the total number of image pixels. This allows for more straight-
forward interpretation of the results than using the absolute number of pixel differences.
As a substantial number of bounds will be given throughout this chapter, we introduce the
following notation:

• The expressions Ud(i) (i = 1,2,3) will represent bounds on the number of pixel dif-
ferences between any two binary solutions of the reconstruction problem.

• The expressions Us(i) (i = 1,2) will represent bounds on the number of pixel differ-
ences between the rounded central reconstruction r̄ and any binary solution.

The bounds within each class Ud and Us represent upper bounds for the same distance
measure and can therefore be compared. The expression Es denotes the number of pixel
differences between the rounded central reconstruction and the phantom.
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The expressions Ud(1) is computed by using Theorem 15, Ud(2) by using Theorem 17
and Ud(3) by using Theorem 19. The expressions Us(i), (i = 1,2) are computed by using
Theorems 16 and 18 respectively, with the bound on the length of binary solutions from
Theorem 14.

Several graphs presented in this section use a logarithmic scale for the error bounds. In
some cases, the bound may become very small, or even 0, resulting in a point on the graph
that cannot be plotted. These points are simply removed from the plot, causing the graph to
be disconnected.

Parallel beam tomography

Experiments have been performed based on the four phantom images, scaled to sizes of
32×32, 128×128 and 256×256 respectively, varying the number of projection directions.
The first set of results are shown in Fig. 6.8, where bounds Us(1) and Us(2) on the number
of differences between r̄ and the phantom image x̄, and the exact error between r̄ and the
phantom image x̄ are jointly plotted. In Fig. 6.9, the bounds Ud(1)−Ud(3) on the distance
between any two binary solutions of the reconstruction problem are shown for the same
experiments. For both Fig. 6.8 and Fig. 6.9 we used Joseph’s model, which has results
similar to the line model.

Fan beam tomography

Experiments have been performed based on the four phantom images, scaled to sizes of
32×32, 128×128 and 256×256 respectively, varying the number of projection directions.
The first results are shown in Fig. 6.10, where bounds Us(1) and Us(2) on the number of
differences between r̄ and the phantom image x̄, and the exact error between r̄ and the
phantom image x̄ are jointly plotted. In Fig. 6.11, the bounds Ud(1)−Ud(3) on the distance
between any two binary solutions of the reconstruction problem are shown for the same
experiments.

6.7.4. Discussion of the results

Despite the facts that the four phantoms have strong differences in shape and morphology,
and that the tomography models are quite different, the results shown in Figs. 6.8-6.11 are
consistent throughout all experiments. In general, the bounds become smaller as the number
of projection angles is increased.

From the difference between the bounds based on Section 6.4 and the bounds based on
the rounded central reconstruction, we see that in most cases the phantom x̄ is substantially
closer to r̄ than to x∗.

In Figs. 6.8 and 6.10, it can be observed that the true fraction of pixel differences
between the phantom image x̄ and the rounded central reconstruction r̄, denoted by Es,
is sometimes well approximated by the bound Us , in particular for small images. Although
bounding errors for the line model for fan beam tomography is more challenging than for
parallel beam tomography, the bounds are reasonably low and effective.
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In some of the figures, parts of the graph for Us(2) are missing, caused by zero values
that cannot be displayed in the logarithmic scale. This can even occur due to numerical
inaccuracies in the computation of the bounds if the true, correct bound is slightly larger
than 0.

6.8. Outlook and conclusions
In this chapter, we have presented a range of general bounds on the accuracy of binary
solutions, with respect to the unknown original vector. The bounds are based on an approach
initiated in Chapter 2, where the we presented bounds for the case that the projection matrix
has constant column sums. In the present chapter, bounds have been derived that are much
more general as they do not depend on this assumption.

Our bounds can be computed within reasonable time and give guarantees: (i) on the
number of vector entries that can be different between any two binary solutions of an un-
derdetermined problem and (ii) on the difference between a vector obtained by rounding the
central reconstruction and any binary solution. The experimental results for parallel beam
and fan beam tomography show that by using these bounds, one can prove that the number
of differences between binary solutions of the reconstruction problem must be very small,
even if the corresponding real-valued system of equations is severely underdetermined.
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(c) Phantom 1, 256×256
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(d) Phantom 2, 32×32
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(g) Phantom 3, 32×32
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(h) Phantom 3, 128×128
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(i) Phantom 3, 256×256

0 5 10 15 20
10

−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

U
s
(1)

U
s
(2)

E
s

(j) Phantom 4, 32×32
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(k) Phantom 4, 128×128
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Figure 6.8: Parallel beam, Joseph’s model: computed Us bounds as a function of the number of
projection angles.
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(c) Phantom 1, 256×256
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(f) Phantom 2, 256×256
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(g) Phantom 3, 32×32

0 20 40 60 80
10

−3

10
−2

10
−1

10
0

Number of angles

F
ra

c
ti
o

n
 o

f 
p

ix
e

ls

 

 

U
d
(1)

U
d
(2)

U
d
(3)

(h) Phantom 3, 128×128
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(i) Phantom 3, 256×256
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(k) Phantom 4, 128×128
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Figure 6.9: Parallel beam, Joseph’s model: computed Ud bounds as a function of the number of
projection angles.
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(k) Phantom 4, 64×64
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Figure 6.10: Fan beam, line model: computed Us bounds as a function of the number of projection
angles.
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Figure 6.11: Fan beam, line model: computed Ud bounds as a function of the number of projection
angles.





Chapter 7

Approximate discrete
reconstruction algorithm

This chapter (with minor modifications) has been published as: K. J. Batenburg, W. Fortes,
and R. Tijdeman. Approximate discrete reconstruction algorithm. Fundamenta Informat-
icae, Vol. 125(3–4), 239–259, 2013.

7.1. Introduction
Discrete tomography deals with tomographic reconstruction of greyscale images for which
the set of possible grey levels is discrete and small [27,28]. An image of an unknown object
is reconstructed from a series of projections of the object, taken along a range of angles.
Contrary to general computed tomography (CT) [25, 33], which requires a large number
of projections to obtain an accurate reconstruction, the constraint on the set of grey levels
in discrete tomography enables accurate reconstruction from a relatively small number of
projections, depending on the properties of the object [9, 27, 28]. A projection for a single
angle can be modeled as a collection of line sums along parallel lines through the object,
where the exact definition of “line sum” depends on the particular model used for the object
and the projection process. The grid model, where the object is modeled as an image defined
on a discrete set of points and line sums are taken along lattice lines through these grid
points, can be used to model the position of atoms in crystalline nanostructures [1, 31].
Other projection models, such as the line and strip models [33, section 7.4.1], [50], are
formed by discrete approximation of integral operators that compute integrals of a function
defined on the plane. Such an integral model can be used to model the projection process
in tomography at lower magnifications than the atomic level, such as X-ray tomography.
A range of reconstruction algorithms for discrete tomography have been proposed in the
literature [6, 9, 28, 40]. Most of these algorithms are specifically designed for the case of
binary tomography, where only two grey levels are allowed in the reconstruction.

None of these algorithms comes with a guarantee that an exact solution of the discrete
tomography problem is always found, which is not surprising considering the fact that the
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74 7. Approximate discrete reconstruction algorithm

reconstruction problem is NP-hard for the grid model case [20]. At the same time, the res-
ults of computational experiments suggest that in many cases, a solution is found that is
near-optimal, or even completely identical to the original object from which the projections
were taken, even if the number of projections is very small (less than 10, say). A principal
problem with these algorithms is the fact that the error made in the reconstruction depends
on the particular problem instance and cannot be bounded sharply. One notable exception
is the algorithm proposed in [20], where the ratio between the number of 1’s (i.e. grid
points having a value of 1) in the unknown ground truth object and the reconstructed object
is bounded in the optimal solution of certain relaxed variants of the binary reconstruction
problem. We are not aware of any algorithm for which nontrivial bounds have been de-
scribed for the difference between the projections of the reconstructed (discrete) image and
the given projections.

In this chapter, we propose a discrete approximate reconstruction algorithm that comes
with such guarantees, based on bounds derived in [23], which are in turn based on the Beck-
Fiala Theorem [10]. Our algorithm computes an image that has only grey values belonging
to the given finite set. It also guarantees that the difference between the given projections
and the projections of the reconstructed discrete image is bounded. The bound, which is
explicitly computable, is independent of the image size and scales linearly with the number
of projection angles. The algorithm combines techniques from combinatorics with algebraic
methods for the solution of linear equation systems.

This chapter is structured as follows. Section 2 introduces notation and describes the
main concepts and mathematical objects used throughout the chapter. In Section 3, the ba-
sic algorithm is introduced. A proof for the upper bound on the projection error of the
reconstructed image is given in Section 4. Section 5 presents several variations of the al-
gorithm, which can improve its computational performance in practice. Computational and
numerical aspects are discussed in Section 6. In Section 7, results are presented for a series
of simulation experiments based on three phantom images, including both binary images
and an image with three grey levels. Finally, Section 8 provides an outlook and conclusions.

7.2. Notation and concepts
Tomography concerns the reconstruction of an object from its projections. The exact defin-
ition of the term "projection" can vary, but in general it is related to the set of line integrals
(or surface integrals along a tight strip) through the object in a particular direction. We refer
to the specific model used to determine such integrals as the imaging model. Throughout
the discrete tomography literature, several imaging models have been considered, such as
the line, strip and Joseph’s model [32]. Since the algorithm developed here can be used for
any imaging model, we do not specify any model for the development of the theory, only
for the experiments.

The unknown object that one wants to reconstruct is typically approximated by an image
defined on a discrete pixel grid. The image that we want to reconstruct is unknown but we do
know its grey values, which belong to a discrete set. Let D = {d1, . . . ,ds} ⊂ R

s be a given set
of grey values such that d1 < d2 < . . . < ds with s small. Also, let d = maxi=1,...,s−1(di+1−di).
An image is represented by a vector x = (xi) ∈ Rn. We refer to the entries of x as pixels,
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corresponding to elements in the discrete pixel grid. A discrete image, in this chapter, cor-
responds with a vector x̄ ∈ Dn.

For given set of k projection directions, each consisting of w measured values, the pro-
jection map maps an image x to a vector p ∈ Rm of projection data, where m = kw denotes
the total number of measurements. As the projection map is a linear transformation, it can
be represented by a matrix W = (wi j) ∈ Rm×n, called the projection matrix. The entry wi j
represents the weight of the contribution of pixel x j to the projection value pi, which typ-
ically satisfies 0 ≤ wi j ≤ 1. For two images x, y ∈ Rn, we refer to W(x− y) as the projection
difference of x and y, and to its largest component in absolute value ‖W(x− y)‖∞ as the
projection distance.

The general reconstruction problem consists of finding a solution of the system

Wx = p (7.1)

for given projection data p = (pi), i.e., to find an image that has the given projections. In dis-
crete tomography, one seeks a solution of the general reconstruction problem which belongs
to D.

Throughout the chapter, we use the symbol 0 to denote a column vector (0, . . . ,0)T

consisting of 0’s, where its dimension is clear from the context. Also, we often use
κ = ‖W‖1 = max j=1,...,n

∑m
i=1 |wi j|.

For the following sections, consider the problem of finding a solution, belonging to the
set Dn, of a fixed linear system Wx = p called the discrete reconstruction problem. We call
x̄ ∈ Dn an approximate discrete solution if its projection difference with respect to a solution
of the general reconstruction problem is small.

7.3. Algorithm description
The algorithm presented here aims to reconstruct an image that only contains grey values
belonging to the given set D and ensures that its projections have a projection distance from
the given projections smaller than κd. The parameter κ = ‖W‖1 depends on the projection
model and the number of projection angles, while d = maxi=1,...,s−1(di+1 − di) is the largest
difference between two consecutive values in D. The bounds on the projection distance do
not depend on the image size.

The algorithm requires an initial grey scale image x(0) ∈ [d1,ds]n and uses the projections
p = Wx(0) of the initial image as the given projections for the reconstruction. If a pixel x(0)

j
already belongs to the set D, it is left unchanged by the algorithm. For every pixel j such
that x(0)

j < D, there is a unique i such that di < x(0)
j < di+1. In the reconstructed image x̄ ∈ Dn,

this pixel j satisfies x̄ j ∈ {di,di+1}, so a pixel can either be assigned the first grey level larger
than its initial value, or the first grey level smaller than its initial value.

In each iteration, a new image x(t) is computed that has a projection distance smaller than
κd with respect to the initial image x(0). Whenever the current image x(t) contains pixels in
D, the next image x(t+1) will contain these pixels with the same values as the current image.
Furthermore, the current image x(t) contains more pixels belonging to D than the previous
image x(t−1).
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The iteration step adds a specific ghost image to the current image x(t). A ghost image
for a given projection matrix is an image in the null space of that matrix. The ghost image
may change the value of pixels not in D but not the ones in D, and is constructed in such a
way that the number of pixels for which the value is in D increases. Therefore, the number
of such iteration steps is at most n, the total number of pixels.

In each iteration, some line sums remain unchanged. Such line sums are associated with
equations in the system (7.1) for which the sum of the coefficients, of the pixels currently
not in D, is not smaller than κ. The remaining line sums may have an error of at most κd
with respect to the projections of the initial image.

In order to specify the ghost image, define the following sets

Definition 1. For i = 1, . . . ,m, define Li = {1 ≤ j ≤ n : wi j , 0}, the set of indices of pixels
that occur in the ith equation of the linear system (7.1). Based on the current image x(t−1)

in iteration t−1, we can define Ī(t)
D = {1 ≤ j ≤ n : x(t−1)

j < D}, the set of indices of pixels with

values not in D in x(t−1) and its complement I(t)
D = {1, . . . ,n} \ Ī(t)

D . Another important set for
the algorithm is G(t) = {Li :

∑
j∈Li

⋂
Ī(t)
D

wi j ≥ κ, for i = 1, . . . ,m}, the family of sets Li of pixel
indices, such that the sum of the corresponding coefficients is at least κ for pixels not in D
in x(t−1).

Definition 2. Let x(t−1) be the reconstructed image that resulted from iteration t− 1. Con-
sider the following homogeneous linear system of equations∑

j∈Li
⋂

Ī(t)
D

wi jy
(t)
j = 0 for all Li ∈G(t) (7.2)

y(t)
j = 0 for all j < (∪Li∈G(t) Li)∩ Ī(t)

D . (7.3)

Let A(t) be the matrix associated with the linear system corresponding to the equations (7.2)
and (7.3). An image y(t) ∈ N(A(t)) = {x : A(t)x = 0} is called a ghost image associated with
A(t)y(t) = 0.

In iteration t of the algorithm, a ghost image associated with A(t)y(t) = 0 is computed,
which is subsequently used to form the new reconstruction x(t). Pseudocode for the proced-
ure that uses this ghost image is shown in Procedure 1. As a result of applying Procedure 1,
a new reconstruction is formed for which at least one new pixel belongs to D.

Procedure 1 Calculate x(t)

λmin←∞

for j ∈ Ī(t)
D do

Compute the smallest λ > 0 s.t. x(t−1)
j +λy(t)

j ∈ D
if λ < λmin then
λmin← λ

end if
end for
x(t)← x(t−1) +λminy(t)
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If N(A(t)) = {0}, hence y(t) = 0, Procedure 1 has no effect. Another technique must be
employed to change the current value of pixels not yet in D. In that case, all pixel values
not in D are rounded to their nearest value in D, after which the algorithm terminates. The
algorithm ends with a final vector x̄ ∈ Dn satisfying the given bounds. This part of the
algorithm is shown in Procedure 2.

Procedure 2 Calculate x̄
for j ∈ {1, . . . ,n} do

if x(t)
j ∈ D then

x̄ j← x(t)
j

else
Assign x̄ j the element of D which is nearest to x(t)

j
end if

end for

The iterative algorithm which obtains a vector in Dn with projection error at most κd is
given in the flowchart represented in Fig. 7.1.

input:
W, x(0),D,

t ← 0

t← t + 1
update

I(t)
D ,G

(t), A(t) N(A(t)) = {0}

solve
A(t)y(t) = 0
s.t. y(t) , 0

procedure 1

procedure 2

output: x̄

yes

no

Figure 7.1: This flowchart describes the discrete reconstruction algorithm which obtains a discrete
image x̄ in D with projection distance of at most κd with respect to a given image x(0).

7.4. Walkthrough example
We have built a simple example to illustrate each step of Algorithm 7.1 (Fig. 7.1). In this
example, the size of the image to be reconstructed is 3×3 and D = {0,1}. We use 3 projection
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angles: horizontal, vertical and diagonal from top left to bottom right. The projection model
is defined below setting κ = 3.

The initial approximate image x(0) is shown in Fig. 7.2(a) and the 11 line sums
which form the projection data are: horizontal: h1 = x1 + x2 + x3, h2 = x4 + x5 + x6 and
h3 = x7 + x8 + x9; vertical: v1 = x1 + x4 + x7, v2 = x2 + x5 + x8 and v3 = x3 + x6 + x9 and
diagonal: d1 = x7, d2 = x4 + x8, d3 = x1 + x5 + x9, d4 = x2 + x6 and d5 = x3. We leave the
computation of each line sum for each iteration for the reader.

(a) initial approx. solution x(0) (b) ghost image y(1) (c) approximate solution x(1)

Figure 7.2: Ghost image y(1) together with x(0) produces λ(1) = 0.3, generating x(1) = x(0) +λ(1)y(1).

In order to simplify the notation, we use the same symbols of the line sums to repres-
ent the sets Li which form G(t), where G(1) = {h1,h2,h3,v1,v2,v3,d3}. A ghost image y(1)

is shown in Fig. 7.2(b), which has zero line sums for each Li ∈ G(1). Therefore, for each
Li ∈G(1) the respective line sums of x(0) and x(1) are equal.

For iteration 2, we have G(2) = {h1,h3,v1,v2,d3} from Def. 1 and y(2)
6 = 0 from Def. 2.

As a consequence, the line sums h2 and v3 of the ghost image y(2) are no longer restricted
to zero. A possible ghost image y(2) and the resulting x(2) are shown in Fig. 7.3.

(a) ghost image y(2) (b) approximate solution x(2)

Figure 7.3: Ghost image y(2) together with x(1) produces λ(2) = 0.2, generating x(2) = x(1) +λ(2)y(2).

Notice that I(3)
D = {1,4,6,9}, based on x(2). For iteration 3, we have G(3) = {v2} and from

Def. 2, the pixels y(3)
2 , y(3)

5 and y(3)
8 are the only ones allowed to be non-zero. A ghost image

y(3) and the resulting image x(3) are shown in Fig. 7.4.
As G(4) = ∅, we haveN(A(4)) = {0} and Procedure 2 is used, obtaining x̄ by rounding the

entries of x(3) to the nearest element of D, after which the algorithm terminates. In this case,



7.5. The algorithm’s proof 79

(a) ghost image y(3) (b) approximate solution x(3) (c) approx. discrete solution x̄

Figure 7.4: Ghost image y(3) together with x(2) produces λ(3) = 0.2, generating x(3) = x(2) +λ(3)y(3).

pixels having a value of 0.5 are rounded to 1. The final approximate solution x̄ is shown in
Fig. 7.4(c).

7.5. The algorithm’s proof
In this section we prove that the algorithm represented in the flowchart of Fig. 7.1 finds an
image x̄ ∈Dn such that the projection distance between the initial image x(0) and x̄ is smaller
than κd. First, we prove the requirements and implications of one iteration of Procedure 1.

Lemma 16. Suppose that

(H1) x(t−1) ∈ [d1,ds]n is the reconstructed image that resulted from iteration t−1;
(H2) y(t) , {0} is a solution of A(t)y = 0, for A(t) given by Definition 2.

Then after applying Procedure 1, the following statements are true:

(T1)
∣∣∣∣I(t)

D

∣∣∣∣ > ∣∣∣∣I(t−1)
D

∣∣∣∣;
(T2) x(t)

j = x(t−1)
j for all x(t−1)

j ∈ D;

(T3) there is no 1 ≤ j ≤ n such that there exists a di ∈ D for which x(t−1)
j < di < x(t)

j ;

(T4)
∑

j∈Li wi j(x(t)
j − x(t−1)

j ) = 0 for all Li ∈G(t);

(T5)
∑

j∈Li wi j

∣∣∣∣x(t)
j − x(t−1)

j

∣∣∣∣ < κd for all Li <G(t).

Proof. Let y(t) , 0 such that A(t)y(t) = 0. Define x(t) = x(t−1) +λ(t)y(t) with λ(t) the smallest
positive scalar λ for which x(t−1)

ĵ
+λy(t)

ĵ
∈ D for some ĵ ∈ Ī(t)

D . This definition of x(t) follows

exactly the computation of Procedure 1. As x(t)
ĵ
∈D and none of the entries that were already

in D are modified, statements (T1) and (T2) are true. By definition of λ(t), statement (T3) is
also true.

Statement (T4) follows from the definition of A(t) and statement (T2):∑
j∈Li

wi j(x(t)
j − x(t−1)

j ) = λ
∑

j∈Li
⋂

Ī(t)
D

wi jy
(t)
j + 0

∑
j∈Li

⋂
I(t)
D

wi j = 0 for all Li ∈G(t).
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Also, (T3) implies
∣∣∣∣x(t)

j − x(t−1)
j

∣∣∣∣ < d, for all 1 ≤ j ≤ n, and since
∑

j∈Li
⋂

Ī(t)
D

wi j < κ for

Li <G(t) we have∑
j∈Li

wi j

∣∣∣∣x(t)
j − x(t−1)

j

∣∣∣∣ < d
∑

j∈Li
⋂

Ī(t)
D

wi j + 0
∑

j∈Li
⋂

I(t)
D

wi j < κd for Li <G(t)

for all i = 1, . . . ,m. �

Whenever y(t) = 0 is the unique ghost image of iteration t, Procedure 1 has no effect.
The next Lemma is an intermediate result for the case that Procedure 2 is required.

Lemma 17. Suppose that N(A(t)) = {0} for A(t) given by Definition 2. Then∑
j∈Li

⋂
Ī(t)
D

wi j ≤ κ for i = 1, . . . ,m.

Proof. As equations (7.3) already define y(t)
j = 0 for a set of j’s, let Â(t) = (â(t)

i j ) be the matrix
associated with equations (7.2). SinceN(Â(t)) = {0}, the number of linear independent rows
of Â(t) is equal to the number of columns of Â(t). We can eliminate rows which are linear
combinations of others obtaining a square matrix, say of size r × r. Supposing r > 0, the
definition of κ = ‖W‖1 yields

r∑
i=1

â(t)
i j ≤ κ for j = 1, . . . ,r, implying

r∑
j=1

r∑
i=1

â(t)
i j ≤ rκ (7.4)

and the definition of G(t) gives

r∑
j=1

â(t)
i j ≥ κ for i = 1, . . . ,r, implying

r∑
i=1

r∑
j=1

â(t)
i j ≥ rκ. (7.5)

From statements (7.4) and (7.5) we conclude that
∑r

i=1
∑r

j=1 â(t)
i j = rκ and

∑r
j=1 â(t)

i j = κ. Then∑
j∈Li

⋂
Ī(t)
D

wi j =
∑

j∈Li
⋂

Ī(t)
D

â(t)
i j = κ for Li ∈G(t)

for i = 1, . . . ,m.
If r = 0, we have G(t) = ∅ and it follows from the definition of G(t) that

∑
j∈Li

⋂
Ī(t)
D

wi j < κ

for Li <G(t). �

Theorem 20. Let x(0) ∈ [d1,ds]n be a given image such that Wx(0) = p. Then, after termin-
ation of Algorithm 7.1 (Fig. 7.1), we obtain a vector x̄ ∈ Dn such that

‖Wx̄− p‖∞ < κd.
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Proof. Procedure 2 is used as the last iteration of the algorithm generating x̄ ∈ Dn. Hence
we have to prove that the projection error accumulated during the iterations satisfies
‖Wx̄− p‖∞ < κd.

Lemma 16 ensures that between any two iterations t̂−1 and t̂ of Procedure 1 there is no
1 ≤ j ≤ n such that there exists a di ∈ D for which x(t̂−1)

j < di < x(t̂)
j , implying that there is no

1 ≤ j ≤ n such that there exists a di ∈ D for which x(0)
j < di < x(t)

j .
Suppose that iteration t + 1 uses Procedure 2: set x̄ j as the element from D which is

nearest to x(t)
j for all j ∈ Ī(t+1)

D and set x̄ j = x(t)
j for all j ∈ I(t+1)

D . Then we can conclude that

|x̄ j− x(0)
j | < d for j = 1, . . . ,n.

From Lemma 16, it is easy to check that after t iterations of Procedure 1 we have∑
Li

wi j(x(t)
j − x(0)

j ) = 0 for Li ∈G(t).

After applying Procedure 2, Lemma 17 provides
∑

j∈Li
⋂

Ī(t+1)
D

wi j ≤ κ for i = 1, . . . ,m, which
yields

|
∑
Li

wi j(x̄ j− x(0)
j )| < κd for Li ∈G(t). (7.6)

Also from Lemma 16, for each i = 1, . . . ,m such that, Li < G(t), there exist disjoint sets
A,B <G(t) such that Li = A∪ B with

∑
j∈A wi j(x(t)

j − x(0)
j ) = 0 and

∑
j∈B wi j < κ. These prop-

erties are still valid after applying Procedure 2 yielding

|
∑
Li

wi j(x̄− x(0)
j )| = |

∑
j∈B

wi j(x̄− x(0)
j )| < κd for Li <G(t). (7.7)

Therefore, from Eqs. (7.6) and (7.7), it follows that x̄ ∈ Dn and ‖Wx̄− p‖∞ < κd.
�

7.6. A threshold variation
In some cases, after an iteration step, there are pixels with current values very close to
a value in the set D. The use of a threshold parameter τ < d for rounding some pixels can
speed up the algorithm, as it would need fewer iterations to make x(0) converge to x̄ ∈Dn. As
a drawback, the use of threshold may increase the difference in the projections. Moreover,
the bound on the projection distance becomes dependent on the image size. Our variant
of the reconstruction algorithm that uses such a threshold only requires a modification in
Procedure 1. We denote the modified procedure as Procedure 3.

Theorem 21. Let x(0) ∈ [d1,ds]n be a given image such that Wx(0) = p and τ < d. Then,
after termination of the Algorithm 7.1 (Fig. 7.1) using Procedure 3 instead of Procedure 1,
we obtain a vector x̄ ∈ Dn such that

‖Wx̄− p‖∞ < κd + (‖W‖∞− κ)τ.
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Procedure 3 Calculate x(t)

λmin←∞

for j ∈ Ī(t)
D do

Compute the smallest λ > 0 s.t. x(t−1)
j +λy(t)

j ∈ D
if λ < λmin then
λmin← λ

end if
end for
x(t)← x(t−1) +λminy(t)

for j ∈ {1, . . . ,n} do
if there exist di ∈ D such that |x(t)

j −di| < τ for i = 1, . . . , s then
x(t)

j ← di
end if

end for

Proof. If |x(t)
j − dl| ≤ τ for some l = 1, . . . , s, then |x(t+1)

j − x(t)
j | ≤ τ. This implies that the

projection difference of the i-th component increases by, at most, τ for each thresholded
pixel in equation i, in one iteration step. Since τ < d, the worst case happens when for an
equation i, there exist sets of indices A and B such that

∑
j∈A wi j = κ and

∑
j∈B wi j = ‖W‖∞−κ,

and all the pixels defined by B are thresholded, but not the ones defined by A. After applying
Procedure 2, we have

∑n
j=1 wi j|x̄ j− x(0)

j | < κd + (‖W‖∞− κ)τ. �

7.7. Computations

In this section, we will cover two important computational aspects of our approach: how to
compute a suitable initial solution and how to compute a ghost image for the iteration steps.
In both cases, we outline a particular method for computing an image. Many alternative
methods exist for solving the corresponding mathematical problems, some of which may
yield a more efficient algorithm.

7.7.1. Initial solution x(0)

The discrete reconstruction algorithm presented in this chapter needs an initial image
x(0) ∈ [d1,ds]n which can be achieved, e.g., by an algorithm presented as a Norm minim-
ization over an interval algorithm in [13]. Algorithm 4 is the version of the algorithm that
we have used in the experiments. It minimizes 1

2 ‖z‖
2 subject to W z = p and d1 ≤ z j ≤ ds for

all j = 1, . . . ,n, which guarantees x(0) ∈ [d1,ds]n. This algorithm is a variation of ART [21]
(ART is also known as Kaczmarz method [25, 38]).

Since we want to guarantee a small projection distance between x̄ and the unknown
original object from which p was formed, it is necessary to have a small distance
between Wx(0) and p. In order to do so, the stopping criteria of Algorithm 4 is given by
‖W z− p‖∞ < ε, where ε is a positive constant close to zero.
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Algorithm 4 Compute x(0)

t← 0, z← 0n, ẑ← 0n
while ‖W z(t)− p‖∞ > ε do

i← (t mod m) + 1

z j← z j +
pi−

∑n
j=1 wi j ẑ j√∑n
j=1 w2

i j

wi j for j = 1, . . . ,n

for j ∈ {1, . . . ,n} do

ẑ j←


d1 if z j < d1
z j if d1 ≤ z j ≤ ds
ds if z j > ds

end for
t← t + 1

end while
x(0)← z

7.7.2. Non-null ghost images
If N(A(t)) , {0}, Procedure 1 is executed. To this end, we must find a non-null solution of a
homogeneous linear system

Az = 0. (7.8)

To solve this problem we have used an iterative method called CGLS (Conjugate Gradi-
ent Least Squares) [39]. The CGLS algorithm requires an initial guess z(0). Apart from nu-
merical errors, applying the CGLS algorithm to the system (7.8) results, after convergence,
in the computation of zLS = (I− A†A)z(0), where A† is the Moore-Penrose pseudo inverse
of A, see [11,12,47]. The CGLS algorithm computes zLS without explicitly computing A†.

The matrix (I− A†A) orthogonally projects z(0) onto N(A). As a result, zLS = 0 if and
only if z(0) ⊥N(A). Hence, randomly selecting z(0) will almost certainly yield a zLS , 0.

In practice, several algorithms use the relative residual as a parameter for the stopping
criteria. The relative residual is given by the current iteration residual norm divided by the
norm of the right-hand side. When the right-hand side is the null-vector, the relative residual
is computed as infinity and this algorithm can never identify convergence. To overcome this
problem, instead of applying the CGLS algorithm to (7.8), we apply it to the linear system

Az = b, (7.9)

with b = −Az(0). When applying CGLS to Eqs. (7.9), we select the null-vector as initial
guess obtaining, therefore, z∗ = A†b, the minimum norm solution of system (7.9) [11, 12,
47]. Defining y = z(0) + z∗, it satisfies Eqs. (7.8): Ay = Az(0) + Az∗ = Az(0) + b = 0.

7.8. Numerical experiments
A series of experiments was performed to investigate the quality of images reconstructed by
the algorithm presented and the resulting bounds on the projection distance, for a range of
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projection angles and images. The experiments are all based on simulated projection data
obtained by computing the projections of the test images (so-called phantoms) in Fig. 7.5:

(a) Phantom 1, 128×128 (b) Phantom 2, 128×128 (c) Phantom 3, 128×128

(d) Phantom 1, 32×32 (e) Phantom 2, 32×32 (f) Phantom 3, 32×32

Figure 7.5: Original phantom images used for the experiments.

Phantom 1 represents a very simple, nearly convex shaped object;

Phantom 2 was constructed from a micro-CT image of a rat bone acquired with a SkyScan
1072 cone-beam micro-CT scanner.

Phantom 3 represents an object with three grey levels and fairly complex boundaries.

As a projection model, we focus on a model for a continuous representation of the object,
the strip model [33, section 7.4.1]. In the strip model, a projection is computed by consider-
ing a set of parallel strips in a given direction. For each strip we compute the weighted sum
of all the pixels which intersect that strip. Each weight wi j equals the intersection area of
the strip and the pixel, see Fig. 7.6.

Figure 7.6: The contribution weight of each pixel to each projection component is given by the
intersection area between the pixel and the respective strip.
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7.8.1. Reconstruction comparison

In this section we compare two variations of the reconstruction algorithm: (i) Algorithm
7.1 (Fig. 7.1), (ii) the thresholded version of Alg. 7.1 presented in Section 7.6. For the two
algorithms mentioned above, we compare quality of the images reconstructed as well as
reconstruction time required for each one of them. Also, the quality of the initial solution
x(0) directly affects the final reconstruction. We tested different approximate solutions x(0).

The quality of the initial approximate solution x(0)

The quality of the image reconstructed by the presented algorithms depends on the quality
of the initial solution x(0) which was computed by the algorithm presented in section 7.7.1.
Fig. 7.7 presents reconstructions of phantom image 7.5(d), using the standard algorithm
(Fig. 7.1), for different number of projection angles. For p being the vector of projections
of phantom 7.5(d), Fig. 7.7 shows reconstructions in which the initial approximate solution
satisfies ‖Wx(0) − p‖∞ ≤ ε for ε ∈ {10−1,5× 10−1}. Since Wx(0) , p, the reconstruction al-
gorithm 7.1 can only guarantee ‖Wx̄− p‖∞ < κd +ε. If a threshold parameter τ is included,
then ‖Wx̄− p‖∞ < κd + (‖W‖∞− κ)τ+ε.

(a) ε = 5×10−1 and number of projection angles: left: 2; middle-left: 6; middle-right: 8; right:
12.

(b) ε = 10−1 and number of projection angles: left: 2; middle-left: 6; middle-right: 8; right: 12.

Figure 7.7: Reconstructions of phantom 7.5(d) of dimensions 32×32 using Algorithm 7.1.

In Fig. 7.7, it is possible to see white pixels (pixels assigned with a value larger than zero)
in regions for which a projected strip that intersects these pixels has a projection value of 0.
These line sums accumulate detectable errors and since the error per projection is limited
to κd, the error in a region where it is not detectable will diminish. After the reconstruction
algorithm, post-processing of the reconstructed image may correct these easily identifiable
wrong pixels.
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The quality of the reconstruction x̄

Reconstructed images from the thresholded version of Algorithm 7.1 for phantoms 7.5(e)
and 7.5(f) are displayed in Figs. 7.8 and 7.9 for ε = 10−1 and τ ∈ {0, 1

32 ,
1√
32
}. For phantoms

7.5(b) and 7.5(c), the reconstructed images from the thresholded version of Algorithm 7.1
with τ ∈ { 1

128 ,
1√
128
}, are displayed in Fig. 7.10.

We have measured the projection distance (Pd) of the previously presented reconstruc-
tions and compared these with their respective bound (B) as can be seen in Figs. 7.11 and
7.12. Also, Figs. 7.11 and 7.12 present the Image distance (Id) defined as the Euclidean
distance between the reconstructed image and the respective phantom image. Notice that
despite the bound κd + (‖W‖∞−κ)τ+ε might increase with the number of projection angles,
the quality of the reconstructed images improves, in general. It also means that the projec-
tion distance of the reconstructed images decreases with increasing number of projections
angles.

We remark that the key advantage of the proposed algorithm is the guaranteed error
bound of the resulting reconstruction. Alternative algorithms, which do not yield such a
bound, can yield more accurate reconstructions in practice, using less computation time.
As an example, we refer to the DART algorithm in [9], where similar phantoms are used
in the experiments. It can be seen in Fig. 7 of [9] that Phantom 2 and 3 (corresponding to
Phantom 5 and 7 in [9]) are reconstructed by DART far more accurately from few projec-
tions compared to our proposed method, yet without any guarantee on the reconstruction
error.

Running time

The algorithm variants with different threshold parameters compared in this section have
different running times, which can vary from 0.1 seconds for the fastest run up to 10’s of
minutes for the slowest runs. All experiments were run on a workstation PC using a single
core of an Intel Core-i5 CPU at 2.8GHz. As the computation time is machine dependent, we
display a relative time, which is computed by dividing the time needed for a reconstruction
by the time of the fastest reconstruction among all of the runs presented in the experiments.
The relative time comparison between the reconstruction algorithms can be seen in Table
7.1. For the phantoms in Fig. 7.5(a), 7.5(b), and 7.5(c), the running time was prohibitively
large for the basic algorithm, which does not use a threshold. The timing results for these
cases are not included in the table.

We have measured the number of iterations of the algorithm in each experiment and, in
general, it decreases with increasing number of projection angles. In the experiments, the
maximum number of iterations required was less than 60% of the number of image pixels.

The key bottleneck in the computation complexity of the algorithm is the fact that a
large system of equations (up to the same order as the tomography problem itself) must be
solved to obtain a ghost image, and that this computation will have to be performed many
times (at most once for each pixel). As there is a stochastic component in the computation
of the ghost images, and as the particular computational route followed by the algorithm
depends strongly on the input projections, a meaningful (somewhat sharp) complexity ana-
lysis of the algorithm is highly challenging. We consider the algorithm proposed here as
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(a) Algorithm 7.1 with τ = 0. Number of projection angles: left: 2; mid-left: 6; mid-right: 10; right: 14.

(b) Algorithm 7.1 with τ = 1
32 . Number of projection angles: left: 2; mid-left: 6; mid-right: 10; right: 14.

(c) Algorithm 7.1 with τ = 1√
32

. Number of projection angles: left: 2; mid-left: 6; mid-right: 10; right: 14.

Figure 7.8: Reconstructions of phantom 7.5(e) of dimensions 32×32 and ε = 10−1.
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(a) Algorithm 7.1 with τ = 0. Number of projection angles: left: 2; mid-left: 6; mid-right: 8; right: 12.

(b) Algorithm 7.1 with τ = 1
32 . Number of projection angles: left: 2; mid-left: 6; mid-right: 8; right: 12.

(c) Algorithm 7.1 with τ = 1√
32

. Number of projection angles: left: 2; mid-left: 6; mid-right: 8; right: 12.

Figure 7.9: Reconstructions of phantom 7.5(f) of dimensions 32×32 and ε = 10−1.
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(a) Phantom 7.5(b). Alg. 7.1 with τ = 1
128 . N. proj. angles: left: 4; mid-left: 16; mid-right: 20; right: 24.

(b) Phantom 7.5(b). Alg. 7.1 with τ = 1√
128

. N. proj. angles: left: 4; mid-left: 16; mid-right: 20; right: 24.

(c) Phantom 7.5(c). Alg. 7.1 with τ = 1
128 . N. proj. angles: left: 4; mid-left: 16; mid-right: 20; right: 24.

(d) Phantom 7.5(c). Alg. 7.1 with τ = 1√
128

. N. proj. angles: left: 4; mid-left: 16; mid-right: 20; right: 24.

Figure 7.10: Reconstructions of phantoms 7.5(b) and 7.5(c) of dimensions 128×128 and ε = 10−1.
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(a) Algorithm 7.1.

(b) Algorithm 7.1 with threshold τ = 1
32 .

(c) Algorithm 7.1 with threshold τ = 1√
32

.

Figure 7.11: Comparison between the projection distance bound (B) and actual projection distance
(Pd) measured in the left vertical axis for increasing number of projection angles. The Image distance
(Id) uses the right vertical axis. From left to right: Phantom images 7.5(d), 7.5(e) and 7.5(f).
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(a) Algorithm 7.1 with threshold τ = 1
128 .

(b) Algorithm 7.1 with threshold τ = 1√
128

.

Figure 7.12: Comparison between the projection distance bound (B) and actual projection distance
(Pd) measured in the left vertical axis for increasing number of projection angles. The Image distance
(Id) uses the right vertical axis. From left to right: Phantom images 7.5(a), 7.5(b) and 7.5(c).

a proof-of-concept method that requires further optimization and analysis to be useful for
reconstructing large images.

7.9. Outlook and conclusions

In this chapter, we have presented a reconstruction algorithm which computes an image that
has only pixel values from a given finite set, and for which the projection distance to the
unknown ground truth object is bounded. Contrary to alternative methods, which often per-
form well in practice but do not come with guarantees, our approach is specifically designed
to yield a reconstruction for which the projections are provably close to the given projection
data. Our experimental results for simulated phantom images demonstrate that the algorithm
not only computes images that approximately match the given projections, but also yields
reconstructions that resemble the unknown original image, even if only a small number of
projections are used. The techniques of using ghost images and thresholding employed in
our algorithm are quite generic and leave a large degree of freedom in parameter selec-
tion. For example, the particular switching element considered in a step of Procedure 1 is
currently determined randomly, while it could also be chosen depending on features of the
current reconstruction.

In its current form, the proposed algorithm is neither optimized for speed of computa-
tion, nor for quality of the reconstructed image. In future work, we intend to optimize the
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N. proj. 4 16 24

Alg. 7.1, τ = 1
128 5387 34.8 34.7

Alg. 7.1, τ = 1√
128

817 35.6 35.6
(a) Phantom 7.5(a).

N. proj. 4 16 24

Alg. 7.1, τ = 1
128 5×105 2×105 7×104

Alg. 7.1, τ = 1√
128

3765 1881 423
(b) Phantom 7.5(b)

N. proj. 4 16 24

Alg. 7.1, τ = 1
128 3×105 1×105 1×105

Alg. 7.1, τ = 1√
128

1361 428 79.1
(c) Phantom 7.5(c).

N. projections 2 10 16
Alg. 7.1, τ = 0 37.7 3.25 1
Alg. 7.1, τ = 1

32 12.2 1 1
Alg. 7.1, τ = 1√

32
3.7 1 1

(d) Phantom 7.5(d).

N. projections 2 10 16
Alg. 7.1, τ = 0 83.7 59.8 9.5
Alg. 7.1, τ = 1

32 36.8 15.7 1
Alg. 7.1, τ = 1√

32
5.2 1.8 1

(e) Phantom 7.5(e).

N. projections 2 10 16
Alg. 7.1, τ = 0 82.7 91 61.1
Alg. 7.1, τ = 1

32 18.7 10 1.6
Alg. 7.1, τ = 1√

32
1.8 1 1

(f) Phantom 7.5(f).

Table 7.1: Relative reconstruction time for Alg. 7.1 with different thresholds. ε = 10−1

algorithm, and make it more robust, to the extent where it can be applied to larger images,
and to experimental data.



Chapter 8

A method for feature detection in
binary tomography

This chapter (with minor modifications) has been published as: W. Fortes and K. J. Baten-
burg. A method for feature detection in binary tomography. In Gonzalez Diaz, Rocio; Jime-
nez, Maria Jose; Medrano, Belen (eds.) DGCI 2013, volume 7749 of LNCS, pages 372-382.
Heidelberg, 2013. Springer.

8.1. Introduction

Binary tomography deals with the problem of reconstructing a binary image from its pro-
jections. While accurate image reconstruction requires availability of a large number of
projections for general grey scale images, knowledge about the fact the unknown original
image is binary can drastically reduce the number of projection angles needed for a detailed
reconstruction in some cases.

A range of algorithms have been proposed for binary tomography [6,9,25,40]. Although
each of these methods has demonstrated the ability to compute accurate reconstructions
from a small number of projections in certain cases, none of these methods offer a guarantee
that the reconstructed image is identical, or even similar to the unknown original image.
In fact, one can state that giving such a guarantee will be impossible in general, as the
reconstruction problem in binary tomography is known to be inherently unstable: a small
change in the projection data can lead to a dramatic change in the (unique) reconstruction
[3, 4, 46]. Moreover, several constructions are known for so-called switching components:
binary images in which a selected set of zeros and ones can be interchanged, leading to a
different image having the same projections [22, 27].

Even in cases when insufficient information is available to compute an accurate recon-
struction of the complete image, it may still be possible to answer certain questions about the
original image, or to determine certain features of it. In [19], it was shown that connectivity
and convexity properties can be derived – to some extent – directly from the projection data.

93
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It can also be desirable to know whether a certain boundary or homogeneous region can
possibly exist in the unknown image, or not.

Even though finding a binary solution of the reconstruction problem is typically hard, it
is often easier to prove that a solution cannot exist. For example, if the projections do not
satisfy certain consistency conditions, a solution will certainly not exist. General consist-
ency conditions for the Radon transform are presented in [24], while a detailed analysis of
consistency conditions for the grid model in discrete tomography can be found in [43]. A
particular condition for the existence of binary solutions is given in Chapter 2, which will
be used and extended throughout the present chapter.

In this chapter, we extend the general idea of consistency to the detection whether or
not certain substructures can exist in the original image. We present a computational tech-
nique for discovering the possible presence of certain features (e.g., blobs, edges). For each
feature, a probe structure is defined, which can detect that particular feature. Based on an
analysis of the existence of binary solutions of the reconstruction problem, our technique
can prove, in certain cases, if the probed feature cannot exist in a given region of the original
image. Our approach is independent of a particular reconstructed image or reconstruction
method.

This chapter is structured as follows. In Section 8.2, the basic model and notation are
introduced. In Section 8.3, the basic idea of a probe image is presented and formally defined.
Section 8.4 covers various algorithms that can be used to prove – in certain cases – that a
given probe image cannot be present in the unknown original image. Section 8.5 presents
a series of simulation experiments that was performed to obtain a first assessment of the
capabilities of the proposed method. Conclusions are drawn in Section 8.6.

8.2. Basic notation and model
Throughout the discrete tomography literature, several imaging models have been con-
sidered: the grid model, the strip model, the line model, etc. [33, section 7.4.1]. In this
chapter we focus on the strip model, but our approach can be used for other projection
models as well.

Figure 8.1: The strip model.

In the strip model, a projection is computed by consider-
ing a set of parallel strips in a given direction and for each
strip computing the weighted sum of all the pixels which in-
tersect that strip with a weight equal to the intersection area
of the strip and the pixel (see Fig. 8.1).

We now define some general notation. An image is rep-
resented by a vector x = (xi) ∈ Rn. We refer to the entries of x
as pixels, which correspond to unit squares in the strip model.
Throughout this chapter we assume that all images are square,
consisting of c rows and c columns, where n = c2. A binary
image corresponds with a vector x̄ ∈ {0,1}n.

For a given set of k projection directions, the projection map maps an image x to a vector
p ∈ Rm of projection data, where m denotes the total number of line measurements. As the
projection map is a linear transformation, it can be represented by a matrix W = (wi j) ∈Rm×n,
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Figure 8.2: Two probe images. The pixels are colored as follows: black (0), grey (?), white (1). Left:
homogeneous white region; right: horizontal edge at the bottom of a white region.

called the projection matrix. Entry wi j represents the weight of the contribution of x j to
projected line i. Note that for the strip model its entries are real values in [0,1]. From this
point on, we assume that the projection matrix has the property that

∑m
i=1 wi j = k for all

j = 1, . . . ,n. This property is satisfied for the strip projection model, as the total pixel weight
for each projection angle is equal to the area of a pixel, which is 1.

The general reconstruction problem consists of finding a solution of the system Wx = p
for given projection data p, i.e., to find an image that has the given projections. In binary
tomography, one seeks a binary solution of the system. For a given projection matrix W and
given projection data p, let S W(p) = {x ∈ Rn : Wx = p}, the set of all real-valued solutions
corresponding with the projection data, and let S̄ W(p) = S W(p)∩ {0,1}n, the set of binary
solutions of the system. As the main goal of incorporating prior knowledge of the binary
grey levels in the reconstruction is to reduce the number of required projections, we focus on
the case where m is small with respect to n, such that the real-valued reconstruction problem
is severely underdetermined.

8.3. Probe structure

We now introduce the concept of a probe image. A probe image is represented by a vector
v = (vi) ∈ {0,1,?}n. We say that a binary image x̄ satisfies the probe image v iff x̄i = vi
whenever vi ∈ {0,1}. This relation is denoted by the predicate F(v, x̄). In other words,
the zeros and ones in the probe image prescribe the values of the corresponding pixels
in x̄, while a pixel value of ’?’ in the probe image allow any pixel value in the cor-
responding pixel of x̄. We denote the set of all images satisfying a probe image v by
F (v) = {x̄ ∈ {0,1}n : F(v, x̄)}. For any probe image v, define s(v) = #{1 ≤ i ≤ n : vi ,

′?′},
the total number of 0’s and 1’s in the probe image.

Suppose that we want to know if the unknown original image may contain a certain ho-
mogeneous region of 1’s (i.e., white pixels). We then define a probe image v̄ that has such a
homogeneous region, and contains the ’?’ symbol in all pixels that are not in this region (see
Fig. 8.2a). The question whether there exists a binary solution of the tomography problem
that has such a region can then be rephrased as a check whether the set S̄ W(p)∩F (v) is
empty or not. Similarly, one can define an edge detection probe image such as shown in Fig.
8.2b. Any image that has a horizontal edge at the indicated position, consisting of a black
strip of background pixels and a white strip of foreground pixels (i.e., an edge at the bottom
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of a white region), will be part of the set F (v) for this probe image v. This brings us to the
central problem considered in this chapter:

Problem 1. (Probe problem). Let W ∈Rm×n be a given projection matrix and let v ∈ {0,1,?}n
be a given probe image. Determine if S̄ W(p)∩F (v) = ∅.

If the intersection between the solution set of the tomography problem and the set of im-
ages that satisfy the probe image is not empty, we cannot conclude if the unknown original
image satisfies the probe image. However, if the intersection between both sets is empty, we
can conclude that no binary solution exists that has the probed feature. As we will see in
the next sections, one can often prove that the answer to Problem 1 is “yes”, even without
enumerating the set S̄ W(p) of binary solutions of the reconstruction problem.

Now consider the system of equations | |

w1 · · · wn
| |



x1
...

xn

 = p, (8.1)

where wi denotes the ith column vector of W. We now define the operation of fixing a pixel
xi at value vi ∈ R. It transforms the system (8.1) into the new system

 | | | |

w1 · · · wi−1 wi+1 · · · wn
| | | |





x1
...

xi−1
xi+1
...

xn


= p− viwi. (8.2)

The new system has the same number of equations as the original system, whereas the
number of variables is decreased by one. The fixing operation can be performed for more
than one pixel at time.

Proposition 2. Let W ∈ Rm×n be a given projection matrix and let v ∈ {0,1,?}n be a given
probe image. Let Ry = q be the linear system that is obtained by fixing all pixels xi to value
vi whenever vi ∈ {0,1}. Then solving Problem 1 is equivalent to checking whether S̄ R(q) = ∅.

We call the linear system formed in Prop. 2 the reduced linear system corresponding to
the probe image v.

8.4. Partially solving the probe problem
As noted in the previous section, the probe problem can be rephrased as the question whether
or not the reduced linear system has a binary solution. In Chapter 2, we present a sufficient
condition for the existence of binary solutions of a given linear system Wx = p which satis-
fies

∑m
i=1 wi j = k for all j = 1, . . . ,n. In summary, it is proved that all binary solutions of this
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linear system lie on a hypersphere centered in the minimum norm solution x∗ and having ra-

dius R(p, x∗) =

√∑m
i=1 pi
k −‖x∗‖22. If the binary vector closest to x∗ is outside this hypersphere

then the given linear system contains no binary solutions:

Theorem 22. Let x∗ = W†p, where W† denotes the Moore-Penrose inverse of W [12]. For

α ∈ R, let ρ(α) = min(|α|, |1−α|) and put T (x∗) =

√∑n
i=1 ρ

2(x∗i ). If R(p, x∗) < T (x∗), then

S̄ W(p) = ∅.

Proof. See Chapter 2. �

In the remainder of this section we present two related techniques for proving that the
unknown original image does not satisfy a given probe image v. Both methods use variants
of Theorem 22.

8.4.1. Probing by analyzing the binary solutions of the reduced linear
system

Let v be a given probe image. We now analyze the reduced linear system Ry = q corres-
ponding to v, in terms of the existence of binary solutions, following the idea of Theorem
22.

Let y∗ = R†q and ρ(α) = min(|α|, |1−α|). Put T (y∗) =

√∑n
i=1 ρ

2(y∗i ) and define the set

T (y∗) = {r̄ ∈ {0,1}n−s(v) : ‖r̄− y∗‖2 = T (y∗)}. Also, let r̄ ∈ T (y∗), i.e., r̄ is among the binary
vectors that are nearest to y∗ in the Euclidean sense. Vector r̄ can be easily computed by
rounding the entries of y∗ to their nearest value in the set {0,1}. Despite r̄ may not be unique,
any choice of r̄ yields the same results in this context.

Rewriting Theorem 22 in the framework of identifying the existence of binary images
satisfying a given probe image v, we have:

Theorem 23. Let y∗ = R†q and r̄ ∈ T (y∗). If ‖r̄− y∗‖2 >
√∑m

i=1 qi
k −‖y∗‖22 then the original

system Wx = p does not have a binary solution which satisfies v.

Proof. From Theorem 22, we know that if ‖r̄ − y∗‖2 >
√∑m

i=1 qi
k −‖y∗‖22 then there is no

binary vector satisfying Ry = p. Hence, there is no x̄ ∈ S̄ W(p) that satisfies v. �

8.4.2. Probing by analyzing the binary solutions of the original linear
system

Using an idea similar to what was used in the previous subsection, we now analyze the
consistency of the original linear system with respect to binary solutions. However, instead
of using r̄, the binary vector closest to the minimum norm solution x∗, we define r̃ as the
binary vector, satisfying the probe image v, which is closest to x∗.

Theorem 24. Let x∗ = W†p and r̄ ∈ T (x∗). For i = 1, . . . ,n, define r̃i = v̄i if vi ,
′?′ and r̃i = r̄i

otherwise. If ‖r̃− x∗‖2 >
√∑m

i=1 pi
k −‖x∗‖22, then v is not satisfied by any x̄ ∈ S̄ W(p).
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Proof. The vector r̃ is the binary image which contains the structure of the probe image
that is closest to x∗. If r̃ is out of the hypersphere containing all binary solutions of Wx = p
(see Chapter 2), then there is no binary image satisfying the probe image v that is on this
hypersphere. Therefore v is not satisfied by any binary solution of Wx = p. �

8.5. Numerical experiments
Although the two techniques from Section 8.4 can detect sufficient conditions for the non-
existence of binary solutions of the reconstruction problem that satisfy the given probe im-
age, an empirical study is needed to determine the usefulness of the proposed methods for
actual tomography data. A series of experiments was performed to investigate the presented
method, for three different phantom images using a variable number of projections. The ex-
periments are all based on simulated projection data obtained by computing the projections
of the test images (so-called phantoms) in Fig. 8.3:

(a) Phantom 1, 64×64 (b) Phantom 2, 64×64 (c) Phantom 3, 64×64

Figure 8.3: Original phantom images used for the experiments.

For the experiments, we have used probe images that only consider 0’s and 1’s inside
a square sub-image of size 8×8 pixels. This subregion is then moved across the full image
region, scanning the possible presence of the probe structure throughout the image of size
64×64 pixels.

For each experiment, both techniques from Section 8.4 were used, checking whether
any of these two methods can prove that the probe structure cannot occur in a particular
region of the unknown original image.

To compute the shortest least-squares solutions of the linear systems involved in the
methods of Section 8.4, the CGLS algorithm was used. We refer to Chapter 2 for details.

In the following subsections, we consider experiments for two different probe structures,
for detecting homogeneous regions and horizontal edges, respectively.

8.5.1. Homogeneous regions

In this section, we focus on the identification of square homogeneous regions in the un-
known original image. Two types of probe images were defined: a square 8×8 region of 1’s
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(white pixels) surrounded by ’?’ pixels, and a square 8×8 region of black pixels, also sur-
rounded by ’?’ pixels. These square regions were then moved across the full 64×64 image
region to determine at each location whether such a homogeneous black or white square can
possibly occur in the binary solution set of the tomography problem.

For each probe image we are able to define a status based on the results obtained by
applying the presented methods with the two different types of probe images. We define
the status forbidden for a probe image which, according to the methods, have no binary
solution satisfying it. We also define the status allowed for a probe image in which the
methods could not determine whether there exists a binary solution satisfying this probe
image.

The results for a given phantom image leads to a new 2D greyscale image, which repres-
ents – for each position of the probe region – the outcome for both probe types, as follows:

• If the black region is allowed and the white region is forbidden then associate a black
color;

• If the black region is forbidden and the white region is allowed then associate a white
color;

• If the black region is allowed and the white region is allowed then associate a light
grey color;

• If the black region is forbidden and the white region is forbidden then associate a
dark grey color;

The resulting greyscale images are shown in Fig. 8.4 for Phantoms 1 and 2, depicting
results for an increasing number of projection angles. It can be observed that as the number
of angles grows, the results of the probe experiments provide an increasingly accurate view
of the true presence of homogeneous regions in the phantom image.

8.5.2. Horizontal edges
The goal of this section is to identify straight horizontal edges which could be present in
the original image. We use the term horizontal edges to indicate horizontally adjacent pixels
with intensity 1 (white) which are vertically adjacent to the same number of horizontally
adjacent pixels with intensity 0 (black color). So, we define a square probe structure of size
8×8 such that the pixels in the upper half of the square are set to 0 and the pixels in the
lower half of the square are set to 1. The vertically mirrored version of this probe structure
was also used to detect edges at the bottom of an object.

Similar to the previous section, the results for this probe structure give rise to a new
greyscale image, defined as follows. Starting from a completely black image, if at a certain
position for the probe structure no unsatisfiability is detected, the “white" part of the edge
(corresponding to the interior of the object) is colored white in the output image if it is also
white in the original image and dark grey if it is black in the original image. The “black" part
of the edge (corresponding to the outside of the object) is colored black in the output image if
it is also black in the original image and light grey if it is white in the original image. Also,
if at a certain position for the probe structure the unsatisfiability is detected but there are
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white pixels in this region in the original image, then those pixels are colored as light grey.
The results of this procedure are shown in Fig. 8.5, which identifies the regions that could
be edges according to our results, for a varying number of projection angles. Again, we see
that as the number of projections increases, the results of the probe experiments provide an
increasingly accurate view of the true presence of horizontal edges in the phantom image.

8.6. Outlook and conclusion
In this chapter we have proposed a novel approach for obtaining information about an object
from a small number of its projections. By using necessary conditions for the existence of
binary solutions of the tomography problem, and combining these with probe images for
particular substructures of the image, it can be determined whether such a substructure can
possibly occur, or whether it can certainly not occur in the unknown original image.

The experimental results for a limited set of simulation experiments show that this ap-
proach can indeed lead to the recovery of substantial information about the original image,
without resorting to a particular, possibly non-unique reconstruction.

More research in this direction will be necessary to determine what the limitations are
of the proposed method, and how it compares to image analysis algorithms that try to find
the structure directly in a reconstructed image.
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(a) Phantom 1. Number of projection angles: 2, 4, 8 and 12

(b) Phantom 1. Number of projection angles: 16, 20, 24, and 28

(c) Phantom 2. Number of projection angles: 2, 4, 8 and 12

(d) Phantom 2. Number of projection angles: 16, 20, 24, and 28

Figure 8.4: Homogeneous region status for the phantom images of dimension 64×64.
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(a) Phantom 2. Number of projection angles: 2, 4, 8 and 12

(b) Phantom 2. Number of projection angles: 16, 20, 24, and 28

(c) Phantom 3. Number of projection angles: 2, 4, 8 and 12

(d) Phantom 3. Number of projection angles: 16, 20, 24, and 28

Figure 8.5: Possible edges for the phantom images of dimension 64×64.
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Summary

The research in this thesis is devoted to the development of quantitative guarantees on the
quality of reconstructions in discrete tomography.

Tomography refers to imaging by sections through the use of any kind of penetrating
beam. The word tomography is derived from the Greek tomē (“cut") or tomos (“part" or
“section") and graphein (“to write"). The goal in tomography is to obtain information from
the interior of an object without having to open or destroy it. An example is the Computer-
ized Tomography (CT) scan which is often used to scan medical patients in order to detect
tumors or other irregularities in the tissues of internal organs; see Fig. 8.6(a). The scanning
device used in tomography is called a tomograph. A source, emitting a penetrating beam,
and a detector are positioned on opposite sides of the object. The tomograph records the
intensity profile of the beam after it has passed through the object (or patient), acquiring a
projection of the object at a particular angle, as in Fig. 8.6(b). From projection data obtained
from different angles, a mathematical method produces a tomogram (also called reconstruc-
tion): an image of the interior of the object. A 2-dimensional reconstructed image resembles
a cut of the object, as in Fig. 8.6(c).

(a) A medical CT scanner1 (b) Projection acquisition2 (c) A brain tomogram3

Figure 8.6: After the scanning process, a reconstruction algorithm generates a tomogram

1Thanks to Dan Dry and the University of Chicago Medicine
2Image from the book “The Scientist and Engineer’s Guide to Digital Signal Processing" by Steven W. Smith
3By Mikael HÃd’ggstrÃűm [Public domain], via Wikimedia Commons
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In some cases, the judgment of a medical doctor relies on the quality of the reconstructed
images (the tomograms). Tomographs often make use of harmful radiation, such as X-rays,
and the dosage must be controlled in order not to harm the patient. Dose restriction is one
of the limitations that affects the quality of reconstructions. Unfortunately, with the current
technology and techniques available, reconstructed images are far from perfect. If doctors
encounter a damaged organ or a strange object inside a patient by observing the tomogram,
they would be glad to know how much they can rely on that image before sending the
patient to emergency surgery. Tomography is not restricted to medical applications and can
be found, for example, in industrial production lines to identify defects inside the produced
products for quality control.

The seek for guarantees on the quality of reconstructions is inspired by the need of accur-
acy in tomography. Providing theoretical quality bounds for tomographic reconstructions is
in general an inherently very difficult problem due to the ill-posedness of the mathematical
problem. Firstly, the modeled problem of reconstructing images from a set of projections
is typically underdetermined, having an infinite number of solutions. Finding one solution
means reconstructing an image that may – or may not – be equal to the original object.
Obtaining a solution is not a trivial mathematical procedure. Obtaining a solution among an
infinite number of other solutions, such that it is equal to the original object, is in practice
often impossible. Secondly, image reconstruction algorithms usually do not find an exact
solution, but rather an approximate solution, i.e, an image with projections that approxim-
ate the given set of projections. As a consequence, one should not expect to “know” the
inside of the scanned object but rather something that resembles it. Thirdly, if the projec-
tion set is acquired by a real scanning device, the projection data is corrupted by noise. The
problem of finding an image which corresponds perfectly to the noisy projection data can
typically not be solved exactly, because the noise perturbs the data in such a way that the
reconstruction problem has contradicting information. An attempt to reconstruct an image
from noisy projection data propagates the noise into the reconstructed image. Furthermore,
in several applications, there are limitations on the number of projections or on the angular
range for which projections can be acquired, which directly affects the quality of reconstruc-
tions. In summary, in tomography the reconstructed image might substantially differ from
the true object that has been scanned.

In the process of modelling the reconstruction problem, the interaction between the
beam and the object must be defined mathematically in a projection model. In this thesis
we model the unknown object by representing it on a grid of square pixels. Some projection
models have the property that the sum of the intensities of the pixels is equal to the sum of
the intensities of the projection for each projection angle. For these cases, we have developed
computable error bounds for binary tomography (where the unkown image is known to
be black and white), which provide guarantees on the number of pixel errors between a
reconstructed image of the object and the true object. Although it is not possible to measure
the error of the reconstructed image without having access to all the information of the
original object, we can guarantee a bound, a measure that is equal or larger than the actual
error. With this information, one may be able to evaluate whether the reconstruction is good
enough or not. A key idea in deriving these bounds is an observation first made by Hajdu
and Tijdeman in [22], concerning the fact that all binary solutions have the same number of
white pixels and lie on a hypersphere of which the center and the radius can be computed.
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With this information, we compute bounds on the difference between binary solutions of the
reconstruction problem, which also bounds the difference between any binary solution and
the original binary object. In addition, we have presented bounds on the difference between
any given binary image and all binary solutions.

We have developed similar bounds for the problem of high resolution binary image re-
construction from lower resolution scans. In this case, a scanning device (a video camera,
for example) scans an image but due to the low resolution of the device, certain charac-
teristics of the image cannot be identified or differentiated. A superresolution technique is
used to obtain a higher resolution image from which those characteristics are now better
defined. However, this new image is not guaranteed to provide an accurate representation of
the true object that was scanned. This problem calls for a technique which can provide error
guarantees.

When studying the problem of generating error bounds for binary tomography, we ob-
tained a sufficient condition for the existence of binary solutions for the reconstruction prob-
lem. If one searches for a binary solution with certain specific characteristics, these char-
acteristics can be enforced into the modeled reconstruction problem, generating a modified
problem. Checking whether the modified reconstruction problem satisfies the condition of
existence of binary solutions, we can determine if the feature of interest may be part of a
binary solution or if it can certainly not be part of a binary solution.

Expanding the research on bounding errors in binary tomography, we developed another
approach with the goal of bounding the difference between binary solutions of any underde-
termined algebraic linear system of equations. It includes the case of fan beam tomography
and the use of any projection model. Also, we have studied the case of binary tomography
with noisy projection data. In this case, it is likely that no binary image has projections that
equal the given set of projections. We assume that a noiseless projection set exists (yet not
known) and take the noise level into account to compute approximate error bounds on bin-
ary solutions of the noiseless reconstruction problem (the problem for which has the true
scanned object as a solution).

Discrete tomography does not only deal with black and white images, but also with more
than two grey levels (say, 3 or 4). In some cases in discrete tomography, we may assume that
the grey levels of the image to be reconstructed are known in advance. This prior knowledge
can help to improve the quality of reconstructions. However, reconstructing discrete images
from few projections is still a highly challenging problem. Many discrete reconstruction
algorithms obtain accurate reconstructions in practice but do not offer mathematical guar-
antees. We have developed a discrete reconstruction algorithm which guarantees that the
projections of the reconstructed discrete image are close to the given set of projections.





Samenvatting

Het onderzoek in dit proefschrift is gewijd aan de ontwikkeling van kwantitatieve zekerhe-
den over de kwaliteit van reconstructies in discrete tomografie.

Tomografie gaat over het verkrijgen van beelden van dwarsdoorsneden door gebruik
te maken van verschillende vormen van doordringende straling. Het woord tomografie is
afgeleid van de Griekse woorden tomē (“snijden") of tomos (“snede") en graphein (“schrij-
ven"). Het doel van tomografie is het verkrijgen van informatie over het binnenste van een
object, zonder het te hoeven openen of kapot te maken. Een voorbeeld is een Computer-
tomografie (CT) scan, welke vaak gebruikt wordt om bij medische patienten tumoren of
andere onregelmatigheden te detecteren in het weefsel van interne organen; zie Fig. 8.7(a).
Een apparaat dat tomografische scans maakt wordt een tomograaf genoemd. Een bron van
doordringende straling en een detector van de straling worden aan weerskanten van het ob-
ject geplaatst. De tomograaf meet het intensiteits-profiel van de straling nadat het door het
object (of de patient) is gegaan, waardoor een projectie van het object onder een bepaalde
hoek wordt verkregen, zoals te zien in Fig. 8.7(b). Een wiskundige methode maakt van de
projecties verkregen onder verschillende hoeken een tomogram (ook wel reconstructie ge-
noemd): een beeld van het binnenste van het object. Een 2-dimensionaal gereconstrueerd
beeld lijkt op een dwarsdoorsnede van het object, zoals te zien in Fig. 8.7(c).

(a) Een medische CT-scanner1 (b) Opname van projecties2 (c) Een tomogram van de
hersenen3

Figure 8.7: Na het scannen maakt een reconstructie algoritme een tomogram

1Met dank aan Dan Dry en de University of Chicago Medicine
2Figuur uit “The Scientist and Engineer’s Guide to Digital Signal Processing"door Steven W. Smith
3Door Mikael Häggström [Public domain], via Wikimedia Commons
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In sommige gevallen zal het oordeel van een medische dokter afhangen van de kwa-
liteit van de gereconstrueerde beelden (de tomograms). Tomografen maken vaak gebruik
van schadelijke straling, zoals Röntgen straling, en de dosis moet worden beperkt om de
patient niet te schaden. Deze beperking van stralingsdosis is één van de beperkingen die de
kwaliteit van de reconstructies kan beïnvloeden. Met de huidige technologie en technieken
zijn de gereconstrueerde beelden helaas ver van perfect. Als dokters een beschadigd orgaan
of een vreemd object in de patient opmerken door naar een tomogram te kijken, zouden ze
graag willen weten hoeveel ze kunnen vertrouwen op de kwaliteit van het beeld, voordat ze
de patient naar de operatiekamer sturen. Tomografie is niet beperkt tot medische toepassin-
gen, maar wordt bijvoorbeeld ook gebruikt in industriële kwaliteitscontrole, om defecten te
identificeren binnenin geproduceerde voorwerpen.

Het zoeken naar zekerheden over de kwaliteit van reconstructies is geïnspireerd door de
noodzaak van nauwkeurigheid in tomografie. Het geven van theoretische kwaliteitsgrenzen
voor tomografische reconstructies is een inherent erg moeilijk probleem doordat het onder-
liggende wiskunde probleem slecht bepaald is. Ten eerste, het gemodeleerd probleem van
het reconstrueren van beelden van een verzameling projecties is vaak onderbepaald, en heeft
daarom een oneindig aantal oplossingen. Een gevonden oplossing voor het probleem hoeft
dan ook niet gelijk te zijn aan het werkelijke object. Het vinden van een oplossing zelf is,
wiskundig gezien, al niet triviaal. Het vinden van een oplossing tussen een oneindig aan-
tal oplossing, zodat de oplossing gelijk is aan het werkelijke object, is in de praktijk vaak
onmogelijk. Ten tweede, reconstructiemethodes vinden normaal gesproken niet een exacte
oplossing, maar een benadering. Dat wil zeggen, ze vinden een beeld met projecties die
de gemeten projecties benaderen. Daarom kunnen we ook niet verwachten om het exacte
binnenste van een object te vinden, maar vinden waarschijnlijk een benadering daarvan.
Ten derde, als de projecties gemeten zijn door een echt apparaat is de data vaak vervuild
met ruis. Het probleem van het vinden van een beeld dat perfect voldoet aan de ruizige
projectie data kan gewoonlijk niet exact opgelost worden, omdat de ruis de data zo ver-
stoort, dat het reconstructie probleem conflicterende informatie bevat. Een poging om een
beeld te reconstrueren van ruizige projectie data verplaatst de ruis naar het gereconstrueerde
beeld. Bovendien zijn er in sommige toepassingen beperkingen op het aantal projecties of
het hoekbereik waarvoor projecties kunnen worden gemeten, wat een directe invloed heeft
op de kwaliteit van de reconstructies. Samengevat kunnen we stellen dat bij tomografie een
gereconstrueerd beeld aanzienlijk kan afwijken van het werkelijke object dat is gescand.

Tijdens het modelleren van het reconstructie probleem moet de interactie tussen de stra-
ling en het object wiskundig gedefinieerd worden in een projectiemodel. In dit proefschrift
modelleren we het onbekende object door het te representeren op een raster van vierkante
pixels. In sommige projectiemodellen is de som van de waarden van de pixels gelijk aan de
som van de waarden van de projectie voor elke projectiehoek. Voor deze gevallen hebben
we berekenbare foutgrenzen ontwikkeld voor binaire tomografie (waar het onbekende beeld
alleen zwart of wit kan zijn), wat zorgt voor zekerheden over het aantal pixels die anders
zijn in het gereconstrueerde beeld dan in het werkelijke object. Hoewel het niet mogelijk
is om het verschil direct te berekenen zonder het werkelijke object te kennen, kunnen we
wel een grens garanderen, welke gelijk of groter is dan het werkelijke verschil. Met deze
informatie kan men bepalen of de reconstructie goed genoeg is of niet. Een belangrijk idee
in het afleiden van deze grenzen is een observatie die als eerst gemaakt is door Hajdu en
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Tijdeman in [22], met betrekking tot het feit dat alle binaire oplossingen evenveel witte
pixels bevatten en allen op een hypersfeer liggen waarvan het midden en de straal berekend
kunnen worden. Met deze informatie kunnen we grenzen berekenen aan het verschil tussen
binaire oplossingen van het reconstructie probleem, wat ook grenzen geeft tussen elke bi-
naire oplossing en het werkelijke binaire object. Daarnaast hebben we grenzen voorgesteld
aan het verschil tussen een gegeven binair beeld en alle binaire oplossingen.

We hebben soortgelijke grenzen ontwikkeld voor het probleem van het verkrijgen van
hoge resolutie binaire reconstructies van lagere resolutie scans. In dit geval scant een ap-
paraat (zoals een video camera) een beeld, maar door de lage resolutie van het apparaat
kunnen sommige kenmerken van het beeld niet worden geidentificeerd. Een superresolutie
techniek kan worden gebruikt om een hoger resolutie beeld te krijgen, waarin de kenmerken
beter te zien zijn. Dit nieuwe beeld hoeft echter niet een accurate weergave te zijn van het
werkelijke gescande object. Dit probleem vraagt om een methode die zekerheden kan geven
over de gemaakte fouten.

Tijdens het zoeken naar foutgrenzen voor binaire tomografie, hebben we een voldoende
voorwaarde gevonden voor het bestaan van binaire oplossingen voor het reconstructie pro-
bleem. Als gezocht wordt naar een binaire oplossing met bepaalde eigenschappen, kunnen
deze eigenschappen opgelegd worden aan het gemodeleerde reconstructie probleem, wat
leidt tot een gemodificeerd probleem. Door te controleren of het gemodificeerde probleem
voldoet aan de voorwaarde voor het bestaan van binaire oplossingen kunnen we bepalen of
de opgelegde kenmerken deel kunnen zijn van een binaire oplossing, of zeker niet deel zijn
van een binaire oplossing.

Om de kennis van foutgrenzen voor binaire tomografie verder uit te breiden hebben we
een andere aanpak ontwikkeld met het doel om grenzen te bepalen voor het verschil tussen
twee binaire oplossingen van een onderbepaald algebraïsch linear systeem van vergelijkin-
gen. Dit kan bijvoorbeeld worden toegepast op verschillende projectiemodellen van tomo-
grafie. We hebben bovendien het probleem onderzocht van binaire tomografie met ruis in de
projectie data. In dit geval is het waarschijnlijk dat er geen enkele binaire oplossing te vinden
is met projecties gelijk aan de gemeten projecties. We veronderstellen dat er een ruisvrije set
van projecties bestaat (die nog onbekend is), en houden rekening met de hoeveelheid ruis
om geschatte foutgrenzen voor binaire oplossingen van het ruisvrije reconstructie probleem
te berekenen.

In discrete tomografie hebben de oplossingen niet alleen zwarte of witte pixels, maar be-
staat het beeld uit een aantal verschillende grijswaarden (zeg, 3 of 4). In sommige gevallen
kunnen we veronderstellen dat de mogelijke grijswaarden van het uiteindelijke beeld van te
voren bekend zijn. Deze voorkennis kan gebruikt worden om de kwaliteit van de reconstruc-
ties te verhogen. Het is echter nog steeds een erg moeilijk probleem om discrete beelden te
reconstrueren van een klein aantal projecties. In de praktijk blijkt dat veel reconstructie al-
goritmes voor discrete tomografie nauwkeurige reconstructies kunnen berekenen, maar de
algoritmes kunnen geen wiskundige garanties geven. Wij hebben een discreet reconstructie
algoritme ontwikkeld die kan garanderen dat de projecties van het gereconstrueerde beeld
weinig verschillen van de gemeten projecties.
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