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Reconstruction of binary matrices

from fan-beam projections

Antal Nagy∗ and Attila Kuba∗

Abstract

The problem of the reconstruction of binary matrices from their fan-beam
projections is investigated here. A fan-beam projection model is implemented
and afterwards employed in systematic experiments to determine the optimal
parameter values for a data acquisition and reconstruction algorithm. The
fan-beam model, the reconstruction algorithm which uses the optimization
method of Simulated Annealing, the simulation experiments, and the results
are then discussed in turn.

1 Introduction

Tomography is an imaging procedure where the cross-sections of the 3D object be-
ing studied are determined from its projection images. The projection images can
be created by some rays that are emitted from a source (like X-rays from an X-ray
tube), transmitted through and partially absorbed by the object, and finally de-
tected by some array (plane or line) of detectors. The pixels of the projection image
represent the total absorption of the rays along the lines between the source and
the corresponding detector elements. Usually several projections of the object are
acquired from different directions. Then the task is to compute the cross-sections of
the object via some mathematical procedure [1] called reconstruction from projec-
tions. This imaging technique is routinely used in computerized tomography (CT)
for example, where the section images of the human body are computed from a
huge number of measurements using transmitted X-rays. The general method for
the reconstruction of 3D objects is that the 2D cross-sections of the objects are
reconstructed from the projections measured in the plane of the selected section,
effectively reducing the 3D reconstruction problem to a series of 2D reconstruction
problems. In the case of so-called truly 3D reconstruction the whole 3D object is
reconstructed using rays in the whole 3D space.

Discrete tomography (DT) is a special kind of tomography that can be applied if
the object to be reconstructed consists of only a few known homogeneous materials
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(e.g. metal and wood). This information can be incorporated into the reconstruc-
tion process, giving one the opportunity of reconstructing simple objects from a
much smaller number of projection values than is necessary for more complex ob-
jects. For this reason discrete tomography seems to be important in applications
where the object is so simple and there is no opportunity or it is too costly to ac-
quire lots of projections, like those in non-destructive testing, electron microscopy
and medicine. For a summary of the theory and applications of DT, see [2].
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Figure 1: Parallel and fan-beam projections.

There are basically two ways of acquiring the necessary projections (see Fig. 1).
In the case of parallel projections, the rays parallel to a given direction are trans-
mitted and measured in one phase of the acquisition process. By rotating the
system other rays parallel to other directions can be created. In the case of fan-
beam projections the rays coming from the actual source position (like a fan) are
measured at each step. By rotating the source and the detectors around the object
new fan-beam projections can be created. Although the two kinds of projection are
really equivalent from the viewpoint of information available for the reconstruction
(by a suitable rearrangement of the rays one can be transformed to the other),
there are different reconstruction methods for parallel and fan-beam projections.
This type of classification is common in applications where, owing to the technical
possibilities, one of these arrangements is always used.

In this paper we discuss a special discrete tomography problem, namely the
reconstruction of binary matrices from their fan-beam projections. The reconstruc-
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tion of binary matrices from parallel projections is a classical problem and it has
been intensively investigated (see [3, 4], for example). Even the reconstruction from
fan-beam (in 2D) or from cone-beam (in 3D) projections is well understood (see
[5, 6]). It is interesting that at the same time there are very few papers about DT
using fan-beam/cone-beam projections. To our knowledge, the only paper to date
that deals with this problem is the article by Peyrin et al. [7]. There they discuss
results related to truly 3D reconstructions of objects from cone-beam projections.
The main reason for this might be that from a mathematical viewpoint some re-
construction results of parallel projections can be applied directly in the case of
fan-beam projections, but this is not the case when we desire, for example, the op-
timal number of X-ray sources, the necessary minimum number of measurements,
and so on.

We believe that 2D reconstruction using fan-beam rays is an important and
interesting problem especially from an application point of view.

There are several applications of tomography that make use of fan-beam pro-
jections and could be of interest in DT e.g. non-destructive testing using X-rays
[8] or neutron beams [9].

The aim of this paper is to investigate the quality of reconstruction as a func-
tion of the parameters of the fan-beam projection model and the reconstruction
algorithm applied. The method employed is the simulation of the whole process
from acquiring projections to a comparison of the reconstructed images. The whole
simulation procedure is realized in the following way. Binary matrices are created
which represent the 2D objects to be reconstructed. Then a model for computing
the fan-beam projections is set up and implemented. The fan-beam model contains
several parameters like the number of sources and detector elements. With suitable
parameter settings different fan-beam data acquisition systems can be simulated.
The projections are afterwards computed analytically based on the parameter val-
ues of the fan-beam model. The measurement errors can be simulated in our system
by some additive random noise. A random-search optimization method was imple-
mented here to reconstruct binary images from the input data. In order to compare
the reconstructed images with the original image in an objective way, several mea-
sures are implemented; here we present the results of this comparison expressed as
a relative mean error. The effects of each parameter are studied in such a way that
a sequence of reconstructions is performed by varying only one parameter value
and keeping the others fixed. In this way we can produce a curve of the values
for the relative mean square and show the effect of the given parameter on the
reconstruction process.

The structure of the paper is as follows. In Section 2 the reconstruction problem
is introduced with the necessary definitions and our notation for fan-beam projec-
tions. Afterwards, we describe the details of the fan-beam model used in our sim-
ulation experiments. In Section 4 our DT reconstruction problem is reformulated
as an optimization problem, which is then solved using the method of Simulated
Annealing (SA). The results of our experiments together with related discussions
are given in Section 5. Finally, in the last section, we present conclusions from the
studies carried out so far and make suggestions for future work.
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2 The reconstruction problem for fan-beam pro-

jections

Let f be an integrable real function in the R
2 plane. Let S be a point called the

source point, and vθ be a unit vector in the direction θ ∈ [0, 2π) in the plane.
Consider the integrals of f along the half-lines starting from S in direction vθ

[Rf ](S, θ) =

∞∫
0

f(S + u · vθ)du . (1)

The transformation defined by (1) is called the projection of f taken from the
point S in the direction θ, or the fan-beam projection of f taken from the point S.
(Another way of acquiring projections is when the integrals of f are taken along
parallel straight lines in given directions. This kind of projection is called parallel.)
Such a projection model can be applied to computerized tomography (see [1], say)
where the projections are taken from several hundred source points around the
object to be reconstructed.

Given a set of the source points S, the reconstruction problem using fan-beam
projections can be stated as follows:

FB(S) reconstruction problem

Given: A function g : S × [0, 2π) −→ R.

Task: Construct a function f such that

[Rf ](S, θ) = g(S, θ)

for all S ∈ S for almost every θ ∈ [0, 2π).

There are several methods for solving the FB reconstruction problem. For a sum-
mary the interested reader may read [1], for example.

In this paper we are interested in the reconstruction of special types of functions
from fan-beam projections. Henceforth, let us suppose that the support of f can
be covered by an n × n regular lattice W such that f is constant on each 1 × 1
square of the lattice, so f can take a value 0 or 1. That is, f can be represented by
a binary-valued matrix or, equivalently, by a vector x ∈ {0, 1}J where xj denotes
the jth element of the matrix, say, in successive order, where j = 0, 1, . . . , J and
J = n2.

In the majority of applications the projections are acquired from only a finite
number of points, Sk, k = 1, 2, . . . , K, along a finite (L) number of half-lines from
each point. In this case the ith projection, bi, from the point Sk in direction vl

(i = (k − 1) · K + l) can be described by the linear equation

J∑
j=0

aijxj = bi , i = 1, 2, . . . , I , (2)
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where aij denotes the length of the intersection of the ith half-line with the jth
unit square of W and I = K · L. In the linear equation system (2) the projections
are obtained (within a certain error) by measurements. The elements of matrix
A = (aij)I×J can be computed knowing the positions of the squares in W and the
half-lines starting from the source points. The special feature of (2) is that the
unknown vector x is binary here, i.e. xj ∈ {0, 1} for all j = 1, 2, . . . , J .

3 The fan-beam model

Based on the method of data acquisition in most of the DT applications, as in our
fan-beam model (see Fig. 2), the source points Sk, k = 1, 2, . . . , K, lie on a circle
Cr = {(x, y) |x2 + y2 = r2} around the origin O, where r > 0 is large enough for
W to be in Cr. Furthermore, it is also usual that the source points are uniformly
distributed on Cr, that is Sk = (r · cos θk, r · sin θk), where θk = θ0 + (k − 1) · 2π/K
for all k = 1, 2, . . . , K. The start angle θ0 ∈ [0, 2π) determines not only the position
of the first point, but all source points. (The reason for the inclusion of the start
angle θ0 into the model is that since we usually have only a few source points (like
2–4), their number as well as their positions can have a strong influence on the
reconstruction, as we shall show later.) For example, a start angle of 0◦ means that
the first source lies on the intersection of circle Cr and also on the positive part of
the x axis.

Detectors

Detectors

S
0

Sk

Cr

�
�

Figure 2: The geometry of our fan-beam model.

In our model the integrals along the half-lines starting from the source point
Sk (k = 1, 2, . . . , K) are measured by L detectors, uniformly placed on the other
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side of the object on an arc having its center point in Sk (see Fig. 2). The arc
of detectors is big enough for the whole image to lie between the half-lines drawn
from the source to the endpoints of the detector arc. Each detector measures one
projection value bi.

For simplicity, we suppose that the center of the rectangle W is at the origin of
the coordinate system (see Fig. 2).

We are going to study the effect of noise as well. That is why Gaussian noise
was generated and added to the exact projections to create noisy projection data.

In our fan-beam model the following parameters can be varied:

n: the size of the binary matrix to be reconstructed (n × n);

r: the radius of circle Cr, i.e. the distance of the source points from the origin;

θ0: the start angle which determines the position of the first source point;

K: the number of source points;

L: the number of detector elements or, equivalently, the number of measurements
from one source point;

η: the percentage of Gaussian noise added in the projections.

4 Reconstruction as an optimization problem

As we saw earlier the solution of the FB (see Section 2) reconstruction problem in
our fan-beam model is equivalent to finding a solution of the linear equation system

Ax = b , where x is a binary-valued vector . (3)

Since any half-line in our model at most intersects O(n) squares of W , the matrix
A = (aij)I×J is sparse (it contains only a few non-zero elements). Another im-
portant property of this matrix equation in DT applications is that the number of
equations (i.e. the number of projections) is usually much less than the number of
unknowns, hence I << J . It means that it can have several solutions, even binary-
valued ones. Furthermore, due to measurement errors it is also possible that (3)
has no exact solution, so it is better to try to find a binary-valued x which satisfies
(3), at least approximately.

The reconstruction methods like the Algebraic Reconstruction Techniques
(ART) (see [1], say) do not necessarily provide a binary-valued x that satisfies (2).
It cannot be applied here because a non-binary solution might be quite different
from a binary one.

Actually, a possible way of solving (3) at least approximately is to reformulate it
as an optimization problem. Formally, we should find the minimum of the following
objective function

C(x) = |Ax − b| + γ · Φ(x) , where x is a binary-valued vector . (4)
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The first term on the rhs ensures that we have an x satisfying (3) at least approxi-
mately. The second term allows us to include a priori knowledge about x into the
optimization if there are several good binary vector candidates that keep |Ax− b|
low. For example, Φ(x) = |x − x(0)| might be such a case, where x(0) is a given
(probably binary-valued) vector, called a prototype. With such a Φ we can look
for an x that is similar to the prototype x(0). The regularization coefficient γ is
needed to weight the two terms in C. For example, if the measurements are very
noisy then we can choose a bigger γ than that for the noiseless case to give the
second term in (4) a higher weight, so it will play a more important role in the
optimization. γ can also be used to control the effects of noise.

Since we are looking for a binary-valued x in the optimization of (4), the usual
numerical optimization methods seem unsuitable here. The combinatorial opti-
mization methods looked more promising and turned out to be useful. Among
them we selected the simulated annealing (SA) optimization procedure [10]. The
reason for this selection was that it was easy to implement; it can be easily adapted
to the objective function (i.e. with very small modifications the program is suit-
able for optimizing other objective functions). Besides, since our main aim is to
study the effects of the fan-beam model parameters, the selection of the optimiza-
tion method actually plays only a secondary role here. We believe that we would
probably get similar results with other optimization methods because they have to
optimize the objective function as well.

4.1 Simulated annealing

SA is a random-search technique that is based on the physical phenomenon of metal
cooling. The system of metal particles gradually reaches the minimum energy level
where the metal freezes into a crystalline structure. Based on previous works [11],
we implemented the SA algorithm like so (see Fig. 3):

The algorithm starts from an arbitrary initial binary image x(0), an initial (high)
temperature T (0) and calculates the objective function value C(x). Then a position
j is randomly chosen in the image x. Let x′ be the image that differs from x only
by changing the value of x in position j to the other binary value, i.e. x′

j = 1− xj .
This change is accepted by the algorithm, i.e. x is replaced by x′ if C(x′) < C(x).
Even if the objective function does not get smaller, the change is accepted with a
probability depending on the difference ΔC = C(x′)−C(x). Formally, the change
is accepted even in that case when

exp(−ΔC/κT ) > z , (5)

where κ, T and z are, respectively, the Boltzmann constant (11.3805 × 10−23 ×
m2kgs−2K−1), current temperature and a randomly generated number from a
uniform distribution in the interval [0, 1]. Otherwise, the change is rejected, i.e. x
does not change in this iteration step.

If a change is rejected then we test the level of efficiency of changes in the
image in the last iterations. It means that we count the number of rejections in
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Figure 3: Flow-chart of the implemented SA algorithm.

the last Niter iterations. If this number is greater than a given threshold value Rthr

then the efficiency of changes is too low and the SA optimization algorithm will be
terminated.

We calculate the variance of the cost function in the last Nvar iterations. A so-
called equilibrium state is said to be attained if the present estimate of the current
ΔC variance is greater than the previous variance estimate. If the equilibrium state
is achieved, we reduce the current temperature (allowing changes with smaller prob-
abilities when the value of the objective function is greater) and let the algorithm
run with a lower temperature value (T is replaced by h ·T , where h is the so-called
cooling factor). In our experiments we chose the same value for the parameter as
in [7], namely h = 0.9.
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Our SA algorithm then has the following parameters:

x(0): initial image;

T (0): initial temperature;

Niter: number of iterations used in the computation of efficiency;

Rthr: threshold value for the number of rejected changes in the last Niter iterations;

Nvar: number of accepted iterations used in the computation of the variance of the
cost function.

5 Results and discussion

In this section the experimental results using our fan-beam model and the imple-
mented SA algorithm are presented together with a discussion of each.

The simulation experiments were performed with phantom images each having a
size 200×200 (i.e. n = 200). The projections of the phantom images were computed
based on (2) for each parameter setting. The images were then reconstructed from
the projections using the SA algorithm outlined above. In order to get quantitative
results, the original phantom images were compared pixel by pixel according to the
relative mean error

Me =

J∑
j=1

|xj − x̂j |
J∑

j=1

x̂j

, (6)

where x̂ = {x̂j}J
j=1 denotes the vector of the original image. Clearly, Me ≥ 0 and

the smaller value indicates a better comparison result. Furthermore, Me = 0 if and
only if x = x̂.

Since we had an optimization process based on a random-search, we repeated
each test 100 times with the same parameter setting. The mean of the 100 Me

values was computed and presented later as the result for each test with the given
parameter setting. The average image of the 100 binary images was given as the
result of the reconstruction for one parameter setting.

Naturally, several parameter settings were tested. One of them, the so-called
baseline parameter setting, played a special role. Here only one of the parameters
was allowed to change at a time, the others having the same values as in the
baseline parameter setting case. In order to see the effect of the parameters on the
quality of the reconstruction, a sequence of tests was performed for each parameter.
During a test sequence only the value of the selected parameter was changed and
the other parameters always had the same values as in the baseline parameter
setting case. For instance, to see the effect of increasing the number of sources,
we changed the value of K in the model (lying in the range 2–32), computed the
projections for the same phantom image, ran the reconstruction algorithm with the
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Table 1: Baseline parameter setting
Parameter Baseline value Range
Distance from sources to origin (r) 250 [250, 1750]
First source position angle (θ0) 0◦ [0◦, 360◦/K]
Number of sources (K) K ∈ {22, 32} [2, 32]
Number of detector elements (L) 401 [101, 401]
Additive noise η ∈ {0%, 5%} [0%, 45%]
Initial temperature (T ) 4◦ [4◦, 104◦]
Number of iterations (Niter) 10000 [1000, 10000]
Rejected iterations (Rthr) 9990 [990, 9990]
Variance iterations (Nvar) 5000 [500, 5000]
Regularization parameter (γ) 145 [0, 145]

same parameter settings 100 times, took the reconstructed 100 images, computed
the 100 Me values for the reconstructed and original images, calculated the average
images, then finally drew a curve showing the changes of Me as a function of the
number of projections. The curve drawn from the mean values of a sequence like
this is presented as the final result of the observations associated with the chosen
parameter. The baseline parameter setting together with the range of the parameter
values are given in Table 1.

Figure 4: Baseline software phantom used in the tests.

The experiments were executed with the Φpoz penalty term and γ = 145 regu-
larization parameter (Section 5.4).

As can be seen from Table 1, the noise contribution was only 0% or 5%. In
order to assess the effect of noise we repeated the tests not just with 0% noise but
also with 5% noise. From the test results, we obtained two curves, one without
noise and one with 5% noise.

We repeated the test for K = 32 and K = 22 in most of the experiments. These
produced two more curves for the experiments that were performed.

The parameters and the corresponding results can be divided into four groups.
This is why we have chosen to discuss the results separately in the subsequent
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four subsections. They show the effect of changing the parameters of the fan-beam
model, the SA optimization algorithm, the complexity of the phantom image to be
reconstructed, the regularization parameter γ given in (4), and the effect of adding
noise.

5.1 The parameters of the fan-beam model

In this group of tests we studied the effects of changing those parameters related
to the fan-beam model listed in Section 3.

5.1.1 Distance between sources and origin

This parameter was varied between 250 and 1750 while the detector angular aper-
ture covered the W lattice to be reconstructed and the number of detectors L were
kept constant (see Fig. 5). Of course, as the distance between the source points
and the origin increases, the fan-beam model approaches the model of parallel
projections when the same detector parameters are used.

S’ S’’

D’

D’’

Figure 5: Changing the distance between source and origin. Detector arc D’ is for
the source point S’ and detector arc D” is for the source point S”.

The curves in Fig. 6 both show that there is no big difference between the
results when the source is close to or far from the origin. More generally, there is
no real difference between the fan-beam and parallel-beam projections if we change
this distance. This is primarily because the further we go from the origin, the
more parallel the beams become. It seems that the equations belonging to the
near-parallel rays determine the image in both cases.
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Figure 6: Relative mean error as a function of the distance between source and
origin.
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Figure 7: Relative mean error as a function of the start angle.

5.1.2 Start angle

We varied the value of the start angle parameter from 0◦ to 360◦/K degrees. It
is clear that by determining the position of the first source we also determine the
positions of all sources around the circle Cr (if the number of sources is fixed).
The relative mean square curves describing the effects of these changes are given
in Fig. 7(a) for the case when the number of sources is just the base setting (i.e.
K = 32). The curves indicate that there is little real difference in the relative mean
square if we have a relatively large number of source points.

But we obtain quite different curves when the number of projections is small.
For example, for K = 4 source points we get curves which show that the quality of
the reconstruction changes depends on the source positions (see Fig. 7(b)).

The reason for the shape of the curves in Figs. 7(a) and 7(b) is that there are
certain projection values which provide more information for the reconstruction
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than others. For example, a projection value of 0◦ means that along the corre-
sponding half-line all pixels intersecting the half-line have a value of 0◦ (which may
be called an empty line of pixels). Another is when a projection value is the same
as the length of the intersection of the square in W with the corresponding half-
line; in that case all pixels along the half-line have a value 1 (let us call them a
full line of pixels). If the source points have positions such that there are many
pixels lying in almost empty or almost full lines then a large part of the image can
be reconstructed from a few projections. Looking at Fig. 4 we notice that this is
indeed the case when one of the source points is in a position near 40◦.

The reconstructed images can be seen in Fig. 8 when the number of sources is
4. These figures confirm the earlier belief that the quality will be better when the
first source point lies almost on the same line as the centers of 3 circles.

(a) Start angle = 0◦, no noise (b) Start angle = 0◦, 5% Gaus-
sian noise

(c) Start angle = 40◦, no noise (d) Start angle = 40◦, 5%
Gaussian noise

Figure 8: Images reconstructed from 4 projections with different start angles.

5.1.3 Number of sources

The number of sources in the simualtions was varied from 2 to 32. It came as no
surprise that increasing the number of sources and number of projection values in
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Figure 9: The effect of varying the number of sources.

turn increased the reconstruction quality. But the real question here was how to
find the minimum number needed to produce a good reconstructed image for a
particular case. Figure 9 provides the information needed to answer this question.
It is also tells us what this number depends on.

The graphs in Fig. 9(a) show that taking more than 12 sources improves the
mean square error by a very small amount. When there were noiseless projections
the data from 22 sources was sufficient to achieve high quality reconstructions.

The view, based on the graphs in Fig. 9(a), that 22 or more source points
hardly affects the quality of the reconstruction is indeed borne out by inspecting
the reconstructed images (Fig. 10). At the same time reconstructing the phantom
from 22 projections takes more time than reconstructing it from 32 projections
when no Gaussian noise was added (see Fig. 9(b)).

5.1.4 Number of detector elements

The number of detector elements also means that the number of projection values
measured will belong to a source point. If we have more detector elements we will
also have more equations in (2), hence more information about the image. But,
of course, for the detector elements beyond a certain number we cannot obtain a
better mean square error (Fig. 11).

That increasing the number of detector elements will bring an improvement
only up to some limit can be readily explained. Here it is about 281 when K = 32
(see Figs. 11 and 12) and the binary image seems to be determined by the exact
projection data.

This experiment was repeated with K = 22. We got approximately the same
relative mean error level for L = 401 when no noise was added (see Fig. 11(a)). The
number of equations to be solved is almost the same in both cases (i.e. 32 · 281 ≈
22 · 401), which helps to explain why the results were so similar.
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(a) 12 sources, no noise (b) 12 sources, 5% Gaussian
noise

(c) 22 sources, no noise (d) 22 sources, 5% Gaussian
noise

Figure 10: Images reconstructed from projections with a different number of
sources.
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Figure 11: Relative mean error obtained from varying the number of detector
elements.
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(a) 101 detector elements, no
noise

(b) 101 detector elements, 5%
Gaussian noise

(c) 281 detector elements, no
noise

(d) 281 detector elements, 5%
Gaussian noise

Figure 12: Images reconstructed from projections using a different number of de-
tector elements (K = 32).

5.2 The parameters of the SA optimization algorithm

The SA algorithm we implemented has several parameters. We will investigate here
what happens when we vary the initial temperature and stopping criteria.

5.2.1 Initial temperature

As is well known, a higher temperature in the SA algorithm may make the opti-
misation process go in the ‘wrong’ direction (thus we accept changes with a higher
probability when the objective function C increases, so C(x′) > C(x)) . If the tem-
perature is very low then changes in the ‘wrong’ direction have small probabilities.
When the initial temperature is high the algorithm in the first iterations can make
‘wrong’ changes with a higher probability. There is then a chance of making “big
jumps”, thus it can get near the global minimum. However, an excessively high
initial temperature can cause unnecessary iterations during the execution of the
algorithm. Thus the parameter setting must be chosen with care.

In our program the initial temperature was varied from 4 to 104 (see Fig. 13).
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Figure 13: Relative mean error as a function of the initial temperature.
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Figure 14: Execution time as a function of the initial temperature.

At the base of the curves we can see (see Fig. 13) that the influence of the initial
temperature on the relative mean error is very limited. This is because these tem-
peratures provide enough freedom for the SA method to find the global minimum.
The curves of the execution times (see Fig. 14) do not show any major differences
with a higher initial temperature. It is noticeable, however, that when there was
no noise added, the algorithm when K = 22 case took more time to reconstruct the
phantom image than when K = 32 because the fewer number of equation meant
a less determined system of equations with, perhaps, more local minima. The re-
sults show the opposite case when 5% Gaussian noise was added to the projections.
The explanation might be that when noise was added, the K = 32 case had more
equations and more local minima than the K = 22 case.
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Figure 15: Relative mean error as a function of the number of iterations in the
stopping criteria (Rthr = Niter − 10 and Nvar = Niter/2).
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Figure 16: Execution time as a function of number of iterations in the stopping
criteria (Rthr = Niter − 10 and Nvar = Niter/2).

5.2.2 Stopping criteria

The stopping criteria in our SA algorithm is determined by counting the rejected
iterations within the last Niter number of iterations. If this number is greater than
a given threshold (Rthr) then we say that the efficiency is low, because too few
changes were accepted.

We investigated the effects of varying these two parameters separately. First,
we changed Niter and kept the threshold number Rthr high (see Figs. 15 and 16).
The estimate for the variance of the objective function was calculated from the
last Nvar = Niter/2 number of accepted changes. Second, we fixed the number of
iterations and increased the efficiency (i.e. Rthr, the number of rejected iterations).
The results are displayed in Figs. 17 and 18.

The relative mean error showed a downward trend in both experiments owing
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Figure 17: Relative mean error as a function of the number of rejected iterations
in the stopping criteria (Niter = 10000 and Nvar = 5000).
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Figure 18: Execution time as a function of the number of rejected iterations in the
stopping criteria (Niter = 10000 and Nvar = 5000).

to the behaviour of the algorithm used. The execution time, in contrast, showed a
rising trend. From these findings we may conclude that a greater efficiency produces
better results, but at a price.

5.3 Complexity

Here we generated 10 different software phantoms. These phantoms had 1, 2,. . . ,
10 small circles inside a big ring of a given size (see Fig. 19). The experiment
was repeated 100 times for each software phantom. The results of these tests
are displayed in Fig. 20. The curves here clearly show that the situation is quite
different for the noise-free and noisy projections. If the projections are noiseless
and K = 22, more complex images can be reconstructed but these will have a
higher error. It seems that when K = 32 this many sources gives a sufficient
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number of equations to enable us to reconstruct complex images like the ones
shown. When Gaussian noise was afterwards added to the projections the quality
of the reconstruction did not change markedly. The latter was anticipated because
the objective function then has more local minima than it does for the noiseless
case.

(a) Ring with 1 circle. (b) Ring with 2 circles. (c) Ring with 10 circles.

Figure 19: Software phantom images made for testing the complexity.
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Figure 20: Relative mean error as a function of the number of circles (complexity
of the image).

5.4 The regularization parameter

In the previous cases the regularization parameter γ in (4) was assigned a value of
145. Varying the value of γ from 0 to 145 the second term becomes more important.
In the experiments we used a special kind of function for Φ(x), namely

Φ(x) = Φpoz(x) =
nm−1∑
j=0

poz(fj − f
(0)
j ), (7)
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where poz denotes the positive part of y. Formally,

poz(y) =

{
y, if y > 0
0, otherwise,

(8)

and f
(0)
j is a so-called prototype function. For the phantom shown in Fig. 21(a), the

prototype function f (0) was the mask in Fig. 21(b). The regularization parameter
and penalty term bias the algorithm according to the mask function. Optimizing
the objective function we get a result like this, which will lie inside the given mask.

We carried out experiments where we varied the regularization parameter γ in
Φpoz (see Figs. 22 and 23). We got a qualitative improvement in the noisy case using
the Φpoz penalty term and increasing the value of the regularization parameter (see
Fig. 22(b)). We also obtained good results when we had K = 22 and no noise was
added to the projections (see Fig. 22(a)). This is because a pixel did not change
outside the f (0) mask, and the Φpoz(x) regularization tag penalised the objective
function when it did so.

(a) Software phantom. (b) Penalty function for the
software phantom.

Figure 21: Images of the software phantom and the penalty function.
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Figure 22: Relative mean error as a function of the regularization parameter (Φpoz).
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Figure 23: Execution time as a function of the regularization parameter (Φpoz).

(a) Gamma = 0, no noise. (b) Gamma = 20, no noise. (c) Gamma = 145, no noise.

(d) Gamma = 0, 5% Gaussian
noise.

(e) Gamma = 20, 5% Gaussian
noise.

(f) Gamma = 145, 5% Gaus-
sian noise.

Figure 24: Images obtained when varying the Φpoz regularization parameter (K =
32).



Reconstruction of binary matrices from fan-beam projections 381

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5 10 15 25 30 35 40 45

Noise

R
e
la

ti
v
e

m
e
a
n

e
rr

o
r

K=32

K=22

(a) Relative mean error

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 25 30 35 40 45

Noise

T
im

e
(s

e
c
)

K=32

K=22

(b) Time (sec)

Figure 25: The effect of changing the noise ratio.

5.5 Noise

The noise ratio η in our experiments was varied from 0% to 45%. Once again we
focused on the relative mean error (see Fig. 25(a)) and the time (see Fig. 25(b)).
Increasing the amount of noise in the projections we got worse results, as expected
(see Fig. 25(a)). The algorithm was found to halt in the K = 22 case when we had
fewer equations and more noise. The reason for this is the number of equations
needed. If we have fewer equations the system is less determined in the noiseless
case. In the K = 32 case when we add noise the number of local minima seems to
be more than that for the K = 22 case.

6 Discussion and Conclusions

Now we will summarise the results of the previous sections. First, we studied the
effects of varying the parameters of the fan-beam projections and the SA recon-
struction algorithm with binary-valued matrices. With binary-valued phantoms we
carried out experiments to study the effects of varying parameters on the quality
of the reconstructed objects. In each test only one parameter was varied. The tests
were repeated 100 times to get a better approximation for the relative mean error
and for the execution time.

From our findings it is apparent that, when using the SA method, there is no
major difference between reconstructing an image from a fan-beam and reconstruct-
ing one from parallel-beam projections. We saw this when we varied the distance
between the sources and the origin in the experiments (see Fig. 6).

Changing the start angle when the source number was 4 yielded better results
only in certain special source positions (see Fig. 7). When the number of sources (see
Fig. 9) and number of detector elements (see Fig. 11) were varied in the experiments,
we observed big variations in the quality of the reconstruction.

Upon increasing the initial temperature we did not, as expected, notice any
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big difference between the results (see Fig. 13). Varying the stopping criteria we
found that good reconstruction results could be obtained but they required longer
execution times (see Figs. 15, 17, 16 and 18). The main task here, however, was to
determine the stopping criteria needed to produce good reconstruction images with
an acceptable execution time. We found such criteria for our particular software
phantom and we expect that there should be similar criteria with other phantoms.

The results of the complexity test in Section 5.3 show that, when K was changed
from 22 to 32, there was no great change in the relative mean error when noise was
present (see Fig. 20(b)). In this test we found we needed a feasible number of
equations (number of sources or number of detectors) when no noise was added
to the projections (see Fig. 20(a)). This number was found to depend on the
geometrical complexity of the phantom.

In Section 5.4 we noticed that, beyond a certain point, varying the regularization
parameter did not yield better results (see Fig 22). This value was lower for the
noiseless case than for the noisy case and it was found to depend on the number of
equations used in the reconstruction process.

The simulated experiment in Section 5.5 with noise shows that when we have
more information and noisy projections, it usually requires more time to reconstruct
the object from these projections (see Fig. 25). This is because the equation system
is less determined in the noisy case.

Overall, the study revealed that the number-of-equations parameter is strongly
related to other parameters as well like the stopping criteria, regularization pa-
rameter and complexity of the phantom. We obtained similar results with different
parameter settings and found the execution time was also an important factor in the
reconstruction process. A rehearsal of the experiments will, of course, be necessary
for reconstructing real objects with well-defined, measurable parameters.
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