220 research outputs found

    Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance

    Full text link
    Model-based decompositions have gained considerable attention after the initial work of Freeman and Durden. This decomposition which assumes the target to be reflection symmetric was later relaxed in the Yamaguchi et al. decomposition with the addition of the helix parameter. Since then many decomposition have been proposed where either the scattering model was modified to fit the data or the coherency matrix representing the second order statistics of the full polarimetric data is rotated to fit the scattering model. In this paper we propose to modify the Yamaguchi four-component decomposition (Y4O) scattering powers using the concept of statistical information theory for matrices. In order to achieve this modification we propose a method to estimate the polarization orientation angle (OA) from full-polarimetric SAR images using the Hellinger distance. In this method, the OA is estimated by maximizing the Hellinger distance between the un-rotated and the rotated T33T_{33} and the T22T_{22} components of the coherency matrix [T]\mathbf{[T]}. Then, the powers of the Yamaguchi four-component model-based decomposition (Y4O) are modified using the maximum relative stochastic distance between the T33T_{33} and the T22T_{22} components of the coherency matrix at the estimated OA. The results show that the overall double-bounce powers over rotated urban areas have significantly improved with the reduction of volume powers. The percentage of pixels with negative powers have also decreased from the Y4O decomposition. The proposed method is both qualitatively and quantitatively compared with the results obtained from the Y4O and the Y4R decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR L-band Hayward dataset.Comment: Accepted for publication in IEEE J-STARS (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

    Information Geometry for the Working Information Theorist

    Full text link
    Information geometry is a study of statistical manifolds, that is, spaces of probability distributions from a geometric perspective. Its classical information-theoretic applications relate to statistical concepts such as Fisher information, sufficient statistics, and efficient estimators. Today, information geometry has emerged as an interdisciplinary field that finds applications in diverse areas such as radar sensing, array signal processing, quantum physics, deep learning, and optimal transport. This article presents an overview of essential information geometry to initiate an information theorist, who may be unfamiliar with this exciting area of research. We explain the concepts of divergences on statistical manifolds, generalized notions of distances, orthogonality, and geodesics, thereby paving the way for concrete applications and novel theoretical investigations. We also highlight some recent information-geometric developments, which are of interest to the broader information theory community.Comment: 12 pages, 3 figures, 1 tabl

    Single Tree Detection from Airborne Laser Scanning Data: A Stochastic Approach

    Get PDF
    Characterizing and monitoring forests are of great scientific and managerial interests, such as understanding the global carbon circle, biodiversity conservation and management of natural resources. As an alternative or compliment to traditional remote sensing techniques, airborne laser scanning (ALS) has been placed in a very advantageous position in forest studies, for its unique ability to directly measure the distribution of vegetation materials in the vertical direction, as well as the terrain beneath the forest canopy. Serving as basis for tree-wise forest biophysical parameter and species information retrieval, single tree detection is a very motivating research topic in forest inventory. The objective of the study is to develop a method from the perspective of computer vision to detect single trees automatically from ALS data. For this purpose, this study explored different aspects of the problem. It starts from an improved pipeline for canopy height model (CHM) generation, which alleviates the distortion of tree crown shapes presented on CHMs resulted from conventional procedures due to the shadow effects of ALS data and produces pit-free CHM. The single tree detection method consists of a hybrid framework which integrates low-level image processing techniques, i.e. local maxima filtering (LM) and marker-controlled watershed segmentation (MCWS), into a high-level probabilistic model. In the proposed approach, tree crowns in the forest plot are modelled as a configuration of circular objects. The configuration containing the best possible set of detected tree objects is estimated by a global optimization solver in a probabilistic framework. The model features an accelerated optimization process compared with classical stochastic models, e.g. marked point processes. The parameter estimation is another issue: the study investigated both a reference-based supervised and an Expectation-Maximization (EM) based unsupervised method to estimate the parameters in the model. The model was tested in a temperate mature coniferous forest in Ontario, Canada, as well as simulated coniferous forest plots with various degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering based methods, thus increasing the overall detection accuracy by approximately 10% on all of the datasets

    Hyperspectral image representation and processing with binary partition trees

    Get PDF
    The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Based on region-merging techniques, the construction of BPT is investigated in this work by studying hyperspectral region models and the associated similarity metrics. As a matter of fact, the very high dimensionality and the complexity of the data require the definition of specific region models and similarity measures. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed according to different applications. This Ph.D is focused in particular on segmentation, object detection and classification of hyperspectral imagery. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representatio

    Puude konkurentsi- ja struktuuriindeksite analüüs arukase (Betula pendula Roth) puistute modelleerimise eesmärgil

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in ForestryThe thesis is designed to establish and assess different approaches of competition measurement, incorporated with various competitor selection methods, focusing on silver birch in Estonia. The effect of competition and some other tree and stand variables on the growth and the mortality of trees are explored. Moreover, stands are characterized employing several structural indices calculated for sample plots of different shapes and sizes. The findings indicate that the measures including the trees spatial information, have superiority over the measures ignoring the trees locations within a forest stand, when studying the dynamics of stands and their effects on the structure and functioning of forest ecosystems. Also, plots with different shapes showed almost equal estimation accuracy, thus circular plots are preferred due to their smaller ratio of perimeter to surface. Besides, the optimum plot size depends on the stand structure, with an attempt to keep sample plots as small as possible to reduce the assessment efforts and costs.Doktoritöö eesmärgiks on uurida erinevaid meetodeid puudevahelise konkurentsi hindamiseks ja konkurentpuude kindlakstegemiseks eelkõige Eestis kogutud arukase puistute andmetele tuginedes. Põhjalikumalt uuriti puudevahelise konkurentsi ning puude ja puistu takseertunnuste seoseid puude kasvu ja suremusega. Lisaks kirjeldati puistute seisundit mitmete struktuuriindeksite abil erineva suuruse ja kujuga proovialasid kasutades. Töö tulemused näitavad, et puistute dünaamika uurimisel on puude ruumilist paiknemist arvestavatel tunnustel eeliseid võrreldes tunnustega, mis ei arvesta puude ruumilist paiknemist. Erineva kujuga proovialad andsid takseertunnuste hinnangu küll sarnase täpsusega, kuid ringikujulisi proovialasid tuleks eelistada nende ümbermõõdu-pindala väiksema suhtarvu tõttu. Optimaalne prooviala suurus sõltub puistu struktuurist, kuid proovialad tuleks siiski valida võimalikult väiksena, et vähendada mõõtmistele kuluvat aega ja vahendeid.Publication of this dissertation is supported by the Estonian University of Life Sciences and by the Doctoral School of Earth Sciences and Ecology created under the auspices of the European Social Fund

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Theory and Application of Dynamic Spatial Time Series Models

    Get PDF
    Stochastic economic processes are often characterized by dynamic interactions between variables that are dependent in both space and time. Analyzing these processes raises a number of questions about the econometric methods used that are both practically and theoretically interesting. This work studies econometric approaches to analyze spatial data that evolves dynamically over time. The book provides a background on least squares and maximum likelihood estimators, and discusses some of the limits of basic econometric theory. It then discusses the importance of addressing spatial heterogeneity in policies. The next chapters cover parametric modeling of linear and nonlinear spatial time series, non-parametric modeling of nonlinearities in panel data, modeling of multiple spatial time series variables that exhibit long and short memory, and probabilistic causality in spatial time series settings
    corecore