Model-based decompositions have gained considerable attention after the
initial work of Freeman and Durden. This decomposition which assumes the target
to be reflection symmetric was later relaxed in the Yamaguchi et al.
decomposition with the addition of the helix parameter. Since then many
decomposition have been proposed where either the scattering model was modified
to fit the data or the coherency matrix representing the second order
statistics of the full polarimetric data is rotated to fit the scattering
model. In this paper we propose to modify the Yamaguchi four-component
decomposition (Y4O) scattering powers using the concept of statistical
information theory for matrices. In order to achieve this modification we
propose a method to estimate the polarization orientation angle (OA) from
full-polarimetric SAR images using the Hellinger distance. In this method, the
OA is estimated by maximizing the Hellinger distance between the un-rotated and
the rotated T33 and the T22 components of the coherency matrix
[T]. Then, the powers of the Yamaguchi four-component model-based
decomposition (Y4O) are modified using the maximum relative stochastic distance
between the T33 and the T22 components of the coherency matrix at the
estimated OA. The results show that the overall double-bounce powers over
rotated urban areas have significantly improved with the reduction of volume
powers. The percentage of pixels with negative powers have also decreased from
the Y4O decomposition. The proposed method is both qualitatively and
quantitatively compared with the results obtained from the Y4O and the Y4R
decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR
L-band Hayward dataset.Comment: Accepted for publication in IEEE J-STARS (IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing