7 research outputs found

    KLAST: fast and sensitive software to compare large genomic databanks on cloud

    Get PDF
    International audienceAs the genomic data generated by high throughput sequencing machines continue to exponentially grow, the need for very efficient bioinformatics tools to extract relevant knowledge from this mass of data doesn't weaken. Comparing sequences is still a major task in this discovering process, but tends to be more and more time-consuming. KLAST is a sequence comparison software optimized to compare two nucleotides or proteins data sets, typically a set of query sequences and a reference bank. Performances of KLAST are obtained by a new indexing scheme, an optimized seed-extend methodology, and a multi-level parallelism implementation. To scale up to NGS data processing, a Hadoop version has been designed. Experiments demonstrate a good scalability and a large speed-up over BLAST, the reference software of the domain. In addition, computation can be optionally performed on compressed data without any loss in performances

    Somoclu: An Efficient Parallel Library for Self-Organizing Maps

    Get PDF
    Somoclu is a massively parallel tool for training self-organizing maps on large data sets written in C++. It builds on OpenMP for multicore execution, and on MPI for distributing the workload across the nodes in a cluster. It is also able to boost training by using CUDA if graphics processing units are available. A sparse kernel is included, which is useful for high-dimensional but sparse data, such as the vector spaces common in text mining workflows. Python, R and MATLAB interfaces facilitate interactive use. Apart from fast execution, memory use is highly optimized, enabling training large emergent maps even on a single computer.Comment: 26 pages, 9 figures. The code is available at https://peterwittek.github.io/somoclu

    A Performance/Cost Model for a CUDA Drug Discovery Application on Physical and Public Cloud Infrastructures

    Get PDF
    Virtual Screening (VS) methods can considerably aid drug discovery research, predicting how ligands interact with drug targets. BINDSURF is an efficient and fast blind VS methodology for the determination of protein binding sites, depending on the ligand, using the massively parallel architecture of graphics processing units(GPUs) for fast unbiased prescreening of large ligand databases. In this contribution, we provide a performance/cost model for the execution of this application on both local system and public cloud infrastructures. With our model, it is possible to determine which is the best infrastructure to use in terms of execution time and costs for any given problem to be solved by BINDSURF. Conclusions obtained from our study can be extrapolated to other GPU‐based VS methodologiesIngeniería, Industria y Construcció

    Research on High-performance and Scalable Data Access in Parallel Big Data Computing

    Get PDF
    To facilitate big data processing, many dedicated data-intensive storage systems such as Google File System(GFS), Hadoop Distributed File System(HDFS) and Quantcast File System(QFS) have been developed. Currently, the Hadoop Distributed File System(HDFS) [20] is the state-of-art and most popular open-source distributed file system for big data processing. It is widely deployed as the bedrock for many big data processing systems/frameworks, such as the script-based pig system, MPI-based parallel programs, graph processing systems and scala/java-based Spark frameworks. These systems/applications employ parallel processes/executors to speed up data processing within scale-out clusters. Job or task schedulers in parallel big data applications such as mpiBLAST and ParaView can maximize the usage of computing resources such as memory and CPU by tracking resource consumption/availability for task assignment. However, since these schedulers do not take the distributed I/O resources and global data distribution into consideration, the data requests from parallel processes/executors in big data processing will unfortunately be served in an imbalanced fashion on the distributed storage servers. These imbalanced access patterns among storage nodes are caused because a). unlike conventional parallel file system using striping policies to evenly distribute data among storage nodes, data-intensive file systems such as HDFS store each data unit, referred to as chunk or block file, with several copies based on a relative random policy, which can result in an uneven data distribution among storage nodes; b). based on the data retrieval policy in HDFS, the more data a storage node contains, the higher the probability that the storage node could be selected to serve the data. Therefore, on the nodes serving multiple chunk files, the data requests from different processes/executors will compete for shared resources such as hard disk head and network bandwidth. Because of this, the makespan of the entire program could be significantly prolonged and the overall I/O performance will degrade. The first part of my dissertation seeks to address aspects of these problems by creating an I/O middleware system and designing matching-based algorithms to optimize data access in parallel big data processing. To address the problem of remote data movement, we develop an I/O middleware system, called SLAM, which allows MPI-based analysis and visualization programs to benefit from locality read, i.e, each MPI process can access its required data from a local or nearby storage node. This can greatly improve the execution performance by reducing the amount of data movement over network. Furthermore, to address the problem of imbalanced data access, we propose a method called Opass, which models the data read requests that are issued by parallel applications to cluster nodes as a graph data structure where edges weights encode the demands of load capacity. We then employ matching-based algorithms to map processes to data to achieve data access in a balanced fashion. The final part of my dissertation focuses on optimizing sub-dataset analyses in parallel big data processing. Our proposed methods can benefit different analysis applications with various computational requirements and the experiments on different cluster testbeds show their applicability and scalability

    Parallelizing BLAST and SOM Algorithms with MapReduce-MPI Library

    No full text

    PERICLES Deliverable 4.3:Content Semantics and Use Context Analysis Techniques

    Get PDF
    The current deliverable summarises the work conducted within task T4.3 of WP4, focusing on the extraction and the subsequent analysis of semantic information from digital content, which is imperative for its preservability. More specifically, the deliverable defines content semantic information from a visual and textual perspective, explains how this information can be exploited in long-term digital preservation and proposes novel approaches for extracting this information in a scalable manner. Additionally, the deliverable discusses novel techniques for retrieving and analysing the context of use of digital objects. Although this topic has not been extensively studied by existing literature, we believe use context is vital in augmenting the semantic information and maintaining the usability and preservability of the digital objects, as well as their ability to be accurately interpreted as initially intended.PERICLE
    corecore