29 research outputs found

    Enhancing the performance of Decoupled Software Pipeline through Backward Slicing

    Get PDF
    The rapidly increasing number of cores available in multicore processors does not necessarily lead directly to a commensurate increase in performance: programs written in conventional languages, such as C, need careful restructuring, preferably automatically, before the benefits can be observed in improved run-times. Even then, much depends upon the intrinsic capacity of the original program for concurrent execution. The subject of this paper is the performance gains from the combined effect of the complementary techniques of the Decoupled Software Pipeline (DSWP) and (backward) slicing. DSWP extracts threadlevel parallelism from the body of a loop by breaking it into stages which are then executed pipeline style: in effect cutting across the control chain. Slicing, on the other hand, cuts the program along the control chain, teasing out finer threads that depend on different variables (or locations). parts that depend on different variables. The main contribution of this paper is to demonstrate that the application of DSWP, followed by slicing offers notable improvements over DSWP alone, especially when there is a loop-carried dependence that prevents the application of the simpler DOALL optimization. Experimental results show an improvement of a factor of ?1.6 for DSWP + slicing over DSWP alone and a factor of ?2.4 for DSWP + slicing over the original sequential code

    A Survey on Thread-Level Speculation Techniques

    Get PDF
    Producción CientíficaThread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential code without relying on a prior, compile-time-dependence analysis. In this work, we introduce the technique, present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances in this field.MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS)

    GPU-TLS: an efficient runtime for speculative loop parallelization on GPUs

    Get PDF
    Recently GPUs have risen as one important parallel platform for general purpose applications, both in HPC and cloud environments. Due to the special execution model, developing programs for GPUs is difficult even with the recent introduction of high-level languages like CUDA and OpenCL. To ease the programming efforts, some research has proposed automatically generating parallel GPU codes by complex compile-time techniques. However, this approach can only parallelize loops 100% free of inter-iteration dependencies (i.e., DOALL loops). To exploit runtime parallelism, which cannot be proven by static analysis, in this work, we propose GPU-TLS, a runtime system to speculatively parallelize possibly-parallel loops in sequential programs on GPUs. GPU-TLS parallelizes a possibly-parallel loop by chopping it into smaller sub-loops, each of which is executed in parallel by a GPU kernel, speculating that no inter-iteration dependencies exist. After dependency checking, the buffered writes of iterations without mis-speculations are copied to the master memory while iterations encountering mis-speculations are re-executed. GPU-TLS addresses several key problems of speculative loop parallelization on GPUs: (1) The larger mis-speculation rate caused by larger number of threads is reduced by three approaches: the loop chopping parallelization approach, the deferred memory update scheme and intra-warp value forwarding method. (2) The larger overhead of dependency checking is reduced by a hybrid scheme: eager intra-warp dependency checking combined with lazy inter-warp dependency checking. (3) The bottleneck of serial commit is alleviated by a parallel commit scheme, which allows different iterations to enter the commit phase out of order but still guarantees sequential semantics. Extensive evaluations using both microbenchmarks and reallife applications on two recent NVIDIA GPU cards show that speculative loop parallelization using GPU-TLS can achieve speedups ranging from 5 to 160 for sequential programs with possibly-parallel loops. © 2013 IEEE.published_or_final_versio

    Automatic Parallelization of Tiled Stencil Loop Nests on GPUs

    Full text link
    This thesis attempts to design and implement a compiler framework based on the polyhedral model. The compiler automatically parallelizes loop nests; especially stencil kernels, into efficient GPU code by loop tiling transformations which the polyhedral model describes. To enhance parallel performance, we introduce three practically efficient techniques to process different types of loop nests. The experimental results of our compiler framework have demonstrated that these advanced techniques can outperform previous approaches. Firstly, we aim to find efficient tiling transformations without violating data dependences. How to select a tile's shape and size is an open issue that is performance-critical and influenced by GPU's hardware constraints. We propose an approach to determine the tile shapes out of consideration for improving two-level parallelism of GPUs. The new approach finds appropriate tiling hyperplanes by embedding parallelism-enhancing constraints into the polyhedral model to maximize intra-tile, i.e., intra-SM parallelism. This improves the load balance among the streaming processors (SPs), which execute a wavefront of loop iterations within a tile. We eliminate parallelism-hindering false dependences to optimize inter-tile, i.e., inter-SM parallelism. This improves the load balance among the streaming multiprocessors (SMs), which execute a wavefront of tiles. Furthermore, to avoid combinatorial explosion of tile size's configurations, we present a model-driven approach to automating tile size selection that is performance-critical for loop tiling transformations, especially for DOACROSS loop nests. Our tile size selection model accurately estimates the execution times of tiled loop nests running on GPUs. The selected tile sizes lead to the performance results that are close to the best observed for a range of problem sizes tested. Finally, to address the difficulty and low-performance of parallelizing widely used SOR stencil loop nests, we present a new tiled parallel SOR method, called MLSOR, which admits more efficient data-parallel SIMD execution on GPUs. Unlike the previous two approaches that are dependence-preserving, the basic idea is to algorithmically restructure a stencil kernel based on a non-dependence-preserving parallelization scheme to avoid pipelining for higher parallelism. The new approach can be implemented in compilers through a pattern matching pass to optimize SOR-like DOACROSS loop nests on GPUs

    Discovery of Potential Parallelism in Sequential Programs

    Get PDF
    In the era of multicore processors, the responsibility for performance gains has been shifted onto software developers. Once improvements of the sequential algorithm have been exhausted, software-managed parallelism is the only option left. However, writing parallel code is still difficult, especially when parallelizing sequential code written by someone else. A key task in this process is the identification of suitable parallelization targets in the source code. Parallelism discovery tools help developers to find such targets automatically. Unfortunately, tools that identify parallelism during compilation are usually conservative due to the lack of runtime information, and tools relying on runtime information primarily suffer from high overhead in terms of both time and memory. This dissertation presents a generic framework for parallelism discovery based on dynamic program analysis, supporting various types of parallelism while incurring practically affordable overhead. The framework contains two main components: an efficient data-dependence profiler and a set of parallelism discovery algorithms based on a language-independent concept called Computational Unit. The data-dependence profiler serves as the foundation of the parallelism discovery framework. Traditional dependence profiling approaches introduce a tremendous amount of time and memory overhead. To lower the overhead, current methods limit their scope to the subset of the dependence information needed for the analysis they have been created for, sacrificing generality and discouraging reuse. In contrast, the profiler shown in this thesis addresses the problem via signature-based memory management and a lock-free parallel design. It produces detailed dependences not only for sequential but also for multi-threaded code without causing prohibitive overhead, allowing it to serve as a generic base for various program analysis techniques. Computational Units (CUs) provide a language-independent foundation for parallelism discovery. CUs are computations that follow the read-compute-write pattern. Unlike other concepts, they are not restricted to predefined language constructs. A program is represented as a CU graph, in which vertexes are CUs and edges are data dependences. This allows parallelism to be detected that spreads across multiple language constructs, taking code refactoring into consideration. The parallelism discovery algorithms cover both loop and task parallelism. Results of our experiments show that 1) the efficient data-dependence profiler has a very competitive average slowdown of around 80× with accuracy higher than 99.6%; 2) the framework discovers parallelism with high accuracy, identifying 92.5% of the parallel loops in NAS benchmarks; 3) when parallelizing well-known open-source software following the outputs of the framework, reasonable speedups are obtained. Finally, use cases beyond parallelism discovery are briefly demonstrated to show the generality of the framework

    Parallel machine architecture and compiler design facilities

    Get PDF
    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role
    corecore