

Citation for published version:
Alwan, E, Fitch, J & Padget, J 2016, 'Enhancing the performance of decoupled software pipeline through
backward slicing', Research Journal of Applied Sciences, vol. 11, no. 10, pp. 900-909.
https://doi.org/10.3923/rjasci.2016.900.909

DOI:
10.3923/rjasci.2016.900.909

Publication date:
2016

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161917395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3923/rjasci.2016.900.909
https://researchportal.bath.ac.uk/en/publications/enhancing-the-performance-of-decoupled-software-pipeline-through-backward-slicing(54f78af3-a718-4a79-b4f1-5e76f4d0b190).html

Enhancing the performance of Decoupled
Software Pipeline through Backward Slicing

Esraa Alwan John Fitch Julian Padget
Department of Computer Science Department of Compute Science Department of Computer
Science
 Babylon University Bath University Bath University
Email: isr.phd@gmail.com Email: jpff@cs.bath.ac.uk Email: jap@cs.bath.ac.uk

Abstract

The rapidly increasing number of cores available in multicore processors does not
necessarily lead directly to a commensurate increase in performance: programs written in
conventional languages, such as C, need careful restructuring, preferably automatically,
before the benefits can be observed in improved run-times. Even then, much depends
upon the intrinsic capacity of the original program for concurrent execution. The subject
of this paper is the performance gains from the combined effect of the complementary
techniques of the Decoupled Software Pipeline (DSWP) and (backward) slicing. DSWP
extracts thread level parallelism from the body of a loop by breaking it into stages which
are then executed pipeline style: in effect cutting gacross the control chain. Slicing, on the
other hand, cuts the program along the control chain, teasing out finer threads that depend
on different variables (or locations). parts that depend on different variables. The main
contribution of this paper is to demonstrate that the application of DSWP, followed by
slicing offers notable improvements over DSWP alone, especially when there is a loop-
carried dependence that prevents the application of the simpler DOALL optimization.
Experimental results show an improvement of a factor of _1.6 for DSWP + slicing over
DSWP alone and a factor of _2.4 for DSWP + slicing over the original sequential code.
Keywords—decoupled software pipeline, slicing, multicore, thread-level parallelism,
automatic restructuring

I. INTRODUCTION

Multicore systems have become a dominant feature in computer architecture.
Chips with 4, 8, and 16 cores are available now and higher core counts are promised.
Unfortunately increasing the number of cores does not offer a direct path to better
performance especially for single-threaded legacy applications. But using software
techniques to parallelize the sequential application can raise the level of gain from
multicore systems [2].

mailto:isr.phd@gmail.com
mailto:jpff@cs.bath.ac.uk

Parallel programming is not an easy job for the user, who has to deal with many issues
such as dependencies, synchronization, load balancing, and race conditions. For this
reason the role of automatically parallelizing compilers and techniques for the extraction
of several threads from single-threaded programs, without programmer intervention, is
becoming more important and may help to deliver better utilization of modern hardware
[7]. Two traditional transformations, whose application typically delivers substantial
gains on scientific and numerical codes, are DOALL and DOACROSS. DOALL assigns
each iteration of the loop to a thread (see figure 1), which then may all execute in
parallel, because there are no cross-dependencies between the iterations. Clearly,
DOALL performance scales linearly with the number of available threads. The
DOACROSS (see figure 2) technique is very similar to DOALL, in that each iteration is
assigned to a thread, however, there are cross-iteration data and control dependencies.
Thus, to ensure the correct results, data dependencies have to be respected, typically
through synchronization, so that a later iteration receives the correct value from an earlier
one as illustrated in figure 1[2], [14]. DOALL and DOACROSS techniques depend on
identifying loops that have a regular pattern[13], but many applications have irregular
control flow and complex memory access patterns, making their parallelization very
challenging. The Decoupled Software Pipeline (DSWP) has been shown to be an
effective technique for the parallelization of applications with such characteristics. This
transformation partitions the loop body into a set of stages, ensuring that critical path
dependencies are kept local to a stage as shown in figure 3. Each stage becomes a thread
and data is passed between threads using inter-core communication [5]. The success of
DSWP depends on being able to extract the relatively fine grain parallelism that is
present in many applications. Another technique which offers potential gains in
parallelizing general purpose applications is slicing. Program slicing transforms large
programs into several smaller ones that

 Fig. 1. DOALL Technique adopted from[2]

 Fig. 2. DOACROSS Technique Fig. 3. DSWP Technique adopted from[2]

execcute independently, each consisting of only statements relevant to the computation of
certain, so-called, (program) points. The slicing technique is appropriate for parallel
execution on a multi-core processor because it has the ability to decompose the
application into independent slices that are executable in parallel [15].

This work explores the possibility of performance benefits arising from a secondary
transformation of DSWP stages by slicing. Our observation is that individual DSWP
stages can be parallelized by slicing, leading to an improvement in performance of the
longest duration DSWP stages. In particular, this approach can be applicable in cases
where DOALL is not. The proposed method is implemented using the Low level virtual
machine (LLVM) compiler framework [6]. LLVM uses a combination of a low level
virtual instruction set combined with high level type information. An important part of
the LLVM design is its intermediate representation (IR). This has been carefully designed
to allow for many traditional analyses and optimizations to be applied to LLVM code and
many of which are provided as part of the LLVM framework.

The remainder of the paper is organized as follows: the next section (II) describes how
DSWP may be combined with backward slicing, then section III gives details of the

implementation. Section IV presents some experimental results from the application of
the automatic DSWP + Slicing transformation. Finally in section V, we survey related
work and conclude (section VI) with some ideas for future work.

 X: Work(cur)
 {
 S1: Slice1(cur);
 S2: Slice2(cur);
 }
 List *cur = head;
 L: for (; cur != NULL;
 cur = cur->next)
 X: Work(cur);

 Fig. 4. Sliced loop body with recurrence dependency

 1 ... 1 Calc(int M
 2 double ss=0; 2 double da_in
 3 int i; 3 double* da_out) {
 4 double a[0]=0; 4 int j;
 5 while(node != Null) { 5 b[0]=0;
 6 Calc(node->data,a[i], &a[i+1); 6 for(j=0;j<M;j++) {
 7 i++; 7 m+=da_in+seq(j);
 8 node=node->next; 8 (*da_out) += da_in+cos(m);
 9 } 9 b[j]=b[j]+xx(m);
 10 10 }

 Fig 5. Source program

II. DSWP + SLICING TRANSFORMATION

The performance of a DSWP-transformed program is limited by the slowest stage.
Thus, any gains must come from improving the performance of that stage. The main
feature of the proposed method is the application of backward slicing to the longest stage
emerging from the DSWP transformation. This is particularly effective when that stage
includes a function call.

To illustrate the method, consider the example in Figure 4. DSWP partitions the
loop body into the parts labelled L and X, then we slice X to extract S1 and S2.
Consequently, instead of giving the whole of stage X to one thread, it can be distributed

across n threads, depending on the number of slices extracted, with in this case, one core
running L (the first stage) and two more running S1 and S2 (the slices from the second
stage). However, while there are potential gains from splitting the loop body into several
concurrent threads, there is still the cost of synchronization and communication between
threads to take into account. To minimize these overheads we use lock-free buffers [4].
As a result, producer and consumer can access the queue concurrently, via the enqueue
and dequeue operations. This makes it possible for the producer and consumer to operate
independently as long as there is at least one data element in the queue.

III. IMPLEMENTATION OF DSWP + SLICING

We build on earlier work by Zhao and Hahnenberg [3] who implement DSWP in LLVM.
We have extended that code with backward slicing and a decision procedure to determine
when it is worth applying the transformation.

 Fig. 6. Program Dependency Graph Fig. 7. DAG of SCCs

1 Slice_1(M,da_in){ 1 Slice_2(M,da_in,da_out){

2 int j; 2 int j;

3 for(j=0;j<M;j++) { 3 b[0]=0;

4 m+=da_in+seq(j); 4 for(j=0;j<M;j++) {

5 (*da_out) += da_in+cos(m); 5 m+=da_in+seq(j);

6 } 6 b[j]=b[j]+xx(m);

7 } 7 }

 8 }

 Fig. 8. Slice 1 on da_out Fig. 9. Slice 2 on b[j]

The transformation procedure is based on the algorithm for DSWP proposed by Ottoni et
al. [8]. It takes as input L, the loop to be optimized, and modifies it as a side-effect. The
details are as follows:

1) Find candidate loop: This step looks for the most profitable loop to apply DSWP +
Slicing. We collect static information about the program and then use a heuristic to
estimate the number of cycles necessary to execute all instructions in every loop in the
program. The loop with the largest estimated cycle count and containing a function call is
chosen. This is a first approximation selection procedure and clearly a more sophisticated
version can and should be substituted in due course.

2) Build the Program Dependency Graph (PDG): The subject is the loop to be
parallelized. Figure 6 shows that the solid lines (red) denote data dependency and dashed
lines (black) control dependency.

3) Build strongly connected component (SCC) DAG: In order to keep all the
instructions that contribute to a dependency local to a thread, a Strongly Connected
Component(SCC) is built, followed by the DAG for the SCCs. Consider the code in
figure 5. The loop (lines 5– 9) traverses a linked list and calls the procedure Calc. Figure
7 shows the DAGscc of the PDG of the program on the left had side of figure 5. In the
procedure Calc, there are loop-carried dependencies that make DOALL inapplicable.
DOACROSS is only applicable with the addition of synchronization that may cost more

than is gained. However, if we can extract independent short slices from this stage and
execute them in parallel, the execution time for this long stage can be reduced. In this
case, after DSWP partitioning, we extract two slices (Figures 8 and 9) where function seq
is side-effect-free.

4) Assign SCCs to threads: The previous step may result in more SCCs than available
threads. In this case, we merge SCCs until there are as many as there are threads. In our
example, we have a function call in the loop body. We assign the SCCs that represent the
outer loop body to the first thread and the n extracted slices to n threads.

Input: A PDG, set of empty list associated, one for each node identifier(variable in the slicing list).

Output: Slice for each node identifier(variable).

Algorithm:

 - Make all PDG nodes as not visited

 - ComputeASlice(exit node)

ComputeASlice (node n){

 If node is not visited

 Mark node n as visited

 Add the instructions of n to the set associated with node n

 For each node m(instruction)in which node n depends ComputeASlice(m)

 Add the content of the set associated with node m to the set associated with node n

 }

 Fig. 10. The ComputeAllSlice algorithm. Adopted from [1]

5) Extract slice: In this part, a small slicing program is designed that has the ability to
extract slices for the limited range of the case studies. The algorithm illustrated in figure
10 is used to compute an intra-procedural static slice [1]. N static slices from the function
body are extracted as follows: In the first step, the PDG is built for the function body by
drawing up the dependency table that has both control and data dependency (similar to

the one above used to determine thread assignment). Secondly, the entry block for the
function body is examined so as to identify the variables to be sliced and then the names
of these are collected, being put on a slicing list. The ComputeASlice is called to extract a
slice for every listed variable. Then, an attempt is made to isolate the control statement
parts, such as loop or if statement, into another table called the control table. After
collecting the control part instructions, these are added to the extracted slice, if one of the
slice instructions is contained in this control parts. For each filtered variable in the slicing
identifiers list, first, an empty list is associated with it and subsequently, all the PDG table
entries are scanned to find which one matches the slicing identifier. If one is found, then
all the instructions that have data or control dependency are added to the associated list.
This procedure is repeated to all the instructions in the associated list and their operands
and is not stopped until all the instructions and their operands are contained in this list or
all the variables that represent the loop induction variables have been reached.

After a set of slices has been extracted from the function body, they are filtered to remove
redundant ones so as to avoid repeated calculation, which will happen if all the
instructions in one of them have been included in another. For example ,if there are two
slices and slice 1 is completely contained in slice 2 and the second slice (slice 2) is longer
than the first, then we will remove the former and keep the latter. This procedure is
repeated for all n slices, the real number is obtained. In the case of figure 5 two slice will
be retracted for two variables da_out and sum.

6) Insert synchronization: To ensure correct results, the dependence between threads
must be respected and for pipeline parallelism to be effective, the overhead on core-to-
core communication must be as low as possible. Hence, we use the FastForward circular
lock-free queue algorithm [4]. In order to determine the source and the destination of
dependencies between the DSWP stages, we need to inspect function arguments. These
arguments denote the data that will go in the communication buffers. The destination of a
dependency appears in the body of a function and hence where the data must be retrieved
in order for the sliced stages to work correctly.

IV. EXPERIMENTAL RESULTS

 This section discusses the results obtained from the application of the
automatic implementation of the proposed method that we presented in section II. Several

programs have been used as case studies. Some are artificial and others are taken from
[9]. The discussion examines two issues: (i) the effect of lock-free buffers on the
performance of DSWP, and (ii) the results from the application of DSWP + slicing,
demonstrating how this method can improve the performance of long stage DSWP with
different program patterns.

A. Communication Overhead

 This section examines the impact of communication costs on the
performance of DSWP. It is important for us to be able to quantify this cost because it is
a critical factor in the decision procedure for whether to carry out the DSWP + slicing
transformation. We are also aware this cost will be platform dependent, which is why we
provide details of our particular platform. In a production deployment, this aspect would
have to be measured as part of a calibration process. Consider the program in figure 11.
We wish to execute this it by applying DSWP to the loop that takes the most execution
time of the program. Initially, we partition the program into two parts, give each to a
thread and execute the threads as a pipeline. The first thread handles lines 5–14 and the
second, lines 15–24. Two parameters play a vital role in determining the benefit (or
otherwise) of DSWP, namely M and N. M affects the amount of work inside each thread
by controlling the number of iterations in the inner loops, while N, in effect, determines
the volume of data transfer between threads, by controlling the number of outer loop
iterations. Figure 12 shows how changing the value of N (1–40) and M (1000–1000000)
affects the execution time of the DSWP version compared to the sequential program.
From N=6 and M=51000 the performance of DSWP becomes better than the sequential
one. Furthermore the effect of the buffer size on the performance of DSWP is examined,
for which the same program as in figure 11 was employed. However this time the value
of N was fixed to 1,000 and M to 10,000 and the only parameter that was

1 main()
2 int N,M
3
4 rows=N;
5 for(i1=1; i1 < rows; i1++) {
6 for(z=1;z<M;z++) {
7 sum = 0;
8 for(a=1; a<10; a++)
9 sum = sum + image[i1] *mask_1[a];
10 if(sum > max) sum = max;
11 if(sum < 0) sum =10;

12 if(sum < out_image[i1])
13 out_image[i1] = sum;
14 }
15 for(z1=1;z1<M;z1++) {
16 sum1 = 0;
17 for(a1=1; a1<10; a1++) {
18 sum1 = sum1 + image[i1] * mask_2[a1];
19 if(sum1 > max) sum1 = max;
20 if(sum1 < 0) sum1 = 10;
21 if(sum1 > out_image[i1])
22 out_image[i1] = sum1;
23 }
24 }

Fig. 11. Sequential version of program to evaluate DSWP overheads

Fig. 12. Effect of N and M on DSWP

changed was the buffer size. That is, was varied between 10 and 1000, with the execution
time of the program being only slightly changed during the during the execution(2 to 5
ms) which was because it was assumed that this was the amount of time needed to create
the link list. As a result, it can be concluded that the effect of buffer size on DSWP is
trivial.

B. Combining DSWP and slicing

 We now examine the effect of combining DSWP and slicing by applying
slicing to the long stage coming out of the DSWP transformation. The sample programs
that we study here all exhibit an imbalance between the two stages of the DSWP, i.e the

number of instructions in the outer loop is less than the number of instructions in the
function body. The addition of slicing permits some degree of equilibration. Two of the
sample programs are artificial (linkedlist2.c and linkedlist3.c), while the remaining three
(fft.c , pro 2.4.c and test0697.c) are genuine. For each of the case studies, we extract two
slices from the function body, so that the maximum number of threads in general were
four depending on whether the extracted slice returns value to the original loop or not.

TABLE I. PLATFORM DETAILS

The data transferred between DSWP stages corresponds to the arguments of a function,
which in our case studies are between one and four arguments. LLVM-gcc (the LLVM C
front end, derived from gcc) and the LLVM compiler framework have been used to
automate our method. In addition, manually transformed programs have been compiled
using gcc in order to be able to compare manual and automatic results. Table I
summarises the technical details of the evaluation platform. Our automatic method uses
two passes: 1) The first pass carries out static analysis of all the loops in a program. For
each loop it adds up the static execution time for each instruction in the loop body and
also accumulates the execution time for the function bodies and stores these results in a
table. 2) The second pass chooses a loop to transform and construct the software pipeline.
This uses the data collected in the previous pass to identify the highest cost loop, that also
contain a function call. Next we look at the sample programs in more detail and at the
results of the transformation process.

fft.c An implementation of the fast Fourier transform [9].The test program is a
generalization of the program to make it work with N functions. We give the outer loop
to the first thread and the fft function to the second thread. From the graph in Figure 16, it
is clear how the unbalanced long stage DSWP can affect DSWP performance, where it

Intel(R) Core(TM) i7 CPU Processor
2.93 GHz Processor speed

1 CPU, 4 Core, 2 threads per Core Processor
Configuration

32 k L1d Cache size
32 k L1i Cache size

256 k L2 Cache size
8192 k L3 Cache size
4.GB RAM
SUSE Operating System

GCC and LLVM Compiler

only improves slightly on the sequential program. We extract two slices from the loop
body: the first is the computation of the real part and the second the imaginary part.
Figure 15 again shows loop speed up for DSWP + Slicing in both manual and automatic
forms.

Pro-2.4.c This program [9] computes the derivative of N functions. F1 is the first
derivative, F2 the second, D1 is the error in F1, and D2 the error in F2. Similar to the
previous program we extract two slices from function body after giving the it to the
second stage DSWP. As with the previous program we add some adaptations to the
program and we generalize it to make it work for N functions. We set NMAX = 100000
and vary M from M=5 to M=30. Figure 22 shows the execution time for sequential,
DSWP, DSWP + slicing (manual) and DSWP + slicing (automatic). Figure 21 shows
loop speed up for Pro-2.4 using DSWP + Slicing.

test0697.c This program computes the spherical harmonics function, which is used in
many physical problems ranging from the computation of atomic electron configuration
to the representation of the gravitational and magnetic fields

Fig. 13. Loop speed up with three threads for test0697.c program

 Fig. 14. Execution times for program test0697.c

 Fig. 15. Loop speed up with three threads for fft.c program

Fig. 16. Execution times for program fft.c

of planetary bodies. It has two function calls inside the loop body. The first, called the
spherical-harmonic-value, gives the initial value to the second function argument, with
this function being called the spherical-harmonic. The loop was divided into two parts,
depending on the instruction latency execution time. The second function call, which
represents the spherical-harmonic was allocated to the second thread, whilst the rest of
the loop body containing the first function call was assigned to the first thread.

Iter. Llvm-
seq

Llvm-dswp-slice Gcc-
seq

Gcc-dswp-
slice

Gcc-swp

 (Auto.) (Man.)
2 0.135 0.119 0.370 0.272 0.304
5 0.215 0.173 0.628 0.420 0.483
7 0.287 0.179 0.875 0.602 0.667
9 0.360 0.260 1.140 0.775 0.866

11 0.410 0.263 1.387 0.954 1.046
13 0.523 366 1.651 1.115 1.242

Iter. Llvm-
seq

Llvm-
dswp-slice

Gcc-seq Gcc-dswp-
slice

Gcc-dswp

 (Auto.) (Man.)
5 0.702 0.406 0.700 0.310 0.558

10 1.375 0.780 1.391 0.690 1.244
15 2.058 1.155 2.078 1.069 1.934
20 2.750 1.532 2.770 1.453 2.625
30 4.106 2.272 4.130 2.214 3.972
40 5.474 3.013 5.530 2.954 5.390

Subsequently, two slices, c[] and s[], were extracted from the second function call by
applying slicing technique on this part alone. With high values (40000) of L and M the
execution time of this combination was better than for the sequential program. The
number of threads was three with two communication buffers and the number of
transferred function arguments was four. The results obtained by automatic and manual
implementation for the sequential and DSWP Slicing versions, show that the former
method gives ≈ 1.4 speed up compared with the sequential program in the LLVM
environment (see columns 2 and 3 in the table in 14). Moreover, columns 4 and 5 under
the GCC environment shows that the speed up becomes ≈ 1.5 after applying the slicing
technique, while that for DSWP alone is only ≈ 1.3.

 linkedlist{2,3}.c The fourth program is another artificial program in two variants. The
common feature is the traversal of a linked list of linked lists (in contrast to the use of
arrays as in the other examples). The key difference between the variants is that the
function called from the loop body does not return a value in the first (linkedlist2.c), and
does in the second (linkedlist3.c). This allows us to demonstrate the cost of adding a
buffer to the program. Two parameters affect the workload, namely the length of the first
level list and the length of the second level list. In these test the length of the second level
list is fixed at 1000 elements, while the length of the first ranges between 10 and 70,
giving rise to the results shown in Figure 18 and the execution times show in Figure 17.
The results for the second version of the program appear in Figure 20. By comparing
Figures 18 and 20, we can see how adding an additional buffer to communicate the return
value from the one of these slices affects the execution time. This cost appears to have a
marginally higher impact on the program using DSWP alone, making it slower than the
original sequential program.

 Fig. 17. Loop speed up with three threads for linkedlist2.c program

Fig. 18. Execution times for linkedlist2.c program

 Fig. 19. Loop speed up with three threads for linkedlist3.c program

Fig. 20. Execution times for linkedlist3.c program

Iter. Llvm-seq Llvm-
dswp-slice

Gcc-seq Gcc-dswp-
slice

Gcc-dswp

 (Auto.) (Man.)
5 0.191 0.120 0.170 0.95 0.167

10 0.359 0.215 0.335 0.190 0.332
20 0.707 0.380 0.680 0.369 0.664
30 1.035 0.553 1.010 0.556 0.998
40 1.372 0.733 1.330 0.730 1.320
50 1.707 0.915 1.684 0.910 1.660

Iter. Llvm-seq Llvm-
dswp-slice

Gcc-
seq

Gcc-dswp-
slice

Gcc-dswp

 (Auto.) (Man.)
5 0.160 0.122 0.170 0.95 0.167

10 0.344 0.214 0.335 0.190 0.332
20 0.694 0.387 0.680 0.369 0.664
30 1.058 0.557 1.010 0.556 0.998
50 1.726 0.927 1.330 0.730 1.320
70 2.440 1.286 1.684 0.910 1.660

 Fig. 21. Loop speed up with three threads for Pro 2.4 program

Fig. 22. Execution times for Pro 2.4 program

V. RELATED WORK

 Weiser[17] proposes the use of slicing for the parallel execution of
programs. He states that slicing is appropriate for parallel execution on multiprocessor
architectures, because of the ability to decompose the program into independent slices
that execute in parallel without synchronization, or in shared memory by duplicating the
computation in each slice. In general, it is claimed the slices are shorter and execute
faster than the original program. However, there can be an arbitrary difference in the
speed of individual slice execution, leading to an interleaving problem ,which is how to
find – at runtime – the correct ordering for slice outputs. Consequently, after the output of
each slice is received, it needs to be reordered to maintain the original program behavior
[16]. Wang et al. [15] introduce a dynamic framework to parallelize a single threaded
binary program using speculative slicing. The major contribution of this work can be
summarized as:

Iter. Llvm-
seq

Llvm-
dswp-
slice

Gcc-
seq

Gcc-
dswp-
slice

Gcc-
dswp

 (Auto.) (Man.)
5 0.088 0.062 0.83 0.042 0.058
10 0.153 0.100 0.153 0.077 0.103
15 0.227 0.130 0.220 0.101 0.145
20 0.290 0.153 0.292 0.134 0.188
25 0.353 0.180 0.365 0.168 0.230
30 0.419 0.217 0.450 0.210 0.275

 Parallelization of binary code transparently for multicore systems.
 Slicing of the ‘hot’ region of the program, rather than the whole program. In

addition, they used a loop unrolling transformation that can help to find more
loop-level parallelism in a backward slice even in the presence of loop-carried
dependencies and they propose an algorithm to determine automatically the
optimal unrolling factor. They also demonstrate how this factor can affect the
parallelism.

 Slicing-based parallelism for irreducible control flow graphs. They define the
backward slice using the program dependency graph instead of a program regular
expression. They also introduce the Allow list that uses post-dominator
relationships to solve the ambiguity problem that was noted in the previous
splicing solution [16],which is the problem of determining the priority of the
instructions in each slice to get the right output, where the slice output has to be
reordered to maintain the original program behavior.

 Rong et al. [12] propose a method to construct a software pipeline from an arbitrarily
deep loop nest, whereas the traditional one is applied to the innermost loop or from the
innermost to outer loops. This approach is called the single dimensional software pipeline
(SSP). The (SSP) name came from the conversion of a multi-dimensional data
dependency graph (DDG) to 1-D DDG. This approach consists of three steps.

 Loop Selection: Every loop level is inspected and the most profitable one is
selected to apply the software pipeline schedule. Two criteria can be used to
determine which loop is more profitable to the software pipeline schedule are
initiation rate and data reuse.

 Dependency Simplification: simplify the dependency for the selected loop L from
the multi-dimension data dependency graph (DDG) to a single dimension which
contains zero dependencies.

 Final Schedule Computation: after obtaining the simplified DDG, iteration points
in the loop nest are allocated to slices: for any i1 in [0,N1], iteration point
(i1,0,..,0,0) is assigned to the first slice, (i1,0,..,0,1) to the second, and so on. All i1
iterations can be executed in parallel, if there is no dependency between the
iterations and there is unlimited resources. However, if there are dependencies,
these iterations will be executed using software pipelines. To address resource

limitations, the set of slices are divided into groups and relegated to succeeding
groups until some resources are available.

Rangan et al. [11] introduced a new technique to utilize a decoupled software pipeline for
optimizing the performance of recursive data structures (RDS) (e.g., linked lists, trees and
graphs). For this kind of structure (RDS), difficulties have been encountered when trying
to execute it in parallel, because the instructions of a given iteration of a loop depend on
the pointer value that is loaded from a previous iteration. Therefore to address this
problem, a decoupled software pipeline has been used so as to avoid stalls that are
happening with the long variables-latency instruction in RDS loops. RDS loops consist of
two parts, with the first containing the traversal code (critical path of execution) and the
second representing the computation that should be carried out on each node traversed by
the first part. By determining which program part is responsible for the traversal of the
recursive data structure, the backward slice for this part should be identified and then
decoupled software pipeline techniques can be used to parallelized these parts. The first
part will be given to one thread and the second part to another. As the data dependency
between these parts is unidirectional (the computation chain in the first part depends on
the traversing chain in the second, but not vice-versa) the producer instruction is inserted
in the first part and the consumer one in the second. Raman et al. [10] introduce a parallel
stage decoupled software pipeline (PS-DSWP). This technique is positioned between the
decoupled software pipeline and DOALL. The reason for this combination is that the
slowest stage of DSWP bounds the speed of DSWP – as we have noted – so this work
exploits the ability to execute some stages of DSWP using DOALL. They use special
hardware (synchronization array[11]) to communicate data between cores. For this
reason, there is very low communication latency on the performance of PS-DSWP[10],
but the special hardware is experimental and not available on stock processors. Huang et
al. [5] show that DSWP can improve performance if it works with other techniques. This
usage called DSWP+, divides the loop body into stages. These stages are open to
parallelization with another techniques like DOALL, LOCALWRITE and SpecDOALL.
After constructing a program dependency graph (PDG) of the loop and finding strongly
connected components (SCCs),the loop body is partitioned into stages. These stages can
be optimized by choosing a suitable parallelizing technique for each stage. By giving a
sufficient number of threads to the parallelization stages, DSWP+ can produce balanced
pipelines (there is no big gap in the execution time of the work that is given to each
stage). The results suggest that DSWP+ (a combination method) gives more speedup than

using DSWP, DOALL, LOCALWRITE alone. It uses lock-free queue and producer and
consumer primitives that are implemented in software to communicate data and control
condition between threads. LOCALWRITE solves loop carried dependencies for
irregular computation over arrays based on array index determination at runtime,
however it does not work in all cases.

VI. CONCLUSION

This paper introduces the idea of DSWP applied in conjunction with slicing, by splitting
up loops into new loops that are amenable to slicing techniques. An evaluation of this
technique on five program codes with a range of dependence patterns leads to
considerable performance gains on a core-i7 870 machine with 4-core / 8-threads. The
results are obtained from an automatic implementation that shows the proposed method
can give a factor of up to 2.4 speed up compared with the original sequential code.

The contribution of this paper is a proof of the concept that DSWP and slicing can
offer useful benefits and, moreover, that such transformation can be done automatically
and under the control of an heuristic procedure that assesses the potential gains to be
achieved. Consequently, there is much work to N be done in respect of improving the
collection of data and the decision procedure, as well as the integration of the technique
into a non-experimental compiler environment. More specifically, we aim to increase the
potential parallelism that can be extracted from the long stage DSWP. One of major
issues with backward slice is the longest critical path (slice) creates a limit on parallelism.
Insights from [15] suggest we can increase parallelism (number of extracted slices) by
combining loop unrolling with backward slice in the presence of loop carried
dependencies.

ACKNOWLEDGMENT

We gratefully acknowledge the Ministry of Higher Education and Scientific
Research (MoHESR) in Iraq for their financial support during the period of this research.

REFERENCES

[1] Jehad Al Dallal. An efficient algorithm for computing all program static slices. In

Proceedings of the 4th WSEAS International Conference on Software Engineering, Parallel &

Distributed Systems, SEPADS’05, pages 27:1–27:5, Stevens Point, Wisconsin, USA, 2005. World

Scientific and Engineering Academy and Society (WSEAS).

[2] Matthew Bridges. The VELOCITY Compiler: Extracting Efficient Multicore Execution from

Legacy Sequential Code. PhD thesis, Department of Computer Science, Princeton University,

November 2008. Retrieved 20130215 from ftp://ftp.cs.princeton.edu/techreports/2008/

835.pdf.

[3] Mark Hahnenberg Fuyao Zhao. Decoupled software pipelining inn LLVM. Technical report,

Carnegie Mellon University, 2008.

[4] John Giacomoni, Tipp Moseley, and Manish Vachharajani. FastForward for efficient

pipeline parallelism: a cache-optimized concurrent lockfree queue. In Siddhartha Chatterjee

and Michael L. Scott, editors, Principles and Practice of Parallel Programming, pages 43–52.

ACM, 2008.

[5] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung, and David I. August.

Decoupled software pipelining creates parallelization opportunities. In Andreas Moshovos, J.

Gregory Steffan, Kim M. Hazelwood, and David R. Kaeli, editors, Code Generation and

Optimization, pages 121–130. ACM, 2010.

[6] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code

Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[7] Chunhua Liao, Daniel J. Quinlan, Jeremiah J. Willcock, and Thomas Panas. Semantic-Aware

Automatic Parallelization of Modern Applications Using High-Level Abstractions.

International Journal of Parallel Programming, 38:361–378, 2010.

[8] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic Thread

Extraction with Decoupled Software Pipelining. In ACM International Symposium on

Microarchitecture, pages 105–118. IEEE Computer Society, 2005.

[9] Tao Pang. An Introduction to Computational Physics. Cambridge University Press, 1997.

Retrieved 20130113 from http://www.physics. unlv.edu/_pang/cp c.html.

[10] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I. August.

Parallel-stage decoupled software pipelining. In Mary Lou Soffa and Evelyn Duesterwald,

editors, Code Generation and Optimization, pages 114–123. ACM, 2008.

[11] R. Rangan, N. Vachharajani, M. Vachharajani, and D.I. August. Decoupled software

pipelining with the synchronization array. In Parallel Architecture and Compilation

Techniques, 2004. PACT 2004. Proceedings. 13th Int. Conf. on, pages 177–188, Sept.-3 Oct.

2004.

[12] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Alban Douillet, and Guang R. Gao. Single-

dimension software pipelining for multidimensional loops. In ACM Transactions on

Architecture and Code Optimization, pages 163–174, 2004.

[13] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme Ottoni,

and David I. August. Speculative Decoupled Software Pipelining. In Parallel Architecture and

Compilation Techniques, pages 49–59. IEEE Computer Society, 2007.

[14] Neil Amar Vachharajani. Intelligent Speculation for Pipelined Multithreading. PhD thesis,

Departement of Computer Science, Princeton University, 2008.

[15] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei Liu, Tin-fook Ngai, and Jesse

Fang. New slicing algorithms for parallelizing single-threaded programs. PESPMA 2008, page

20, 2008. Retrieved 20130215 from http://tiamat.eecs.umich.edu/pespma08/

papers/PESPMA-paper-3.pdf.

[16] Mark Weiser. Reconstructing Sequential Behavior from Parallel Behavior Projections. Inf.

Process. Lett., 17(3):129–135, 1983.

[17] Mark Weiser. Program Slicing. IEEE Trans. Software Eng., 10(4):352– 357, 1984.

