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Abstract—Recently GPUs have risen as one important par-
allel platform for general purpose applications, both in HPC
and cloud environments. Due to the special execution model,
developing programs for GPUs is difficult even with the recent
introduction of high-level languages like CUDA and OpenCL. To
ease the programming efforts, some research has proposed auto-
matically generating parallel GPU codes by complex compile-
time techniques. However, this approach can only parallelize
loops 100% free of inter-iteration dependencies (i.e., DOALL
loops). To exploit runtime parallelism, which cannot be proven
by static analysis, in this work, we propose GPU-TLS, a runtime
system to speculatively parallelize possibly-parallel loops in
sequential programs on GPUs.

GPU-TLS parallelizes a possibly-parallel loop by chopping it
into smaller sub-loops, each of which is executed in parallel by
a GPU kernel, speculating that no inter-iteration dependencies
exist. After dependency checking, the buffered writes of iterations
without mis-speculations are copied to the master memory while
iterations encountering mis-speculations are re-executed. GPU-
TLS addresses several key problems of speculative loop paral-
lelization on GPUs: (1) The larger mis-speculation rate caused
by larger number of threads is reduced by three approaches:
the loop chopping parallelization approach, the deferred memory
update scheme and intra-warp value forwarding method. (2) The
larger overhead of dependency checking is reduced by a hybrid
scheme: eager intra-warp dependency checking combined with
lazy inter-warp dependency checking. (3) The bottleneck of serial
commit is alleviated by a parallel commit scheme, which allows
different iterations to enter the commit phase out of order but
still guarantees sequential semantics.

Extensive evaluations using both microbenchmarks and real-
life applications on two recent NVIDIA GPU cards show that
speculative loop parallelization using GPU-TLS can achieve
speedups ranging from 5 to 160 for sequential programs with
possibly-parallel loops.

Keywords-GPGPU; Speculative Loop Parallelization; Thread-
Level Speculation (TLS); GPU-TLS

I. INTRODUCTION

During the last few years, we have witnessed the dominance

of multicore processors in high performance computing and

their success in continuing the computing performance leap

beyond the decade-long approach of raising the clock speed.

It is however difficult to envision hundreds of traditional CPU

cores to pack on a chip to achieve continual performance

growth, as well as low cost and energy. The use of hundreds

of accelerator cores (such as GPUs) in conjunction with a

handful of host CPU cores, on the other hand, appears to

be a sustainable roadmap. With the promise of cheaper and

greener HPC environment, the interest in GPUs for efficient

coprocessing is at an all-time high.

Although initial success has been achieved, up to now GPUs

can only accelerate data-parallel loops with static parallelism.

Exploiting static parallelism only may already be enough for

some domains like image processing, computation in which

is usually embarrassingly parallel with statically analyzable

parallelism. However, in some other domains like computa-

tional physics or chemistry, loops with dynamic parallelism

are common. As the parallelism cannot be proven statically,

existing techniques fail to parallelize these loops on GPUs

even if they may have high degree of parallelism at the

runtime, limiting the scope of GPUs’ applicability in general-

purpose applications. Designing software solutions to support

parallel execution of workloads with dynamic parallelism on

GPUs is important to continue the success of GPGPU.

Thread Level Speculation (TLS) is a technique proposed

to parallelize loops with dynamic parallelism on multi-core

or multi-processor CPUs. Although there have been many

TLS designs on CPUs, none of them works efficiently when

ported to GPUs, due to the large differences between GPUs

and CPUs in both hardware architecture and execution model.

Most design dimensions of TLS need to be reviewed on GPUs:

(1) TLS with a serial commit mismatches with GPUs’ scalable

hardware resources. A scalable design is desired. (2) The

meta-data used must be memory-efficient due to the relatively

limited memory of GPUs. (3) More effort should be made

to reduce the mis-speculation rate. This is because the larger

number of threads increases the possibility of mis-speculations

among speculative threads.

Based on careful analysis of GPU features, we have de-

signed GPU-TLS, an efficient TLS runtime for GPUs. We

make the following contributions:

• We propose a loop speculative parallelization framework

on GPUs using sliding windows. This design decouples

the memory overhead from the loop iteration number and

utilizes partial parallelism in a large loop incrementally.

• We make use of the lockstep execution model in GPUs

and propose an intra-warp value forwarding technique,

which reduces mis-speculation rate.

• We propose a hybrid dependency checking scheme with

eager intra-warp and lazy inter-warp checking. The eager

intra-warp checking enables early abort when there are

RAW dependencies that cannot be satisfied. The lazy

inter-warp checking is rather lightweight and does not

introduce any false positive mis-speculation.

• We propose a deadlock-free parallel commit scheme,

which avoids the serial commit bottleneck in existing

TLS designs and is scalable to thousands of GPU threads.

Our experiments show that GPU-TLS, when used to par-

allelize loops with dynamic parallelism, achieves speedups
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ranging from 5 to 160 on two platforms shipped with different

NVIDIA GPU cards.

II. GPUS AND ADAPTING SOFTWARE TLS TO GPUS

In this section, we describe the GPU architecture and

execution model, systematically survey existing software TLS

designs and analyze their deficiency when ported to GPUs.

A. GPU Architecture and Execution Model

The modern Graphical Processing Unit (GPU) architecture

consists of two major parts: the computation sub-system

and the memory sub-system. The computation sub-system

is composed of streaming multiprocessors, which contain a

series of simple streaming processors. GPU features a very

complicated memory hierarchy. It is shipped with both off-

chip and on-chip memory modules. The off-chip memory is

large in size (e.g., 3GB for C2050). The on-chip memory is

small in size but features a short access latency. Different

vendors release their software development tools and APIs to

support programming on GPU, such as CUDA from NVIDIA

and OpenCL from Khronos group. Take CUDA for example,

it defines kernels consisting of a grid of threads, which is

further divided into a series of thread blocks. Each thread

block is comprised of some GPU threads and these threads

are divided into multiple groups, each of which contains 32

threads and is named as a warp. Each thread in the same

warp executes the same instruction by means of lock-step

synchronization (SIMD execution) in the same Streaming

Multiprocessor (SM).

B. Deficiency of Existing TLS Designs when Ported to GPUs

Most existing TLS designs [1] [2] [3] have a serial commit

phase. The serial commit bottleneck is a mismatch with the

scalable hardware resources of GPUs. In the literature, there

are only two TLS systems free of this bottleneck. The system

proposed by Peter et al. [4] simulates the hardware TLS design

in software and uses a huge access structure to store the access

information. The other system proposed by Cosmin et al. [5]

uses direct update memory versioning scheme, in which the

commit is done on the fly along with each speculative write.

This design has the downside of introducing potential false

positive mis-speculations. The reason is that with direct update

scheme, WAR (Write After Read) and WAW (Write After

Write) dependencies can also result in mis-speculations apart

from RAW (Read After Write) dependencies. As the number

of speculative threads is large in GPUs, the possibility of false

dependencies (i.e., WAR and WAW) can not be neglected. To

design an efficient TLS with thousands of GPU threads, we

need a scalable commit scheme.

As for dependency checking, there are basically four differ-

ent schemes in the literature. The scheme by comparing read

set with version numbers [1] is highly coupled with the serial

commit protocol and cannot work if we replace serial commit

with a scalable parallel commit scheme. All-software TLS

design using load vector and store vector to do dependency

checking [4] has been proven to cause too much memory

overhead [5] and is not suitable for GPUs, which have limited

memory. Among the existing dependency checking schemes

in the literature, the one using load vector [3] could probably

be the most scalable one. However, it has a disadvantage of

introducing potentially large degree of mis-speculations. The

reason is that the RAW dependency is detected by the producer

thread by comparing the entries in the write set and the load

vector. For a given address, when the corresponding entry in

the load vector is larger than the ID of the checking thread, the

thread has to conservatively reckon that all succeeding threads

have violated RAW dependencies. TLS designs on GPUs call

for a new dependency checking scheme.

III. GPU-TLS DESIGN

A. Overview

We show the framework of loop parallelization using GPU-

TLS in Figure 1. Through analysis and profiling, program-

mers/compilers select possibly-parallel loops in sequential

programs and transform them using the GPU-TLS library. The

transformed loops are then speculatively executed on GPUs.

For each selected loop, we chop it into several sub-loops and

for each sub-loop we launch a GPU kernel to speculatively

execute the loop iterations. The speculative execution of a G-

PU kernel has four phases: speculative execution, dependency

checking, commit and mis-speculation recovery. In the first

phase, GPU executes the loop iterations in parallel by spec-

ulating that inter-iteration dependencies do not exist. During

the execution, each thread buffers the possibly unsafe memory

updates instead of updating the master memory. Also, the

memory accesses are tracked using meta-data to aid the later

mis-speculation checking. The dependency checking phase

checks whether the speculation is successful using the memory

access meta-data and reports the potential violation locations

(i.e., which speculative threads have violated inter-iteration de-

pendencies). For threads that are not reported to have violated

dependencies by the dependency checking, the commit phase

copies their buffered memory updates to the master memory.

When launching a GPU kernel with k threads, violation idx
is initialized to k. During the dependency checking phase,

this variable is updated to show the earliest violation location.

Suppose after kernel execution violation idx equals p (0 <
p ≤ k), we can tell that threads T0 ∼ Tp−1 have executed

correctly and committed the memory updates to the master

memory. If violation idx equals k, we know that no mis-

speculation has happened and no mis-speculation recovery is

needed. Otherwise, the mis-speculation recovery of threads Tp

∼ Tk−1 is done by re-executing them. Instead of launching

a new GPU kernel to re-execute the failed threads only, we

use a sliding window approach by combining the executions

of some iterations in the new sub-loop together with the mis-

speculation recovery of failed iterations in the old sub-loop

(shown in the right bottom of Figure 1).

B. Intra-warp Value Forwarding

Existing software TLS designs adopt four different ap-

proaches to satisfy potential inter-thread RAW dependencies

[6]. The “speculation” approach speculates that there are no

inter-iteration RAW dependencies and speculative reads return

values in the master memory. Instead, in the “value prediction”

approach, a speculative read returns the value produced by a

value predictor. The “value forwarding” approach does best-

effort value forwarding to fetch the potential write values
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Figure 1. GPU-TLS Overview

produced by preceding threads. The “synchronization” ap-

proach assumes there are inter-thread RAW dependencies and

waits until the producer thread has produced the values on

speculative reads.

When doing speculative loop parallelization on GPUs, the

“speculation” approach is not desirable because we have

thousands of speculative threads and extremely optimistic

speculation may encounter many mis-speculations and result

in poor performance. At the same time, the “synchronization”

approach may lead to deadlock under some patterns of RAW

dependencies or result in a waste of hardware resources. The

pioneering work of value prediction on GPUs reports that

value prediction can hardly gain speedup [7]. As a result,

in GPU-TLS we adopt the “value forwarding” approach. In

previous TLS designs with value forwarding, the scope of

the value forwarding is either the whole loop [4] or a sliding

window [8]. In GPU-TLS, we choose a warp as the scope

to implement value forwarding (this is named intra-warp

value forwarding). The benefit of this design is two-fold: (1)

no explicit synchronization is needed when doing the value

forwarding due to the lockstep execution model; (2) we could

use on-chip share memory to speedup the value forwarding.

We show the algorithm of speculative read with intra-warp

value forwarding in Algorithm 1. On a speculative read from

the address r addr in thread Tk, we satisfy intra-warp RAW

dependencies. To achieve this, basically we go through the

write sets of thread Tk and the preceding threads in the

same warp to forward the appropriate write value to the read.

This introduces some set traversal overhead. The meta-data

minWriter ary helps us to alleviate the overhead by avoid-

ing some unnecessary set traversal: we only check threads that

may have written to r addr instead of all preceding threads in

the warp (line 13). We only update the read set when no prior

writes to r addr exist in the same thread. If a speculative

read operation consumes the write value produced by a write

operation in a preceding thread, we record the ID of that thread

in the meta-data rProSet ary. Otherwise, we store the value

“-1” in rProSet ary. This meta-data will be used in eager

intra-warp dependency checking. Also, we need to check and

update the meta-data maxReader ary if necessary.

Algorithm 1 Speculative Read with Intra-warp Value For-

warding

Input: memory address to read from: r addr, thread ID: k
Output: the speculative read value

1: idx ← hash(r addr)
2: minWriter ← minWriter ary[idx]
3: if minWriter > k then
4: go to line 23
5: else
6: for each entry w addr in the write set of thread Tk do
7: if w addr == r addr then
8: r value← the entry in wV alueSet ary
9: go to line 27

10: end if
11: end for
12: warpF irstTh ← � k

W
� · W

13: for i ← k-1 to MAX(warpFirstTh, minWriter) do
14: for each entry w addr in the write set of thread Ti do
15: if w addr == r addr then
16: r value← the entry in wV alueSet ary
17: rProSet ary[ rIdx ary[k] ][ k ] ← i
18: go to line 25
19: end if
20: end for
21: end for
22: end if
23: r value ← *r addr
24: rProSet ary[ rIdx ary[k] ][ k ] ← -1
25: update read set of thread Tk

26: update maxReader ary if necessary
27: return r value

C. Hybrid Dependency Checking

GPU-TLS adopts a hybrid dependency checking scheme:

eager intra-warp and lazy inter-warp checking. During

the SE phase, each speculative write checks whether

threads in the same warp have violated intra-warp RAW

dependencies (Algorithm 2). This is achieved by checking

the read sets of succeeding threads in the same warp.

The set traversal overhead could be alleviated with

the help of the meta-data maxReader ary: we only

traverse the read sets of threads [k+1, MIN(warpLastTh,

maxReader ary[hash(w addr)])] (line 4), in which

warpLastTh denotes the last thread in the warp. For each
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succeeding thread Ti, we check whether address w addr
appears in its read set (line 5-6). If this happens, we need

to further check the value of the corresponding entry in

rProSet ary. There are three possible cases. In the first

case, if the value is “-1”, we know that thread Ti has read

the value from the master memory (Figure 2(a)). In the

second case, if the value is not “-1” but is smaller than or

equal to k, we can infer that thread Ti has read the value

produced by a preceding thread in the same warp (Figure

2(b)). In the third case, if the value is larger than k, we can

tell that thread Ti has read the right value (Figure 2(c)). In

the first two cases, we find RAW dependency violations and

set the corresponding element in the warp dependency array

to “TRUE” (line 6-9) because we can tell that thread Ti has

consumed a wrong value.

In the lazy dependency checking phase, we only check

inter-warp RAW dependencies. The reason is that with the

intra-warp value forwarding and eager dependency checking,

the intra-warp RAW dependencies must have either been

satisfied or the dependency violations have been detected.

We do the lazy dependency checking with the help of the

meta-data minWriter ary. Basically, to check whether the

thread Tk has violated RAW dependencies, we go through its

read set and for each entry r addr, we first check whether

minWriter ary[hash(r addr)] is smaller than the ID of the

first thread in the warp. If the condition satisfies, we can tell

that a thread in a preceding warp has written to r addr, but

this does not necessarily mean a RAW dependency violation

has happened. We need to further check whether Tk has been

forwarded a value by intra-warp value forwarding (line 5-8).

If this happens, we can infer that no RAW dependencies have

been violated (Figure 3(b)). Otherwise, we find one RAW

dependency violation (Figure 3(a)). Note that since the current

thread can arrive at the lazy dependency checking phase, it’s

impossible that intra-warp RAW dependency violations have

happened (Figure 3(c)).

Algorithm 2 Speculative Write with Eager Intra-warp Depen-

dency Checking

Input: memory address to write to: w addr, speculative write value:
w value, thread ID: k

1: idx ← hash(w addr)
2: maxReader ← maxReader ary[idx]
3: warpLastTh ← (� k

W
�+ 1) · W - 1

4: for i ← k+1 to MIN(warpLastTh, maxReader) do
5: for each entry r addr in the read set of thread Ti do
6: if r addr == w addr && the corresponding entry in

rProSet ary ≤ k then
7: calculate warp ID wid of thread Ti

8: dependency found[wid] ← TRUE
9: end if

10: end for
11: end for
12: update the write buffer of thread Tk

13: update minWriter ary if necessary

D. Scalable Parallel Commit

Any parallel execution of a sequential loop needs to main-

tain the sequential semantics for correctness. For example,

if two iterations Ii and Ij (i < j) in a loop both write

Algorithm 3 Lazy Dependency Checking

1: for each entry r addr in the read set of thread Tk do
2: idx ← hash(r addr)
3: minWriter ← minWriter ary[idx]
4: warpF irstTh ← � k

W
� · W

5: if minWriter < warpF irstTh && the corresponding
entry in rProSet ary == -1 then

6: calculate warp ID wid of thread Tk

7: dependency found[wid] ← TRUE
8: end if
9: end for

(a) (b) (c)

Figure 2. Different cases in eager intra-warp dependency checking: (a)no
prior intra-warp value forwarding exists, (b)prior read fetches a wrong value
through intra-warp value forwarding, (c)prior read fetches the correct value
through intra-warp value forwarding.

to the memory address addr, any parallelization of the loop

needs to make sure that the value in addr after the parallel

execution is that written by Ij . To achieve this, most existing

software TLS solutions have adopted a very conservative

approach by enforcing iterations to enter the commit phase

in iteration order. For example, iteration I3 can only do the

commit after I2, the commit of which is started only after I1.

The performance penalty of serial commit may not be that

serious due to the limited number of speculative threads in

CPUs, but the situation in GPUs is totally different: letting

thousands of speculative threads do the commit serially could

easily become a performance bottleneck. Also, the lockstep

execution model of threads in a warp make it easy to encounter

deadlock if a serial commit is adopted. To solve the above

problems, we have proposed a parallel commit scheme in

which speculative threads could enter the commit phase out

of iteration order after all the preceding threads have finished

their LDC phases. The sequential semantic is guaranteed

by additional checking when committing each speculative

write. The efficiency and correctness of the parallel commit

is guaranteed by the lock-free algorithm 4. The algorithm

makes sure that the commit never gets dead-lock, especially

in the same warp. We use an additional piece of meta-data

named maxWriter ary to record the ID of the maximum

thread that has ever written to each memory address. Before

a thread Tk commits each (w addr, w value) pair in its

write buffer, it first checks whether the value of the entry

maxWriter ary[hash(addr)] is smaller than or equal to k
(line 7). If this condition holds, Tk carries out the commit and

updates maxWriter ary[hash(addr)] to k (line 8-10). On

the contrary, if maxWriter ary[hash(addr)] is larger than k,

we know that a later thread has committed a speculative write

to addr; to avoid WAW dependency violations, Tk discards

the commit of this speculative write.
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Figure 3. Different cases in lazy inter-warp dependency checking: (a)inter-
warp RAW without intra-warp value forwarding, (b)inter-warp RAW with
intra-warp value forwarding, (c)both inter- and intra-warp RAW without value
forwarding

Algorithm 4 Deadlock-free Parallel Commit

1: for each (w addr, w value) in write buffer of thread Tk do
2: idx ← hash(w addr)
3: exitTheLoop ← FALSE
4: while !exitTheLoop do
5: flag ← atomicCAS(&(lock vector[idx]), 0, 1)
6: if flag == 0 then
7: if maxWriter ary[idx] ≤ k then
8: ∗w addr ← w value
9: maxWriter ary[idx] ← k

10: threadfence()
11: end if
12: lock vector[idx] ← 0
13: exitTheLoop ← TRUE
14: end if
15: end while
16: end for

IV. EVALUATION METHODOLOGY

A. Platform Settings

We carry out the experiments on two platforms, as shown

in Table I. Platform 1 is an IBM iDataPlex dx360 M3 server

and Platform 2 is a desktop PC. On both platforms, the GPU

cards are connected to the main board through PCIe x16 Gen

2 bus. The OS installed is 64-bit Scientific Linux 5.5 and

the compilation flag used in gcc and nvcc is “-O2”. In all

experiments, the default GPU configuration of 48KB shared

memory and 16KB L1 cache is used.

Table I
EXPERIMENT PLATFORMS

Platform 1 Platform 2
CPU Intel Xeon X5650 Intel Core i7 870

CPU frequency 2.66GHz 2.93GHz

Cores per socket 6 4

Socket count 2 1

Total core count 12 4

Host memory 48GB ECC DDR3 RAM, 1333MHz 8GB DDR3 RAM, 1333MHz

GPU NVIDIA Tesla M2050 NVIDIA GeForce GTX580

CUDA capability 2.0 2.0

GPU clock rate 1.15GHz 1.54GHz

SM # 14 16

SP # per SM 32 32

Total SP # 448 512

GPU warp size 32 32

Register # per SM 32768 32-bit 32768 32-bit

Shared memory per SM 48 KB/16KB (configurable) 48 KB/16KB (configurable)

L1 cache size 16KB/48KB (configurable) 16KB/48KB (configurable)

L2 cache size 768KB 768KB

Global memory size 3GB 1.5GB

Memory interface width 384-bit 384-bit

Memory bandwidth 148GB/s 192.4GB/s

OS kernel Linux 2.6.18-194.3.1.el5 x86 64 Linux 2.6.18-194.3.1.el5 x86 64

CUDA Toolkit 64-bit CUDA 4.0 64-bit CUDA 3.2

C Compiler GCC 4.1.2 GCC 4.1.2

CUDA Compiler 64-bit NVCC 4.0, V0.2.1221 64-bit NVCC 3.2, V0.2.1221

B. Benchmarks

1) Microbenchmarks: To facilitate micro-benchmarking,

we design a synthetic loop (shown in Figure 4) to simulate

loops with different characteristics. N represents the number

of loop iterations, which is an important indicator of the

degree of parallelism within a loop. Sw and Sr decide the

size of the write set and read set respectively. M controls

the workload in each iteration. We use accesses to a shared

array A through subscripted subscripts (using the r and w
arrays) to simulate statically unanalyzable dependencies. By

configuring the values of elements in the r and w arrays, we

can simulate loops with different dependency conditions in

terms of dependency type (i.e., RAW, WAR, WAW), number

of dependencies, etc. By varying the values of different

parameters (N,Sw, Sr,M,w, r), we can simulate loops with

different patterns, which enables us to have a deep understand-

ing of the performance of GPU-TLS.

Figure 4. Synthetic loop used in the experiments

2) Real-life applications: Besides the synthetic loop, we al-

so use three real-life benchmark programs in the experiments.

The first program is a Molecular Dynamics (MD) loop [9]

as illustrated in listing 1. In the nested loop, the accesses to

array Y go through one level of redirection by the partners
array. The parallel reads and writes to the shared array Y
issued in the outer loop iterations may pose some dependen-

cies. We speculatively parallelize the outer loop by speculating

that accesses to Y in different iterations will not violate RAW

dependencies.

The second program is a Computational Fluid Dynamics

(CFD) loop [9] shown in listing 2. In this loop, the subscripts

(n1 and n2) in accessing a shared array Y depend on the

values of elements in an array edge and cannot be statically

decided. We speculatively parallelize this loop by speculating

that accesses to Y in different iterations will not result in RAW

dependency violations.

The third program is blackscholes, a benchmark from Intel

RMS benchmark [10]. It uses the Black-Scholes partial differ-

ential equation [11] to calculate the prices for a portfolio of

European options analytically. We need very little speculation

in this program: the statically unanalyzable inter-iteration

dependencies stem from the potential updates to a shared

variable numOfErrors when errors occur in the pricing;

the only speculation needed is that an error will not appear.
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Listing 1. A Molecular Dynamics (MD) loop

ATOM X[NumAtoms], Y[NumAtoms];
ATOM *partners[NumAtoms];

for (i=0; i<NumAtoms; i++) {
for each element j in partners[i] {

Y[i] += force(X[i], X[j]);
Y[j] += force(X[i], X[j]);

}
}

Listing 2. A Computational Fluid Dynamics (CFD) loop

NODE X[NumNodes], Y[Numnodes];
struct {

NODE LeftNode, RightNode;
}edge[NumEdges];

for (i=0; i<NumEdges; i++) {
n1 = edge[i].LeftNode;
n2 = edge[i].RightNode;
Y[n1] += f(X[n1], X[n2])
Y[n2] += g(X[n1], X[n2])

}

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Overall Speedups

We first carry out experiments to evaluate the performance

potential of GPU-TLS using the selected real-life applications.

We vary the problem size (i.e., the number of iterations) by

using different values of NumAtoms in MD, NumEdges in

CFD and NumOptions in blacksholes. The values we use are

512*k (k = 1, 2, 3, · · · , 16). For each selected problem size,

we first run the loop sequentially on CPU and then execute the

parallel version enabled by GPU-TLS on GPU. We record the

sequential (Ts) and parallel execution time (Tp) and calculate

the speedups as Ts/Tp. We carry out the experiments on both

Platform 1 and 2 and the speedups achieved when there are

no runtime inter-iteration RAW dependencies are shown in

Figure 5 and 6 respectively.

Figure 5. Speedups achieved for different problem sizes on Platform 1

We have several observations from the two figures. Firstly,

as the problem size increases, we can generally get larger

speedups. For example, on Platform 2, when the loop has

only 512 iterations, the speedup we can achieve in CFD is

16.4, while the speedup value goes as high as 104 when the

number of iterations increases to 512*16. This shows that to

make the best use of GPUs the problem size should be large

enough. Secondly, we can get larger speedups for CFD and

Figure 6. Speedups achieved for different problem sizes on Platform 2

MD compared with blacksholes. This is due to the heavier

computation in the loop body of these two applications, par-

allel execution of which on GPUs gets more benefits. Thirdly,

we can generally get a larger speedup on Platform 2 than on

Platform 1. For example, for the blacksholes loop with 512*14

iterations, we observe a speedup of 4.8 on Platform 1 while

on Platform 2 this value is 13.4. The reasons are two-fold:

(1) the GTX580 GPU shipped with Platform 2 has a higher

clock rate than the M2050 GPU on Platform 1 (1.54GHz vs.

1.15GHz); (2) GTX580 also has a larger memory bandwidth

than M2050 (192.4GB/s vs. 148GB/s).

From the observations, we conclude that GPU-TLS favors

loops with large problem size and heavy computation in the

loop body. A tool selecting proper loops from possibly-parallel

ones through static analysis and dynamic profiling could be a

great supplement to GPU-TLS.

B. Effect of Dependency Patterns

In this section, we evaluate the effect of different de-

pendency patterns to the speedups achievable by GPU-TLS

using the synthetic loop on Platform 1. We test four kinds

of loops: loops without runtime dependencies (i.e., DOALL

loops), loops with runtime WAR dependencies only, loops

with WAW dependencies only, loops with RAW dependencies

only. The speedups achieved for different write and read set

sizes are shown in Figure 7. For each kind of loops, besides

the speedups achieved by GPU-TLS, we also test the speedups

of two schemes in related work for comparison purpose. The

“direct update” scheme is the porting of an existing TLS on

CPUs with direct update memory versioning approach [5].

The “in-order commit” scheme is the porting of another TLS

on CPUs with deferred update memory versioning and serial

commit phase [3]. By configuring the values of the w and r
arrays, we simulate loops with different dependency patterns.

In the cases of WAW, WAR and RAW dependencies, we add

1% dependencies evenly among the iterations.

By comparing Figure 7(a), 7(b) and 7(c), we can see

that GPU-TLS and “in-order commit” are not affected much

by WAR and WAW dependencies while the “direct update”

scheme performs much worse when there are WAR and WAW

dependencies. This is as expected because the deferred update

memory versioning approach used by GPU-TLS could avoid

mis-speculations caused by false dependencies and is thus free

of re-executions while the direct update scheme will result in

125



lots of re-executions due to the mis-speculations in face of

any form of dependencies (i.e, RAW, WAW and WAR). From

Firue 7(d), we observe that when there are true dependencies

(RAW), the speedups achieved by all the three schemes drop

due to re-executions caused by mis-speculations; however,

GPU-TLS performs the best in all cases.

(a) Speedups for DOALL loops (b) Speedups for WAW loops

(c) Speedups for WAR loops (d) Speedups for RAW loops

Figure 7. Speedups achieved for loops with different dependency types

C. Evaluation of Parallel Commit

Finally, we are interested to see the effectiveness of the

parallel commit scheme in GPU-TLS in helping to avoid

the serial commit bottleneck. Figure 8 shows the execution

time comparison of serial commit versus parallel commit on

Platform 1 using the synthetic loop, which is configured to be

DOALL. Seven groups of experiments with different write set

and read set sizes are carried out. From the figure, we can see

that using parallel commit the execution time grows relatively

slowly with Sw-Sr. However, the serial commit scheme grows

radically when Sw is larger than 16. When Sw-Sr is 1-1, the

parallel commit scheme is 4.7 times faster than serial commit

while this number grows to 8 when Sw-Sr is 64-64. These

results show that parallel commit performs much better than

the serial commit alternative, especially when the write set

size is large.

Figure 8. Execution time comparison: serial versus parallel commit

VI. RELATED WORK

A. Speculative Loop Parallelization on CPUs

The BOP system [12] proposed by Ding et al. uses a pro-

cess based runtime model to speculatively execute Potentially

Parallel Regions (PPRs) on multi-core CPUs. The copy of

memory pages to the master copy when speculation succeeds

is heavyweight. CorD execution model [1] proposes allocating

separate memory for different speculative threads. In their

design, complicated synchronization is needed, making it

not suitable for GPUs, which have limited synchronization

support. Also, their design adopts a serial commit carried

out by the centralized commit manager, which could easily

become the performance bottleneck. The parallel commit

scheme proposed in our design avoids the large overhead.

STMLite [2] presents a TLS design based on an underly-

ing STM. TLS and STM have some essential differences

[13] and building TLS on STM may have to suffer some

unnecessary overheads. LRPD Test [14] does the pioneering

work of speculative loop parallelization on CPUs. Although

they have privatization support, they cannot parallelize a

loop when there are non-privatizable inter-iteration WAR or

WAW dependencies. As we adopt deferred-update memory

versioning scheme in our design, all inter-iteration WAR and

WAW dependencies can be respected, qualifying loops with

WAR and WAW dependencies as parallelizable. Oancea et al.
[5] propose using direct-update memory versioning scheme

to implement a TLS system on CPUs. They argue that the

mis-speculation caused by inter-iteration WAR and WAW

dependencies is acceptable. However, the same argument may

not hold on GPUs, where we have thousands of speculative

threads executing simultaneously. The deferred-update scheme

we adopt in GPU-TLS avoids the mis-speculation caused by

inter-iteration WAR and WAW dependencies and thus reduces

the possibility of mis-speculation.

B. Loop Parallelization on GPUs

Lee et al. [15] propose a compiler framework for translating

OpenMP programs into GPGPU programs. Leung et al. [16]

present an extension to JIT compiler to implement automatic

parallelization for GPUs. Calvert [17] designs a compiler that

takes Java bytecode as input and generates GPU kernels from

loops annotated with a special @Parallel flag. JCudaMP [18]

devises a Java compiler framework to translate OpenMP-

like annotated loops to JNI calls to CUDA kernels. All of

the above-mentioned work focuses on simple DOALL loops

or DOACROSS loops with statically known inter-iteration

dependencies only, leaving the large portion of loops with

statically unanalyzable dependencies un-accelerated. Our work

proposes accelerating loops with dynamic parallelism on

GPUs, expanding the scope of workloads parallelizable on

GPUs. Liu et al. [7] carry out the initial exploratory study

of implementing value prediction and TLS on GPUs. In their

design, they control GPU thread in an ad-hoc approach. A

GPU thread enters polling state when a dependency violation

is detected. This ad-hoc approach can easily introduce branch

divergence among the threads in the same warp, resulting

in stalls and wastes of hardware resources. Di et al. [19]

propose accelerating DOACROSS loops on GPUs. However,
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their solutions are algorithm-level modifications to a specific

application instead of being generic. Diamos et al. [20]

solve the problem of executing multiple kernels speculatively

on multiple GPUs, exploiting coarse-grained Kernel Level

Parallelism (KLP), which is orthogonal to our work.

VII. CONCLUSION AND FUTURE WORK

This paper proposes GPU-TLS, a runtime system that en-

ables speculative parallelization of loops with statically unan-

alyzable dependencies on GPUs. It utilizes partial parallelism

in a large loop by chopping it into sub-loops and executing the

iterations in a sliding window approach. The intra-warp value

forwarding scheme reduces mis-speculation rate by utilizing

the lockstep execution model of threads in a warp. The parallel

commit scheme avoids the serial bottleneck and is scalable to

thousands of GPU threads. Loops with dynamic parallelism

are parallelized using GPU-TLS on two recent NVIDIA GPU

cards and speedups from 5 to 160 are observed.

GPU-TLS works as a runtime library, which exposes APIs

to compilers or programmers. To facilitate loop parallelization

using GPU-TLS, designing a speculative parallelizing com-

piler that can automatically extract speculative threads from

sequential loops and instrument the original memory accesses

with APIs provided by GPU-TLS is our future plan. Also,

using GPUs in cloud environments to provide HPC services

is a trend [21]; how to coordinate multiple GPU cards to

speculatively parallelize large loops using GPU-TLS would

be another direction to explore.
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