
Discovery of Potential
Parallelism in Sequential
Programs
Entdeckung von potentieller Parallelität in sequentiellen Programmen
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Zhen Li, M.Sc. aus Tianjin, China
Tag der Einreichung: September 1, 2016, Tag der Prüfung: October 28, 2016
Darmstadt 2016 — D 17

1. Gutachten: Prof. Dr. Felix Wolf
2. Gutachten: Prof. Dr. Philippe Clauss

Fachbereich Informatik
Parallele Programmierung



Discovery of Potential Parallelism in Sequential Programs
Entdeckung von potentieller Parallelität in sequentiellen Programmen

Genehmigte Dissertation von Zhen Li, M.Sc. aus Tianjin, China

1. Gutachten: Prof. Dr. Felix Wolf
2. Gutachten: Prof. Dr. Philippe Clauss

Tag der Einreichung: September 1, 2016
Tag der Prüfung: October 28, 2016

Darmstadt 2016 — D 17

Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-57412

URL: http://tuprints.ulb.tu-darmstadt.de/5741

This document is provided by tuprints,
E-Publishing-Service of the TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

This work is published under the following creative commons license:
Attribution – Non Commercial – No derivative works 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/



Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit

den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die

aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit

hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den November 4, 2016

(Zhen Li)

1





Abstract
In the era of multicore processors, the responsibility for performance gains has been shifted onto

software developers. Once improvements of the sequential algorithm have been exhausted,

software-managed parallelism is the only option left. However, writing parallel code is still

difficult, especially when parallelizing sequential code written by someone else. A key task in

this process is the identification of suitable parallelization targets in the source code. Parallelism

discovery tools help developers to find such targets automatically. Unfortunately, tools that

identify parallelism during compilation are usually conservative due to the lack of runtime

information, and tools relying on runtime information primarily suffer from high overhead in

terms of both time and memory. This dissertation presents a generic framework for parallelism

discovery based on dynamic program analysis, supporting various types of parallelism while

incurring practically affordable overhead. The framework contains two main components: an

efficient data-dependence profiler and a set of parallelism discovery algorithms based on a

language-independent concept called Computational Unit.

The data-dependence profiler serves as the foundation of the parallelism discovery frame-

work. Traditional dependence profiling approaches introduce a tremendous amount of time

and memory overhead. To lower the overhead, current methods limit their scope to the subset

of the dependence information needed for the analysis they have been created for, sacrificing

generality and discouraging reuse. In contrast, the profiler shown in this thesis addresses the

problem via signature-based memory management and a lock-free parallel design. It produces

detailed dependences not only for sequential but also for multi-threaded code without caus-

ing prohibitive overhead, allowing it to serve as a generic base for various program analysis

techniques.

Computational Units (CUs) provide a language-independent foundation for parallelism dis-

covery. CUs are computations that follow the read-compute-write pattern. Unlike other con-

cepts, they are not restricted to predefined language constructs. A program is represented as a

CU graph, in which vertexes are CUs and edges are data dependences. This allows parallelism

to be detected that spreads across multiple language constructs, taking code refactoring into

consideration. The parallelism discovery algorithms cover both loop and task parallelism.

Results of our experiments show that 1) the efficient data-dependence profiler has a very

competitive average slowdown of around 80× with accuracy higher than 99.6%; 2) the frame-

work discovers parallelism with high accuracy, identifying 92.5% of the parallel loops in NAS

benchmarks; 3) when parallelizing well-known open-source software following the outputs of

the framework, reasonable speedups are obtained. Finally, use cases beyond parallelism discov-

ery are briefly demonstrated to show the generality of the framework.
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Kurzfassung
In Zeiten stagnierender Performanz von Einzelprozessoren obliegt die Leistungssteigerung von

Programmen deren Entwicklern. Sind alle Möglichkeiten sequentieller Optimierung erschöpft,

ist softwaregesteuerte Parallelität die einzig verbleibende Option. Das Schreiben von paral-

lelem Code stellt jedoch immer noch eine Herausforderung dar, besonders wenn der Autor der

sequenziellen Version nicht mehr verfügbar ist. Eine Hauptaufgabe ist deshalb die Erkennung

potenzieller Parallelität im Quellcode. Werkzeuge zur Entdeckung potenzieller Parallelität vol-

lziehen diese Suche automatisch. Geschieht dies zur Compilezeit, ist das Ergebnis aufgrund

mangelnder Laufzeitinformationen eher konservativ. Hingegen leiden Tools, die auf Laufzeit-

informationen basieren, vor allem unter großem Overhead – sowohl hinsichtlich Zeit als auch

Speicher. Gestützt auf eine dynamische Programmanalysetechnik, präsentiert diese Disserta-

tion ein allgemeines Framework zur Entdeckung verschiedener Arten potenzieller Parallelität

mit geringem Overhead. Das Framework besteht aus zwei Hauptkomponenten: einem effizien-

ten Profiler zur Erfassung von Datenabhängigkeiten sowie einer Menge von Algorithmen zur

Entdeckung von Parallelität. Den Algorithmen zugrunde liegt das sprachunabhängige Konzept

der Computational Units.

Der Profiler dient als Eckpfeiler des Frameworks. Traditionelle Ansätze zum Profiling von

Datenabhängigkeiten verursachen signifikanten Overhead. Um diesen zu senken, konzentrieren

sich aktuelle Ansätze unter Vernachlässigung von Allgemeingültigkeit und Wiederverwend-

barkeit auf diejenige Teilmenge der Abhängigkeitsinformation, die für die jeweilige Analyse

benötigt wird. Im Gegensatz dazu begegnet der in dieser Arbeit vorgestellte Profiler der

Herausforderung durch signaturbasierte Speicherverwaltung sowie eine lockfreies paralleles

Design. Er produziert sowohl für sequentiellen als auch für Thread-parallelisierten Code de-

taillierte Abhängigkeiten mit praktisch vertretbarem Overhead. Dadurch kann er als allgemeine

Basis für ein breites Spektrum an Programmanalysetechniken eingesetzt werden.

Das Konzept der Computational Units (CUs) schafft ein sprachunabhängiges Funda-

ment zur Entdeckung potenzieller Parallelität. CUs sind elementare Programmschritte, die

dem Read-Compute-Write Muster folgen. Im Gegensatz zu alternativen Konzepten sind sie

nicht auf vordefinierte Sprachkonstrukte beschränkt. Ein Programm wird durch einen CU-

Graphen repräsentiert, in dem die Knoten den CUs und die Kanten den Datenabhängigkeiten

entsprechen. Dadurch kann Parallelität unter Berücksichtigung von Code-Refaktorisierung auch

über die Grenzen einzelner Sprachkonstrukte hinweg erkannt werden.

Die Ergebnisse unserer Experimente zeigen: 1) Der effiziente Abhängigkeitsprofiler bewirkt

im Durchschnitt eine sehr konkurrenzfähige Verlangsamung von etwa einem Faktor 80 mit einer

Genauigkeit von mehr als 99,6%. 2) Das Framework erkennt Parallelität in NAS Benchmarks

mit hoher Genauigkeit. Es identifiziert 92,5% der parallelen Schleifen. 3) Beim Parallelisieren
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bekannter Open Source-Software gemäß der Ausgabe des Frameworks werden angemessene

Geschwindigkeitsgewinne erzielt. Um schließlich die universelle Verwendbarkeit des Frame-

works zu demonstrieren, werden beispielhaft Anwendungen jenseits der Erkennung von Paral-

lelität diskutiert.
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1 Introduction
Although the component density of microprocessors is still rising according to Moore’s law,

single-core performance is stagnating for more than ten years now. As a consequence, extra

transistors are invested into the replication of cores, resulting in the multi- and many-core ar-

chitectures popular today. The only way for developers to take advantage of this trend if they

want to speed up an individual application is to match the replicated hardware with thread-

level parallelism. This, however, is often challenging – especially if the sequential version of the

application was written by someone else. Unfortunately, in many organizations this situation

is more the rule than the exception. Most software systems are created by modifying earlier

source code, and most of the work and cost of software development is after the first release,

that is, during evolution [1]. To find an entry point for the parallelization of an organization’s

application portfolio and lower the barrier to sustainable performance improvement, tools are

needed that identify the most promising parallelization targets in the source code. These would

not only reduce the required manual effort but also provide a psychological incentive for devel-

opers to start and a structure for managers along which they can orchestrate the parallelization

work flow.

However, constructing parallelism discovery tools is a great challenge. Parallelism is dis-

covered by analyzing dependences in the target program, which so far cannot be obtained

both accurately and efficiently. Methods to discover potential parallelism fall into one of two

categories: static and dynamic methods. Being closely related to compiler technology, static

approaches analyze source or intermediate code and are restricted to information that can be

obtained before running the program. Static approaches are fast, but also conservative because

they have limited support for objects allocated or identifiable only at runtime. In contrast,

dynamic approaches identify dependences only if they exist at runtime. Although dynamic ap-

proaches relax the conservative assumptions made by static approaches on dynamic objects,

they are input sensitive, that is, their outcome may depend on the particular execution config-

urations. A more serious limitation of dynamic approaches is their high runtime overhead in

terms of both time and space. So far, the high overhead prevents dynamic approaches from

practical use.

This thesis presents a generic framework for parallelism discovery based on dynamic depen-

dence analysis, supporting various types of parallelism while incurring practically affordable

overhead. The framework contains two main components: an efficient data-dependence pro-

filer (Chapter 2) and a set of parallelism discovery algorithms (Chapter 4) based on a language-

independent concept called computational unit (Chapter 3).

In the remainder of this chapter, we first introduce the reason why parallelism discovery

tools are needed. After that, data and control dependences, the main obstacle to parallelism,
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are introduced. Furthermore, we survey the state-of-the-art parallelism discovery tools, and

present a summary of the open problems based on the survey. Through the summary, we define

the scope of this thesis. Next, we give a brief introduction of LLVM, a collection of compiler and

tool chain technologies on top of which our method is built. In the end, we present an overview

of our approach and summarize the contributions of this thesis.

1.1 Parallel Computing

Parallel computing is a type of computation in which many calculations are carried out simul-

taneously, [2] operating on the principle that large problems can often be divided into smaller

ones that are then solved at the same time. Nowadays, parallel computing is the key to improve

the performance of computer programs.

Moore’s law [3] is the empirical observation that the number of transistors in a microproces-

sor doubles every 18 to 24 months. The additional transistors are used for many architectural

improvements, including multi-level caches, sophisticated instruction unit that supports pipelin-

ing, support of simultaneous multi-threading, and so on. However, from the mid-1980s until

2004, the additional transistors are mainly used for ramping up processor frequency (know

as frequency scaling), which was the dominant reason for improvements in computer perfor-

mance. Increases in frequency also increase the amount of power used in a processor. On May

8, 2004, Intel canceled its Tejas and Jayhawk processors due to their high power consumption,

which is generally cited as the end of frequency scaling as the dominant vehicle for performance

improvement.

However, Moore’s law is still in effect. With the end of frequency scaling, the additional

transistors have been used to add extra hardware for parallel computing, leading to the emer-

gence of multi-core processors. A multi-core processor is a single computing component with

two or more independent actual processing units called “cores”, which are the units that read

and execute program instructions. These multiple cores can run multiple instructions at the

same time, increasing the overall speed for programs amenable to parallelism.

Unlike frequency scaling, multi-core is not a technology from which programmers can ben-

efit automatically. Sequential programs still run on a single core of a multi-core processor.

So far, compilers that equipped with advanced analyses and optimization techniques are able

to transform well-formed sequential loops into equivalent parallel loops. These compilers are

very successful in scientific computing area since scientific computing programs usually con-

tains many well-formed loops that perform heavy computations. In terms of general-purposed

application that usually contains parallelism beyond loops, there is no compiler that supports

fully automatic parallelization, which remains a grand challenge due to its need for complex

program analysis and the unknown factors (such as input data range) during compilation. As

a result, parallel programs are mainly created by programmers. Compared to sequential pro-

gramming, parallel programming is much more difficult and error-prone. Depending on the

concrete task, it may require deep understanding of the algorithm in use, the guarantees of the

programming language in use, parallel programming models, details of the target machine, or
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even all of them. For this reason, tools that can help in parallelization are urgently needed.

Currently, approaches to achieve parallelization can be divided into three categories:

• Annotations from programmers to guide compiler parallelization

• Interactive system between programmers and parallelizing tools/compilers to ease paral-

lelization

• Hardware-supported speculative multi-threading

This thesis presents a novel parallelism discovery framework that works as an interactive

system to assist parallelization. We select this category because of the following reasons. Firstly,

the most efficient parallel programs are so far still written by hands. Secondly, in many cases,

parallelization also means code refactoring. Adding annotations without touching the algo-

rithm structure may not yield the best solution. Last but not least, understanding the code is

still necessary for programmers because it is not yet possible for a machine to understand a

programmer’s intention. We will discuss this point further in Chapter 4.

1.2 Parallelism Discovery

Parallelism is mainly prohibited by dependences, and dependences includes data dependences

and control dependences. In this section, we introduce both of them and discuss their roles in

parallelism discovery.

1.2.1 Data Dependences

A data dependence is a situation in which a program statement (instruction) refers to the data

of a preceding statement. In compiler theory, the technique used to discover data dependences

among statements (or instructions) is called dependence analysis.

Assuming statement S1 and S2, S2 depends on S1 if:

[I(S1)∩O(S2)]∪ [O(S1)∩ I(S2)]∪ [O(S1)∩O(S2)] 6=∅ (1.1)

where:

• I(Si) is the set of memory locations read by Si

• O(S j) is the set of memory locations written by S j

• There is a feasible runtime execution path from S1 to S2

This condition is called Bernstein Condition [4], named by A. J. Bernstein. Let → be the

precedence relationship in terms of expression evaluation order. According to the Bernstein

Condition, there are three cases of data dependences:
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• Flow dependence: O(S1) ∩ I(S2) 6= ∅, S1 → S2. S2 reads a memory location after S1

writes to it. A flow dependence is also called read-after-write (RAW) dependence, or true

dependence.

• Anti-dependence: I(S1) ∩ O(S2) 6= ∅, S1 → S2. S1 reads a memory location before S2

writes it. An anti-dependence is also called write-after-read (WAR) dependence.

• Output dependence: O(S1) ∩ O(S2) 6= ∅, S1 → S2. Both S1 and S2 write to the same

memory location(s). An output dependence is also called write-after-write (WAW) depen-

dence.

Understanding data dependences is fundamental to implementing parallel algorithms. No

program can run more quickly than the longest chain of dependent calculations, known as the

critical path [5], since calculations that depend upon prior calculations in the chain must be

executed in order. However, most algorithms do not consist of just a long chain of dependent

calculations; there are usually opportunities to execute independent calculations in parallel.

The Bernstein Condition describes whether two program statements can run in parallel or

not. In condition 1.1, S1 and S2 can be replaced by P1 and P2, representing two program

segments. In this case, the Bernstein Condition describes whether two program segments can

run in parallel or not. In either case, the conclusion is always the same: parallelism can be

explored if there is no data dependence between them.

In the scenario of parallelism discovery, the three kinds of data dependences are not equally

important. Usually, flow dependences (RAW) cannot be fully resolved, and that is also why they

are also called “true dependences”. In contrast, anti-dependences (WAR) and output depen-

dences (WAW) can usually be resolved by renaming the variable where the program statement

writes. Thus, anti-dependences and output dependences are also called name dependences.

1.2.2 Control Dependences

A program statement (instruction) is control dependent on a preceding statement if the outcome

of latter determines whether former should be executed or not. Formally, a statement S2 is said

to be control dependent on another statement S1 if and only if:

• There exists a path P from S1 to S2 such that every statement Si 6= S1 within P will be

followed by S2 in each possible path to the end of the program (S2 post-dominates all Si)

• S1 will not necessarily be followed by S2, that is, there is an execution path from S1 to the

end of the program that does not go through S2 (S2 does not post-dominate S1) [6]

For example, consider the following code section:

1 S1. if (a == b)

2 S2. a = a + b

3 S3. b = a + b
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S1

S2 S3

(a) Control-dependence
graph
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S2

S3

(b) Control-flow
graph

Figure 1.1: Control-dependence graph and control-flow graph of the code snippet shown in sec-
tion 1.2.2.

Statement S2 is control dependent on statement S1. However, S3 is not control dependent upon

S1 because S3 is always executed irrespective of the outcome of S1.

Similar to data dependences, control dependences also produce execution-order constraints

between program statements. Unlike data dependences, control dependences can be broken

using a technique called speculative execution. In the above example, S2 can be executed on

another processor speculatively without waiting for the outcome of S1. Later on, if the condition

in S1 is evaluated to be true, then the program finishes immediately since S2 is already executed.

Otherwise, S3 is executed. In this example, the performance of the program is improved by

utilizing one more processor. Speculative execution is usually transparent to programmers. It

exists in many schedulers, including both software and hardware implementations.

It is worth mentioning that control dependences are different from control flow, which de-

scribes an execution path of a program. Again, take the above example, figure 1.1(a) shows its

control-dependence graph, and figure 1.1(b) shows its control-flow graph. Usually, compilers

produce the control-flow graph, and control dependences can be deduced from it.

Parallelism discovery is challenging mainly because dependences cannot be obtained both

accurately and efficiently. Methods to discover potential parallelism fall into one of two cat-

egories: static and dynamic methods. Being closely related to compiler technology, static

approaches analyze source or intermediate code and are restricted to information that can

be obtained before running the program. Static approaches are good at finding the com-

plete control-flow graph and also fast. However, there are several disadvantages associated

with them. First, when the program is large and has many branches, the solution search space

becomes too big, a problem known as branch explosion. Second, they have a limited support

of determining dependences among objects allocated or identifiable only at runtime. This is

why static approaches are usually considered conservative in their assessment of parallelization

opportunities.
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In contrast, dynamic methods track dependences at runtime. They treat the execution of

a user program as an instruction stream interrupted by previously inserted calls to instrumen-

tation functions that help detect dependences. Dynamic approaches identify control and data

dependences only if they really exist at runtime. Since they track only the branches that are

actually executed, they do not suffer the branch explosion problem. But the control-flow graph

is usually incomplete. In general, dynamic methods are input sensitive, that is, their outcome

may depend on the particular execution configuration, a disadvantage traded in for not being

pessimistic like static methods. A straightforward compromise is selecting a range of represen-

tative inputs and repeating the analysis with all of them. A more serious limitation of dynamic

approaches is their high runtime overhead in terms of both time and space. The overhead is

mainly caused by the underlying dynamic data-dependence analysis that instruments and tracks

all the memory accesses of the target program. So far, the extraordinary high overhead prevents

dynamic approaches from practical use.

1.3 Parallelism Discovery Tools

As described in Section 1.2.1, data dependences form the critical path of a program, which

in turns dictates the upper bound of the application’s execution speed. Due to this reason,

the fundamental work of parallelism discovery is to look for the absence of data dependences

in sequential programs. When the target program contains a considerable number of lines of

code (LOC), manually exploring data dependences through the program in program statement

level is almost impossible. In this case, automatic methods to detect parallelism and predict

parallel performance based on data dependences are necessary. In this section, we cover all

the three categories of parallelism discovery tools: data dependence analyzers, semi-automatic

parallelism discovery and modeling tools, and automatic parallelization tools.

1.3.1 Data-Dependence Analyzers

Obtaining the data-dependence graph is the first step to discover parallelism. In this section, we

introduce tools that reveal data dependences but leave the actual parallelism discovery work to

the user.

Usually, tools that can obtain data dependences are capable of extracing more information,

such as the control flow graph, the call graph, and use/def – def/use chains. These analyses are

usually integrated in the same code analysis framework.

Aristotle Analysis System

The Aristotle Analysis System [7] provides program analysis information and supports the devel-

opment of software engineering tools using static analyses. It is an open-source tool developed

by the Aristotle Research Group from Georgia Institute of Technology.
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The Aristotle Analysis System uses a parser to gather control flow, local data flow, and symbol

table information for C programs. It processes the data provided by the parser for a variety of

tasks, such as data-dependence and control-dependence analysis, graph construction and graph

rendering. Parser and tools use database access routines to store information in, and retrieve it

from, a data repository. Users can view analysis data textually or graphically. A user interface

provides menu-driven access to tools.

Frama-C

Frama-C [8] is a suite of tools dedicated to the analysis of the source code of software written

in C. It is an open-source tool developed by teams from two institutions: CEA–LIST (Software

Reliability Laboratory) and INRIA-Saclay.

Frama-C contains several static analysis techniques in a single collaborative framework and

provides tools such as a code slicer and a dependence analyzer. The main features of Frama-C

(including plugins) are:

1. Observe sets of possible values for the variables of the program at each point of the exe-

cution

2. Slice the original program into smaller ones with fewer dependences among them

3. Traverse the data-flow graph of the program, from definition to use or from use to defini-

tion

DMS® Software Reengineering Toolkit™

The DMS Software Reengineering Toolkit is a set of customizable tools for automatic source

program analysis, code generation, and code translation. It is a commercial tool developed by

Semantic Designs, Inc., a privately- held corporation headquartered in Austin, Texas. The tool

is implemented using PARLANSE [9], an in-house parallel programming language.

DMS works like an extremely generalized compiler. It has a parser, a semantic analyzer,

a program transformation engine to do code generation and optimization, and final output

formatting components producing source code rather than binary code. However, unlike a con-

ventional compiler, in which each component is specific to its task of translating one source

language to one target machine language, each DMS component is highly parameterized, en-

abling a stunningly wide variety of effects. This means one can change the input language,

change the analysis, change the transforms, and change the output in arbitrary ways.

DMS supports control-flow graph construction and data-flow analysis. It covers both use-def

chain analysis and def-use chain analysis in the graph. The graph is produced by DMS’s C Front

End, thus one can infer that the control-flow and data-flow analyses are done statically.
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1.3.2 Semi-Automatic Parallelism Discovery Tools

Tools that are in the middle of the spectrum try to locate the potential parallelism in sequential

programs rather than showing the data-dependence graph. However, parallelism discovery is

a technique much more difficult than dependence analysis. Hence, most of the parallelism

discovery tools are still in a prototypical state.

Kremlin

Kremlin [10] is a research parallelism discovery tool developed at University of California, San

Diego. It uses the LLVM compiler infrastructure [11] for instrumentation, discovers parallelism

based on knowledge of the critical path and supports the programmer in ranking different par-

allelization opportunities. To address dependences in nested code regions, Kremlin extends the

traditional critical-path analysis [12] by making it hierarchical. For this purpose, it introduces

a metric called self-parallelism, which quantifies the parallelism of a parent region independent

of its children. Kremlin has an OpenMP planner and a Cilk++ planner to suggest parallelism

in two different parallel programming models.

Alchemist

Alchemist [13] is a research parallelism discovery tool developed at Purdue University. It is built

on top of Valgrind [14], an instrumentation framework for building dynamic analysis tools, to

discover parallelism and issue corresponding recommendations. For each region, Alchemist

decides whether the region can run asynchronously with its dynamic context by checking the

distance between memory references inside and references to the same location that occur

during the region’s continuation. It thus follows the parallelization strategy underlying the use

of futures. A future of a write operation is the code section or construct that contains further

reads of the written variable. Alchemist also builds an execution index tree at runtime. This

tree is used to differentiate among multiple instances of the same static construct.

Compared to Kremlin and other semi-automatic parallelism discovery tools, Alchemist does

not target any specific parallel programming model. This approach is less specific and yet more

flexible since it leaves the implementation details to the users.

Parwiz

Parwiz [15] is a parallelism discovery tool developed at INRIA and Université de Strasbourg,

France. The main component of Parwiz is a data-dependence profiler that works on binary code.

It uses the Intel XED [16] x86 encoder decoder software library to parse the binary, and uses

Pin [17] to instrument the program. Data dependences are extracted based on an execution

tree. An execution tree is an unfolded static program hierarchy in one execution, including
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individual instructions, loops and their iterations, and routine calls. Every memory access is

an ACCESS node in the execution tree, and the path from the root to an ACCESS node is the

global iteration vector of the access. By calculating the least common ancestor of two ACCESS

nodes, a data dependence can become apparent on multiple levels of the execution tree. The

data dependences together with the execution tree can be used to discover trivial parallel loops,

bags of tasks, and code transformations.

Parwiz also includes a few optimizations to lower the overhead of dynamic data-dependence

profiling. The idea is to combine contiguous memory accesses that always happen “atomically”

into a single block to lower the instrumentation and profiling overhead. To achieve this, Parwiz

performs static analysis to find nearby individual accesses when the program updates fields of

a structure or accesses in a loop that traverses arrays. These optimizations reduce the profiling

time by more than 46%.

Tareador

Tareador [18] is a parallelism discovery tool developed at Barcelona Supercomputing Center,

Spain. Tareador analyzes sequential code to find a task decomposition. It provides a set of

annotations for marking down tasks in the code. In Tareador 1.x, tasks should be annotated by

the user. The tool then generates the data dependence graph according to the annotated tasks,

the potential parallel execution of the tasks, and visualization of data usage, that is, the amount

of data accessed in each task. Tareador works interactively with the user to find a good task

decomposition. The user can refine the task annotation according to the output of Tareador,

and determine further improvements based on the new output for the refined tasks.

Tareador 2.x automates the iterative process. It follows a top-down approach by first using

the most coarse-grain task annotation, that is, taking the whole main function as a single task,

and then iteratively refining the decomposition based on a cost model. The cost model contains

three metrics, the length cost, the dependence cost, and the concurrency task. The algorithm

breaks tasks that have high costs into smaller tasks. A task with high cost means its instances

have long duration, many dependences, and low concurrency. The cost model also evaluates

the quality of a decomposition, and the algorithm stops when a newly generated decomposition

has a lower quality than the previous solution.

Compared to other semi-automatic parallelism discovery tools, Tareador takes a relatively

brute-force approach by enumerating possible decompositions. The cost model serves as heuris-

tics in the searching process. The approach does not take control flow into consideration, which

may lead to tasks that are not easy to implement.

Intel® Advisor XE

Intel Advisor XE [19] is a threading prototyping tool for C, C++, C# and Fortran software

architects. Intel Advisor XE answers the following questions:
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1. Where to parallelize?

Intel Advisor XE profiles hot spots, that is, code sections (functions and loops, specifically)

that consume lots of time to execute, as the parallelization candidates. The criterion is

the time spent in a code region, and data dependences are not taken into account. Thus,

a profiling in this phase is very close to what gprof does. This phase is called “survey”. To

accomplish the survey the source code needs to be compiled in release mode.

The programmer needs to read the code in hot spots, understand its behavior, and insert

annotations (provided by Intel Advisor XE) to mark down potential parallelism. Thus, the

actual parallel pattern is discovered by the programmer but not the tool. This phase is

called “annotation”. To annotate the code the programmer needs to include the corre-

sponding header file that contains the annotations and modify the source code slightly.

2. What is the benefit?

After the annotation, Intel Advisor XE runs the annotated code and emulates the parallel

behavior of the annotated code sections. The output is a report containing:

• The estimated overall speedup

• The scalability of the program, from 2 to 512 threads

This phase is called “suitability test”. To accomplish this phase the source code needs to

be compiled again with the annotations in release mode. The suitability test usually has a

time overhead of less than a factor of two since it does not profile data, but emulates the

behavior based on predefined parameters.

3. Which parallel programming model suits the purpose best?

The emulation model of Intel Advisor XE contains different sets of parameters for different

parallel programming models. On Windows, the supported ones are TBB, Cilk+, OpenMP

and Microsoft TPL. A user can compare the suitability test results in different programming

models.

The emulation model covers potential synchronization overheads, too. The user can

choose to include or ignore these effects, and the tool can also suggest whether these

effects can be ignored or not.

4. What are the potential problems after parallelization?

Intel Advisor XE can also perform a "correctness check", which is essentially a data-race

detection. This check targets potential data sharing problems that can lead to deadlocks

or races.

To accomplish the correctness check the code needs to be compiled again with annota-

tions in debug mode. The correctness check has a huge time overhead. According to the

technical documents of the tool, a correctness check may take more than one hour on an

annotated region that normally runs in 30 seconds.
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Questions that Intel Advisor XE cannot answer:

• How much potential parallelism exits in the sequential code?

• What pattern does the potential parallelism follow?

These two questions can only be answered by profiling data dependence dynamically. With-

out such information, programmers have to answer these two questions themselves. Moreover,

Intel Advisor XE cannot transform the code automatically.

SLX Tool Suite

The SLX Tool Suite [20] is a set of tools for parallel software design automation. The suite

contains four tools: SLX Parallelizer, SLX Mapper, SLX Generator, and SLX Explorer. The SLX

Tool Suite is developed by Silexica as a commercial product.

The SLX Parallelizer performs C code partitioning by analyzing control and data flow within

the original sequential code, exposing parallelism. An additional automatic performance estima-

tion allows a fast and accurate prediction of application hotspots and performance gains through

identified parallelism. The SLX Mapper performs a fully automated mapping of software tasks

and processes onto given multi-core hardware platforms. It also computes optimized data and

communication mappings, exploiting memory hierarchies, complex on-chip interconnect fab-

rics and other memory subsystems, including direct hardware support for FIFO buffers. The

SLX Generator follows a source-to-source translation approach that emits architecture-aware

and middleware-specific C code as final output. The SLX Explorer facilitates multi-core plat-

form selection by means of a flexible retargetable hardware architecture model.

The technologies behind the SLX Tool Suite originates from the MPSoC Application Pro-

gramming Studio (MAPS) [21] developed by The Institute for Communication Technologies

and Embedded Systems (ICE) of RWTH Aachen University, Germany. MAPS identifies task par-

allelism in C applications for MPSoC platforms based on the notion of a coupled block, which

is a single-entry single-exit group of statements tightly coupled by dependences. In the end, a

coupled block is treated as a task.

Prism

The Prism Technology Platform [22] is an framework to develop new analysis, visualization

or runtime techniques to meet the needs of a particular project. It is an in-house framework

developed by Critical Blue, a company based in the UK. Regarding parallelization, the Prism

Technology Platform provides the following basic analyses for sequential programs:

• Data-dependence analysis for multicore

• Parallelism ’what-if’ modeling

• Multicore scalability modeling
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• Dynamic and static code translation

• Multicore data race detection

Prism is built on dynamic binary-level analysis which supports the dynamic instrumentation

of compiled software running on most hardware platforms. This allows the capture of per-

formance data down to the detail of individual instruction execution. However, since Prism

is an in-house tool and not sold as a product, it is not clear how Prism perform the analyses.

For example, we do not know whether the binary-level analysis checks the machine instruc-

tions statically or instruments the code. According to the official website of Prism, it models

the parallel behavior of sequential programs with potential parallelism marked down by users

(parallelism ’what-if’ modeling) rather than suggesting the parallelism. This is similar to Intel

Advisor XE.

Others

Besides the more well-known ones, there are many semi-automatic parallelism discovery tools

that are tailored to specific types of programs or programming languages. JavaSlicer [23] traces

Java programs to find parallelism, exploiting knowledge of the critical path. ParaMeter [24] is a

tool aiming to find parallelism in task-based applications where computational tasks are added

dynamically. It employs a speculative scheduler to decide whether two tasks can be executed

concurrently. The tool developed by Tournavitis and Franke [25] and the tool developed by

Thies et al. [26] target coarse-grained pipeline-style parallelism in multimedia applications.

1.3.3 Automatic Parallelization Tools

Parallelization assisting tools that fall into the third category aim to automatically convert the

sequential code into parallel code. Such tools are known as automatic parallelization tools.

Automatic parallelization tools further fall into two categories: compile-time tools and runtime

tools. Compile-time tools work like compilers or plugins of a compiler. They perform compile-

time analysis to identify code fragments that can run in parallel, and transform the sequential

code into equivalent parallel code in either a source-to-source or source-to-binary way. Runtime

tools, on the other hand, executes fragments of code that were originally intended to run se-

quentially in parallel by simply assuming the fragments can be executed in parallel. To ensure

correctness, runtime tools check violation of dependences on-the-fly, and fall back to sequential

execution when necessary. This approach is also called speculative parallelization. Due to the

difficulty of automatic task decomposition and code transformation, automatic parallelization

tools usually focus on loop parallelism. This applies to both compile-time and runtime tools.

Speculative parallelization has hardware and software solutions. However, many ideas and

concepts can be implemented in either way. For this reason, we focus on representative soft-

ware solutions in this thesis to avoid introducing essential hardware backgrounds, which is less
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relevant to the other parts of this thesis. A complete survey on speculative parallelization can

be found in the work of Estebanez et al. [27].

Intel® C++ Compiler

One well-known compile-time automatic parallelization tool is the Intel C++ Compiler [28],

also known as icc or icl. The Intel C++ Compiler is a group of C and C++ compilers. Compared

to other C and C++ compilers, the Intel C++ Compiler specializes in generating optimized

code for Intel processors, including processors based on IA-32 and Intel 64 architectures, ATOM

processors, and the Intel Xeon Phi coprocessor.

The Intel C++ Compiler supports automatic parallelization of loops. This feature can be

enabled by specifying the -Qparallel (Windows) or -parallel (Linux or Mac OS X) option

on the command line. When automatic parallelization is enabled, The Intel C++ compiler

performs data-dependence analysis on loops, and generates parallel code that divides the iter-

ations as evenly as possible for loops that are recognized as good candidates. A loop can be

parallelized by The Intel C++ Compiler only if it satisfies three requirements [29]. First, the

number of iterations must be known in compile time. That means a while loop usually cannot

be parallelized. Second, there are no control flow jumps into or out of the loop. That means

a single break statement is usually enough to prevent parallelization. Finally, there must be

no data dependences among iterations. However, data dependences due to trivial reductions

scenarios such as adding the elements in an array can be resolved automatically.

A technical report [29] from Intel states that “Potential aliasing of pointers or array refer-

ences is a common impediment to safe parallelization”, and “If the compiler cannot prove that

pointers or array references are safe and that iterations are independent, it will not parallelize

the loop”. These statements give a clear clue that the Intel C++ compiler utilizes static data-

dependence analysis for parallelism discovery. Details of static data-dependence analysis and

pointer aliasing analysis are described in Section 2.1. Moreover, the Intel C++ Compiler can-

not determine the thread-safety of a loop containing external function calls because it does not

know whether the function call has side effects that introduce dependences [29].

Polly

Polly [30] is a high-level loop and data-locality optimizer and optimization infrastructure for

LLVM. It is an open-source tool originally developed by Tobias Grosser and Hongbin Zheng. Now

the source code of Polly is integrated into the LLVM official repository and released according

to the same schedule as LLVM.

Polly uses an abstract mathematical representation based on integer polyhedra to analyze

and optimize the memory access pattern of a program. Polly mainly focuses on classical loop

transformations, especially loop tiling and loop fusion to improve data locality. It can also

exploit OpenMP level parallelism and expose SIMDization opportunities.
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Polly adopts a static technique called polyhedral compilation. It uses a high-level mathemati-

cal representation based on polyhedra [31] or Presburger relations [32] to analyze and optimize

computer programs. The polyhedral model can be used to obtain data dependences statically.

Compared to classic static data-dependence analysis (introduced in Section 2.1), polyhedral

model is much more powerful in extracting data dependences from regular accesses to arrays,

which is one of the most common memory access patterns in scientific numerical programs.

Results of testing Polly on Polybench 2.0, a test suite that contains computation kernels

from linear algebra routines, stencil computations, image processing and data mining, are also

published. The results show that 16 programs out of 30 get major speedup, where 8 programs

have speedups bigger than 10 using 24 threads.

Polly is not the only polyhedral optimizer though, and polyhedral optimization is still an ac-

tive area of research. GCC has a polyhedral optimization framework called Graphite [33], and

there are many other polyhedral optimization frameworks such as Omega [34], PolyLib [35],

and CLooG [36]. Classic polyhedral optimization requires that the loop bounds and conditions

of loop statements are affine functions of the surrounding loop iterators and parameters. Benab-

derrahmane et al. [37] proposed a method that extends the polyhedral model to support while

loops, in which loop bounds are non-affine. The method transforms while loops into for loops

with if branches to process the loop conditions.

LRPD test

The LRPD test [38] is the origin of software thread-level speculative parallelization. The method

executes chunks of iterations of the target loop speculatively, and perform the LRPD test in the

end to validate the execution. If the test failed, the target loop is re-executed sequentially.

To lower the possibility that the LRPD test fails, the method firstly transform the target loop

through privatization and reduction parallelization. Privatization is to making private copies of

shared variables. Reduction parallelization is to identify reduction operations at compile time

and replacing the reduction operations with a parallel algorithm. The method then assumes the

transformed loop has no inter-iteration dependences.

Apollo

Apollo [39, 40, 41] is a compiler framework dedicated to automatic, dynamic and specula-

tive parallelization and optimization of programs’ loop nests. It is developed at Inria and the

University of Strasbourg, France. Apollo is a modern runtime tool that supports speculative

parallelization.

Apollo consists of two main components. The first component is a set of extensions to the

CLANG-LLVM compiler that prepare the program. Specifically, the first component generate

two other versions of the program along with the original sequential code: 1) an instrumented

version in which memory instructions and updates of scalar values are instrumented, and 2)
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code bones [42], which are essentially templates of code fragments that can be instantiated at

runtime. The second component is a runtime system. The runtime system firstly executes the

instrumented version for a small number of iterations to collect memory access information and

scalar values. Then it builds a predication model to select an optimal polyhedral transformation

for each target loop nest. Once the optimal transformation is decided, it instantiate the code

bones to generate the parallel code. The generated parallel code is speculative. In case of in-

validation, the original sequential version that contains the chunk of iterations are re-executed,

and instrumented version is relaunched to determine a new parallelization strategy.

ParallWare

ParallWare [43] is an auto-parallelizing source-to-source compiler for sequential applications.

It is a commercial tool developed by Appentra.

ParallWare automatically discovers the parallelism available in the input sequential code,

and generates equivalent parallel source code annotated with compiler directives. The targets

are HPC systems based on multi-core processors. ParallWare supports OpenMP and OpenACC.

The technical features of ParallWare are:

• Auto-parallelization of convergence loops and propagation loops in scientific numerical

applications

• Auto-parallelization of parallel reductions

• Auto-parallelization of for loop nests

• Auto-parallelization of source codes with n-dimensional arrays

• Auto-parallelization of inter-procedural code (e.g., intrinsic and non-intrinsic functions)

Par4All

Par4All [44] is an automatic parallelizing and optimizing compiler that supports programs writ-

ten in C and FORTRAN. It is an open-source tool maintained by the community, which is mainly

supported (technically) by three organizations: SILKAN, MINES ParisTech and Institut TÉLÉ-

COM/TÉLÉCOM Bretagne/HPCAS.

Par4All is based on the PIPS (Parallelization Infrastructure for Parallel Systems) source-to-

source compiler framework. The “p4a” is the basic script interface to produce parallel code from

user sources. It takes C or FORTRAN source files and generates OpenMP or CUDA output to run

on shared memory multicore processors or GPUs, respectively.

As a compiler, Par4All concentrates on static analyses and mainly transforms loops. Par4All

covers many code-generation optimizations, including loop fusion, point-to analysis, and vec-

torization. Features like automatic instrumentation for loop parameter extraction at runtime

are expected in version 2.0.
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Par4All offers official evaluation results. On the program 410.bwaves from the SPEC

CPU2006 benchmarks, Par4All achieves a speedup of 4.5 with two Intel Xeon X5670 pro-

cessors at 2.93GHz (12 cores). On an ordinary matrix multiplication program, it achieves a

speedup of 12.1 on the same platform.

PLUTO

PLUTO [45, 46] is an automatic parallelizer and locality optimizer for multi-core programs. It

is an open-source tool developed by a team from Ohio State University and Louisiana State

University.

Based on the polyhedral model [31], PLUTO transforms sequential C programs to equivalent

parallel code. It focuses on coarse-grained parallelism, dealing with big code sections such as

entire loop nests. The core transformation framework mainly works by finding affine transfor-

mations for efficient loop tiling and loop fusion. The generated OpenMP programs can achieve

outer, inner, or pipelined parallelization of loop nests purely with OpenMP directives. PLUTO

also has a version generating CUDA code, but it is no longer maintained.

Cetus

Cetus [47] is a compiler infrastructure for the source-to-source transformation of software pro-

grams. It is an open-source tool developed by a team from Purdue University.

Cetus is not a dedicated automatic parallelization tool itself, but provides a basic infras-

tructure for writing such tools or compilers. The basic parallelizing techniques Cetus currently

implements are privatization, reduction-variable recognition, and induction variable substitu-

tion. The latest version of Cetus also includes a GUI, speedup calculation and graph display,

and the Cetus remote server. The Cetus remote server allows users to transform C code through

the server. Cetus also has an experimental Hubzero [48] version that allows users to transform

C code through a web browser.

Others

Other than the tools mentioned above, Tournavitis et al. [49] applies machine learning tech-

niques to find parallelism in loops and automatically parallelize them using OpenMP. Sam-

bamba [50] integrates three parallelism enabling technologies into one framework: speculation,

privatization, and reduction. Instead of performing the classic static analysis on the program

dependence graph (PDG), Sambamba solves the problem using integer linear programming

(ILP).
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1.3.4 Review of the Existing Tools and the Scope of This Thesis

We have introduced the state-of-the-art parallelism discovery tools in the previous sections.

Based on the available information from the published documents and papers, we summarize

the existing parallelism discovery tools as follows:

1. There is still no mature parallelism discovery tool that works for general-purpose pro-

grams with irregular access patterns. Companies that are strong in building program

analysis tools sell “parallelism discovery for general-purpose programs” as a service since

strong intervention from domain experts and experienced programmers are needed to

build such tools. Moreover, automatic code transformation for general-purpose programs

is considered to be far beyond the state-of-the-art.

2. On the other hand, parallelism discovery and automatic parallelization for loop-structured

programs have been fully automatic. They are either based on the polyhedral model or

speculative execution. Although the underlying theory is mature, the techniques build on

top of it are still considered advanced. Polyhedral model is limited by its restriction to

affine loop nests. Speculative execution can extract parallelism from irregular loops, but

it introduces a higher runtime overhead and energy consumption. Furthermore, many

tools such as ParallWare and Par4All are still under construction for supporting many core

processors (GPUs or accelerators). Building a parallel compiler or front-end is the most

popular approach to building automatic parallelization tools.

3. So far, static analysis has been the most widely adopted approach in state-of-the-art tools.

The reason is simple: the overhead of the analyses must be low enough to make the

tool practical. Among all the tools introduced in this thesis, only Intel Advisor XE and

Cetus use profiled runtime data and show the users about the potential time overhead of

the profiling. Consequently, there is still no mature technique to lower the overhead of

dynamic analyses to a reasonable level.

To narrow the technical gap, this thesis focuses on

• A dynamic data-dependence analysis that has low overhead in terms of both time and

memory

• A parallelism discovery approach for general-purpose programs

We do not cover automatic sequential-to-parallel code transformation in this thesis. For sci-

entific numerical programs, several automatic parallelization tools exist. For general-purpose

programs, information obtained through program analyses is usually not enough for automatic

sequential-to-parallel code transformation. The semantics of the program or the programmer’s

intentions must be preserved. A detailed discussion is deferred to Section 4.5.
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1.4 Introduction to LLVM

The methods presented in this thesis are built on top of the Low Level Virtual Machine (LLVM),

which is a collection of modular and reusable compiler and toolchain technologies. Despite its

name, LLVM has little to do with traditional virtual machines, though it does provide helpful

libraries that can be used to build them. The name “LLVM” itself is not an acronym; it is the full

name of the project. [51]

LLVM began as a research project at the University of Illinois, with the goal of providing a

modern, SSA-based compilation strategy capable of supporting both static and dynamic compi-

lation of arbitrary programming languages. Nowadays, the LLVM project has grown and holds

a huge collection of compiler-related tools. Depending on the context, the name “LLVM” might

refer to any of the following:

• The LLVM project. This is an umbrella for several projects that together form a complete

compiler: frontends, backends, optimizers, assemblers, linkers, and so on.

• An LLVM-based compiler. This is a compiler built partially or completely with the LLVM

infrastructure. For example, a compiler might use LLVM for the frontend and backend but

use GCC and GNU system libraries to perform the final link.

• LLVM libraries. This is the reusable code portion of the LLVM infrastructure.

• The LLVM IR.This is the LLVM compiler intermediate representation. [52]

In this thesis, the term “LLVM” mostly refer to the LLVM libraries, and the LLVM IR. The

meaning should be clear in a given context. Since our approach is built on top of LLVM, it is

necessary to introduce its primary components, or subprojects, that are used in this thesis:

• LLVM core. The libraries that provide a modern source- and target-independent optimizer,

along with code generation support for many popular CPUs.

• Clang. Clang is an “LLVM native” C/C++/Objective-C compiler, which aims to deliver

amazingly fast compiles as well as extremely useful error and warning messages and to

provide a platform for building source level tools.

• Compiler-rt. The compiler-rt project provides highly tuned implementations of the low-

level code generator support routines such as “__fixunsdfdi” and other calls generated

when a target does not have a short sequence of native instructions to implement a core IR

operation. [52] It also provides implementations of runtime libraries for dynamic analysis

tools.

The work presented in this thesis are highly related to the LLVM Intermediate Representation

and the LLVM Pass Framework. In the following sections, we introduces them in detail.
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1.4.1 The LLVM Intermediate Representation

The LLVM Intermediate Representation (IR) is the backbone that connects frontends and back-

ends, allowing LLVM to parse multiple source languages and generate code for multiple targets.

Frontends produce the IR, while backends consume it. The IR is also the point where the

majority of LLVM target-independent optimizations take place. [52]

The LLVM project started with an IR that operated at a lower level than Java bytecode,

thus, the initial acronym was Low Level Virtual Machine. The idea was to explore low-level

optimization opportunities and employ link-time optimizations. The link-time optimizations

were made possible by writing the IR to disk, just like bytecode. Nowadays, LLVM is neither a

Java competitor nor a virtual machine, and it has other intermediate representations to achieve

efficiency. In LLVM terms, LLVM IR has two forms: assembly and bitcode. LLVM assembly means

the human-readable code, and LLVM bitcode means the binary format. They are equivalent in

terms of functionality.

In general, LLVM IR has the following properties:

• Static Single Assignment (SSA) form. In the SSA form, names correspond uniquely to

specific definition points in the code and each name is defined by one operation, hence

the name static single assignment. To reconcile this single-assignment naming discipline

with the effects of control flow, the SSA form inserts special operations called φ-functions

at points where control-flow paths meet. [6]

• Three-address code. In the three-address code, most operations have the form i ← j

op k, where op is the operator, j and k are the operands, and i is the result.

• Infinite number of registers. Note that local values in the LLVM IR can be any name that

starts with the % symbol, and there is no restriction on the maximum number of distinct

values.

The content of an entire LLVM file, either assembly or bitcode, is said to define an LLVM

module. The module is the LLVM IR top-level data structure. Each module contains a sequence

of functions, which contain a sequence of basic blocks, which contain a sequence of instructions.

The module also contains peripheral entities to support this model, such as global variables, the

target data layout, and external function prototypes as well as data structure declarations.

Figure 1.2 shows an LLVM IR assembly file, or, a module. The target datalayout con-

struct contains information about endianness and type sizes for the target described in target

triple. In the example shown in Figure 1.2, the target is an x86_64 processor PC with an a

Linux operating system. It is a little-endian target, which is denoted by the first letter in the

layout (a lowercase e). Big-endian targets need to use an uppercase E.

The definition of function foo in this example is :

define i32 @_Z3foov() #2 {...}
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1 ; ModuleID = ’test.cpp’

2 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

3 target triple = "x86_64-pc-linux-gnu"

4

5 ...

6

7 ; Function Attrs: nounwind uwtable

8 define i32 @_Z3foov() #2 {

9 %a = alloca i32, align 4

10 %b = alloca i32, align 4

11 %c = alloca i32, align 4

12 store i32 0, i32* %a, align 4

13 store i32 1, i32* %b, align 4

14 store i32 0, i32* %c, align 4

15 %1 = load i32* %a, align 4

16 %2 = load i32* %b, align 4

17 %3 = add nsw i32 %1, %2

18 store i32 %3, i32* %c, align 4

19 %4 = load i32* %c, align 4

20 ret i32 %4

21 }

22

23 ; Function Attrs: nounwind uwtable

24 define i32 @main(i32 %argc, i8** %argv) #2 {

25 %1 = alloca i32, align 4

26 %2 = alloca i32, align 4

27 %3 = alloca i8**, align 8

28 store i32 0, i32* %1

29 store i32 %argc, i32* %2, align 4

30 store i8** %argv, i8*** %3, align 8

31 %4 = call i32 @_Z3foov()

32 ret i32 0

33 }

34

35 attributes #0 = ...

Figure 1.2: The content of an LLVM assembly file.
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The name of the function has a prefix and a suffix to foo because of mangling. Name

mangling is a technique used to solve various problems caused by the need to resolve conflicting

names for programming entities. This function returns a value of the type i32 and has no

parameters. In LLVM IR, local identifiers always need the % prefix, whereas global identifiers

use @. The #2 tag in the function declaration maps to a set of function attributes.

The alloca instruction reserves space on the stack frame of the current function. store

instructions store values to variables, and load instructions load values from variables. The add

instruction adds two operands and puts the result in the third operand. The nsw flag specifies

that this add operation has "no signed wrap", which indicates an instruction that are known to

have no overflow, allowing for some optimizations. The call instruction appears in the main

function calls another function.

1.4.2 The LLVM Pass Framework

In LLVM, passes perform the transformations and optimizations that make up the compiler,

they build the analysis results that are used by these transformations, and they are, above all, a

structuring technique for compiler code. All LLVM passes are subclasses of the Pass class, which

implements functionality by overriding virtual methods inherited from Pass.

There are several kinds of passes in LLVM: [53]

• ModulePass. The ModulePass is the most general of all superclasses. Deriving from Mod-

ulePass indicates that a pass uses the entire program as a unit, referring to function bodies

in no predictable order, or adding and removing functions. Because nothing is known

about the behavior of ModulePasses, no optimizations can be done for their execution.

• CallGraphSCCPass. The CallGraphSCCPass is used by passes that need to traverse the call

graph of a program bottom-up (callees before callers). Deriving from CallGraphSCCPass

provides some mechanics for building and traversing the call graph, but also allows the

system to optimize executions of CallGraphSCCPasses.

• FunctionPass. A FunctionPass executes on each function in the program independently of

all other functions in the program. FunctionPasses do not require that they are executed

in a particular order, and FunctionPasses do not modify external functions.

• LoopPass. LoopPasses are similar to FunctionPasses but execute on each loops in the

program. LoopPasses process loops in loop-nest order such that the outer most loop is

processed last.

• RegionPass. RegionPasses are similar to LoopPasses, but execute on each single-entry

single-exit region in the function. RegionPasses also process nested regions inside out.

• BasicBlockPass. BasicBlockPasses are just like FunctionPasses, except that they must limit

their scope of inspection and modification to a single basic block at a time.
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Figure 1.3: Parallelism discovery workflow.

• MachineFunctionPass. A MachineFunctionPass is a part of the LLVM code generator that

executes on the machine-dependent representation of each LLVM function in the program.

Passes are managed and scheduled by a Pass Manager in LLVM. It takes a list of passes,

ensures their prerequisites are set up correctly, and then schedules passes to run efficiently. All

of the LLVM tools that run passes use the pass manager for execution of these passes.

1.5 Approach Overview

We name our parallelism discovery framework DiscoPoP (Discovery of Potential Parallelism).

Figure 1.3 shows our parallelism-discovery workflow. It is divided into three phases: In the

first phase, we instrument the target program and execute it. Control flow information and

data dependences are obtained in this phase. In the second phase, we search for potential

parallelism based on the information produced during the first phase. The output is a list

of parallelization opportunities, consisting of several code sections that may run in parallel.

Finally, we rank these opportunities and write the result to a file.

1.5.1 Phase 1: Control-Flow Analysis and Data-Dependence Profiling

The first phase includes both static and dynamic analyses. The static part includes:

• Instrumentation. DiscoPoP instruments every memory access, control region, and function

in the target program after it has been converted into intermediate representation (IR)

using LLVM [11].

• Static control-flow analysis, which determines the boundaries of control regions (loop,

if-else, switch-case, etc.).

The instrumented code is then linked to libDiscoPoP, which implements the instrumentation

functions, and executed. The dynamic part of this phase then includes:

• Dynamic control-flow analysis. Runtime control information such as entry and exit points

of functions and the number of iterations of loops are obtained dynamically.
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• Data-dependence profiling. DiscoPoP profiles data dependences using a signature algo-

rithm.

• Variable lifetime analysis. DiscoPoP monitors the lifetime of variables to improve the

accuracy of data-dependence detection.

• Data dependence merging. An optimization to decrease the memory overhead.

Note that we instrument the intermediate representation, which is obtained from the source

code of the application. That means libraries used in the application can only be instrumented

when the source code of the libraries is available. We believe that this approach is sufficient for

discovering parallelism since it is nearly impossible to parallelize binary code manually. Besides,

the user always has the option of not instrumenting libraries.

1.5.2 Phase 2: Parallelism Discovery

During the second phase, we search for potential parallelism based on the output of the first

phase, which is essentially a graph of dependences between source lines. This graph is then

transformed into another graph, whose nodes are parts of the code with all parallelism pre-

venting read-after-write (RAW) dependencies explicitly among them. We call these nodes

computational units (CUs). Based on this CU graph, we can detect potential parallelism and

already identify tasks that can run in parallel.

1.5.3 Phase 3: Ranking

Ranking parallelization opportunities of the target program helps users to focus on the most

promising ones. For this purpose, we use three metrics: instruction coverage, local speedup, and

CU imbalance. Details of the ranking method are introduced in Section 4.3.

1.6 Contributions of This Thesis

This thesis presents the following contributions:

1. An efficient data-dependence profiler [54]. The profiler supports both sequential and par-

allel programs, and produces detailed dependences that can be used by various program

analyses. Thanks to its lock-free parallel implementation, the profiler has an average slow-

down of 78× on NAS benchmarks with only 649 MB memory consumption on average.

The profiler also includes an optimization that reduces the profiling time on loops by up

to 52 % [55].

2. The concept and implementation of computational units [56, 57], which allows paral-

lelism to be discovered among code sections that are not necessarily aligned with source

language structures.
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3. Parallelism discovery algorithms based on CU graphs for parallelism in loops and parallel

tasks [56, 57, 58, 59]. The results show that our method identified 92.5% of the paral-

lelized loops in NAS benchmarks [58], and made correct parallelization decisions on all

the 20 hot spots from the Barcelona OpenMP Task Suite [56]. Parallelizing applications

manually following the output of DiscoPoP also yields promising speedups. Our paral-

lel version of a face recognition program, FaceDetection, which follows the task graph

produced by DiscoPoP results in a speedup of 9.92 when using 32 threads [59].

4. Applications of the parallelization framework presented in this thesis, including character-

izing features for DOALL loops (with Daniel Fried) [60], and determining optimal param-

eters for software transactional memory (with Yang Xiao) [61]. The profiler also enables

other applications, one from which is detecting communication patterns on multi-core

systems by our colleague Arya Mazaheri.
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2 Data-Dependence Analysis
Data-dependence analysis serves as the foundation of many program analysis techniques. Tools

for discovering parallelism [10, 57, 13, 62, 15, 63] analyzes data dependences to identify the

most promising parallelization opportunities. Runtime scheduling frameworks [64, 65, 66, 67]

analyzes data dependences to add more parallelism to programs by dispatching code sections

in a more effective way. Automatic parallelization tools [47, 44, 30] analyzes data dependences

to transform sequential into parallel code automatically. Software erosion protection tools [68]

analyzes data dependences to provide aid in the refurbishment and maintenance of software

systems by supporting software understanding and reverse engineering. Common to all of

them is that they rely on data-dependence information to achieve their goals.

Data-dependence analysis is not a trivial task. Existing state-of-the-art can be divided into

two categories: static and dynamic. While static approaches make conservative assumptions

on dynamically allocated memories, dynamic approaches suffer from high time and space

overhead. In this chapter, we first review methods from both categories, and then present

our dynamic data-dependence profiler in detail. Compared to existing approaches, our data-

dependence profiler produces detailed data dependences for both sequential and parallel pro-

grams with low time and memory consumption. At the end of this chapter, we show experimen-

tal results of our profiler.

2.1 Static Approaches

Static approaches determine data dependences without executing the program. The simplest

approach is syntax-driven data-dependence analysis. In syntax-driven approaches, names that

are written to and read from are determined by rules based on the syntax of program statements.

For example, Bobbie [69] suggests the following pair of rules:

• Singular or composite (valued) variables appearing on the left-hand side of assignment

statements are included in the write set

• Singular or composite (valued) variables appearing on the right-hand side of assignment

statements are included in the read set

Data dependences are determined based on the write set and the read set. Syntax-driven data-

dependence analysis is simple and fast, but language-dependent. For example, the rules stated

above need to be changed if the language supports operators like +=. Basically, a set of rules

that is designed for a specific language does not work for other languages.

More importantly, syntax-driven data-dependence analysis has a major disadvantage in lan-

guages that allow pointers and / or references: it does not distinguish names that point or refer
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to the same memory location. When analyzing programs written in such languages, the result-

ing data dependences are far from accurate. Unfortunately, almost all of the popular advanced

programming languages today support pointers or references, or even both.

Modern static data-dependence analysis techniques (and many other static analyses and op-

timizations) are based on pointer analysis, or points-to analysis, which is still an active research

topic today. It answers the following question:

Which memory locations can a pointer expression refer to?

In some context, pointer analysis has another representation called alias analysis, which

answers the following question:

When do two pointer expressions refer to the same memory location?

In this thesis, we uniformly use the term “pointer analysis”. Essentially, pointer analysis finds

the names that are equivalent in a program based on the possible memory locations a name can

refer to. To understand this, take the following code snippet as an example:

1 int x;

2 p = &x; // x and *p alias

3 q = p; // *p and *q alias

In this code, x and *p alias, as do *p and *q, and x and *q. Thus, x, *p, and *q form an

equivalence class because they all refer to the same memory location.

Unfortunately, a complete and precise pointer analysis that is inter-procedural, supporting

multi-level pointers and structures is NP-hard. [70] So far, existing pointer analysis methods

vary in the following dimensions:

• Inter-procedural / intra-procedural: Does the method work at module level (inter-

procedural) or function level (intra-procedural)?

• Flow-sensitive / flow-insensitive: Does the method compute at each program point

(flow-sensitive) or any time (flow-insensitive) of execution?

• Context-sensitive / context-insensitive: Are the results affected by the different argu-

ments provided at different call sites?

• Definiteness: Does the method guarantee definiteness of the results (“must alias”) or not

(“May alias”)?

• Heap modeling: How is dynamically allocated memory represented?

• Representation: How are alias relationships represented?

One algorithm that has a critical impact on recent pointer analysis methods is Andersen’s

algorithm [71], the algorithm described in 1. It divides the program assignment statements

into four types, and each type specifies a subset constraint. The points-to relationships are con-

structed according to the constraints and are propagated through the whole program. Since con-

straints are propagated through the whole program, Andersen’s algorithm is inter-procedural

and flow insensitive. The constraints in Andersen’s algorithm are summarized in Table 2.1.
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Table 2.1: Subset constraints in Andersen’s algorithm.

Constraint type Assignment Constraint Meaning Edge

base a = &b a ⊇ {b} loc(b) ∈ pts(a) no edge

simple a = b a ⊇ b pts(a) ⊇ pts(b) b→ a

complex a = *b a ⊇ ∗b ∀v ∈ pts(b), pts(a) ⊇ pts(v ) no edge

complex *a = b ∗a ⊇ b ∀v ∈ pts(a), pts(v ) ⊇ pts(b) no edge

Initialize a graph G where each vertex is a name in the program. A points-to set (pts) is

attached to each vertex. G is initialized using base and simple constraints.

Let W = {v |pts(v ) 6=∅} (all vertices with non-empty points-to sets):

while W not empty do
v ← select from W
for each a ∈ pts(v ) do

for each constraint p ⊇ ∗v do
add edge a→ p, and add a to W if edge is new

end

for each constraint ∗v ⊇ q do
add edge q→ a, and add q to W if edge is new

end

end

for each edge v → q do
pts(q) = pts(q)∪ pts(v ), and add q to W if pts(q) changed

end

end

Algorithm 1: Andersen’s algorithm for pointer analysis.

loc(b) represents the memory location referred through name b, and pts(a) represents the set

of memory locations that name a possibly points to.

The time complexity of Andersen’s algorithm is O(n3), where n is the number of vertices in

the graph, that is, the number of names in a program. Although Andersen’s algorithm trades

accuracy for speed by not considering control flows, it is still too slow for practical use. Recent

pointer analysis methods focus on reducing the time overhead of Andersen’s algorithm. Hard-

ekopf and Lin [72] optimized Andersen’s algorithm by eliminating circles in the graph first so

the algorithm terminates earlier in the last loop. However, it does not reduce the time complex-

ity. Bjarne Steensgaard [73] proposed a similar algorithm that works in almost linear time. The

algorithm uses equality constraints instead of subset constraints, further reducing the accuracy.

There are many other pointer-analysis methods for different programming languages, and

this thesis cannot cover them all. However, modern methods share the idea of Andersen’s

algorithm and Steensgaard’s algorithm, and are tuned to be either accurate or efficient.
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Through the discussion of pointer analysis, we can see that it improves static data-

dependence analysis by providing more accurate assumptions on dynamically allocated mem-

ory. However, fast pointer analysis is not perfectly accurate. As a result, static data-dependence

profiling is still conservative when dealing with dynamically allocated memory, pointers, and dy-

namically calculated array indices. Nevertheless, static data-dependence analysis enables many

advanced program analyses and optimizations, including automatic parallelization in some re-

stricted cases [44, 30]. Nowadays, pointer analysis and static-data dependence analysis are the

key in optimizing compilers.

2.2 Dynamic Approaches

After purely static data-dependence analysis turned out to be too conservative in many cases, a

range of predominantly dynamic approaches emerged. Dynamic dependence profiling captures

only those dependences that actually occur at runtime. Although dependence profiling is inher-

ently input sensitive, the results are still useful in many situations, which is why such profiling

forms the basis of many program analysis tools [10, 62, 15]. Besides, input sensitivity can be

addressed to some degree by running the target program with changing inputs and computing

the union of all collected dependences.

However, a serious limitation of data-dependence profiling is high runtime overhead in terms

of both time and space. The former may significantly prolong the analysis, sometimes requiring

an entire night [74]. The latter may prevent the analysis completely [75]. This is because de-

pendence profiling requires all memory accesses to be instrumented and records of all accessed

memory locations to be kept. In previous work, their overhead was reduced either by tailoring

the profiling technique to a specific analysis or by parallelizing it.

Using dependence profiling, Kremlin [10] determines the length of the critical path in a

given code region. Based on this knowledge, it calculates a metric called self-parallelism, which

quantifies the parallelism of the region. Instead of pair-wise dependences, Kemlin records only

the length of the critical path. Alchemist [13], a tool that estimates the effectiveness of par-

allelizing program regions by asynchronously executing certain language constructs, profiles

dependence distance instead of detailed dependences. Although these approaches profile data

dependences with low overhead, the underlying profiling technique has difficulty in supporting

other program analyses.

There are also approaches that reduce the time overhead of dependence profiling through

parallelization. For example, SD3 [75] exploits pipeline and data parallelism to extract data

dependences from loops. At the same time, SD3 reduces the significant space overhead of

tracing memory accesses by compressing strided accesses using a finite state machine. Multi-

slicing [76] follows the same compression approach as SD3 to reduce the memory overhead,

but leverages compiler support for parallelization. Before execution, the compiler divides the

profiling job into multiple profiling tasks through a series of static analyses, including alias/edge

partitioning, equivalence classification, and thinned static analysis. According to published

results, the slowdown of these approaches stays close to ours when profiling the hottest 20
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loops (70× on average using SD3 with 8 threads), but remains much higher when profiling

whole programs (over 500× on average using multi-slicing with 8 threads).

Like SD3 and multi-slicing, we parallelize the data-dependence profiling algorithm instead

of customizing it. Unlike these methods, we profile detailed data dependences and control-

flow information for not only sequential but also multi-threaded programs. Furthermore, our

parallelization is achieved through lock-free programming, ensuring good performance without

loss of generality.

2.3 DiscoPoP Profiler

To provide a general foundation for our parallelism discovery framework and other data-

dependence-based analysis techniques, we present a generic data dependence profiler called

DiscoPoP profiler, using the same name with our parallelism discovery framework. With practi-

cal overhead, the DiscoPoP profiler is capable of supporting a broad range of dependence-based

program analysis and optimization techniques—both for sequential and parallel programs. To

achieve efficiency in time, the profiler is parallelized, taking advantage of lock-free design [77].

To achieve efficiency in space, the profiler leverages signatures [78], a concept borrowed from

transactional memory. Both optimizations are application-oblivious, which is why they do not

restrict its scope in any way. Our profiler has the following specific features:

• It collects pair-wise data dependences of all the three types (RAW, WAR, WAW) along with

runtime control-flow information

• It is efficient with respect to both time and memory (average slowdown of only 86×,

average memory consumption of only 1020 MB for benchmarks from NAS and Starbench)

• It supports both sequential and parallel (i.e., multithreaded) target programs

• It provides detailed information, including source-code location, variable name, and

thread ID

2.3.1 Representation of Data Dependences

A sample piece of dependence data produced by our profiler is shown in Figure 2.1. A data

dependence is represented as a triple <sink, type, source>. type is the dependence type

(RAW, WAR or WAW). Note that a special type INIT represents the first write operation to a

memory address.

source and sink are the source code locations of the former and the latter memory ac-

cesses, respectively. sink is further represented as a pair <fileID:lineID>, while source is

represented as a triple <fileID:lineID|variableName>. As shown in Figure 2.1, data depen-

dences with the same sink are aggregated together.

The keyword NOM (short for “NORMAL") indicates that the source line specified by the ag-

gregated sink has no control-flow information. Otherwise, BGN and END represent the entry and
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1 1:60 BGN loop

2 1:60 NOM {RAW 1:60|i} {WAR 1:60|i}

3 {INIT *}

4 1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}

5 1:64 NOM {RAW 1:60|i}

6 1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}

7 {WAR 1:67|temp2} {INIT *}

8 1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2}

9 {RAW 1:67|temp1} {INIT *}

10 1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}

11 1:70 NOM {RAW 1:67|temp1} {INIT *}

12 1:74 NOM {RAW 1:41|block}

13 1:74 END loop 1200

Figure 2.1: A fragment of profiled data dependences in a sequential program.

exit point of a control region, respectively. In Figure 2.1, a loop starts at source line 1:60 and

ends at source line 1:74. The number following END loop shows the actual number of iterations

executed, which is 1200 in this case.

2.3.2 Signature-Based Profiling

Traditional data-dependence profiling approaches record memory accesses using shadow mem-

ory. In shadow memory, the access history of addresses is stored in a table where the index of

an address is the address itself. This approach results in a table covering the memory space

from the lowest to the highest address accessed by the target program, which consumes a lot of

memory. Although this problem can be partially solved by using multilevel tables, the memory

overhead of shadow memory is still too high. According to previous work [75], it is often impos-

sible to profile even small programs using shadow memory if no more than 16 GB of memory is

available.

An alternative is to record memory accesses using a hash table, but this approach incurs

additional time overhead since when more than one address is hashed into the same bucket,

the bucket has to be searched for the address in question. Note that profiling data dependence

pair-wise requires an exhaustive instrumentation of all memory accesses in the target program.

The number of memory accesses in an ordinary benchmark can easily reach one billion. With all

these accesses instrumented, a tiny time cost of the instrumentation function will accumulate

into a huge overhead. Based on our experiments, the hash table approach is about 1.5 – 3.7×
slower than our approach.

A solution to decrease the profiling overhead is to use an approximate representation rather

than instrument every memory access. Previous work [79] tried to ignore memory accesses in a

code section when it had been executed more than 232−k times. However, when setting k = 10,
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only 33.7% of the memory accesses are covered, which can lead to significant inconsistency

among the profiled data dependences.

To lower the memory overhead without increasing the time overhead, we record memory

accesses in signatures. A signature is a data structure that encodes an approximate represen-

tation of an unbounded set of elements with a bounded amount of state [78]. It is widely

used in transactional memory systems to uncover conflicts. A signature usually supports three

operations:

• Insertion: inserts a new element into the signature. The state of the signature is changed

after the insertion.

• Membership check: tests whether an element is already a member of the signature.

• Disambiguation: intersects two signatures. If an element was inserted into both of them,

the resulting element must be present in the intersection.

A data dependence is similar to a conflict in transactional memory because it exists only if

two or more memory operations access the same memory location in some order. Therefore, a

signature is also suitable for detecting data dependences. Usually, a signature is implemented as

a bloom filter [80], which is a fixed-size bit array with k different hash functions that together

map an element to a number of array indices. Here, we adopt a similar idea, using a fixed-

length array combined with a hash function that maps memory addresses to array indices. We

use only one hash function to simplify the removal of elements because it is required by variable

lifetime analysis, an optimization we implemented to lower the probability of building incorrect

dependences. In variable lifetime analysis, addresses that become obsolete after deallocating

the corresponding variable are removed from a signature. Also, each slot of the array is three

bytes long instead of one bit so that the source line number where the memory access occurs

can be stored in it. Because of the fixed length of the data structure, memory consumption can

be adjusted as needed.

To detect data dependences, we apply Algorithm 2. It deploys two signatures: one for

recording read operations and one for recording write operations. When a memory access c
at address x is captured, we first determine the access type (read or write). Then, we run

the membership check to see if x exists in the signatures. If x already exists, we build a data

dependence and change the source line number to where c occurred. Otherwise, we insert x
into the signature. Note that we ignore read-after-read (RAR) dependences because in most

program analyses they are not required.

With signatures, we trade a slight degree of accuracy of profiled dependence for profiling

speed. When more than one address is hashed into the same slot, false dependences are created

instead of building additional data structures to keep the addresses, saving time for maintaining

the structures and searching the address from them. Signatures are implemented in fixed-size

arrays so that the overhead of new/delete or malloc/free is eliminated.

A signature is an approximate representation where hash collisions can happen. A hash col-

lision in signatures can lead to both false positives and false negatives in profiled dependences.
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Global signatures sig_write and sig_read

for each memory access c in the program do
index = hash(c)

if c is write operation then

if sig_write[index] is empty then
c is initialization

end

else

if sig_read[index] is not empty then
buildWAR()

end

buildWAW()
end

sig_write[index] = source line number of c
end

else

if sig_write[index] is not empty then
buildRAW()

end

sig_read[index] = source line number of c
end

end

Algorithm 2: Algorithm for signature-based data-dependence profiling (pseudocode).

In Section 2.5.1, we show that the false positive and false negative rates of profiled depen-

dences are negligible if sufficiently large signatures are used. Nonetheless, sufficiently large is

still small in comparison to shadow memory. If an estimation of the total number of memory

addresses accessed in the target program is available, the signature size can also be estimated

using Formula 2.2 in Section 2.5.1. A very practical alternative is to use all the memory of the

target system for profiling that remains after subtracting the memory space needed for the tar-

get program itself, which is usually more than enough to yield dependences with high accuracy.

Consider the following situation:

1 store i32 0, i32* %x // write x

2 store i32 1, i32* %y // write y

3 %1 = load i32* %x // read x

where address x and y are hashed into the same slot. In this case, a WAW dependence between

write y and write x and a RAW dependence between read x and write y are built, and the RAW

dependence between read x and write x is missed (false negative). The former case shows a

situation in which false positives appear, and the latter case shows a situation in which false

negative appears.

32 2 Data-Dependence Analysis



R
ea

d 
Si

gn
at

ur
e

W
rit

e 
Si

gn
at

ur
e

local 
dependence 

storage

main thread
"producer"

R
ea

d 
Si

gn
at

ur
e

W
rit

e 
Si

gn
at

ur
e

local 
dependence 

storage

worker threads
"consumers"

fetchfe
tc

h

distribute

global 
dependence 

storage

merge

Figure 2.2: Architecture of the parallel DiscoPoP data-dependence profiler for sequential pro-
grams.

Finally, we merge identical dependences to reduce the runtime memory overhead and the

time needed to write the dependences to disk. Based on our experience, this step is necessary

to arrive at a practical solution. Merging identical dependences decreased the average output

file size for NAS benchmarks from 6.1 GB to 53 KB, corresponding to an average reduction by a

factor of 105.

2.3.3 Parallel Data-Dependence Profiling

The basic idea behind the parallelization of our approach is to run the profiling algorithm in

parallel on disjoint subsets of the memory addresses. To determine the dependence type (i.e.,

RAW, WAR, or WAW) correctly, we need to preserve the temporal order of memory accesses to

the same address. For this reason, a memory address is assigned to exactly one worker thread,

which becomes responsible for all accesses to this address. To buffer incoming memory accesses

before they are consumed, we use a separate queue for each worker thread, which can fetch

data only from the queue assigned to it.

In our implementation, we apply the producer-consumer pattern. The main thread executes

the target program and plays the role of the producer, collecting and sorting memory accesses,
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whereas the worker threads play the role of consumers, consuming and analyzing memory

accesses and reporting data dependences.

Figure 2.2 shows how our parallel design works. The main thread executes the program

to be analyzed and collects memory accesses in chunks, whose size can be configured in the

interest of scalability. One chunk contains only memory accesses to be assigned to one thread.

Once a chunk is full, the main thread pushes it into the queue of the thread responsible for

the accesses recorded in it. The worker threads in turn consume chunks from their queues,

analyze them, and store detected data dependences in thread-local maps. Empty chunks are

recycled and can be reused. The use of maps ensures that identical dependences are not stored

more than once. At the end, we merge the data from all local maps into a global map. This

step incurs only minor overhead since the local maps are free of duplicates. Since the major

synchronization overhead comes from locking and unlocking the queues, we made the queues

lock-free to lower the overhead.

Lock-free parallelization

In our parallelization strategy, the major synchronization overhead comes from locking and

unlocking the queues. Hence, we made the queues lock-free to lower the overhead. As shown

in Figure 2.2, the queues used are single-producer-single-consumer (SPSC) queues, since only

the main thread can push chunks into a queue and only the responsible worker thread can fetch

chunks from it. Obviously, producer and consumer work on different parts of an SPSC queue

most of the time. As long as the tail index is not equal to the front index, there is guaranteed to

be at least one element to dequeue. To improve the concurrency further, the producer and the

consumer can actually access the queue in parallel without even locking a single node—as long

as consistent memory visibility is ensured.

In order to ensure the consistent memory visibility between the producer and consumer, we

utilize release-acquire synchronization, which is supported in C++11. After enqueuing a new

item, the producer performs an atomic store with memory-order-release. Before dequeuing an

item, the consumer performs an atomic load with memory-order-acquire. Once the atomic load

is complete, the consumer is guaranteed to see everything the producer wrote to memory. As

a consequence, synchronization is narrowed down to the load/store instruction level, and the

overhead is much smaller than when locking/unlocking the entire queue.

Load balancing

In our profiler, memory accesses are distributed among worker threads using a simple modulo

function:

worker_I D = memor y_address % W (2.1)

with W being the number of worker threads. According to our experiments, this simple function

achieves an even distribution of accessed memory addresses. A similar conclusion is also drawn
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in SD3 [75]. Although memory addresses are distributed evenly, not all of them are accessed

with the same frequency. Some addresses may be accessed millions of times while others are

only accessed a few times. To avoid the situation where all heavily accessed addresses are

assigned to the same worker thread, we also monitor how many times an address is accessed

dynamically. These access statistics are stored in a map and updated every time a memory

access occurs. The access statistics are needed to ensure that the top ten most heavily accessed

addresses are always evenly distributed among worker threads.

The access statistics are evaluated at regular intervals. If we notice that the distribution of

heavily accessed memory addresses is out of balance, we initiate redistribution. If an address

is moved to another thread, its signature state has to be moved as well. After redistribution,

accesses to redistributed addresses will always be directed to the newly assigned worker thread.

Redistribution rules are stored in a map and have higher priority than the modulo function.

Redistribution is costly, which is why it should not be performed too frequently. In our

implementation, we check whether redistribution is needed after every 50,000 chunks. Con-

sequently, for the benchmarks used in this paper, redistribution is performed at most 20 times

when profiling a single benchmark, which is enough to have a positive impact on the time

overhead.

2.3.4 Supporting Multi-Threaded Target Programs

1 4:58|2 NOM {WAR 4:77|2|iter}

2 4:59|2 NOM {WAR 4:71|2|z_real}

3 4:64|3 NOM {RAW 3:75|0|maxiter}

4 {RAW 4:58|3|iter} {RAW 4:61|3|z_norm}

5 {RAW 4:71|3|z_norm} {RAW 4:73|3|iter}

6 4:69|3 NOM {RAW 4:57|3|c_real}

7 {RAW 4:66|3|z2_real} {WAR 4:67|3|z_real}

8 4:71|2 NOM {RAW 4:69|2|z_real}

9 {RAW 4:70|2|z_imag} {WAR 4:64|2|z_norm}

10 4:80|1 NOM {WAW 4:80|1|green} {INIT *}

11

Figure 2.3: A fragment of data dependences from a parallel program captured by our profiler.
Thread IDs are highlighted.

A data dependence in a parallel program is still represented as triple <sink, type,

source>. However, to distinguish different threads, we add thread IDs to the sink and

source fields. Now, sink has the form <fileID:lineID|threadID> and source has the form

<fileID:lineID|threadID| variableName>. Control-flow information is recorded in the same

way as shown earlier in Section 2.3.1. Figure 2.3 shows a fragment of dependences captured in

a parallel program.
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store i32 3, i32* %x

call push_write(...) %2 = load i32* %x

call push_read(...)

thread 1 thread 2time

(a) Expected scheduling. store happens before
load. push_write and push_read record them in
the same order. The RAW dependence is detected,
which is correct.

store i32 3, i32* %x

call push_write(...)

%2 = load i32* %x

call push_read(...)

thread 1 thread 2time

(b) Unexpected scheduling. store happens
before load, but due to thread scheduling
push_write and push_read record them in the
reversed order. A WAR dependence is detected,
which is wrong.

store i32 3, i32* %x

call push_write(...)

%2 = load i32* %x

call push_read(...)

thread 1 thread 2

lock region

lock region

time

(c) Solution. Instrumentation functions
push_write and push_read are always inserted in
the same lock region as the corresponding memory
accesses (explicit locking/unlocking primitives in
target code required).

Figure 2.4: Thread scheduling affects the correctness of recorded data dependences.
push_read() and push_write() are operations to push memory accesses into
chunks.
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fetch-and-add

new node

Figure 2.5: A lock-free multiple-producer-single-consumer queue.

Modified parallelization strategy

In a sequential program, the temporal order of memory accesses is automatically preserved.

Thanks to this property, we can easily ensure that our parallel profiler produces the same data

dependences as the serial version—provided we push a memory access into the corresponding

chunk immediately after encountering it. However, parallel programs do not have this property.

In a multi-threaded environment, it is not guaranteed that the push operation is always executed

immediately after the memory access, resulting in incorrect data dependences.

Figure 2.4 illustrates the problem described above. The expected execution order is shown

in Figure 2.4(a). Thread 1 stores 3 to x first, then thread 2 loads the value of x to a temporary

location. The corresponding push operations push_write and push_read are executed in the

same order, so that the RAW dependence is recorded correctly.

However, in a multi-threaded environment, the push operation is not promised to be always

executed immediately after the memory access, as shown in Figure 2.4(b). Although thread

1 stores 3 to x first, depending on the thread schedule push_write may be executed after

push_read in thread 2. In this case, a RAW dependence is wrongly recorded as WAR.

To solve this problem, we need to make a memory access and its corresponding push op-

eration atomic. Thus, we require that accesses to the same address from multiple threads are

protected by locks, and we insert the push operation into the same lock region, as shown in

Figure 2.4(c). So far we support only parallel programming languages where locking/unlock-

ing primitives have to be written explicitly in the source code. However, programing languages

with implicit synchronization can be easily supported by automatically discovering implicit syn-

chronization patterns [81].

Another difference when profiling parallel programs is that more than one thread may push

items into the queue of a worker thread, which is a multiple-producer-single-consumer (MPSC)

queue pattern. It means that we have to synchronize producers in an efficient way. For this

reason, we implement the lock-free MPSC queue as a linked list of arrays. With these arrays,

producers can safely enqueue items at different indices of the array in parallel.

Figure 2.5 shows how our implementation works. Each producer tries to acquire a free index

in the array using an atomic fetch-and-add operation. Once the the array in one queue node is
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full, a new queue node wrapping a new array is created and appended to the tail of the queue.

Once all items in a queue node have been dequeued, the node is deallocated. Since fetch-and-

add operations are directly supported by the hardware, the synchronization overhead is again

minimal.

Data races

We generally do not know whether the cross-thread dependences we report are enforced or not,

that is, whether they will be reproduced when the program is run again. In this sense, they can

also be regarded as incidental happens-before relationships. In most cases, a correct program

would always enforce such dependences. An example of an exception is the concurrent update

of a flag indicating whether a parallel search was successful. However, these cases are rare in

programs. It is usually desirable to know whether a dependence is enforced or not. One way

of detecting unenforced dependences is to run the program more than once and hope that a

different thread schedule will reverse the order and expose the race. Because this can be a

successful strategy for finding races, reporting potentially irreproducible dependences is also

valuable from a correctness perspective.

However, there are also cases where we can actually prove the occurrence of a data race

even after a single run. The situation where the atomicity of access occurrence and reporting is

violated can only happen if there are no explicit locking/unlocking synchronization mechanisms

in place to keep the two accesses to memory location mutually exclusive. For this reason,

the reported dependence may show the reverse of the actual execution order. To catch such

cases, we acquire the timestamp of every memory access and pass it to the corresponding push

operation as a parameter. Whenever a worker thread fetches memory accesses from its queue it

usually expects increasing timestamps. A violation of this condition indicates that the memory

accesses were pushed in a different order from the one in which they occurred. In this case,

we mark the dependence accordingly. Moreover, whenever we see such a reversal, we can

conclude that the memory accesses were not guaranteed to be mutually exclusive. Although

mutual exclusion does not necessarily enforce a particular access order, its absence definitely

exposes a potential data race.

2.3.5 Optimization

There are a few optimization techniques implemented to increase either profiling accuracy or

performance in terms of time and memory.

Variable lifetime analysis

Although false positives are a basic property of signatures and cannot be completely eliminated,

we apply an optimization to lower the false-positive rate further. The main idea is to remove
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variables from the signature once it is clear that they will never be used again during the remain-

der of the execution. Thus, we need a way to monitor the lifetime of a variable. The lifetime

of a variable is the time between its allocation and deallocation. The lifetime of variables has

an impact on the correctness of the data dependence analysis because signature slots of dead

variables might be reused for new variables. If this happens, a false dependence will be built

between the last access of the dead variable and the first access of the new variable.

To resolve this problem, we perform variable lifetime analysis dynamically. This means

we observe the allocation and deallocation of variables, including both explicit methods like

new/delete and malloc/free, and implicit allocation and deallocation of local variables. To

achieve this, we exploit dynamic control-flow information, which is helpful to determine the

lifetime of local variables allocated inside a control region. Although there is no explicit deallo-

cation of local variables, they die once the program leaves the control region where they have

been allocated. In this way, signature slots for local variables can be reused without the dan-

ger of building false dependences. With variable lifetime analysis, our signature algorithm can

support more variables with the same amount of memory.

Runtime data dependence merging

Recording every data dependence may consume an excessive amount of memory. DiscoPoP

performs all the analyses on every instruction that is dynamically executed. Depending on the

size of both the source code and the input data, the size of the file containing processed data

dependences can quickly grow to several gigabytes for some programs. However, we found that

many data dependences are redundant, especially for regions like loops and functions which

will be executed many times. Therefore, we merge identical data dependences. This approach

significantly reduces the number of data dependences written to disk.

A data dependence is expressed as a triple:

<Dependent-Line, dependence-Type, Depends-On-Line>

with attributes like variable name, thread ID (only available for multi-threaded programs), and

inter-iteration tag. Two data dependences are identical if and only if each element of the triple

and all attributes are identical. When a data dependence is found, we check whether it already

exists. If there is no match, a new entry for the dependence is created. Otherwise the new

dependence is discarded. For a code region that is executed more than once, we maintain

only one set of dependences, merging the dependences that occur across multiple instances.

When the parallelism-discovery module reads the dependence file, it still treats these multiple

execution instances as one. For example, a loop will always be considered as a whole and its

iterations will never be expanded.

Merging data dependences may hide parallelism that is only temporarily available. For

example, the first half of the iterations of a loop can be parallelized but the second half cannot.

With data dependences merged, parallelism that exists in the first half of the iterations can be
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hidden. We recognize that temporarily available parallelism is definitely promising. However,

discovering such parallelism requires a significant amount of time and memory since every

iteration must have its own instance of profiled data, and parallelism must be checked between

every two instances. We implemented a version without dependence merging, and it failed

to profile most of the NAS benchmarks. For those programs it can profile, the size of the

dependence file ranged from 330 MB to about 37 GB with input class W (6.1 GB on average).

The effect of merging data dependences is significant. After introducing runtime data depen-

dence merging, all the NAS benchmarks can be profiled and the file size decreased to between 3

KB and 146 KB (53 KB on average), corresponding to an average reduction by a factor of 105×.

Since the parallelism-discovery module redirects the read pointer in the file when encounter-

ing function calls rather than processing the file linearly, data dependence merging drastically

reduces the time needed for parallelism discovery.

2.3.6 Control Structure Information

To support parallel pattern detection [82, 83], DiscoPoP profiler also produces the Program

Execution Tree (PET). We construct a PET using the following information obtained from both

static analyses and profiling data:

• Locations of call sites

• Locations of entries and exits of loops

• Locations of entries and exits of functions

• Number of iterations executed of each loop

• Number of IR statements of each scope

• Number of data dependences of each scope

A PET represents a specific execution of the target program. Thus it has a single root node

representing the entry point of the execution. A PET contains three kinds of nodes and two

kinds of edges:

• Nodes

– Function node

– Loop node

– Block node

• Edges

– “Calling” edge

– “Containing” edge
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1 for (...) {

2 Block 1

3 foo();

4 Block 2

5 }

6 Block 3

7 while (...) {

8 Block 4

9 }

Outer scope

Loop
(for)

Loop
(while)Block 3

Block 1 foo() Block 2 Block 4

"calling" edge
"containing" edge

Figure 2.6: An example of the program execution tree (PET).

Function nodes represent functions of a program. Incoming edges of function nodes are

“calling” edges (functions are called by other functions), and outgoing edges can be either

“calling” edges (calling other functions) or “containing” edges (contains loops or blocks of code).

When considering only function nodes and “calling” edges, a PET is similar to a call graph

excluding functions that are not executed.

Loop nodes represent loops of a program. Both incoming and outgoing edges are “contain-

ing” edges since loops cannot be called or invoked. In contrast to other nodes, each loop node

has a counter recording the number of executed iterations.

Block nodes represent blocks of code of a program. They are plain blocks that do not contain

control-flow constructs inside. Block nodes are always leaf nodes of a PET. Incoming edges are

“containing” edges, and there are no outgoing edges.

Each node, despite its type, has several metrics characterizing the scope it represents, in-

cluding the number of IR statements, the number of data dependences, the length of its critical

path, and so on. These metrics can be used in selecting the most interesting code sections

under different requirements. In this thesis, they are used to rank parallelization opportuni-

ties (Section 4.3). Figure 2.6 shows an example of a PET along side the corresponding code

structure.

The notion of a PET is the key to detecting parallel patterns. Attaching data dependences

to a PET results in a comprehensive tree of dependences among functions, loops, and blocks

of code in a hierarchical way. When examining parallelism between two functions, data de-

pendences within each of them can be easily ignored. Such features allow the straightforward

application of pattern matching technique to detect parallel patterns. Details about parallel

pattern detection is introduced in related work [82, 83].

2.3.7 Limitations

At the moment, the DiscoPoP profiler has the following limitations:

• It does not guarantee 100% accurate data dependences
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• It does not guarantee correctness when profiling parallel programs with implicit synchro-

nization mechanisms

To produce 100% accurate data dependences, we have to use a classic shadow memory

solution. DiscoPoP provides a shadow memory implemented using a hash table, which is slower

and consumes more memory. The user can choose this option if 100% accuracy is a must.

Parallel programs with implicit mutual exclusion and synchronization mechanism can be

supported by existing approaches of detecting synchronizations automatically [81]. This is

considered as one of the future-work items.

2.4 Skipping Repeatedly-Executed Memory Operations in Loops

In general, a profiler obtains information about the target program by reading hardware coun-

ters, sampling instructions during runtime, or inserting instrumentation functions. Some pro-

filers utilize more than one technique to obtain information. Specifically, a data-dependence

profiler usually contains two parts: an instrumentation component that inserts analysis func-

tions for memory operations, and a runtime library that implements the analysis functions and

data structures. Instrumented code will be linked against the runtime library and executed. The

runtime library is further divided into two components. The first component is usually called

shadow memory. Note that in this context, the term “shadow memory” has a broader meaning,

referring to any technique that maintains status information in a separate memory space. This

is different to the meaning of shadow memory in Section 2.3.2, which refers to a narrower defi-

nition that every byte used in the target program has a shadow word to record its access status.

The second component is the data-dependence storage, where data dependences are built and

stored when the status of memory locations in the shadow memory changes.

In this section, we say a memory instruction when we refer to a machine instruction that

accesses memory in the dynamic execution instruction sequence, and a memory operation when

we refer to an intermediate representation statement that operates on memory. A memory

operation residing in a loop usually leads to multiple memory instructions. In short, memory

instructions are in dynamic execution sequence, while memory operations refer to static code.

In most of the cases, a memory operation leads to exactly one memory instruction. However,

a memory operation that resides in a loop and accesses memory through a pointer will lead to

multiple memory instructions.

Instrumentation can be done statically, and the time overhead of instrumentation is usually

negligible. The main time overhead is caused by the remaining two phases: updating shadow

memory and building dependences. Both shadow memory and dependence storage are typ-

ically implemented based on table-like data structures where each memory address or data

dependence has an entry. Given that the number of memory instructions and data dependences

is usually very large, the overhead is mainly incurred by searching and updating the data struc-

tures, and inserting elements into them. As a result, data-dependence profiling typically slows

the program down by a factor ranging from 100 to 500.
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1 while (k > 0) {

2 sum += k * 2;

3 k--;

4 }

Figure 2.7: A simple loop where data dependences will not change over iterations.

Table 2.2: Data dependences of the loop shown in Figure 2.7.

ID sink source type variable loop-carried

1 2 2 write after read (WAR) sum no

2 3 1 write after read (WAR) k no

3 3 2 write after read (WAR) k no

4 3 3 write after read (WAR) k no

5 1 3 read after write (RAW) k yes

6 2 2 read after write (RAW) sum yes

7 2 3 read after write (RAW) k yes

8 3 3 read after write (RAW) k yes

However, not every memory instruction has to be processed through all the three phases.

Let us take the loop shown in Figure 2.7 as an example. After profiling two iterations of the

loop, the data dependences are complete. Table 2.2 shows the dependences. Source and sink
are the source code locations of the first and the second memory instruction, respectively. Type
is the dependence type, including read after write (RAW), write after read (WAR), and write

after write (WAW). Variable is the variable that causes a dependence. When source and sink

of a dependence belong to different iterations of a loop, we call the dependence a loop-carried
dependence.

Among the dependences shown in Table 2.2, dependence 1–4 can be obtained within the

first iteration, and dependence 5–8 will be added once the second iteration is done. After

that, no more data dependence will be built, no matter how many iterations the loop has. In

this case, profiling the remaining memory instructions in this loop over and over again is not

necessary. It may be necessary to keep updating the status information in the shadow memory

for correctness, but we definitely do not want to touch the dependence storage when profiling

the same code section after the data dependences for the code section are complete. In the

next section, we show how we skip these memory instructions after the dependences are fully

obtained to accelerate the profiling process.

Before describing our method, we first briefly introduce basic implementation concepts

of a data-dependence profiler since it helps understand our method. We have known that a

data-dependence profiler has an instrumentation component that inserts analysis functions for

memory operations. An analysis function for a memory operation looks like this:
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analyze_mem_op(accessType, accessInfo, addr)

For a memory operation, accessType can be either read or write. It does not change over

time. In practice, two analysis functions will be created for read and write operations, respec-

tively. Necessary information needed to update the shadow memory are stored in accessInfo,

and passed into the analysis function. Usually, accessInfo is the identifier of the associated

memory instruction. For example, the address of the operation, the source line location, the

variable name, or a combination of such information. Depending on the specific implemen-

tation, accessInfo may or may not be unique to each memory operation. However, for one

memory operation, its accessInfo does not change. Finally, addr is the memory address ac-

cessed by the memory operation. It can change if the address is referred to by pointers.

2.4.1 Condition on addr

If a memory instruction can be safely skipped, at least its corresponding memory operation

must have been profiled before and the memory address it accesses must not change. For

simplicity, we create a variable called lastAddr for each memory operation op storing the

memory address accessed by the last memory instruction translated from op before the current

memory instruction. And we require

addr == lastAddr

to be a necessary condition if a memory instruction can be safely skipped. lastAddr should be

initialized with an address which is never accessed in user code in practice, such as 0x0.

When the condition on addr holds, it only means that the memory operation corresponding

to the current memory instruction has been profiled before. It does not mean all the data

dependences that are related to the memory operation have been obtained. Again, let us take

the loop shown in Figure 2.7 as an example. All the memory instructions in the first iteration will

be profiled, and dependences 1–4 in Table 2.2 are obtained. When only applying the condition

on addr, all the memory instructions are skipped from the second iteration on because the

addresses accessed by all the memory instructions do not change. Thus, we name the condition

on addr a necessary condition, and we still need other conditions to decide whether a memory

instruction can be skipped.

2.4.2 Condition on accessInfo

The key to cover all data dependences is to decide when to resume profiling once the profiling

has been paused. Our solution is to have a mechanism that allows an analysis function to

be notified if the access status of its memory operation has changed, so that the subsequent

memory instructions translated from the memory operation must be profiled again.
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To track the access status of a memory address, the shadow memory stores accessInfo

of the most recent read instruction and the most recent write instruction that accesses the

address. We call them statusRead and statusWrite, respectively. We then create two variables

lastStatusRead and lastStatusWrite for each memory operation op, storing the accessInfo

of the most recent read instruction and the most recent write instruction that accessed the

memory address accessed by op when op was profiled the last time, respectively. Then we

require

statusRead == lastStatusRead &&

statusWrite == lastStatusWrite

to be another necessary condition if a memory instruction can be safely skipped. Both

lastStatusRead and lastStatusWrite should be initialized with values that have no meanings

for accessInfo.

When the condition on accessInfo holds, it means that the access status of the memory

address was seen before. We say “was seen before” because the address may change, and the

access status of the current memory address may just coincidentally be the same as the access

status of another address. This is very likely to happen when accessInfo is not unique to

each memory operation. However, combing the two conditions on addr and accessInfo will

give a sufficient condition to decide whether a memory instruction can be safely skipped: the

corresponding memory operation has been profiled before, the memory address it accesses does

not change, and the access status of the memory address has not changed since it was profiled

the last time.

When the conditions do not hold anymore, it means either the new memory instruction

accesses a different memory address, or the access status of the memory address has changed.

No matter what, the new memory instruction must be profiled in order to cover new data

dependences.

2.4.3 Example

In this section, we show how our method works on a simple example. And we also present a

special case where a memory instructions can be skipped even without updating the status of

its memory address in shadow memory.

Figure 2.8 shows a loop with four memory operations (op1–op4). All the memory operations

access the same memory address x. We show memory operations instead of source code so that

the profiling process can be clearly illustrated. The data dependences of the loop shown in

Figure 2.8 are listed in Table 2.3.

How the values stored in lastStatusRead and lastStatusWrite are changed for each

memory instruction is shown in Table 2.4. “1st”, “2nd”, and “3rd” refer to the first, the sec-

ond, and the third iteration of the loop, respectively. An “S” means the memory instruction is
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1 loop:

2 op1: write x

3 op2: read x

4 op3: read x

5 op4: write x

6 end

7

Figure 2.8: A loop containing four memory operations on the same memory address.

Table 2.3: Data dependences of the loop shown in Figure 2.8.

ID sink source type variable loop-carried

1 op2 op1 read after write (RAW) x no

2 op3 op1 read after write (RAW) x no

3 op4 op3 write after read (WAR) x no

4 op1 op4 write after write (WAW) x yes

Table 2.4: How the values of lastStatusRead and lastStatusWrite are changed during the
profiling process for the loop shown in Figure 2.8.

Op
lastStatusRead lastStatusWrite

init 1st 2nd 3rd init 1st 2nd 3rd

write x — 0 op3 S — 0 op4 S

read x — 0 op3 S — op1 op1 S

read x — op2 S S — op1 S S

write x — op3 S S — op1 S S

Table 2.5: How the status in shadow memory is changed during the profiling process for the
loop shown in Figure 2.8.

execution init op1 op2 op3 op4 op1 op2 op3 op4

statusRead 0 0 op2 op3 op3 op3 op2 op3 op3

statusWrite 0 op1 op1 op1 op4 op1 op1 op1 op4

skipped, otherwise the memory instruction is profiled and the value of lastStatusRead and

lastStatusWrite are updated.

How the access status of x is changed in the shadow memory is shown in Table 2.5. We

adopt the most common design, where for each memory address the corresponding memory

operations of the last read instruction and the last write instruction that access the address are

stored.
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Let us examine the profiling process step by step. In the beginning, all the variables are

initialized. Now comes op1 in the first iteration. Since addr is not equal to lastAddr,

op1 is profiled. The access status of x in shadow memory is read into lastStatusRead and

lastStatusWrite, which are both 0 in the case of op1. Then op1 updates the shadow memory.

statusWrite of x is now 1.

The same process is applied to op2 in the first iteration. The difference is that when op2 is

executed, statusRead and statusWrite of x have been changed to 0 and 1, respectively. With

statusWrite being no longer zero, a read-after-write (RAW) dependence from op2 to op1 is

built, which is the first dependence shown in Figure 2.3. The profiling process continues, and

dependences 2 and 3 are built when op3 and op4 are profiled.

Now the profiling process enters the second iteration, and the second memory instruction

translated from op1 comes. Although the condition on addr holds this time, the condition

on AccessInfo fails. The last time op1 was profiled, the corresponding memory operations

of the last read instruction (stored in lastStatusRead) and the last write instruction (in

lastStatusWrite) accessing x were 0. After the first iteration is completed, they are 3 and

4. The second memory instruction translated from op1 must be profiled to cover new depen-

dences. Thus, the last data dependence in Table 2.3 is built. The same situation also happens

to op2, but it only leads to a read-after-read (RAR) dependence, which is ignored in most of the

data- dependence profilers.

Both conditions hold when the second memory instruction translated from op3 is executed,

and it is skipped. No dependence instance is built, and no query to the dependence storage

occurs. Note that the shadow memory is still updated for ensuring the consistency between the

instruction stream and the access status in shadow memory. From then on, all further memory

instructions accessing x in the same loop are skipped, and no dependences are missed. The de-

pendence storage is touched only four times, which matches exactly the number of dependences

the loop contains.

Special case

When the loop contains only op1, op2, and op3, statusWrite of x will always be 1. This is a

special case where the following condition holds:

currentWrite == statusWrite == lastStatusWrite.

In this case, a write instruction can be skipped without updating the shadow memory. The same

applies to read instructions as well.

2.5 Evaluation

We conducted a range of experiments to evaluate both the accuracy of the profiled dependences

and the performance of our implementation. Test cases are the SNU NAS Parallel Benchmarks
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3.3.1 [84, 85] (NAS), a suite of programs derived from real-world computational fluid-dynamics

applications, and the Starbench parallel benchmark suite [86] (Starbench), which covers pro-

grams from diverse domains, including image processing, information security, machine learn-

ing and so on. Whenever possible, we tried different inputs to compensate for the input sensi-

tivity of dynamic dependence profiling.

Note that the original NAS Parallel Benchmarks [85] are FORTRAN programs, and SNU NAS

Parallel Benchmarks [84] are the C equivalents. Since our method is implemented based on

LLVM and uses Clang as the compiler, we use the C version of the benchmarks. The short term

“NAS” in this thesis always refer to the SNU NAS Parallel Benchmarks.

2.5.1 Accuracy of Profiled Dependences

We first evaluate the accuracy of the profiled data dependences since we build upon the idea

of a signature as an approximate representation of memory accesses. As it is described in Sec-

tion 2.3.2, the membership check of this approximate representation can deliver false positives,

which further lead to false-positive and false-negative dependences.

To measure the false positive rate (FPR) and the false negative rate (FNR) of the profiled

dependences, we implemented a “perfect signature", in which hash collisions are guaranteed

not to happen. Essentially, the perfect signature is a table where each memory address has

its own entry, so that false positives are never produced. We use the perfect signature as the

baseline to quantify the FPR and the FNR of the dependences delivered by our profiler.

Table 2.6 shows the results for Starbench. Three groups of FPR and FNR are shown under

three different signature sizes in terms of the total number of slots. When using 1.0E+6 slots,

the average FPR and FNR are 24.47% and 5.42%, respectively. The values are significantly

reduced to 4.71% and 0.71% when the signature size is increased to 1.0E+7. Finally, hardly

any incorrect dependences appear when the signature has 1.0E+8 slots as the average value of

both FPR and FNR are lower than 0.4%. In our implementation, each slot is four bytes. Thus,

1.0E+8 slots consume only 382 MB of memory, which is adequate for any ordinary PC.

c-ray, rgbyuv, rotate, rot-cc and bodytrack have higher FPR and FNR than other programs

because they access a large number of different addresses. This observation matches the theory

of predicting the false positive rate of a signature. Assume that we use a hash function that

selects each array slot with equal probability. Let m be the number of slots in the array. Then,

the estimated false positive rate (Pf p), that is, the probability that a certain slot is used after

inserting n elements is:

Pf p = 1− (1−
1
m
)n. (2.2)

Clearly, Pf p is inversely proportional to m and proportional to n. In our case, m is the size of

the signature and n is the number of addresses.
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2.5.2 Performance

We conducted our performance experiments on a server with 2 x 8-core Intel Xeon E5-2650 2

GHz processors with 32 GB memory, running Ubuntu 12.04 (64-bit server edition). All the test

programs were compiled with option -g -O2 using Clang 3.3. For NAS, we used the input set

W; for Starbench, we used the reference input set.

Time overhead

First, we examine the time overhead of our profiler. The number of threads for profiling is set

to 8 and 16. The slowdown figures are average values of three executions compared with the

execution time of uninstrumented runs. The negligible time spent in the instrumentation is not

included in the overhead. For NAS and Starbench, instrumentation was always done in two

seconds.

The slowdown of our profiler when profiling sequential programs is shown in Figure 2.9. The

average slowdowns for the two benchmark suites (“NAS-average" and “Starbench-average") are

also included. As the figure shows, our serial profiler has a 190× slowdown on average for NAS

benchmarks and a 191× slowdown on average for Starbench programs. The overhead is not

surprising since we perform an exhaustive profiling for the whole program.

When using 8 threads, our lock-free parallel profiler gives a 97× slowdown on average for

NAS benchmarks and a 101× slowdown on average for Starbench programs. After increasing

the number of threads to 16, the average slowdown is only 78× for NAS benchmarks, and

93× for Starbench programs. Compared to the serial profiler, our lock-free parallel profiler

achieves a 2.4× and a 2.1× speedup using 16 threads on NAS and Starbench benchmark suites,

respectively.

Our profiler may seems slightly slower than SD3, which has a 70× slowdown on average

using eight threads [75]. However, the slowdown of SD3 is measured by profiling the hottest

20 loops from each benchmark. Multi-slicing [76], another parallel dependence profiler that

shares its sequential design with SD3, results with eight threads in a slowdown of more than

500× on average when applied to the entire target program.

The speedup is not linear for two reasons. Firstly, data-dependence profiling always has

imbalanced workload due to uneven accesses, as we discussed in Section 2.3.3. In this case,

simply introducing more worker threads does not help balance the workload. Similar behavior

is also observed in related work [76]. Profiling performance is affected by this problem on five

benchmarks: kMeans, rgbyuv, rotate, bodytrack and h264dec.

Secondly, determining detailed data dependence types (RAW, WAR, WAW) requires retaining

the temporal order of memory accesses to the same address, which means such accesses have to

be processed sequentially. Obviously, determining only a binary value (whether a dependence

exists or not) instead of detailed types would allow a more balanced workload and lead to better
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performance. Moreover, the performance of the profiler can be further improved via set-based

profiling, which tells whether a data dependence exists between two code sections instead of

two statements. However, all these optimization will decrease the generality of the profiler,

which is contrary to our purpose.

Figure 2.9 also shows the slowdown of our lock-based profiler when eight threads are used.

Compared to the lock-based version, our lock-free version gives a 1.6× speedup on average for

NAS benchmarks, and a 1.3× speedup on average for Starbench programs. A faster lock-free im-

plementation that only allocates memory but never de-allocates will further boost performance,

but increase the memory overhead significantly.

When profiling multi-threaded code, our profiler has a higher time overhead because more

contentions are introduced. The native execution time of the parallel benchmarks is calculated

by accumulating the time spent in each thread.

Slowdowns of our profiler for parallel Starbench programs (pthread version, 4 threads)

are shown in Figure 2.10. We only tested Starbench because our profiler currently requires

parallel programs with explicit locking/unlocking primitives. Using eight threads for profiling,

the average slowdown of our profiler for Starbench is 346×, and further decreases to 261×
when 16 threads are used for profiling. Again, kMeans, rgbyuv, rotate, bodytrack and h264dec
do not scale well because of their imbalanced memory access pattern.

Memory consumption

We measure memory consumption using the maximum resident set size value provided by

/usr/bin/time with the verbose (-v) option. Figure 2.9(b) shows the results when 6.25E+6

signature slots are used in each thread, which summed to 1.0E+8 slots in total of 16 threads.

This configuration leads to 191 MB and 382 MB of memory to be consumed by the signatures

for 8 threads and 16 threads, respectively.

When using 8 threads, our profiler consumes 473 MB of memory on average for NAS bench-

marks and 505 MB of memory on average for Starbench programs. After increasing the number

of threads to 16, the average memory consumption is increased to 649 MB and 1390 MB for

NAS and Starbench programs, respectively. The worst case happens when 16 threads are used

to profile md5, which consumes about 7.6 GB of memory. Although this may exceed the mem-

ory capacity configured in a three-year-old PC, it is still adequate for up-to-date machines, not

to mention servers that are usually configured with 16 GB memory or more.

The memory consumption of our profiler for parallel Starbench programs (pthread version,

4 threads) is shown in Figure 2.11. Our profiler consumes 995 MB and 1920 MB memory

on average using 8 and 16 threads for profiling, respectively. The consumption is higher than

when profiling sequential benchmarks (505 MB and 1390 MB) because of the implementation

of the lock-free queues, additional data structures to record thread interleaving events, and an

extended representation of data dependences. However, the consumption is still moderate for

an ordinary PC.
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Figure 2.12: Slowdowns of the DiscoPoP profiler when applied to NAS and Starbench bench-
marks with (DiscoPoP+opt) and without (DiscoPoP) skipping repeatedly executed
memory operations.

Effectiveness of skipping memory instructions in loops

We evaluated the effectiveness of skipping memory accesses in loops in separate experiments

so that the results are not affected by other optimization techniques. To set up a ground truth,

shadow memories used in this section are based on non-approximate data structures, meaning

no false positives or false negatives will be built. For simplicity, the experiments are done with

the sequential version of the profiler.

Test cases are the SNU NAS Parallel Benchmarks 3.3.1 [84] (NAS), a suite of programs

derived from real-world computational fluid-dynamics applications, and a few applications from

the Starbench parallel benchmark suite [86], which covers programs from diverse domains,

including image processing, information security, machine learning and so on.

Figure 2.12 shows the slowdowns of the data-dependence profiler when applied to NAS

benchmarks and Starbench with (dp+opt) and without (dp) applying the mechanism of skip-

ping memory operations that are repeatedly executed in loops. As shown, our method reduces

the slowdown of data-dependence profiling in all of the test cases. The highest slowdown re-

duction appears with FT (52.0 %), and the lowest shows appears with rot-cc (31.1 %). On

average, our method reduces the time overhead of data-dependence profiling by 41.3 %. The
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output after applying our optimization was compared to the original one, and no difference was

observed.

Whether our method reduces the time overhead of data-dependence profiling depends on

the computation pattern of the target application. Theoretically, the more work is done in loops

or in any other repetitive manner, the more effective our method will be. If a program does not

have any code sections that are executed more than once, which is obviously very uncommon

for a real-world application, our method should actually bring a minor time overhead caused

by condition checking. In the test cases FT, LU, and CG, the biggest hot spots are all loops.

Applying our method to these test cases yields slowdown reductions of 52 %, 51 %, and 44 %,

respectively.

The memory access pattern is another factor that can affect the effectiveness of our method.

In the worst case, the accessed memory addresses change in every iteration, which means the

profiling process cannot be paused. This usually happens when the computation is based on

arrays or matricies. The results on four test cases BT, IS, rotate, and rot-cc are affected by this

problem.

Our method introduces a minor overhead on the memory consumption of data-dependence

profiling because of the variables created for the condition check. However, compared to the

memory overhead of shadow memory, the memory overhead of our method can be ignored. In

our experiments, one 64-bit integer (lastAddr) and two 32-bit integers (lastStatusRead and

lastStatusWrite) are created for each memory operation. However, the number of memory

operations is usually much smaller than the number of dynamic memory instructions due to

loops and other code blocks that are repeatedly executed. For example, kmeans has 109 memory

operations in total and iterates 300 times. Thus, the number of distinct memory operations

in kmeans is roughly 3 × 106. With 16 bytes memory overhead each, our method results in

about 50 MB memory consumption. The memory overhead of shadow memory, however, is

almost ten times of that. The memory consumption of the state-of-the-art data-dependence

profilers [75, 54] ranges from several hundred megabytes to several gigabytes. Trading 10 %

extra memory for 30-50 % reduction of time overhead is preferred in most of the cases.

Statistics on skipped memory instructions

We also obtain statistics of the memory instructions that lead to data dependences but are

skipped in each test case. As most of the data-dependence profilers do, read-after-read (RAR)

dependences are not profiled in our experiment.

Table 2.7 shows the statistics. In each column group, percent shows how much percent of

the dynamic memory instructions are skipped. As shown, on average 80.06 % of the memory

instructions that lead to data dependences were skipped. It is surprising that the full data de-

pendence set of an application can be obtained by profiling only 20% of its memory instructions

or even less because those do not lead to dependences are ignored anyway. The results give
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Figure 2.13: Distribution of skipped memory instructions according to the type of data depen-
dences they would create.

us an insight of how much time were wasted in a classic data-dependence profiler that profiles

identical data dependences over and over again.

Although on average about 80% of the memory instructions that lead to data dependence

are skipped, the slowdown reductions shown in Figure 2.12 never achieve 60%. There are

two reasons for this. First, in most cases, skipping a memory instruction means skipping the

phase of building data dependences. Overhead is still incurred when updating the shadow

memory. The second reason is that profiling a write instruction is more complex than profiling

a read instruction, and the percentage of skipped write instructions (66.56 %) is less than the

percentage of read instructions (82.08 %). When profiling a write instruction, we need to

check both WAW and WAR dependences, while we need to check only RAW dependences when

profiling a read instruction.

2.5 Evaluation 57



We also characterized the distribution of skipped memory instructions according to the type

of data dependences they would create. Results are shown in Figure 2.13. “RAW_skip",

“WAR_skip", and “WAW_skip" represent the percentage of skipped memory instructions that

lead to read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW) depen-

dences, respectively. Take BT as an example, 95.78 % of the skipped memory instructions

would lead to RAW dependences, while 4.22 % would lead to WAR dependences. In this case,

none of the skipped memory instructions would result in WAW dependences.

In six benchmarks (BT, EP, IS, LU, SP, and rgbyuv), no skipped memory instructions would

lead to WAW dependences. In eight benchmarks (CG, MG, kmeans, md5, c-ray, ray-rot, rotate,

rot-cc), the percentages of skipped memory instructions that would lead to WAW dependences

are below 2.50 %. The reason is straightforward: WAW dependences are rare in most programs.

In our experiment, we build WAW dependence only for consecutive write instructions to the

same address. Obviously, this is not a common way of writing programs. Surprisingly, the

percentage of skipped memory instructions leading to WAW dependences in FT is more than

10 %.

1 for (k = 1; k < d3; k++) {

2 dummy = randlc(&start, an);

3 RanStarts[k] = start;

4 }

Figure 2.14: Write-after-write dependences are frequently built in FT because of the use of vari-
able dummy.

We found some code snippets in FT that can explain this behavior, and one of these code snip-

pet is shown in Figure 2.14. The variable dummy is used to store the return value of randlc(),

but it is never used later on. Many write-after-write dependences are built because of the use

of dummy. Similar code snippets appear at different places in FT. We believe that the percentage

of skipped memory instructions that lead to WAW in FT should also be close to zero if dummy

variables are removed.

The distributions shown in Figure 2.13 do not necessarily represent the distribution of

data dependences for each benchmark. They reflect characteristic of the workload of a data-

dependence profiler rather than its output. As shown, BT, LU, MG, SP, rotate, and rot-cc have

similar workload distributions. In these benchmarks, skipped memory instructions that would

lead to WAR dependence are around 4 % – 8 %. EP, IS, kmeans, and md5 form another group,

with 21 % – 28 % skipped memory instructions that would lead to WAR dependences. CG,

c-ray, ray-rot, rotate, and rot-cc are similar to one another, with 7 % – 16 % that would lead

to WAR dependences, and a small percentage (<2.5 %) that would lead to WAW dependences.

Again, FT belongs to none of the two groups due to the high percentage of memory instruc-

tions that would lead to WAW dependences, and the same applies to rgbyuv because of the high

percentage of memory instructions that would lead to WAR dependences.
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2.6 Summary

We started our tour of data dependence analysis from reviewing advantages and disadvantages

of static and dynamic approaches. Static approaches are fast and necessary to enable advanced

code optimization, but conservative on dynamically allocated memory, pointers, and dynam-

ically calculated array indices. Dynamic approaches, on the other hand, cover all dynamic

memory instructions in one execution, but incur high runtime overhead in terms of both time

and space.

In this thesis, we present the DiscoPoP profiler, a generic data-dependence profiler with

practical overhead for both sequential and parallel programs. To achieve efficiency in time,

the profiler is parallelized, taking advantage of lock-free design. To achieve efficiency in space,

the profiler leverages signatures, a concept borrowed from transactional memory. Both tech-

niques are application-oblivious, which is why they do not restrict the profiler’s scope in any

way. The profiler also produces the Program Execution Tree (PET) to support parallel pattern

detection. Together with other optimization techniques such as variable lifetime analysis and

dependence merging, DiscoPoP profiler achieves a slowdown of 86 on average for NAS and

Starbench benchmarks, with on average memory consumption of 1020 MB.

An aggressive optimization that skips memory instructions in loops lower the time overhead

of profiling further. Without any other optimization technique, skipping memory instructions

in loops shortens the profiling time by 41.3% without incurring significant space overhead.

Moreover, it provides interesting insights into the distributions of memory instructions and data

dependences in NAS and Starbench benchmarks.
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3 Computational Units
Existing approaches limit the scope of their search for parallelism to predefined language con-

structs. For example, the method proposed in [63] is designed to find parallelism only between

functions. Other approaches such as [10, 13, 87] are more flexible in that they consider mul-

tiple and also in principle arbitrary construct types. Common to all of them, however, is the

restriction that they can only answer questions of the following type: (i) Can a construct or re-

gion with given entry and exit points be parallelized? (ii) Can a construct with given entry and

exit points run asynchronously with other parts of the program? Thus, their underlying strategy

first identify the regions of investigation, usually following the structure of the programming

language, and then reason about their parallelization.

In contrast to the classic methods, we try to cover parallelism that is not aligned with lan-

guage constructs. This means we need a new representation of a program where the smallest

unit does not contain any unexplored parallelism, and this unit may not be aligned with lan-

guage constructs. We should analyze dependences among such units for parallelism, and it

should be also possible to utilize such units from fine grain to coarse grain. In this chapter, we

define the computational unit (CU) to serve as the smallest unit mentioned above. We show

algorithms to construct CUs, as well as our new representation of program execution: the CU

graph.

3.1 Definition

We define a new language-independent code-granularity level for both program analysis and

reflection of parallelism, which we call computational units (CUs). A CU is the smallest unit

of code we map onto a thread, that is, while potentially running in parallel to other CUs, a CU

itself is not subject to any further (internal) parallelization—at least not within the scope of our

method.

The notion of CUs was inspired by our earlier work [88], where a variation of this concept

was applied to detect data races on correlated variables. In this thesis, a CU is a collection of

instructions following the read-compute-write pattern: a set of variables is read by a collection

of instructions and used to perform computation, then the result is written back to another set

of variables. We call the two sets read set and write set, respectively. The two sets do not have

to be disjoint. The load instructions reading the variables in the read set form the read phase of

the CU, and the store instructions writing the variables in the write set form the write phase of

the CU.
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Definition of a CU. Given a code section C , let GVc be the set of variables that are global to

C . Let Ix and Ox be the sets of instructions reading and writing variable x , respectively. C is a

computational unit if it satisfies the following condition:

∀v ∈ GVc, Iv → Ov . (3.1)

“→” is the happens-before relationship [89]. Note that “→” is defined on a single variable.

Read and write operations on two different variables can be executed in any order if there is no

indirect data dependence. It does not conflict with the concept that a CU does not contain any

unexplored parallelism: instruction-level parallelism is explored and automatically utilized by

the hardware.

Following the definition, the read phase and the write phase of a CU are ∪v∈GV Iv and

∪v∈GV Ov , respectively. When considering only the read phase and the write phase, a CU

does not hide any true dependences (RAWs) inside that are essential to the data flow of the

program, meaning all relevant parallelization opportunities can be analyzed on the level of

CUs. Moreover, via control-flow analysis we ensure that CUs never cross the boundaries of a

control region. While being small enough, typically not covering more than a few lines of code,

to express very fine-grained parallelism, this property ensures that CUs can be easily combined

to higher-level constructs such as loops or functions. This allows the reflection of parallelism to

be lifted to arbitrarily high levels of abstraction, making our approach general. Note that CUs

never crossing control boundaries is not in conflict with the idea that CUs may not be aligned

with language constructs: a CU may be part of a construct.

3.2 Construction

The definition of a CU distinguishes variables that are global and local to a code section. In

Section 3.2.1, we show how we distinguish the two categories of variables. Control dependences

are also important since CUs are not allowed to cross control-region boundaries. If the source

code of the target program is available, obtaining control dependences is trivial since every

ordinary compiler is able to perform control-flow analysis on the source code. However, if only

the binary of the target program is available, obtaining control dependences can be difficult

because the original control structures can only be inferred from the binary code. In this thesis,

we present a method to obtain control dependences when the source code of the target program

is not available, which is described in Section 3.2.2. Finally, the CU construction algorithm is

described in Section 3.2.3.

3.2.1 Global and Local Variables

The first task in constructing CUs is to determine the variables that are global to a control region.

For this reason, we determine global variables of a control region by analyzing variable scope
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information, which is available in any ordinary compiler. Note that the global variables in the

read set and the write set do not have to be global to the whole program. They can be variables

that are local to an encapsulating scope, but global to the target scope.

In the LLVM IR, metadata that conveys extra information about the code to the optimizers

and code generator is attached to program instructions. One example application of meta-

data is source-level debug information. There are more than twenty kinds of specialized

metadata structures, called metadata nodes in LLVM IR, among which we are interested in

two: DIGlobalVariable and DILocalVariable.

DIGlobalVariable nodes represent global variables in the source program. A global integer

named “foo” has the following metadata node:

1 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,

2 file: !2, line: 7, type: !3, isLocal: true,

3 isDefinition: false, variable: i32* @foo,

4 declaration: !4)

Variables global to the whole program are certainly global to any of the control regions.

They are always included in the globalVars set. Global variables can be obtained through the

globals field of the DICompileUnit metadata node.

We further analyze all the DILocalVariable nodes, which represent local variables in the

source program. Examples of DILocalVariable nodes are as the following:

1 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,

2 type: !3)

3 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)

If the arg field is non-zero, then this variable is a subprogram (function) parameter. Analyz-

ing DILocalVariable nodes gives variables that are local to a function but not any local scopes

nested inside the function because the LLVM IR has only two syntactic scopes – a global scope

and a function scope. When it is necessary to construct CUs within a function, we have to record

all the variables that are defined and used in different code sections. If a variable is defined and

used in only one code section, it is local to the code section. Otherwise, the variable is global to

all the code sections.

It is worth mentioning that defining CUs based on the notion of global variables is slightly

stricter than necessary. Imagine the situation where a variable named g is defined global to

the whole program but used only in a relatively small code section. Because g is globally

defined, it has to be included in the globalVars set of any code section. A better option to

define a CU is based on “communicating” variables – those variables causing data dependences

among CUs. Global variables are an approximation to communicating variables as there may

be global variables that do not cause any data dependences. However, such definition brings a

circle: CUs are defined on communicating variables, while communicating variables are defined

based on CUs. For this reason, global variables are used since they can be obtained in a much

easier way. Another solution shares the similar concept of expectation maximization (EM)
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method in machine learning. First, let the set of global variables be the initial guess of the

set of communicating variables and build CUs based on the guess. After the CUs are built, we

calculate the set of communicating variables based on the CUs. The new set of communicating

variables is then used as the improved guess in the second iteration of the same process. The

algorithm iterates until the the of communicating variables does not change any more.

3.2.2 Dynamic Control-Dependence Analysis

In this section, we introduce the method of to obtain control dependences when the source code

of the target program is not available. A control dependence between two instructions opi and

op j exists if op j is conditionally guarded by opi. Without source code, to decide whether an in-

struction is conditionally guarded we need to know the re-convergence point, which is the point

where the different branch alternatives end and unconditional execution resumes. To circum-

vent that dynamic analysis has usually no access to the complete control-flow graph because

not all branches of the program are actually executed, we use a look-ahead technique. Before

the real branch is executed, we follow every possible branch first and terminate this look-ahead

once we encounter the re-convergence point, which is the first instruction that comes after the

basic blocks defined by the branch alternatives. Our method described in this section is imple-

mented on top of Valgrind [14] because it disassembles basic blocks belonging to all branch

alternatives when a branch is encountered. This feature greatly reduces the difficulty of imple-

menting our method. We traverse the blocks representing the the branch alternatives without

actually executing them, simply following jump instructions until we find the re-convergence

point. An example of finding the re-convergence point of an if-else and a simple if statement

is shown in Figure 3.1.

jmp (cond)

jmp

else part

if part

if-else

(a) if-else construct

jmp (cond)

if part if

(b) if construct

Figure 3.1: Finding the re-convergence point (solid black circle).

We instrument jump operations and maintain a stack where we record the scope of the

currently active control regions. When we encounter a control region, we push a triple <start,

type, end> onto the stack. When we leave a control region, we remove the topmost entry.

We determine the type of a region (branch or loop) and its re-convergence point using our

look-ahead technique. We also respond to function calls. If a function is called inside a control
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region, we simply keep the current top of the stack untouched and continue pushing control

regions we find in the callee on the stack. When the callee function returns, all control regions

it contains should also terminate and the calling region is again on the top of the stack.

1   for (i = 0; i < MAX_ITER; i++) {
2        if (i == 0)
3             x = 3
4        a = x + rand() / x
5        b = x -  rand() / x
6        x = a + b
          ...
k   }

Figure 3.2: A simple code example.

The example shown in Figure 3.2 illustrates our algorithm. It contains several control and

data dependencies. Applying our algorithm for finding re-convergence points to the example

yields Figure 3.3, where the re-convergence points (solid black circles) are exactly the first lines

encountered after the corresponding control structure ends.

1  for (i = 0; i < MAX_ITER; i++)

2   if (i == 0)

3    x = 3

4  a = x + rand() / x

if

...

}

loop

next line

Figure 3.3: Re-convergence points of the example in Figure 3.2.

3.2.3 The Algorithm of Building CUs

Since a CU may not be aligned with a predefined language construct, it is not sufficient to build

CUs according to the control structure of a program. There are two ways to build CUs: the

bottom-up approach that builds CUs from instructions and merge them as bigger CUs, and the
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top-down approach that builds CUs from functions and seeks for opportunities to divide the CU

into smaller CUs when the whole code section is not a CU.

The bottom-up approach

Imagine the execution of the program as a sequence of instructions {op0, op1, . . . , opn−1}. Let R
be the subsequence of these instructions that belongs to the current control region, not including

instructions belonging to regions nested inside. Let us assume we have already processed all

instructions in R up to but not including opi. Then we can apply the following algorithm to opi

and all remaining instructions in R:

1. When we encounter a new control region nested inside the current one, we suspend the

current region until we have processed the region nested inside.

2. When an instruction opi ∈ R is executed:

• If the variable v that opi operates on is defined in R (local to R), ignore opi and

exclude dependences involving v from building CUs. Otherwise we build a CU that

just contains opi.

• We merge the CU of opi with all the CUs of instructions op j<i ∈ R that opi directly

depends on via anti-dependences.

• If opi directly depends on op j<i via a true data dependence, we create a directed

edge from the CU of opi to the CU of op j, expressing that opi truly depends on op j.

Note that op j does not necessarily have to be an element of R.

• If opi is the first write of a variable in the program, we mark it as initialization.

• Repeat the algorithm for all remaining instructions in R.

3. At the end, merge the CUs of all adjacent initialization operations into one INIT node.

Adjacent means that their instructions form a contiguous subsequence of R.

The advantage of the bottom-up approach is that it builds CUs on-the-fly. It is a purely

dynamic approach that does not rely on any pre-execution static analysis. In step 2, it checks

whether a variable is defined in an instruction right after executing the instruction, and utilizes

such information to distinguish variables that are local to the current control region. It always

builds a CU from a single instruction, and merges it with previous CUs if it depends on previous

CUs via anti-dependences (WAR). This is consistent with the definition that the read phase

happens before the write phase. If the new CU depends on previous CUs via true dependences

(RAW), it means the read-after-write pattern is violated.

There are two main disadvantages of the bottom-up approach, both rooted in the merge step.

First, due to the complexity of the instruction stream, true dependences are frequently observed,

meaning the approach produces a huge amount of CUs that represent only a few instructions.

This is fine according to the definition, but practically not helpful for parallelism discovery.

Second, the frequent merging operation incurs high time overhead, making the algorithm slow.
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Since the algorithm is usually performed on-the-fly, it slows down the original program by an

unacceptable factor.

For a detailed description of the bottom-up approach and the parallelism discovery method

based on it, please refer to Li et al. [57]. Results show that CUs produced by the bottom-up

approach are too fine to discover coarse-grained parallel tasks. For this reason, we developed

another CU construction algorithm that works in a top-down manner.

The top-down approach

Algorithm 3 shows the top-down CU construction algorithm. It starts from functions, examining

whether the whole control region satisfies the definition of a CU. It relies on a set globalVars

containing all the variables that are global to the control region. The algorithm first builds the

read phase (∪v∈GV Iv ) and the write phase (∪v∈GV Ov ) following the definition. It then checks

whether the the read phase happens before the right phase, satisfying the read-compute-write

pattern. If so, the whole control region is a CU. Otherwise, the algorithm records all the read

instructions that violate the read-compute-write pattern, and tries to build CUs for all code

snippets within the region that are separated by the violating read instructions. In this way,

multiple CUs may be build for a control region, and parallelism may be explored among these

CUs.

The top-down approach constructs coarse-grained CUs first. Coarse-grain parallelism is usu-

ally utilized using parallel patterns like master-worker, fork-join, pipeline, and so on. In contrast

to the instruction-level parallelism discovered by the bottom-up approach, thread-level paral-

lelism is not explored and automatically utilized by the hardware. Thus, discovering coarse-

grain thread-level parallelism is more interesting, and more beneficial to users.

We start from functions because they are the biggest constructs that could potentially resem-

ble the concept of a CU in a program. A function receives arguments, performs computation,

and returns results, which follows the read- compute-write pattern by nature. We cannot di-

rectly treat every function as a CU because a function may have side effects, like modifying

global status. And a function that has side effects is very common in C and C++.

The top-down approach is fast. It simply checks whether a control-region satisfies the

read-compute-write pattern. However, it requires pre-execution static analysis to produce

the globalVars of each control region. The top-down approach is better performed off-line

because it deals with a whole control region at a time. In the parallelism discovery framework

described in this thesis, the top-down CU construction algorithm is used and implemented as a

compiler pass, which is called after global variable analysis but before instrumentation.

3.2.4 Example of Building CUs Using the Top-Down Appoach

In this section, we show an example of building CUs for a simple code snippet. The example is

shown in Figure 3.4.

3.2 Construction 67



for each region R in the program do
globalVars = variables that are global to R

violated = false

for each variable v in globalVars do

if v is read then
readSet += v

for each instruction Irv reading v do
readPhase += Irv

end

end

if v is written then
writeSet += v

for each instruction Iwv writing v do
writePhase += Iwv

end

end

end

violateSet = empty

for each variable v in readSet do

for each instruction Ir reading v do

for each instruction Iw writing v do

if Ir happens after Iw then
violated = true

violateSet += Ir
end

end

end

end

if violated == false then
cu = new computational unit

cu.readSet = readSet

cu.writeSet = writeSet

cu.readPhase = readPhase

cu.writePhase = writePhase

cu.computationPhase = (instructions in R) - (readPhase + writePhase)
end

else

for each read instruction Iv in violateSet do
build CU for instructions do not belong to any CU before Iv

end

end

end

Algorithm 3: The algorithm of building CUs (top-down).
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x = 3

a = x + rand() / x

b = x - rand() / x

x = a + b

a = x + rand() / x

b = x - rand() / x

CU

Data DependenceCU

x = a + b

1 int x = 3;
2 for (int i = 0; i < MAX_ITER; ++i) {
3     int a = x + rand() / x;
4     int b = x - rand() / x;
5     x = a + b;
6 }

re
ad

w
rit
e

com
pute

Figure 3.4: Building a CU.

In this example, readSet and writeSet are both {x}. Each loop iteration calculates a new value

of x by first reading the old value of x and then by computing a new value via local variables

a and b. Finally, the new value is written back to x. For a single iteration, all the reads of x

happen before the write to x. Following the read-compute-write pattern, lines 3–5 are in one

CU, as shown in Figure 3.4. At the source-line level, the compute phase (line 3–5) of the CU

overlaps with its read phase (line 3–4) and write phase (line 5). At the instruction level, the

three phases are separate to one another. If a and b were declared outside the loop, then they

would be considered global to the loop as well. This would mean the loop would be made up

of two CUs with lines 3-4 being one CU and line 5 being the second CU.

3.2.5 Special Variables in Building CUs

Function parameters and return values deserve special treatment when determining the read

set and the write set of a function. We treat them as follows:

• All function parameters are included in the read set

• Function parameters passed by value are not included in the write set

• The return value is stored in a virtual variable called ret, and ret is included in the write

set

The first rule is obvious. We follow the second rule because parameters passed by value are

copied into functions, thus modifications to them do not affect their original copies. The return
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1 // source code

2 int a = 0, b = 1, c = 0;

3 c = a + b;

4

1 ; LLVM IR

2 %a = alloca i32, align 4

3 %b = alloca i32, align 4

4 %c = alloca i32, align 4

5 store i32 0, i32* %a, align 4

6 store i32 1, i32* %b, align 4

7 store i32 0, i32* %c, align 4

8 %4 = load i32* %a, align 4

9 %5 = load i32* %b, align 4

10 %6 = add nsw i32 %4, %5

11 store i32 %6, i32* %c, align 4

12

Figure 3.5: The LLVM IR of a sample C++ code section.

value must be included in the write set. However, it is common that the return value does not

have a name. That is why we always call it ret when building a CU statically.

Loop iteration variables also require special treatment. Specifically, the following rules apply

to them:

• By default, loop iteration variables are considered as local to loops

• If a loop iteration variable is written inside the body of a loop, it is considered as global to

the loop

We treat loop iteration variables in a special way because inter-iteration dependences on

them in loop headers do not prevent parallelism. However, if their values are updated inside the

loop body, the normal iteration process may be interrupted, and dependences on loop-iteration

variables must be taken int o account when deciding whether the loop can be parallelized.

3.3 Granularity

It is important to understand that CUs are built by analyzing IR statements of the target pro-

gram. For an IR in single assignment (SA) form, it is common that a source language statement

is translated into multiple IR statements. Figure 3.5 shows an example of representing a simple

C++ code section in LLVM IR, which is in static single assignment (SSA) form.

When talking about read and write instructions in the CU construction algorithm, we refer

to the load and store instructions and many other memory access instructions shown on the

right side of Figure 3.5. In this example, source line 3 is translated into four IR statements at

line 8 – 11, which follows the read-compute-write pattern perfectly. We can build a CU out

of these four IR statements if we assume the variables a, b, and c are global to them. When

using the bottom-up approach, CUs are built at such granularity and merged if necessary. When

mapping this CU back onto the source code, it contains only line 3. This is an example where a

CU contains “only a few instructions”.
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Table 3.1: Possible forms of an edge in a CU graph.

of the same CU of different CUs

from write phase to read phase (RAW) Ø Ø
from read phase to write phase (WAR) – Ø
from write phase to write phase (WAW) – Ø

Note that the two IR statements at lines 8 and 9 can be executed in parallel since there is

no data dependence between them. It is very common for compilers and hardware to schedule

load instructions in such a way that a long stall is avoided. However, we put them into the

same CU, and ignore the parallelism between instructions. As mentioned in Section 3.2.3,

instruction- level parallelism is automatically explored and utilized by the hardware with the

help of compilers.

Now it is clear why the bottom-up approach is not preferred: it produces too many fine-

grained CUs. Practically, it does not help much to know that two source lines can run in parallel,

especially if such suggestions form the majority. The users want to explore parallelism among

functions, loops, and potential tasks, but usually not among individual source lines.

Note that the top-down approach could also eventually get into the same fine granularity as

the bottom-up approach. The difference is that, by setting a threshold, the top-down approach

can quickly get avoid of analyzing code sections that do not form big CUs, while the bottom-up

approach must try its very best to merge no matter in what situation. The top-down approach

is more flexible: it stops at a level where finer-grain parallelism in not interesting anymore, or

goes down to cover fine-grained parallelism if coarse-grained parallelism is not found.

3.4 Computational Unit Graph

CUs and the data dependence among them form a CU graph. Data dependences among CUs are

always among instructions in the read phases and the write phases. Given that the number of

variables global to a code section is usually much smaller than the number of local variables, a

CU graph is a significant simplification of the classic dependence graph. Table 3.1 summarizes

the possible forms of an edge in a CU graph.

Two forms of edges are not included in a CU graph, the edges starting from the read phase

and ending at the write phase (WAR-dependence edges) of the same CU, and the edges starting

from the write phase and ending at the write phase (WAW-dependence edges) of the same CU.

They are not included because they provide no contribution to parallelism discovery.

The WAR-dependence edges of the same CU indicate that the read set and the write set of

the CU share common elements. Having such dependences or not, the write phase and read

phase of a CU cannot be executed in parallel because the “read-compute-write” pattern means

internal RAW dependences that force the write phase to be executed after the read and the

compute phase. For this reason, the WAR-dependence edges of the same CU are not included.
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8-0 8-2 8-4 8-5 3-0 1-0 5-0

5-3

5-10 5-6 3-1 1-1

5-9

5-8 5-11 3-2 3-3 1-2 8-6 5-4 5-5

Figure 3.6: Part of the CU graph of rot-cc.

The WAW-dependence edges of the same CU mean the values of some variables are overwrit-

ten within the same write phase. Overwriting is OK as long as it happens in the same write phase

because they are in a sequential order, and compilers are good at discovering such optimization

opportunities by using static analyses like def-use chain analysis and constant propagation. For

this reason, WAW-dependence edges of the same CU are not included.

On the other hand, the RAW-dependence edges of the same CU must be included. If a CU

has such edges, it means two things: 1) the CU has been executed multiple times, and 2) in each

execution, the CU uses the outputs from the last execution as the input of the current execution.

Obviously, it is the most common iterative computation pattern. Whether the RAW-dependence

edges exist gives a clue about whether the iterations are independent from one another. Thus,

the RAW-dependence edges of the same CU are included.

All the three kinds of edges between different CUs are include in a CU graph. Again, RAW-

dependence edges must be included as they reveal the true dependences that cannot be easily

broken. Whether the WAR-dependence and WAW dependence edges can be removed depends

on the semantics of the program. If the variables being written to can be renamed without vio-

lating these semantics, it is possible to remove these edges in order to explore more parallelism.

Currently, the user has to decide whether it is safe to remove these edges.

Figure 3.6 shows a part of the CU graph of rot-cc, a benchmark from the Starbench parallel

benchmark suite [86]. Numbers in vertices are CU IDs in the format of module ID � local CU

ID. The CU graph shows all the main computational units and only the RAW-dependence edges,

that is, the true data dependences that cannot be broken. In this example, CUs are built using

the top-down approach. The figure shows that the program can be organized in a three-step

manner, with two computations serving as barriers. Moreover, part of the computations in each

step can also run in parallel, such as CU 8-4 and 8-5, CU 5-10 and 5-6.
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To detect loop parallelism and parallel patterns [90, 91], it is useful to combine the control

region information of the PET and the CU graph. Figure 3.7 shows a combined graph of a

function in CG, a benchmark from NAS Parallel Benchmarks [85]. The CU graph contains all

the CUs belonging to the function and three kinds of data dependences (red – RAW; blue –

WAR; green – WAW). In this example, CUs are built using the bottom-up approach. Obviously,

the combined graph is much more complex, and it is almost impossible for users to manually

explore the parallelism it contains.

3.5 Computational Units and Pure Functions

It is mentioned in Section 3.2.3 that a function cannot be directly treated as a CU because it

may have side effects. This suggests that the notion of a CU is related to a pure function. A pure

function is surely a CU, but the inverse is not true. In computer science, we say “pure functions”

when we refer to functions that work in a mathematics’ way, and we say “functions” when we

refer to procedures in programming. The difference is that, a pure function is a function where

the return value is only determined by its input values, without observable side effects.

A function or expression is said to have a side effect if it modifies some external state or has

an observable interaction with calling functions or the outside world. For example, a particular

function might modify a global variable or static variable, modify one of its arguments, raise an

exception, write data to a display or file, read data, or call other side-effecting functions [92].

Now it should be clear that a pure function is a CU because it does not rely on any global

variable. The return value is the only thing visible to the outside world, and it is included in the

write set (see Section 3.2.5).

Consider a CU that is not a function. Its read set and write set contain variables that are

global to itself. Thus, it depends on external status, and may modify a global variable as well.

To make a CU resemble a pure function, we have to prevent it from modifying variables that

are global to it. Moreover, to guarantee that the computation always yields the same result, its

read set cannot be modified by any other CU, either. Thus, a CU resembles a pure function if it

satisfies the following conditions:

• Variables in its read set cannot be modified by itself nor by other CUs

• The special variable ret is the only variable allowed in its write set, if not empty

• The computation of the CU always yields the same result if the values of the variables in

its read set do not change

Now it is clear that a CU is a weaker concept than a pure function. A purely functional

program can be represented by a data-flow graph. A CU graph is similar, but it takes side

effects of imperative programs into consideration. A CU graph reveals how the side effects of

a CU affect other CUs so that users can develop improvement strategies. Basically, a CU-based

parallelism discovery method encourages a purely functional programming style. The more

pure functions, the easier parallelism can be revealed.
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3.6 Summary

In this chapter, we introduce computational units, which represent the smallest units of a pro-

gram that do not contain parallelism that are worth parallelizing in thread level. Computational

units may not be aligned with predefined language constructs. A CU is a code section that fol-

lows the read- compute-write pattern: a set of variables is read by a collection of instructions

and used to perform computation, then the result is written back to another set of variables.

We utilize metadata nodes in LLVM IR to determine variables global to a code section, and

use static control-flow analysis to obtain control region boundaries. When the source code is not

available, we obtain control region boundaries by finding the re-convergence point dynamically.

CUs can be built in two different ways: bottom-up and top-down. Although the bottom-up

approach can be performed on-the-fly, it produces a huge amount of single-instruction CUs,

which produces distractive parallelism discovery results. In contrast, the top-down approach

produces coarse-grained CUs that are suitable for detecting task-level parallelism. However, it

requires pre-execution static analysis to obtain the set of global variables.

The CUs of a program and the data dependences among them form a CU graph. Two forms

of edges are not included in a CU graph, the WAR-dependence edges that start from and end

at the same CU, and the WAW-dependence edges that start from and end at the same CU. They

are not included because they do not contribute to parallelism discovery. A CU graph shares

a similar concept with the data-flow graph in functional programming. However, a CU graph

also reveals side effects of CUs, making it a useful tool to discover parallelism in imperative

programs. The fewer edges a CU graph has, the more parallelism the target program has.

Basically, CU-based parallelism discovery method encourages a purely functional programming

style.
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4 CU-Based Parallelism Discovery
As described in Section 1.3.2, semi-automatic parallelism discovery tools try to locate the po-

tential parallelism in sequential programs rather than show data-dependence graph. Unlike

previous approaches, we introduce the concept of computational units (CUs) and represent a

sequential program as a CU graph instead of the traditional dependence graph. In this chapter,

we present parallelism discovery methods based on CU graphs, covering both parallelism in

loops and parallel tasks. A ranking method is also presented to help users focus on the most

promising parallelization opportunities. Evaluation results and a short discussion on limitations

are presented at the end of this chapter.

4.1 Parallelism in Loops

Loops have been the main optimization targets in computer programs for decades. Many op-

timization passes in compilers are related to loops, such as loop unrolling, loop fusion, loop-
invariant code motion, hoisting, and many others. [6] In the era of parallel programming, loops

are the main targets of exploring parallelism. The key problem is to determine whether there

are dependences between different iterations of a loop. The answer to this question divides

loops that can be parallelized in two categories: DOALL loops and DOACROSS loops.

4.1.1 DOALL Loops

A loop can be categorized as a DOALL loop if there is no inter-iteration dependence. For nested

loops, whether an inner loop is DOALL or not does not affect outer loops. This is the easiest

type of parallelism to be discovered since it only requires verification whether there is an inter-

iteration dependence among the CUs belonging to the body of the target loop.

When checking inter-iteration dependences, we check read-after-write (RAW) dependences

only. The condition is relaxed because usually inter-iteration write-after-read (WAR) and write-

after-write (WAW) dependences do not prevent parallelism (suppose a variable is always as-

signed a new value at the beginning of each iteration). This may lead to false positives, but we

expect that false positives are rare. Thus, our algorithm detecting DOALL loops is optimistic.

Note that data dependences on loop-iteration variables are already taken care of by the special

treatment described in Section 3.2.5.

Rule of determining DOALL loops

A loop is classified as a DOALL loop if there is no inter-iteration RAW dependence.
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1 for (i = 0; i < nz; i++) {

2 for (k = 0; k < ny; k++) {

3 for (j = 0; j < nx; j++) {

4 y[i][k][j] = dcmplx_mul2(y[i][k][j], twiddle[i][k][j]);

5 x[i][k][j] = y[i][k][j];

6 }

7 }

8 }

Figure 4.1: The nested loops in function evolve of the SNU NAS benchmark FT.

DOALL loops are common in benchmarks performing numerical computations. Figure 4.1

shows a loop nest (auxfnct.c, line 180) in the SNU NAS benchmark FT. In this example, the

three loops iterate over a 3D-array, each along a different dimension. The innermost loop

multiplies two complex numbers from two arrays y and twiddle at the same index. The result

is stored to both array y and x, also at the same index. Obviously, computations at different

locations of the arrays are independent from one another. Thus, there are no inter-iteration

dependences in all the three loops, meaning they are all DOALL loops.

Following the rule for DOALL loops mentioned above, our approach reports all the three

loops as DOALL loops. However, it may not be a good idea to parallelize all of them. Generally,

nested parallelism requires careful consideration. The overhead of thread management may be

high if the number of threads is big, and the workload of a single task has to be big enough so

that parallelization yields speedup rather than slowdown. The users must be aware of this prob-

lem since classic hotspot profiling techniques do not distinguish the outermost and innermost

loop (both are hotspots with roughly the same execution time). We will see a similar situation

when discussing SPMD-style tasks in Section 4.2.1.

4.1.2 DOACROSS Loops

When a loop has inter-iteration dependences, it is possible to further analyze the dependence

distances of the inter-iteration dependences to discover DOACROSS [93] loops. A DOACROSS

loop has inter-iteration dependences, but the dependence are not between the first line of an

iteration and the last line of the previous iteration. This means in a DOACROSS loop, iterations

are not independent but can partly overlap with one another, providing parallelism that can be

utilized by implementing reduction or pipeline. Dependence distances can be easily measured

since data dependences are indexed by source line numbers.

Rule of determining DOACROSS loops

A loop is classified as a DOACROSS loop if it is not a DOALL loop, and there is no inter-iteration
dependence that starts from the read phase of the first CU (in single-iteration execution order) and
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ends at the write phase of the last CU of the loop body. Note that the first CU and the last CU can
be the same.

Many loops are classified as DOACROSS loops due to inter-iteration dependences on one

or more variables used for reduction. As an example, Figure 4.2 shows a loop in the nqueens
benchmark from BOTS. The variable *solutions is used for accumulating results returned from

function nqueens(), resulting in inter-iteration RAW dependences.

1 int* solutions = 0;

2 for (i = 0; i < n; i++) {

3 a[i] = (char) i;

4 if (ok(i + 1, a)) {

5 nqueens(n, i + 1, a, &res);

6 // reduction

7 *solutions += res;

8 }

9 }

Figure 4.2: A loop in the BOTS benchmark nqueens.

A special case of DOACROSS loops is the loops where inter-iteration dependences are only

caused by reductions. These loops can be divided into a DOALL loop and a reduction loop. Many

parallel programming models support reductions in loops, like the reduction clause in OpenMP.

A detailed description of reduction detection for loops is provided by our master student Sergei

Krestianskov [94].

4.2 Parallel Tasks

So far, parallelism discovery tools have been focusing on data parallelism in loops, which can

be exploited by distributing iterations of a loop among multiple threads. However, as more

programming models such as OpenMP and Intel TBB [95] aim at task-based parallelism, this

original focus of parallelism discovery becomes too narrow. In contrast to loop-based data

parallelism, task parallelism does not require every thread to execute the same code. Tasking

can exploit parallelism between arbitrary code sections, including parallelism within individual

iterations of a loop or between different loops.

4.2.1 SPMD-Style Tasks

As its name suggests, single-program-multiple-data (SPMD) tasks execute the same code but

work on different data. It is similar to data decomposition. To identify SPMD task parallelism,

one only needs to check whether a CU depends on itself because tasks execute the same code.

Note that iterations in a DOALL loop can also be considered as SPMD task parallelism.

However, since DOALL loops can usually be parallelized using specialized mechanisms that are
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more efficient (like #pragma parallel for in OpenMP, and tbb::parallel_for() in TBB), we

categorize DOALL loops separately. In this paper, SPMD task parallelism refer to independent

calls to the same function with different parameters, possibly combined with recursive pattern.

Rule of determining SPMD tasks

A function is classified as a SPMD-style task if it meets the following conditions:

• The function is called more than once in the program

• The function is a CU, and its read phase does not depend on its write phase

It is worth mentioning that the rule stated above is conservative. Since data dependences

are obtained dynamically, there is no chance to tell whether a CU depends on itself if the CU is

executed only once. However, it does not mean that the CU is definitely not a SPMD task. Self-

dependences may be revealed when using another input of the program. In our experiments,

we try different inputs whenever possible to minimize the effect of input sensitivity.

Consider the classic program that computes the nth Fibonacci number in a recursive way. The

function is shown in Figure 4.3. It is well known that the two recursive calls Fibonacci(n-1)

and Fibonacci(n-2) can run in parallel. They can be interpreted as SPMD-style tasks since the

same function is called twice, each time with a different set of arguments.

1 int Fibonacci(int n) {

2 if(n <= 0)

3 return 0;

4 else if(n == 1)

5 return 1;

6 else

7 return Fibonacci(n - 1) + Fibonacci(n - 2);

8 }

Figure 4.3: A program that computes the nth Fibonacci number.

However, any programmer that has some experience in parallel programming will realize

that it is a bad idea to parallelize the two calls to Fibonacci without any care. When n > 1,

each call to Fibonacci spawns two tasks, and the current task needs to wait until the two

new tasks complete. The number of threads created by the program grows exponentially, and

the computation of each task is just an add operation. Parallelizing this program is like hiring a

different typist to type each character of a novel. In practice, a recursive program that computes

subtasks repetitively can benefit from dynamic programming, which caches results of subtasks

to avoid repetitive computation.

Nevertheless, recursive algorithms are often good candidates for parallelization, particularly

if they split the job into smaller jobs that can be performed independently. The trick is to

know when to stop parallelizing, i.e., the minimum workload of a task that can benefit from
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parallelization. So far our tool does not suggest “when to stop” since this question is related to

the underlying hardware and operating system.

4.2.2 MPMD-Style Tasks

In contrast to SPMD task parallelism, multiple-program-multiple-data (MPMD) tasks execute

different code from one another. Once tasks are allowed to execute different code, identifying

only independent tasks is not sufficient. Multiple MPMD tasks that are dependent on o one

another may lead to a pipeline or task graph. Note that a task graph is acyclic. Thus, we report

MPMD task parallelism if dependences among CUs that belong to target code sections do not

form a circle. That said, MPMD task parallelism is the most general type of parallelism we

identify in this thesis.

Note that the implementation of MPMD task parallelism can be different, and the resulting

performance varies. When a task graph is implemented, the performance is greatly influenced

by the scheduler.

Rule of determining MPMD tasks

Two CUs are classified as MPMD-style tasks if there is no data dependence between them.

The rule for discovering MPMD-style tasks is loose. We do not include control dependences

here because if there is no data dependence, the CU guarded by a condition can actually be

executed speculatively given the machine has enough computational resources.

1 result = compute(input);

2 if (SANITY_CHECK == true) {

3 bool ok = sanity_check();

4 if (!ok)

5 exit(-1);

6 }

Figure 4.4: A code snippet showing the role of control dependence in MPMD-style tasks.

Take the code snippet shown in Figure 4.4 as an example. If there is no data dependence be-

tween function compute and sanity_check, sanity_check could run in parallel with compute

in prior to the evaluation of the condition at line 2. Later on, the result of sanity_check can

either be directly used or discarded based on the evaluation results of the condition. This is a

classic example of speculative execution.

We say the rule is loose also because it covers almost all the remaining parallelism other than

loop parallelism and SPMD-style tasks. However, reporting all the MPMD-style tasks would be

overwhelming to the user. Moreover, unlike DOALL loops and SPMD-style tasks, MPMD-style

tasks are based on data flow rather than data decomposition. Compared to DOACROSS loops,

the data flow pattern among MPMD-style tasks is more general. For these reasons, we produce
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Figure 4.5: Simplifying CU graph by substituting SCCs and chains of CUs with vertices.

a task graph instead of reporting individual MPMD-style tasks so that users can have a better

understanding of the data flow.

The task graph is a simplified CU graph by merging CUs contained in strongly connected
components (SCCs) or in chains. The idea of merging CUs in SCCs is inspired by Ottoni et

al. [64]. In graph theory, an SCC is a subgraph in which every vertex is reachable from every

other vertex. Thus, every CU in an SCC of the CU graph depends on every other CU either

directly or indirectly, forming a complex knot of dependences that is likely to defy internal

parallelization. Identifying SCCs is important for two reasons:

• Algorithm design. Complex dependences are usually the result of highly optimized se-

quential algorithm design oblivious of potential parallelization. In this case, breaking such

dependence requires a parallel algorithm, which is beyond the scope of our method.

• Coding effort. Even if such complex dependences are not created by design, breaking

them is usually time-consuming, error-prone, and may cause significant synchronization

overhead that may outweigh the benefit of parallelization.

Hence, we hide complex dependences inside SSCs, exposing parallelization opportunities

outside, where only a few dependences need to be considered. Figure 4.5 shows the graph

simplification process by substituting vertices with SCCs and chains of CUs. In step 1, CU F ,

G and H are grouped into SCCFGH . After contracting each SCC to a single vertex, the graph

becomes a directed acyclic graph (DAG). Moreover, we group CUs that are connected in a row

without a branch or reconvergence point in between into a chain of CUs since a chain of CUs

does not contain significant parallelism inside, and merging them can lower the communication

overhead among tasks. In step 2, CU C , D and E are grouped into chainC DE . We call the

simplified graph task graph. Finally, we declare each vertex in the task graph a potential task.
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4.3 Ranking of Parallelization Targets

Ranking parallelization opportunities of the target program helps users to focus on the most

promising ones. Three metrics are involved: instruction coverage, local speedup, and CU imbal-
ance.

4.3.1 Instruction Coverage

The instruction coverage (IC) provides an estimate of how much time will be spent in a code

section. The estimation is based on the simplifying assumption that each kind of instruction

costs about the same amount of time. Given a code section i and the whole program P,

IC(i) =
Ninst(i)
Ninst(P)

(4.1)

where Ninst(i) and Ninst(P) are the number of instructions of code section i and the whole

program P, respectively. Note that Ninst always represents the total number of IR instructions

that are actually executed at runtime. For example, in a loop, Ninst is the sum of the number of

IR instructions across all iterations.

4.3.2 Local Speedup

The local speedup (LS) reflects the potential speedup that would be achieved if a code section

was parallelized according to the suggestion under the assumption that computational resources

are unlimited. Since the speedup refers only to a given code section and not necessarily to the

whole program, it is called local. The local speedup is based on the critical path, that is, the

longest series of operations that have to be performed sequentially due to data dependences

and Amdahl’s law, which is why super-linear effects are not considered. Note that LS is used to

approximate the benefit of parallelization rather than an exact prediction of the real speedup.

Given a code section i of the target program:

LS(i) = min(Nthreads,
Ninst(i)

leng th(C P(i))
) (4.2)

where Ninst(i) is the total number of instructions of code section i, and length(CP) is the length

of the critical path of i—again, based on the assumption that each kind of instruction costs

the same amount of time. Nthreads is the number of threads. If the local speedup exceeds the

number of threads, it will be just equal to the number of threads.
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Figure 4.6: Scenarios with different degrees of CU imbalance.

4.3.3 CU Imbalance

The CU imbalance reflects how evenly CUs are distributed in each stage of the critical path. A

stage of the critical path is a computation step separated by data dependences. A stage may

contain multiple CUs that can run in parallel at the step. CU imbalance measures whether every

thread has some work to do in each step of the computation. Otherwise, some of the threads

have to wait because of data dependences, which means the suggested parallelization may have

a bottleneck. We define the CU imbalance for a code section i as

C I(i) =
σ(i)

M P(i)
(4.3)

where σ(i) is the standard deviation of the number of CUs in each stage of the critical path,

and M P(i) is the number of CUs in the largest stage of the critical path of code section i. The

CU imbalance is a value in [0,+∞). The more balanced the CU ensemble is, the smaller the

value becomes.

Figure 4.6 provides an example. Under the assumption that each CU has the same number

of instructions, both situations (a) and (b) have a local speedup of two and will complete all the

tasks in two units of time, assuming the system has an unlimited number of threads available.

However, the arrangement in Figure 4.6(a) requires three threads while 4.6(b) requires only

two. The red CU (R) in 4.6(a) needs the results from three CUs, constituting a bottleneck of the

execution. Although the purple CU (P) in 4.6(b) is in the similar situation, the other thread still

has some work to do (green CU) so that it does not need to wait. The CU imbalance values of

the two situations ( 4.6(a):
p

2/3= 0.47, 4.6(b): 0/2= 0) reflect such a difference. Note that

a code section containing no parallelism (CUs are sequentially dependent) will also show a CU

imbalance of zero, which is consistent with our definition.

Our ranking method now works as follows: Parallelization opportunities are ranked by their

estimated global speedup (GS) in descending order, with

84 4 CU-Based Parallelism Discovery



GS =
1

∑

i

IC(i)
LS(i)

+ (1−
∑

i

IC(i))
. (4.4)

Should two or more opportunities exhibit the same amount of global speedup, they will be

ranked by their CU imbalance in ascending order. Note that since LS is never bigger than the

number of threads and IC is always smaller than 1, GS can never exceed the number of threads,

either.

4.4 Evaluation

We conducted a range of experiments to evaluate the effectiveness of our approach. We applied

our method to benchmarks from the Barcelona OpenMP Task Suite (BOTS) [96], the PARSEC

benchmark suite [97], the SNU NAS Parallel Benchmarks (NAS) [84, 85], and the Starbench

benchmark [86]. All the four benchmark suites contain sequential benchmark applications as

well as their equivalent parallel versions.

There are two evaluation methods. After applying our method to the sequential benchmark

applications, we 1) compare the identified parallelization opportunities to the existing parallel

versions in the benchmark suites. For the benchmarks of which existing parallel versions are

not available, we 2) implemented our own parallel versions and measure the speedups.

Our approach is implemented using LLVM [11] 3.6.1, and all benchmarks are compiled using

Clang [98] 3.6.1 with -g -O0 for instrumentation, and -O2 for execution. Experiments were

run on a server with 2 x 8-core Intel Xeon E5-2650, 2 GHz processors with 32 GB memory,

running Ubuntu 12.04 (64-bit server edition). The performance results reported are an average

of five independent executions. Whenever possible, we tried different inputs to compensate

for the input sensitivity of the data-dependence profiling approach, resulting in more complete

data dependences for each benchmark.

4.4.1 DOALL Loops

The purpose of the first experiment was to detect DOALL loops and see how the signature-based

approximation used by the data dependence profiler affects the accuracy of the suggestions on

parallelism. We first took our test cases from the NAS benchmarks, a suite of programs derived

from real-world computational fluid dynamics applications. The suite includes both sequential

and OpenMP-based parallel versions of each program, facilitating the quantitative assessment

of our tool’s ability to spot potential loop parallelism. We searched for parallelizable loops in

sequential NPB programs and compared the results with the parallel versions provided by NPB.

Table 4.1 shows the results of the experiment. The data listed in the column set “Executed”

are obtained dynamically. Column “# loops” gives the total number of loops which were ac-

tually executed. The number of loops that we identified as parallelizable are listed under “#
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Table 4.1: Detection of parallelizable loops in NAS Parallel Benchmark programs.

Benchmark
Executed OpenMP-annotated loops

# loops # parallelizable # OMP # identified # in top 30% # in top 10

BT 184 176 30 30 22 9

SP 252 231 34 34 26 9

LU 173 164 33 33 23 7

IS 25 20 11 8 2 2

EP 10 8 1 1 1 1

CG 32 21 16 9 5 5

MG 74 66 14 14 11 7

FT 37 34 8 7 6 5

Overall 787 720 147 136 96 45

parallelizable”. At this stage, prior to the ranking, DiscoPoP considers only data dependences,

which is why still many loops carrying no dependence but bearing only a negligible amount of

work are reported. The second set of columns shows the number of annotated loops in OpenMP

versions of the programs (# OMP). Under “# identified” we list how many annotated loops were

identified as parallelizable by DiscoPoP.

As shown in Table 4.1, DiscoPoP identified 92.5% (136/147) of the annotated loops, which

is the same as using a perfect signature. [54] These results proved that the effect of the signature

approximation to be negligible. A comparison with other tools is challenging because none of

them is available for download. A comparison based exclusively on the literature has to account

for differences in evaluation benchmarks and methods. Kremlin [10], which was also evaluated

with NPB, selects only loops whose expected speedup is high. While Kremlin reported 55.0% of

the loops annotated in NPB, the top 30% of DiscoPoP’s ranked result list cover 65.3% (96/147).

We further evaluated our tool on a set of small applications that are commonly used in teach-

ing parallel programming. The parallel versions of these applications are not available, but the

parallel solutions are obvious to experienced programmers. The purpose is to see whether our

tool discovers these obvious solutions. We parallelized these applications manually by adopting

the suggestions generated by our tool and measured the speedup we gained. The parallelization

is either based on Pthreads or OpenMP, and the parallel versions always use four threads. Ta-

ble 4.2 summarizes the results. Values shown in the table are averages of five runs. The details

of each application are discussed below.

Histogram visualization

This program receives an array whose elements can belong to N different types and sorts

them into buckets, putting data with type Ni into the i th bucket. The items in every bucket are

counted to produce the histogram. We use this example to illustrate details of the suggestions

produced by our tool, which are shown in Table 4.3. Our tool successfully finds the main
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Table 4.2: Speedups achieved when parallelizing textbook programs adopting the suggestions
produced by our method using four threads.

histogram mandelbrot light propagation ANN training

LOC 102 521 74 107

Input size
50,000,000

numbers

square matrix

(dim = 1024)

500,000

random points

matrix

50×500 and 500×4

Number of

suggestions
5 2 1 10

# Adopted 1 2 1 2

Seq. time (s) 0.36 46.02 5.67 5.11

Par. time (s) 0.098
22.73

(11.61)
2.33 1.66

Speedup 3.67 2.02 (3.96) 2.43 3.07

computational loop as a good candidate to be parallelized. The loop iterates over the input

array with no data dependences inside, indicating the numbers in the array can be processed

in parallel. The other loops are also parallelizable, but belong either to the initialization or

output stage and do not promise significant speedup for larger input problems. Moreover, we

do not follow suggestion 5 because the loop contains only one line without function call and

iterates four times. To measure the speedup, we use an array of 50,000,000 numbers as input.

The serial version of the program runs in 0.36 seconds, whereas the parallel version with four

threads runs in 0.098 seconds, resulting in a speedup of 3.67.

Mandelbrot set

The Mandelbrot set is the set of values c in the complex plane for which the orbit of zero

under iteration of the complex quadratic polynomial zn+1 = z2
n + c remains bounded. Our test

program produces a 1024×1024 resolution image for the Mandelbrot set. The program iterates

over rows and columns, checking whether a point belongs to the set. The problem exhibits a

high degree of data parallelism, since every point on the plane can be examined independently.

Our tool reports that the innermost loop cannot be parallelized because of RAW dependences

between iterations, involving variables zreal and zimag . This loop iterates 50,000 times at most

to test whether the complex number zreal + zimag i satisfies the equation. However, the outer

loops are reported as parallelizable. The outermost loop iterates over the rows of the matrix,

and the loop direct nested inside iterates over its columns. We parallelize the program with

Pthreads by dividing the matrix among four threads. While the serial version of the program

takes 46.02 seconds, the parallel version takes 22.73 seconds, resulting in a speedup of 2.02.

With the fastest thread running only 0.15 seconds, the disappointing speedup is the result of

imbalanced workload. After introducing a dynamic load-balancing scheme, the four threads

consume about the same time, resulting in an almost linear speedup of 3.96.
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Table 4.3: Suggestions for histogram visualization.

Number Location # Iter. Loop size Adopted Reason

1 line 46 50 6 lines Yes -

2 line 21 50 3 lines No initialization

3 line 54 53 1 line No output

4 line 34 50 1 line No output

5 line 44 4 1 line No too small

Simulation of light propagation using Monte Carlo

This program simulates light propagation from a point source in an infinite medium with

isotropic scattering using the Monte Carlo method. Photons are modeled as pairs of randomly

produced numbers and each photon is simulated independently. Nevertheless, a global array of

heat must be calculated. It is therefore possible that two photons write the same element of the

heat array. For some executions, our tool reports that the loop iterating over the photons can

be parallelized, and for some other executions the loop has inter-iteration dependences. This

is because the algorithm is a Monte Carlo method, and whether two photons write the same

element of the heat array is a random event. When the input size is small, the probability of

writing the same element of the heat array is low. After getting this observation, we parallelize

the main loop and protect each element of heat with a separate lock. We run the parallel version

with four threads. This simple approach results in a slowdown of 15.75. The serial version runs

only 5.67 seconds, but the parallel version runs 89.28 seconds. After an investigation, we found

that the function rand() maintains internal global states that must be protected in parallel

execution. After replacing all occurrences of the rand() function with a thread-safe alternative

rand_r(), the adjusted parallel version runs 2.33 seconds, resulting a speedup of 2.43.

Artificial neural network training

The Artificial Neural Network training algorithm adjusts the weight matrices of the network

by iteratively examining training data provided as input. Because new weight values always

depend on their former values, it is hard to run different iterations in parallel. However, during

the same iteration, it is possible to parallelize the calculation of the weight matrix in one di-

mension. Our tool successfully identified two loops, both of which iterate along one dimension

of the weight matrices. Adopting the suggestion from our tool, we parallelize the training pro-

gram using OpenMP and run it with four threads. Because the training algorithm usually needs

quite a long time to reach convergence if it reaches it at all, we took the liberty of placing an

upper bound on the number of iterations to make the program terminate in a reasonable time

frame. Our neural test network comprises 50×500×4 neurons. The serial version runs 5.11

seconds, while our parallel version runs 1.66 seconds, resulting in a speedup of 3.07. This is

actually quite close to the results provided by Alfred Strey [99], in which three parallel versions

of ANN training are tested and the approach B is almost the same as when following our tool’s

88 4 CU-Based Parallelism Discovery



Table 4.4: Detection of DOACROSS loops in benchmarks from Starbench and NAS. The biggest
hot loops in terms of execution time of each benchmark are summarized in the table.

Benchmark Exec. time [%] DOACROSS
Implemented in

parallel version
# CUs

Starbench

rgbyuv 99.9 3 pipeline (DOALL) 5

tinyjpeg 99.9 3 pipeline 2

kmeans 99.5 3 reduction 4

BOTS nqueens ~100 3 reduction 1

NAS

CG 96.9 3 reduction 4

BT 99.1 7 no n.a.

SP 99.1 7 no n.a.

FT 49.3 7 no n.a.

MG 49.8 7 no n.a.

suggestions. In Strey’s work, the approach B is implemented using OpenMP, results in a speedup

of about 3.0 with 40×100×10 neurons.

4.4.2 DOACROSS Loops

A DOACROSS loop has inter-iteration dependences, but the dependence are not between the

first line of an iteration and the last line of the previous iteration. This means in a DOACROSS

loop, iterations are not independent but can partly overlap with one another, providing paral-

lelism that can be utilized by implementing reduction or pipeline.

It is obvious that parallelizing small loops (in terms of workload) with inter-iteration de-

pendences is not beneficial. Thus we focus on DOACROSS loops that are hotspots in terms of

execution time. Table 4.4 summarizes the biggest DOACROSS loops in benchmarks from Star-

bench [86], BOTS [96], and NAS. As shown in the table, the target loops in BT, SP, FT, and MG
are not DOACROSS loops. The column “Implemented” shows the implementation mechanism

in the existing parallel versions.

Among the loops that are identified as DOACROSS, two (in rgbyuv and tinyjpeg) are suitable

for pipeline implementation while the other three (kmeans, nqueens, and CG) can be paral-

lelized with reduction. As we mentioned before, the implementation choice has to be made by

the user. However, distinguishing which implementation is the best for a DOACROSS loop is rel-

atively easy since the inter-iteration dependences are reported. We verified that the DOACROSS

loop identified in tinyjpeg is implemented as a pipeline in the official parallel implementation.

However, the target loop in rgbyuv is an interesting case.
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1 for(int j = 0; j < args->pixels; j++) {

2 R = *in++;

3 G = *in++;

4 B = *in++;

5

6 Y = round(0.256788*R + 0.504129*G + 0.097906*B) + 16;

7 U = round(-0.148223*R - 0.290993*G + 0.439216*B) + 128;

8 V = round(0.439216*R - 0.367788*G - 0.071427*B) + 128;

9

10 *pY++ = Y;

11 *pU++ = U;

12 *pV++ = V;

13 }

Figure 4.7: The target loop in rgbyuv (bmark.c, line 151).
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Figure 4.8: CU graphs of the loop body of the loop in rgbyuv (bmark.c, line 151).

rgbyuv (Starbench)

The target loop in rgbyuv is in bmark.c, line 151. The source code of the loop is shown

in Figure 4.7. The target loop has five CUs: CU1 (line 2), CU2 (line 3), CU3 (line 4), CU4

(line 6–8), and CU5 (line 10–12). The CU graph of the loop body is shown on the left side

of Figure 4.8. Obviously, CU1, CU2, and CU3 are too small, so we consider them as a single

computation without losing significant parallelism, leading to the simplified CU graph shown

on the right side of Figure 4.8.

At the beginning we know nothing about the code of rgbyuv, just like a programmer who

parallelizes sequential code written by someone else. Simply following the simplified CU graph

in Figure 4.8, we found the loop can be parallelized as a three-stage pipeline. Since CU1 and

CU5 have self-dependences, the first stage and the third stage have to be sequential stages,

while the second stage can be a parallel stage. A parallel stage is a stage where data can be

90 4 CU-Based Parallelism Discovery



Table 4.5: Parallelism discovery results of gzip 1.3.5 and bzip2 1.0.2 compared to existing parallel
implementations. The table summarizes the number of suggestions and the most
important parallelization opportunity for each application.

gzip 1.3.5 bzip2 1.0.2

Number of suggestions 43 62

Location parallelized in

parallel implementation
pigz.c: 1478 bzip2smp.c: 81

Matching suggestion gzip.c: 1595 bzip2.c: 3793

# Iteration 284 104

Loop size 101 lines 34 lines

further divided and processed in parallel. We implement the pipeline using Intel TBB [95]. Each

stage is implemented as a filter class, and stages are connected using tbb::parallel_pipeline.

Moreover, the filter::serial_in_order attribute is specified for stages 1 and 3. In a word,

everything was done following the output of our tool, and we did not bother understanding the

code.

The best performance of our implementation appears when using 4 threads, with a speedup

of 2.29. Using more threads than the number of stages of a pipeline usually does not give better

performance, especially when most of the stages are sequential. When examining the official

parallel implementation of rgbyuv, we found that the target loop is parallelized as DOALL,

not DOACROSS. This means the inter-iteration dependences on CU1 and CU5 do not prevent

parallelism. This is true because the inter-iteration dependences are on pointers (in, pY, pU,

and pV), not the data to which they point. Thus, to utilize the DOALL parallelism we just need

to make the pointers local.

This example shows that simply following the output of our tool yields good speedup, and

understanding the code is still important. Nevertheless, our tool reveals interesting paralleliza-

tion opportunities and data dependences that potentially prevent parallelism, helping the users

to achieve a better implementation much faster.

DOACROSS loops identified in kmeans, nqueens and CG are implemented using reduction in

the official parallel implementations. The DOACROSS loops in kmeans and CG are similar to

the example shown in Figure 4.2, but the code is more complicated.

We further analyzed two well-known open-source programs gzip 1.3.5 and bzip2 1.0.2 for

DOACROSS parallelism. We choose these two applications because they are compression tools

and compression tools are famous for their pipeline work flow in which data is divided into

small chunks for processing. We want to see if our tool can detect such pipeline parallelism

resides in DOACROSS loops. For this reason, we use pigz 2.2.4, a parallel version of gzip 1.3.5,

and bzip2SMP 1.0, a parallel version of bzip2 1.0.2, as the parallel reference implementations

for comparison. Table 4.5 summarizes the results.
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gzip 1.3.5

gzip is a widely used file-compression tool and pigz [100] a popular parallel implementation

based on Pthreads. In gzip, files are broken down into blocks, and the algorithm iterates over

blocks, compressing them one by one. In the output of our tool, we find that the loop starting

at line 1595 is classified as DOACROSS loop, which iterates 284 times while other structures

are usually executed not more than ten times. Although four dependences are reported inside

the loop, the fact that it contains more than 100 lines of code and iterates 284 times makes it

an attractive parallelization target. After analyzing the code in detail, we realize that all four

dependences refer to global variables, which are used when compressing individual file blocks.

Based on these insights, we think that in spite of the four dependences this structure is worth

to be parallelized, given the large amount of work it performs.

The loop is parallelized in pigz. In the function parallel_compress at line 1478 in pigz.c,

pigz breaks the input into blocks of 128 KB and compresses them concurrently. However, this

function does more than what has been suggested by our simple discovery. It also calculates the

individual check values for each block in parallel, and contains some optimizations for parallel

IO. Nevertheless, the main idea of the underlying parallelization strategy is correctly identified.

Our tool also lists other interesting places as potential parallelization targets. For example,

there is a loop in the main function starting at line 3400, which iterates over user input files

after processing user options. Obviously, it would also be a good parallelization candidate

since compressing different files exhibits data parallelism. But it would require some effort to

resolve dependences, since the buffers in the sequential program are reused. pigz does not

parallelize this part. In the parallel implementation suggested by Ding et al. [101], this part is

also identified.

bzip2 1.0.2

bzip2 is another well-known compression tool. A number of parallel implementations ex-

ist, but their approaches differ. We chose bzip2SMP [102], a parallel implementation based on

Pthreads, for comparison because our methods are mainly designed for the shared-memory plat-

form. Our tool suggests that the loop starting at line 3793 inside the function handle_compress

iterates hundreds of times and consumes 83% of the function’s execution time. It is identified

as a DOACROSS loop, and data dependences come from accesses to the global data structure

EState* s. The loop contains two parts: one for the preparation of a new block and the other

for the compression of the block. They exchange state information through s, leading to a RAW

dependency between iterations. By examining the call graph starting from handle_compress,

we find calls to BZ2_compressBlock and BZ2_blockSort. Dependences inside them are also

anchored in the structure s, since the pointer of s is passed to these two functions as a parame-

ter. According to our understanding of the original bzip2 algorithm, we find that by duplicating

the EState structure, the block sorting stage of the pipeline can be parallelized, which means

that the blocks of a file can be compressed in parallel. Bzip2SMP adopts exactly the same

idea. The function performing the parallel block sort is threadFunction starting at line 81 in
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Table 4.6: SPMD-style tasks in BOTS benchmarks.

Benchmark Function SPMD-task
Implemented in

parallel version

Execution

time (%)

sort cilkmerge 3 3 34.4

cilksort 3 3 74.8

seqquick 7 7 22.6

seqmerge 7 7 52.0

sort 7 7 74.9

fib fib 3 3 ~100

fft fft 7 7 ~100

fft_aux 3 3 97.2

fft_twiddle_16 3 3 83.0

fft_unshuffle_16 3 3 12.7

floorplan add_cell 3 3 ~100

health sim_village 3 3 ~100

sparselu sparselu 3 3 34.4

bmod 7 7 89.6

strassen strassen_main 7 7 95.2

OptimizedStrassenMultiply 3 3 95.2

MultiplyByDivideAndConquer 3 3 82.0

FastNaiveMatrixMultiply 7 7 21.4

FastAdditiveNaiveMatrixMultiply 7 7 61.9

uts serTreeSearch 3 3 99.6

bzip2smp.c. However, the real parallel strategy is much more complex than we expected. The

same parallelization target was also found by Zhang et al. [13].

4.4.3 SPMD Tasks

We applied our approach to the BOTS [96] benchmarks to evaluate the discovery of SPMD-style

tasks. We choose BOTS because they contains many of the SPMD-style tasks we are looking for,

and such tasks rarely occur in other benchmarks. Results of the experiments are summarized

in Table 4.6. The evaluation work in this section is done by two members of our group Zia Ul

Huda and Rohit Atre.

Similar to the approach of analyzing DOACROSS loops, only hotspots in terms of execution

time are examined. In total, 20 hotspot functions from the BOTS benchmarks are analyzed

and 12 of them are classified as SPMD-style tasks, all of which are parallelized in the existing

parallel versions of the benchmarks.
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1 void fft_twiddle_16(int a, int b, COMPLEX * in, COMPLEX * out, COMPLEX * W,

2 int nW, int nWdn, int m)

3 {

4 int l1, i;

5 COMPLEX *jp, *kp;

6 REAL tmpr, tmpi, wr, wi;

7 if ((b - a) < 128) {

8 for (i = a, l1 = nWdn * i, kp = out + i; i < b; i++, l1 += nWdn, kp++) {

9 ... // omit 336-line loop body

10 }

11 }

12 else {

13 int ab = (a + b) / 2;

14 fft_twiddle_16(a, ab, in, out, W, nW, nWdn, m);

15 fft_twiddle_16(ab, b, in, out, W, nW, nWdn, m);

16 }

17 }

Figure 4.9: Souce code fragments of function fft_twiddle_16 in the BOTS benchmark fft.

fft (BOTS)

The code of one hotspot function, fft_twiddle_16, is shown in Figure 4.9. The loop body is

omitted since it does not affect the SPMD parallelism and is too long to fit in this section. This

function recursively calls itself twice (line 14, 15) using different sets of parameters. Moreover,

the two calls are guaranteed to run on different data ranges (specified by formal parameters a

and b) according to line 13. Since the two calls do not depend on each other, these are exactly

the SPMD-style tasks we discussed in Section 4.2.1.

Similar patterns are found at multiple places in fft, and we do not discuss them again. Ba-

sically, all the fft_twiddle_ functions and fft_unshuffle_ functions follow the same pattern.

These functions differ in the suffix, from 8 to 32. They are selected based on the input data size.

Thus, all are identified as SPMD-style tasks.

4.4.4 MPMD Tasks

To evaluate the detection of MPMD tasks, we applied our method to PARSEC benchmarks [97]

and two other applications: the open-source Ogg codec libVorbis and an Intel Concurrent Col-

lections (CnC) sample program FaceDetection. In contrast to SPMD tasks that widely exist in

BOTS benchmarks, MPMD tasks execute different code. Generally speaking, programs contain-

ing MPMD tasks perform multiple kinds of computations rather than a single computation on

big input data. This implies that it is more likely to find MPMD-tasks in larger programs in

terms of lines of code (LOC). This is the reason why the programs we use in this section are

generally bigger in terms of code size. Moreover, it is well known that pipeline and flow graph
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Table 4.7: Detection of MPMD tasks in PARSEC benchmarks and the multimedia applications
libVorbis, and FaceDetection.

Benchmark Function
Implemented in

parallel version

Our

solution
# threads Speedup

blackscholes CNDF no
omp

sections
4 1.00

canneal routing_cost_given_loc no
omp

sections
4 1.00

fluidanimate RebuildGrid no
omp

sections
4 1.00

fluidanimate ProcessCollisions no
omp

sections
4 1.00

fluidanimate ComputeForces
data

decomposition
pipeline 3 1.52

libVorbis main (encoder)
no parallel

version
pipeline 4 3.62

FaceDetection facedetector pipeline pipeline 32 9.92

patterns are common in multimedia processing applications. Two programs that process audio

(libVorbis) and images (FaceDetection) are included.

Table 4.7 summarizes the results of evaluating the detection of MPMD tasks. As the results

show, MPMD tasks are not the main type of parallelism in applications that performs simula-

tions. Only three benchmarks (blackscholes, canneal, and fluidanimate) contain MPMD tasks.

However, all the MPMD tasks found in these programs are from non-hotspot computations.

They are not parallelized in the official parallel implementations, and parallelizing them using

omp section does not give any speedup. The only interesting place in these programs is the

ComputeForces function in fluidanimate. The parallelization story, however, is similar to the

case study shown in Section 4.1.2. We parallelized the function body following the output CU

graph using TBB and achieved a speedup of 1.52 using three threads. On the contrary, the offi-

cial parallel version of fluidanimate shows this function is parallelized using data decomposition,

yielding almost linear speedup.

FaceDetection

FaceDetection is a simplified version of a cascade face detector used in the computer vision

community. The face detector consists of three different filters. As shown in Figure 4.10(a),

each filter rejects non-face images and lets face images pass to the next layer of the cascade.

An image will be considered a face if and only if all layers of the cascade classify it as a face.

The corresponding TBB flow graph is shown in Figure 4.10(b). A join node is inserted to buffer

all the boolean values. In order to decide whether an image is a face, every boolean value

corresponding to that specific image is needed. For this reason, we use the tag_matching
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Figure 4.10: Work flow and flow graph of FaceDetection.

buffering policy in the join node. tag_matching policy creates an output tuple only when it has

received messages at all the ports that have matching keys.

The three filters take 99.9% of the sequential execution time. We use 20,000 images as input.

The speedup of our TBB flow graph parallel version is 9.92× using 32 threads. To evaluate the

scalability of the parallel code, we compare the speedups achieved by the official Intel CnC

parallel version and our TBB flow graph version using different numbers of threads. The result

is shown in Figure 4.11.

The performance is comparable using two and four threads. When more than eight threads

are used, the official CnC parallel version outperforms ours. The reason is that the official

CnC parallel code is heavily optimized and restructured. For example, some data structures

are altered from vector to CnC item_collection. As shown in Figure 4.11, the official CnC

version is already two times faster than our TBB version when using a single thread because of

the optimization.

libVorbis

libVorbis is a reference implementation of the Ogg Vorbis codec. It provides both a standard

encoder and decoder for the Ogg Vorbis audio format. In this study, we analyzed the encoder

part. The suggested pipeline resides in the body of the loop that starts at file encoder_example.c,

line 212, which is inside the main function of the encoder. The pipeline contains only two

stages: vorbis_analysis(), which applies some transformation to audio blocks according to

the selected encoding mode (this process is called analysis), and the remaining part that actually

encodes the audio block. After investigating the loop of the encoding part further, we found it

to have two sub-stages: encoding and output.

96 4 CU-Based Parallelism Discovery



1 2 4 8 16 32
0

5

10

15

20

thread

sp
ee

du
p

Official Manual CnC Parallelization
Semi-automatic TBB Parallelization

Figure 4.11: FaceDetection speedups with different numbers of threads.

We added one more stage to the pipeline for serialization, in which we reorder the audio

blocks because we do not force audio blocks to be processed in order in the analysis and the

encoding phase. We end at with a four-stage pipeline with one stage each for analysis, encoding,

serialization, and output, respectively. We ran the test using a set of uncompressed wave files

with different sizes, ranging from 4 MB to 47 MB. As a result, the parallel version achieved an

average speedup of 3.62 with four threads.

4.4.5 Ranking Method

We also evaluated the precision of our ranking method. The results are shown in Table 4.1.

Column “# in top 30%" lists the number of suggestions matched by actual parallelization in the

OpenMP version (# identified) that end up in the top thirty percent after ranking. We believe

that only few programmers would examine all the suggestions one by one and that for most the

first 30% would be the upper limit. As one can see, 70.6% (96/136) of the matched suggestions

can be found among the top 30%. This means by examining only 30% of the suggestions, 70%

of the actually implemented parallelism can be explored.

We also verified whether the top 10 suggestions for each program are really parallelized in

the official OpenMP version. The results are listed in the column “# in top 10”. For most of

the programs, more than a half (for some of them even 90%) of the top 10 suggestions are

parallelized, proving the effectiveness of our ranking method.
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4.5 Limitations

Even assuming the data dependences obtained from a sequential program are complete and

precise, parallelism discovery approaches based on data and control dependence analyses still

produce false positives due to the lack of semantic information. We present an example in this

section to demonstrate the problem.

1 ...

2 Time start = get_current_time();

3 ...

4 // computations

5 ...

6 Time end = get_current_time();

7 TimeInterval elapsed = end - start;

8 ...

Figure 4.12: A simple but common time measurement method in benchmarks.

The code snippet shown in Figure 4.12 shows a very common time measurement method in

benchmarks. start and end record the time stamp right before and after the computations, and

the time elapsed during the computations are calculated based on the two recorded time stamps.

There is no data dependence between the variables used in recording time and the variables

used in computations. When constructing CUs using the bottom-up approach, time-related

computations form CUs that are independent of the CUs corresponding to the computations to

be measured, leading to MPMD-style parallel tasks. Such a result is a false-positive because

although there is no dependence between time measurements and actual computations, they

cannot run in parallel without losing their intended semantics.

Note that this example does not mean the CUs are incorrect. Actually, they are absolutely

correct according to their definition, which makes it possible to detect MPMD-style tasks that

are not aligned with source-language structures. This example shows that besides control and

data dependences, semantic information may also have an impact on parallelism.

It is very difficult to infer a programmer’s intention by analyzing the code unless the pro-

grammer specifies such information by certain means. To the best of our knowledge, it is an

open problem of dependence-based parallelism discovery approaches.

4.6 Summary

In this chapter, we have introduced CU-based parallelism discovery methods covering four kinds

of parallelism:

• DOALL loops: Loops that have no inter-iteration dependences
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• DOACROSS loops: Loops that have inter-iteration dependences, but iterations can still

overlap partially to explore parallelism

• SPMD-style tasks: Functions, that individual calls to which can run in parallel

• MPMD-style tasks: Different code sections that do not depend on each other via data

dependences

A ranking method is also presented to help users focus on the most interesting parallelization

opportunities.

We evaluated our CU-based parallelism discovery methods using four benchmark suites:

BOTS, PARSEC, NAS, and Starbench. All of the four suites contain sequential benchmark appli-

cations as well as their equivalent parallel versions. We have presented two evaluation methods.

After applying our method to the sequential benchmark applications, we 1) compared the iden-

tified parallelization opportunities to the existing parallel versions. For the benchmarks that

do not have corresponding parallel versions, we 2) implemented our own parallel versions for

these applications and measure the speedups.

In the experiment of DOALL loop discovery, our tool identified 92.5% of the loops paral-

lelized in the NAS benchmarks. Reasonable speedups are obtained when parallelizing textbook

examples in parallel programming, following the suggestions made by our tool. In the exper-

iments of DOACROSS loop and SPMD-style task discovery, all the hotspot loops and functions

that are classified as parallelizable are parallelized in the existing parallel versions of the bench-

marks, but the concrete implementations sometimes differ from the suggestions produced by

our tool. In the experiment of MPMD-style task discovery, not many MPMD tasks are found

in benchmarks and parallelizing them does not yield satisfying speedups. However, when an-

alyzing multimedia applications FaceDetection and libVorbis, MPMD-style tasks are common.

Parallelizing FaceDetection following the task graph produced by our tool gives a speedup of

9.92 using 32 threads.
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5 Further Applications of the Framework
When designing and implementing the DiscoPoP dependence profiler, we want it to be a profiler

that supports multiple data-dependence based analyses. As described in Chapter 2, the DiscoPoP

profiler provides a general foundation for parallelism discovery and other data-dependence-

based analysis techniques for both sequential and parallel programs. In this chapter, we

introduce three additional applications of the profiler: 1) characterizing features of DOALL

loops, 2) determining optimal parameters for software transactional memory, and 3) detecting

of communication patterns on multicore systems.

5.1 Characterizing Features for DOALL Loops

Instead of classifying DOALL loops only based on the existence of inter-iteration dependences,

Daniel Fried, an exchange program student worked in our group, tried to take more code fea-

tures into consideration, and discover those features that are important to decide whether a

loop is a DOALL loop. [60] Features are extracted based on the output of our profiler, including

data dependences, control-flow information, and metrics integrated into the program execution

tree. Table 5.1 summarizes the extracted features. Data dependences are further categorized

based on their directions and the scope of their source and sink.

Further, the method trains a classification model using supervised learning. In supervised

learning, the model adjusts itself by “learning” from a training data set. The data in the training

set is labeled: the expected output is always attached to a specific input. In this work, loops in

NAS benchmarks are divided into two sets, one used as the training set (630 loops, 126 with

positive labels, that is, parallelized in the existing parallel versions) and the other used as the

test set (160 loops, 21 with positive labels), for a split of roughly 80% / 20%. Three different

classification models are compared in this work: support vector machine (SVM) [103], decision

tree [104], and an ensemble of decision trees boosted with adaptive boosting (AdaBoost) [105].

Table 5.1: Dynamic features used for DOALL loop classification.

Feature Description

N_Inst Number of instructions within the loop

exec_times Total number of times the loop is executed

CFL Critical path length

ESP Estimated speedup

incoming_dep Dependency count of external instructions on loop instructions

internal_dep Dependency count between loop instructions

outgoing_dep Dependency count of loop instructions on external instructions
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Table 5.2: Feature importance in decision trees, calculated using weighted error reduction in an
AdaBoost ensemble of trees.

Feature Importance Feature Importance

N_Inst 0.12 internal_dep 0.06

internal_dep_RAW 0.09 incoming_dep_WAR 0.06

outgoing_dep_RAW 0.08 outgoing_dep_WAR 0.06

incoming_dep 0.08 CFL 0.05

incoming_dep_RAW 0.08 internal_dep_WAW 0.02

internal_dep_WAR 0.08 ESP 0.02

outgoing_dep 0.07 outgoing_dep_WAW 0.02

exec_times 0.07 incoming_dep_WAW 0.02

To analyze which features have a bigger impact on classifying DOALL looops, we compute

he feature importance in a decision tree by calculating a weighted sum of the reduction in

the impurity criterion that each feature provides across all nodes for which it is the splitting

point [106].

Intuitively, features that receive higher importance scores were used to split larger number

of training instances and resulted in larger impurity reductions in these splits. Importance for

a single tree may not be informative if the tree is a weak classifier, but if we have an ensemble

of trees (as we do in AdaBoost), we can average these feature importances across all the trees

in the ensemble, producing more robust feature scores. Table 5.2 shows the relative feature

importance calculated in this manner for the loops in the training set.

Unlike most of the related work which takes data dependences as the main or even the only

criterion of discovering parallelism, the top feature that decides whether a loop is parallelized

by an expert programmer is the number of instructions within the loop. That is why we always

consider hots pots first in Chapter 4. The order of the remaining features are within expectation.

RAW dependences are the most important dependences, and WAW dependences generally do

not prevent the parallelization of loops.

In the end, the three models are compared using two sets of features: all features and top

features. Top features are features with an importance score of 0.08 or greater. The results of

the comparison are summarized in Table 5.3.

When using all features, the SVM and decision-tree classifiers achieve nearly identical scores.

Boosting (with AdaBoost) significantly improves the precision of the decision tree resulting in a

higher F1 score, a measure of the accuracy of a test in statistical analysis. When using only the

most important features, as ranked by importance in the boosted ensemble of decision trees,

the performance of SVM and decision tree both increase in accuracy and F1 score, while the

performance of AdaBoost ensemble decreases slightly.
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Table 5.3: Classification scores on the held-out evaluation set, separated by loops with pragmas
and loops without pragmas.

Classifier
Identifying pragma presence Identifying pragma absence

Accuracy
Precision Recall F1 Precision Recall F1

Baseline 0.00 0.00 0.00 1.00 1.00 1.00 0.81

SVM - AF 0.46 0.62 0.53 0.94 0.89 0.92 0.85

Decision Tree - AF 0.45 0.62 0.52 0.94 0.88 0.91 0.85

AdaBoost DT - AF 0.72 0.62 0.67 0.94 0.96 0.95 0.92

SVM - TF 0.53 0.81 0.64 0.97 0.89 0.93 0.88

Decision Tree - TF 0.63 0.57 0.60 0.94 0.95 0.94 0.90

AdaBoost DT - TF 0.71 0.48 0.57 0.92 0.97 0.95 0.91

This application shows that the DiscoPoP profiler is capable of performing analysis other than

dependence-based parallelism discovery. The rich number of metrics produced by the profiler

allow many interesting properties of sequential programs or their structures to be studied.

5.2 Determining Optimal Parameters for Software Transactional Memory

Software transactional memory (STM) is becoming increasingly popular as a convenient way of

writing parallel programs. STM provides an atomic construct, called transaction, which is used

to protect shared memory locations from concurrent accesses by threads. Intermediate transac-

tional values are not visible to other transactions. STM executes transactions speculatively in

parallel and monitors memory locations accessed by active transactions. If executing transac-

tions do not conflict over shared memory locations, then they safely commit. In the event of a

conflict, only one transaction can proceed and the rest must abort and restart. Transactions log

operations during their execution so that they can restore the state of the program before the

transaction if a rollback is needed.

The size of a transaction has a significant impact on performance. If the transaction is too

short, then the overhead of STM APIs exceeds the performance gain of parallel execution and

may lead to an STM program which is slower than the sequential version of the same program.

On the other side, if the transaction is too large, then the cost of rollbacks in applications with

a high abort rate may reduce the speedup in STM applications.

Xiao et al. [61] presents a method of predicting the close-to-optimal size of a transaction

using linear regression and decision trees. The authors first identify potential transactions in

NAS benchmarks. Potential transactions are determined by applying DiscoPoP profiler on the

benchmarks and analyzing the CU graphs produced by the profiler. Table 5.4 shows the number

of transactions found in each of the benchmarks. Among the 46 transactions, 34 are used for

training the linear regression model and 12 are used for the validation.

The optimization method considers two more features other than the size of a transaction:

the size of the write-set and the size of the read-set. A transaction uses a write-set and a read-set
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Table 5.4: Number of transactions in NAS benchmarks. Transactions are determined by analyz-
ing the output of the DiscoPoP profiler.

Benchmark Number of transactions

LU 6

BT 12

CG 4

EP 3

IS 6

MG 6

FT 9

total 46

to record memory locations that it writes and reads, respectively. The write-set and the read-set

are usually maintained as linked lists. Take a write-set as an example. When a transaction

writes into a shared memory location, it inserts a new node to the linked list. During commit,

the transaction traverses the linked list to acquire locks and update the memory with new

transactional data. If the transaction fails to acquire a lock, then it aborts and restarts. So, a

transaction with a large write-set is more likely to abort.

The linear regression model trained using the three features is not as accurate as expected.

The R2 metric, which indicates how the data fit the model, is only 45% for the trained model.

Taking more features into consideration does not improve the results. However, further in-

vestigations of the trained model reveals that the error rate for transactions falls into three

categories: transactions with large negative error (class1), transactions with large positive er-

ror (class2), and transactions with small error (class3). This results inspired us to use a decision

tree to decide the class first, and then use a separate linear regression model for each class. On

average, the mixed model decreases the error rate from from 59% to 2.8%.

This application shows that the parallelization opportunities produced by our method are not

limited to a specific parallel programming model. In Chapter 4, we have parallelized programs

and benchmarks using OpenMP and TBB. And this application shows that they can also be

implemented using software transactional memory.

5.3 Detecting Communication Patterns on Multicore Systems

The performance of parallel applications very often depends on efficient communication. This

is as true for message passing as it is for communication via shared variables. Knowing the

communication pattern of a shared-memory kernel can therefore be important to discover

performance bottlenecks such as true sharing or to support software-hardware co-design. In

shared-memory programming, communication often follows the pattern of producer and con-

sumer. The producer thread writes a variable, after which the consumer thread reads the written
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value. The read happens before the next write occurs. Such a pattern can be represented as a

matrix, showing the communication intensity between producer and consumer threads.

Producer-consumer behavior describes a read-after-write relation between memory opera-

tions, which can be easily derived from the RAW dependences produced by our profiler. With

detailed information such as thread IDs available, we can generate the communication matrix

directly from the output of our profiler. Arya Mazaheri et al. [107] produces the communica-

tion patterns for splash2x benchmarks [108], which are shown in Figure 5.1. The ticks of the

vertical and horizontal axes represent producer and consumer threads, respectively. The darker

the square the stronger the communication between the the two threads. Compared to a for-

mer analysis by Barrow-Williams et al. [109], we identified exactly the same communication

patterns.

Former approaches [109, 110] that characterize communication patterns are usually built on

top of simulators, which can easily have a slowdown of more than a factor of 1,000× if in-order

processing is required. Unfortunately, in-order processing is required to produce communication

patterns because producers and consumers need to be distinguished. With the help of our

profiler, the same communication patterns can be obtained more efficiently since our profiler

has only a 261× slowdown on average when profiling multi-threaded Starbench benchmarks.

This applications shows that the output of DiscoPoP profiler is capable of supporting various

program analysis and optimization techniques, including program behavior analysis and auto

tuning for both sequential and parallel programs.

5.4 Summary

In this chapter, we have introduced three applications of the profiler other than parallelism

discovery, which are 1) characterizing features of DOALL loops, 2) determining optimal pa-

rameters for software transactional memory, and 3) detecting of communication patterns on

multicore systems. These applications show that the DiscoPoP dependence profiler is a generic

data-dependence profiler that supports multiple data-dependence based program analyses.
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6 Conclusion and Outlook
This thesis presents a novel dynamic program analysis framework for the discovery of potential

parallelism in sequential programs. The framework contains two main components: an efficient

data-dependence profiler and a set of parallelism discovery algorithms based on a language-

independent concept called computational unit. The framework is designed to be generic to

support program analysis techniques other than parallelism discovery.

Dynamic data-dependence profilers are well-known for their high overhead in time and

memory consumption. To keep the profiling overhead within reasonable limits, traditional

profilers are usually customized so that only the information needed for a specific analysis or

tool is collected. This solution leads to a dissatisfactory situation: every time a new analysis tool

is constructed, existing profilers cannot be reused. Creating a new one is not only expensive

and inconvenient, but it also makes the final analyses or tools hard to compare since they are

based on different profiling techniques.

To enable reuse without having to accept compromises in terms of efficiency, we presented

a parallel and lock-free data-dependence profiler that can serve as a uniform basis for different

dependence-based analyses. While its time and space overhead stays within practical limits, our

profiler also supports multi-threaded code. In this way, it supports not only date-dependence

analyses for multi-threaded code, but also tuning and debugging approaches where the nec-

essary information can be derived from dependences. While performing an exhaustive de-

pendence search with 16 profiling threads, our lock-free parallel design limited the average

slowdown to 78× and 93× for sequential NAS and Starbench applications, respectively. Using a

signature with 108 slots, the memory consumption did not exceed 649 MB (NAS) and 1390 MB

(Starbench), while producing less than 0.4% false positives and less than 0.1% false negatives.

In this thesis, we introduce a novel concept called computational unit (CU), and use CUs

to represent sequential programs. CUs enable parallelism discovery for code sections that are

not aligned with source language structures. A sequential program is represented as a set of

CUs and data dependences among them, which we call a CU graph. We further introduced CU-

based parallelism discovery methods that unify the identification of DOALL loops, DOACROSS

loops, SPMD tasks, and MPMD tasks. Our approach found 92.5% of the parallel loops in NAS

benchmarks and successfully identified SPMD tasks and MPMD tasks at different level of lan-

guage constructs. Furthermore, we provide an effective ranking method, selecting the most

appropriate parallel opportunities for the user. Our results show that 70% of the implemented

parallelism in NPB can be explored by examining only the top 30% of our suggestions.

Nonetheless, several enhancement opportunities arise. For the data-dependence profiler, we

believe that combining our method with static techniques will further reduce the time and space

overhead substantially, if a slightly lower accuracy is still acceptable. Moreover, designing the
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shadow memory in a more efficient way could reduce the memory footprint. For the paral-

lelism discovery methods, further efforts will be directed towards a more precise estimation of

parallelization effort and expected speedup to give the users a more comprehensible overview

of the parallelism contained in the target program. We also want to explore more potentials

of the concept of CUs to support multiple parallel programming models and different program

analyses other than parallelism discovery. We have shown one main application, parallelism

discovery, and three other applications of our program analysis framework in this thesis, which

are characterizing features of DOALL loops, determining optimal parameters for software trans-

actional memory, and detecting of communication patterns on multicore systems. We are using

our framework for developing other program analyses, such as techniques needed for energy-

oriented program analysis and auto-tuning. Overall, we believe that the work presented in this

thesis provides the foundation for a both comprehensive and practical tool that can significantly

help programmers parallelize large numbers of sequential legacy code.
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