67 research outputs found

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    Petri net implementation in programmable logic controllers: methodology for development and validation

    Get PDF
    Lead times are key to good market positioning of providers of automated solutions based on a programmable logic controller (PLC). Testing control software against a digital twin (DT) of the process, any programming errors that may have incurred are detected before commissioning, which reduces project duration. This work raises the possibility of reducing that probability of error when programming discrete event dynamic systems (DEDS), by implementing a Petri net (PN) managing algorithm. A framework is presented which combines the use of this algorithm, by means of pre-incidence and post-incidence matrices and initial marking vector of a net, with code validation through emulation. A use case is brought forward in which the control program of a sequential process with parallel operations is implemented, with both virtual (VC) and real commissioning

    Manufacturing Systems Line Balancing using Max-Plus Algebra

    Get PDF
    In today\u27s dynamic environment, particularly the manufacturing sector, the necessity of being agile, and flexible is far greater than before. Decision makers should be equipped with effective tools, methods, and information to respond to the market\u27s rapid changes. Modelling a manufacturing system provides unique insight into its behavior and allows simulating all crucial elements that have a role in the system performance. Max-Plus Algebra is a mathematical tool that can model a Discrete Event Dynamic System in the form of linear equations. Whereas Max-Plus Algebra was introduced after the 1980s, the number of studies regarding this tool and its applications is fewer than regarding Petri Nets, Automata, Markov process, Discrete Even Simulation and Queuing models. Consequently, Max-Plus Algebra needs to be applied and tested in many systems in order to explore hidden aspects of its function and capabilities. To work effectively; the production/assembly line should be balanced. Line balancing is one of the manufacturing functions that tries to divide work equally across the production flow. Car Headlight Manufacturing Line as a Discrete Manufacturing System is considered which is a combination of manufacturing and assembly lines composed of different stations. Seven system scenarios were modeled and analyzed using Max-Plus to balance the car headlights production line. Key Performance Indicators (KPIs) are used to compare the various scenarios including Cycle Time, Average Deliver Rate, Total Processing Lead Time, Stations\u27 Utilization Rate, Idle Time, Efficiency, and Financial Analysis. FlexSim simulation software is used to validate the Max-Plus models results and its advantages and drawbacks compared with Max-Plus Algebra. This study is a unique application of Max-Plus Algebra in line balancing of a manufacturing system. Moreover, the problem size of the considered model is at least twice (12 stations) that of previous studies. In the matter of complexity, seven different scenarios are developed through the combination of parallel stations and buffers. Due to that the last scenario is included four parallel stations plus two buffers Based on the findings, the superiority of scenario 7 compared to other scenarios is proved due to its lowest system delivering first output time (14 seconds), best average delivery rate (24.5 seconds), shortest cycle time (736 seconds), shortest total processing lead time (11,534 seconds), least percentage of idle time (12%), lowest unit cost ($6.9), and highest efficiency (88%). However, Scenario 4 has the best utilization rate at 75%

    Laser-driven charged particle transport in warm dense matter and plasma

    Get PDF
    [EN]This thesis focuses on the physics of intense laser-generated charged particle beam transport. The two important applications related to inertial confinement fusion and particle acceleration: (i) the transport and collimation of fast electrons created in high intensity laser-matter interactions, and (ii) ion stopping power close to the Bragg peak in extreme states of matter. Both topics have been investigated in an integrated approach that combines experimental campaigns with detailed theoretical and numerical studies used to support the experiments both in the design prior to the experiments being carried out, and in the analysis of the experimental results afterwards. The experiments presented here are are the result of a long and extended collaboration with research institutions across the EU and abroad—without whom this work would not been possible. The most important results achieved in this work can be stated as following: • A first detailed parametric investigation of relativistic electron beam collimation as a controllable and reproducible technique by using the double pulse technique for fast Ignition and laser-particle and radiation sources acceleration. • The establishment of a dedicated workstation for laser-driven ion sources implementation for applications including generation, selection and transport of proton beams. • A first experimental measurement of proton stopping power close to the Bragg peak region in Warm Dense Matter for laser Inertial Confinement Fusion and proton particle applications using laser-driven ion sources

    Performance evaluation of warehouses with automated storage and retrieval technologies.

    Get PDF
    In this dissertation, we study the performance evaluation of two automated warehouse material handling (MH) technologies - automated storage/retrieval system (AS/RS) and autonomous vehicle storage/retrieval system (AVS/RS). AS/RS is a traditional automated warehouse MH technology and has been used for more than five decades. AVS/RS is a relatively new automated warehouse MH technology and an alternative to AS/RS. There are two possible configurations of AVS/RS: AVS/RS with tier-captive vehicles and AVS/RS with tier-to-tier vehicles. We model the AS/RS and both configurations of the AVS/RS as queueing networks. We analyze and develop approximate algorithms for these network models and use them to estimate performance of the two automated warehouse MH technologies. Chapter 2 contains two parts. The first part is a brief review of existing papers about AS/RS and AVS/RS. The second part is a methodological review of queueing network theory, which serves as a building block for our study. In Chapter 3, we model AS/RSs and AVS/RSs with tier-captive vehicles as open queueing networks (OQNs). We show how to analyze OQNs and estimate related performance measures. We then apply an existing OQN analyzer to compare the two MH technologies and answer various design questions. In Chapter 4 and Chapter 5, we present some efficient algorithms to solve SOQN. We show how to model AVS/RSs with tier-to-tier vehicles as SOQNs and evaluate performance of these designs in Chapter 6. AVS/RS is a relatively new automated warehouse design technology. Hence, there are few efficient analytical tools to evaluate performance measures of this technology. We developed some efficient algorithms based on SOQN to quickly and effectively evaluate performance of AVS/RS. Additionally, we present a tool that helps a warehouse designer during the concepting stage to determine the type of MH technology to use, analyze numerous alternate warehouse configurations and select one of these for final implementation

    Research and technology

    Get PDF
    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics

    A Behavioral Design Flow for Synthesis and Optimization of Asynchronous Systems

    Get PDF
    Asynchronous or clockless design is believed to hold the promise of alleviating many of the challenges currently facing microelectronic design. Distributing a high-speed clock signal across an entire chip is an increasing challenge, particularly as the number of transistors on chip continues to rise. With increasing heterogeneity in massively multi- core processors, the top-level system integration is already elastic in nature. Future computing technologies (e.g., nano, quantum, etc.) are expected to have unpredictable timing as well. Therefore, asynchronous design techniques are gaining relevance in mainstream design. Unfortunately, the field of asynchronous design lacks mature design tools for creating large-scale, high-performance or energy-efficient systems. This thesis attempts to fill the void by contributing a set of design methods and automated tools for synthesizing asynchronous systems from high-level specifications. In particular, this thesis provides methods and tools for: (i) generating high-speed pipelined implementations from behavioral specifications, (ii) sharing and scheduling resources to conserve area while providing high performance, and (iii) incorporating energy and power considerations into high-level design. These methods are incorporated into a comprehensive design flow that provides a choice of synthesis paths to the designer, and a mechanism to explore the spectrum between them. The first path specifically targets the highest-performance implementations using data-driven pipelined circuits. The second path provides an alternative approach that targets low-area implementations, providing for optimal resource sharing and optimal scheduling techniques to achieve performance targets. Finally, the third path through the design flow allows the entire spectrum between the two extremes to be explored. In particular, it is a hybrid approach that preserves a pipelined architecture but still allows sharing of resources. By varying performance targets, a wide range of designs can be realized. A variety of metrics are incorporated as constraints or cost functions: area, latency, cycle time, energy consumption, and peak power. Experimental results demonstrate the capability of the proposed design flow to quickly produce optimized specifications. By automating synthesis and optimization, this thesis shows that the designer effort necessary to produce a high-quality solution can be significantly reduced. It is hoped that this work provides a path towards more mature automation and design tools for asynchronous design

    Análise de alcançabilidade em sistemas max plus incertos

    Get PDF
    Orientadores: Rafael Santos Mendes, Laurent Hardouin, Mehdi LhommeauTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Os Sistemas a Eventos Discretos (SEDs) constituem uma classe de sistemas caracterizada por apresentar espaço de estados discreto e dinâmica dirigida única e exclusivamente pela ocorrência de eventos. SEDs sujeitos aos problemas de sincronização e de temporização podem ser descritos em termos de equações lineares usando a álgebra max-plus. A análise de alcançabilidade visa o cálculo do conjunto de todos os estados que podem ser alcançados a partir de um conjunto de estados iniciais através do modelo do sistema. A análise de alcançabilidade de sistemas Max Plus Lineares (MPL) pode ser tratada por meio da decomposição do sistema MPL em sistemas PWA (Piece-Wise Affine) e de sua correspondente representação por DBM (Difference-Bound Matrices). A principal contribuição desta tese é a proposta de uma metodologia similar para resolver o problema de análise de alcançabilidade em sistemas MPL sujeitos a ruídos limitados, chamados de sistemas MPL incertos ou sistemas uMPL (uncertain Max Plus Linear Systems). Primeiramente, apresentamos uma metodologia para particionar o espaço de estados de um sistema uMPL em componentes que podem ser completamente representados por DBM. Em seguida, estendemos a análise de alcançabilidade de sistemas MPL para sistemas uMPL. Além disso, a metodologia desenvolvida é usada para resolver o problema de análise de alcançabilidade condicional, o qual esta estritamente relacionado ao cálculo do suporte da função de probabilidade de densidade envolvida no problema de filtragem estocásticaAbstract: Discrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics are entirely driven by the occurrence of asynchronous events over time. Linear equations in the max-plus algebra can be used to describe DEDS subjected to synchronization and time delay phenomena. The reachability analysis concerns the computation of all states that can be reached by a dynamical system from an initial set of states. The reachability analysis problem of Max Plus Linear (MPL) systems has been properly solved by characterizing the MPL systems as a combination of Piece-Wise Affine (PWA) systems and then representing each component of the PWA system as Difference-Bound Matrices (DBM). The main contribution of this thesis is to present a similar procedure to solve the reachability analysis problem of MPL systems subjected to bounded noise, disturbances and/or modeling errors, called uncertain MPL (uMPL) systems. First, we present a procedure to partition the state space of an uMPL system into components that can be completely represented by DBM. Then we extend the reachability analysis of MPL systems to uMPL systems. Moreover, the results on reachability analysis of uMPL systems are used to solve the conditional reachability problem, which is closely related to the support calculation of the probability density function involved in the stochastic filtering problemDoutoradoAutomaçãoDoutor em Engenharia Elétrica164765/2013-199999.002340/2015-01CNPQCAPE
    • …
    corecore