
A Behavioral Design Flow for Synthesis and
Optimization of Asynchronous Systems

John B. Hansen

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2012

Approved by:

Montek Singh

Anselmo Lastra

Sanjoy Baruah

Luciano Lavagno

Michael Theobald

c© 2012

John B. Hansen

ALL RIGHTS RESERVED

ii

ABSTRACT

JOHN B. HANSEN: A Behavioral Design Flow for Synthesis and
Optimization of Asynchronous Systems.
(Under the direction of Montek Singh.)

Asynchronous or clockless design is believed to hold the promise of alleviating many

of the challenges currently facing microelectronic design. Distributing a high-speed

clock signal across an entire chip is an increasing challenge, particularly as the number of

transistors on chip continues to rise. With increasing heterogeneity in massively multi-

core processors, the top-level system integration is already elastic in nature. Future

computing technologies (e.g., nano, quantum, etc.) are expected to have unpredictable

timing as well. Therefore, asynchronous design techniques are gaining relevance in

mainstream design. Unfortunately, the field of asynchronous design lacks mature design

tools for creating large-scale, high-performance or energy-efficient systems.

This thesis attempts to fill the void by contributing a set of design methods and

automated tools for synthesizing asynchronous systems from high-level specifications.

In particular, this thesis provides methods and tools for: (i) generating high-speed

pipelined implementations from behavioral specifications, (ii) sharing and scheduling

resources to conserve area while providing high performance, and (iii) incorporating

energy and power considerations into high-level design.

These methods are incorporated into a comprehensive design flow that provides a

choice of synthesis paths to the designer, and a mechanism to explore the spectrum

between them. The first path specifically targets the highest-performance implemen-

tations using data-driven pipelined circuits. The second path provides an alternative

approach that targets low-area implementations, providing for optimal resource sharing

and optimal scheduling techniques to achieve performance targets. Finally, the third

iii

path through the design flow allows the entire spectrum between the two extremes to be

explored. In particular, it is a hybrid approach that preserves a pipelined architecture

but still allows sharing of resources. By varying performance targets, a wide range of

designs can be realized. A variety of metrics are incorporated as constraints or cost

functions: area, latency, cycle time, energy consumption, and peak power. There are

several long-standing challenging problems in resource sharing, many of which have

been solved optimally for the first time as part of the research for this dissertation.

Experimental results demonstrate the capability of the proposed design flow to

quickly produce optimized specifications. By automating synthesis and optimization,

this thesis shows that the designer effort necessary to produce a high-quality solution

can be significantly reduced. It is hoped that this work provides a path towards more

mature automation and design tools for asynchronous design.

iv

ACKNOWLEDGMENTS

I could not have completed my thesis without the extraordinary support of many people.

First of all, I would like to thank my advisor, Montek Singh, for not only his academic

support, but personal support; he helped me perform at my best even at times when

my motivation was lacking. It’s hard to keep track of the countless times he spent late

evenings (or early mornings) assisting me with papers and presentations. Thank you,

Montek.

Next, I would like to thank my committee for all their help in completing this

dissertation. Sanjoy Baruah, Anselmo Lastra, Luciano Lavagno, and Michael Theobald

have all provided invaluable feedback on this work. I’d especially like to thank Luciano

Lavagno and Michael Theobald for being willing to do so remotely, which I know was

a very difficult task.

I would like to thank several others who did not serve on my committee but who

have provided assistance along the way. Leandra Vicci and John Thomas have been

extremely helpful over the years, particularly in aiding our group with the experimental

EUCLID project, and allowing us to use the facilities at the MSL lab. I’d also like to

thank John Poulton who served on my M.S. committee and helped evaluate some of

my earlier research. On the administrative side, I’d like to thank Janet Jones, Tim

Quigg, Jodie Turnbull, Dorothy Turner, and Missy Wood for everything they did to

make sure I stayed on track, completed my requirements, and had enough funding to

continue.

I would like to thank several funding sources for supporting my research, including

DARPA for a grant under the DARPA CLASS (Clockless Logic Analysis, Synthesis and

Systems) program, National Science Foundation (NSF) for grants CCF-0702712 and

v

OCI-1127361, and, of course, the Computer Science department for multiple teaching

assistantship opportunities.

Outside of the realm of computer science, I would like to thank my friends for

providing a welcome distraction from the stress of research. While this list cannot be

fully enumerated, I would particularly like to mention James Culp, Gennette Gill, and

Diane Losardo.

Finally, I would like to thank my family; I could never have completed this research

without their support. This thesis is dedicated to the memory of my grandfather, John

K. Hansen, who I miss greatly.

vi

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xv

3inLIST OF ABBREVIATIONS . xix

1 Introduction . 1

1.1 Motivation and Goals . 1

1.1.1 Domain . 1

1.1.2 Objectives . 3

1.1.3 Thesis Statement . 4

1.2 Past Approaches and Current Challenges 4

1.3 Contributions . 6

1.3.1 Proposed Design Flow . 6

1.3.2 Compiler and Source-Level Optimization 7

1.3.3 Optimal Resource Sharing and Scheduling 9

1.3.4 Pipelining With Shared Resources 10

1.3.5 Energy and Power Considerations 10

1.4 Significance of Contributions . 11

1.5 Organization of Thesis . 13

vii

2 Background . 14

2.1 Asynchronous Architectures . 14

2.1.1 Pipelined Architectures . 15

2.1.2 Shared-Resource Architectures 18

2.1.3 Buffering Requirements (Slack-Matching) 19

2.2 Languages, Representations, and Compilation 20

2.2.1 Behavioral Description Languages 21

2.2.2 Graphical Representations . 23

2.2.3 Compiler Flow . 27

2.2.4 The Haste Design Flow . 30

2.3 Analysis Methods . 31

2.3.1 Performance Metrics . 31

2.3.2 Canopy Graphs . 33

2.3.3 Maximum cycle mean . 35

2.3.4 Simulation . 36

2.4 Summary . 36

3 Data-Driven Design: Unlimited Resources 38

3.1 Introduction . 40

3.2 Background and Previous Work . 43

3.2.1 The Haste Design Flow . 43

3.2.2 Asynchronous Pipelining . 45

3.2.3 Previous Work . 47

3.3 Basic Approach . 48

3.3.1 Method Overview . 48

3.3.2 Class of Specifications Handled 51

3.3.3 Parallelizing Transformation . 53

viii

3.3.4 Pipelining Transformation . 55

3.4 Advanced Techniques . 57

3.4.1 Arithmetic Optimization . 57

3.4.2 Conditional Optimization . 60

3.4.3 Optimization of Loops . 63

3.4.4 Communication Optimization 64

3.5 Results . 66

3.6 Conclusion . 69

4 Resource-limited Design: Unpipelined 73

4.1 Introduction . 74

4.2 Background and Previous Work . 76

4.2.1 ILP Approaches . 77

4.2.2 Graph-Based Approaches . 80

4.2.3 Other Approaches and Heuristics 81

4.3 Search Space Formulation . 81

4.3.1 Preliminaries: Input Specification 82

4.3.2 Scheduling as a String Permutation Problem 84

4.3.3 Representing and Exploring the Search Space 86

4.4 Search Strategies . 91

4.4.1 Resource-Constrained Time-Minimization 91

4.4.2 Area-Constrained Time-Minimization 97

4.4.3 Time-Constrained Area-Minimization 100

4.4.4 Multi-Constrained Search . 102

4.4.5 Binding . 103

4.5 Generalized Mapping Extension . 103

4.5.1 Modified annotations . 104

ix

4.5.2 Expanding the search space . 105

4.5.3 Modified time bound . 106

4.6 Results . 108

4.6.1 Setup . 108

4.6.2 Benchmark Description . 109

4.6.3 Discussion of Results . 110

4.7 Conclusion . 113

5 Resource-limited Design: Pipelined . 116

5.1 Introduction . 116

5.2 Previous Work . 120

5.3 Basic Graphical Model . 121

5.3.1 Dependence Graphs . 121

5.3.2 Cycle Time Analysis . 122

5.4 Extended Graphical Model . 123

5.4.1 Modeling Write-After-Read (WAR) Constraints 124

5.4.2 Inferring Buffering Requirements 125

5.4.3 Modeling Buffer Delays . 127

5.4.4 Modeling Resource Sharing . 128

5.4.5 Converting the Graph to Architecture-Ready Form 130

5.5 Architectural Model . 132

5.5.1 Overview . 133

5.5.2 Components . 134

5.6 Optimal Problem Formulation . 136

5.6.1 Overview of Approach . 137

5.6.2 Scheduling, Binding, and Allocation: Branch and Bound 137

5.6.3 Buffering and Cycle Time Constraints: ILP 140

x

5.7 Hierarchical Extension: Block-based Modeling 143

5.7.1 Overview . 143

5.7.2 Input Specifications . 145

5.7.3 Modeling Blocks . 146

5.7.4 Hierarchical Composition . 166

5.7.5 Hierarchical Area-Minimization 168

5.8 Results . 170

5.8.1 Setup . 170

5.8.2 Discussion of Results . 171

5.9 Conclusion . 174

6 Energy and Power Considerations . 176

6.1 Introduction . 176

6.2 Background . 178

6.2.1 Energy and Power . 178

6.2.2 Previous Work . 179

6.3 Incorporating Energy and Power Constraints in Scheduling 180

6.3.1 Resource-constrained time-minimization 181

6.3.2 Enumerating the allocation search space 185

6.3.3 Energy-Minimization . 186

6.4 Voltage Scaling . 189

6.4.1 Objective and Preliminaries . 189

6.4.2 Exact Problem Formulation: Convex Optimization 190

6.4.3 Basic Heuristic Method: de
dt

. 192

6.4.4 Advanced Heuristic Method: dE
dL

. 195

6.4.5 Minimizing Unique Voltages . 196

6.5 Results . 197

xi

6.5.1 Setup . 198

6.5.2 Benchmark Description . 200

6.5.3 Discussion of Results . 201

6.6 Conclusion . 205

7 Conclusion . 211

7.1 Summary of Contributions . 211

7.2 Future Work . 213

BIBLIOGRAPHY . 215

xii

LIST OF TABLES

3.1 Performance of original and transformed specifications 70

3.2 Performance improvement through operator pipelining 71

3.3 Area and code length . 72

4.1 Sample RCSTTF bound for two adders 96

4.2 Modified RCSTTF bound for one adder (6 unit latency) and one ALU

(10 unit latency) . 107

4.3 Functional unit parameters . 112

4.4 DFG nodes per benchmark . 112

4.5 Run-time and results for time-constrained area minimization 113

4.6 Run-time and results for area-constrained latency minimization 114

4.7 Run-time comparison for both time and area constrained synthesis for

DotProd8 . 114

4.8 Effect of optimization removal on run-time and total nodes explored . . 115

5.1 Functional unit parameters . 173

5.2 Functional unit parameters . 173

5.3 Run-time and results for throughput-constrained area-minimization . . 174

5.4 Effect of cycle-time constraint and iteration count on implementation area175

5.5 Effect of unroll count and block size on implementation area and tool

performance for TEA benchmark . 175

6.1 DFG nodes per benchmark . 204

6.2 Function unit parameters . 205

6.3 Constraints and results for each benchmark 206

xiii

6.4 Function unit parameters . 207

6.5 Benchmark parameters . 208

6.6 Comparison of optimal and heuristic methods 209

6.7 Normalized energy versus number of unique voltages 210

xiv

LIST OF FIGURES

1.1 Proposed design flow . 8

2.1 Simple asynchronous pipeline . 16

2.2 Synchronous vs. asynchronous communication 16

2.3 Shared-resource architecture . 19

2.4 Slack mismatch example . 20

2.5 GCD example . 22

2.6 Abstract syntax tree example . 24

2.7 Control/data-flow graph example . 25

2.8 Petri net example . 26

2.9 Common high-level synthesis flow . 27

2.10 Haste example . 30

2.11 Basic canopy graph . 34

3.1 Data-driven design flow . 39

3.2 Haste example . 44

3.3 Control dominated (top) vs. data-driven (bottom) 45

3.4 Original implementation . 49

3.5 Parallelized implementation . 49

3.6 Pipelined implementation . 50

3.7 Parallelized and pipelined implementation 50

3.8 Handling cycles: a) cyclic dependency graph, b) corresponding source,

c) treating cycle as atomic statement, and d) optimized source. 52

3.9 Precedence graph with parallel groupings 54

xv

3.10 Operator pipelining via source code . 59

3.11 Replacing conditionals with conditional assignments 60

3.12 Early and late decision in conditionals 62

3.13 Communication optimization via directed graph 65

4.1 Single-token, shared-resource design flow 74

4.2 Illustration of differences between synchronous (left) and asynchronous

(right) scheduling . 78

4.3 DFG example annotated with STTS and STTF properties (each oper-

ation executes for 8 time units) . 84

4.4 Partial expansion of search space for a three-statement DAG 86

4.5 Pruning via lexicographical ordering . 89

4.6 Basic algorithm for resource-constrained time-minimization 92

4.7 Algorithm for selecting child nodes in the DAG 93

4.8 Allocation search space for two function unit types 98

4.9 Algorithm for area-constrained time-minimization 99

4.10 Algorithm for time-constrained area-minimization 101

4.11 Full expansion of the DAG for a two-operation DFG with one ALU and

one multiplier . 105

5.1 Multi-token, shared-resource design flow 118

5.2 Simple code example . 121

5.3 a) Unfolded and b) folded dependence graphs 122

5.4 Adding a) data, b) buffering, and c) resource arcs to the graph 124

5.5 Inferring buffering requirements and modeling buffer delays 126

5.6 a) Sample DFG, b) unshared architecture, and c) shared architecture

with buffering . 132

xvi

5.7 a) Buffer and b) forking data latch implementations 134

5.8 Shared resource implementation . 136

5.9 Basic optimal area-minimization algorithm 139

5.10 a) Original DFG, b) block-partitioned DFG, and c) block-partitioned

DFG after blocks Y and Z are scheduled and simplified 144

5.11 Block Y and its associated internal interface nodes, A, B, and C 147

5.12 Simplifying the internals for Block Y (reverse path not shown for original

graph) . 148

5.13 Performing a single-path approximation on Block Y (reverse path not

shown) . 150

5.14 Modeling a block interface as a canopy graph 151

5.15 Removing redundant arcs from the canopy graph 153

5.16 Näıve approximation of throughput constraints 154

5.17 Our method’s approximation of throughput constraints 155

5.18 Converting a block to a two-port representation 157

5.19 Conditional assignment . 159

5.20 Early evaluation . 160

5.21 a) Loop body without control elements and b) loop body with control

elements inserted . 163

5.22 Composing sequential blocks into a single block 166

5.23 Composing parallel blocks into a single block 167

5.24 Basic hierarchical area-minimization algorithm 169

6.1 Full expansion of the DAG for a two-operation DFG with one ALU and

one multiplier . 183

6.2 Allocation search space for two functional unit types 186

6.3 Basic algorithms for energy-minimization 188

xvii

6.4 Algorithm for de
dt

based energy minimization 193

6.5 Parallel example of de
dt

scaling . 193

6.6 Sequential example of de
dt

scaling . 194

6.7 Algorithm for dE
dL

based energy minimization 196

6.8 Example of abutment in dE
dL

scaling . 197

6.9 Grouping algorithm for voltages . 198

xviii

LIST OF ABBREVIATIONS

ALU Arithmetic and Logic Unit

ASIC Application-Specific Integrated Circuit

AST Abstract Syntax Tree

CDFG Control/Data-Flow Graph

DAG Directed Acyclic Graph

dE
dL

Derivative of total energy consumption with respect to total latency

de
dt

Derivative of operation energy consumption with respect to time

DFG Data-Flow Graph

DSE Design-Space Exploration

FPGA Field-Programmable Gate Array

GALS Globally-Asynchronous Locally-Synchronous

HDL Hardware Description Language

HLS High-level Synthesis

NoC Network-on-Chip

SoC System-on-Chip

xix

Chapter 1

Introduction

1.1 Motivation and Goals

1.1.1 Domain

Most of digital hardware today is clocked or synchronous. However, synchronous hard-

ware design is facing significant challenges as we push for higher clock speeds and

more complex chips. Aside from the incredible task of optimizing designs year after

year, physical properties of circuits at the current scale and speed are becoming major

roadblocks. For example, skew associated with high-fanout clock signals puts a great

burden on the designer by increasing design time, transistor variability reduces the

yield of chips at fabrication, and energy consumption at low process sizes and billions

of transistors burdens the consumer (as well as the environment). Because of variabil-

ity, designers must either slow chips by introducing large safety margins or contend

with lower yields.

Especially as we shift more and more towards mobile hardware such as laptops and

cell phones, consumer demands on chips are shifting; design processes should as well.

We need chips with greater energy efficiency (for longer battery life) and better electro-

magnetic compatibility (e.g., lower noise emission for chips on cell phones). At the same

time, we must improve designer efficiency by reducing design effort. Moore’s law sug-

gests that more transistors will become available, and, as a result, designer productivity

must go up to produce more complex chips in the same time frame. Therefore, we need

to be able to re-use components; they must be flexible and modular. Unfortunately,

clocking interferes with re-usability due to global timing requirements.

Beyond conventional computing, emerging technologies are trending increasingly

towards domains where global clocks become impractical. Multi-core and distributed

systems, globally-asynchronous locally-synchronous systems (GALS), and network-on-

chip (NoC) are examples where the top-level system integration is already becoming

elastic in nature. Technologies even further out on the horizon, such as quantum

and DNA-based computing are expected to have unpredictable timing as well, further

highlighting the need for an alternate paradigm to global clocking.

Due to these demands, asynchronous or “clockless” design is emerging as a promis-

ing alternative to synchronous design with the potential of alleviating many of the next

generation design challenges. Rather than relying on a clock to manage the flow of

computation, a request and acknowledge handshake paradigm is used to control com-

putation. As a result, managing large-scale clock distribution is avoided (improving

energy efficiency). Asynchronous chips are robust to changes in voltage and tempera-

ture, more resistant to the side effects of process variation, and produce significantly

less electromagnetic noise. Chips can also be designed with average case throughput

in mind, rather than the worst case with clocking. Perhaps most important is that

designs can be much more modular: rather than managing a deep clock tree, only local

timing assumptions at a modules interface must typically be considered.

The research presented in this dissertation therefore targets the design of asyn-

chronous systems, specifically high-level synthesis of custom chips (rather than con-

ventional microprocessors). While the work in this dissertation targets asynchronous

2

ASICs, the research results produced may certainly be applicable to many other do-

mains, from synchronous design to multi-core computing to distributed systems.

1.1.2 Objectives

Despite the significant advantages asynchronous design can provide, several challenges

remain to be addressed before greater mainstream adoption. The primary challenge of

asynchronous design is that the current design tools are much less mature than syn-

chronous design tools. As a result, designers who have practiced synchronous design for

several decades may not easily make the switch to an asynchronous paradigm. There-

fore, the majority of the research in this dissertation is aimed at making asynchronous

design easier by reducing designer effort and improving performance. This dissertation

focuses on building a top-to-bottom design flow to address this challenge.

The objective of this work is to produce a fully-automated design flow that:

• boosts performance through a suite of optimizations, including: parallelization,

pipelining, loop-pipelining, arithmetic decomposition and decoupling (including

at the bit-level), and communication optimization,

• provides design-space exploration by performing the synthesis tasks of scheduling,

allocation, and binding of shared resources in an automated fashion, and

• allows a whole spectrum of designs to be explored by varying constraints, with

implementations ranging from highly pipelined to control-driven, as well as ex-

ploring the space in-between,

• optimizes for several metrics including area, latency, throughput, power, and

energy.

3

1.1.3 Thesis Statement

Design-space exploration of asynchronous systems can be automated effectively in or-

der to rapidly produce high-quality implementations with significantly reduced designer

effort.

1.2 Past Approaches and Current Challenges

While several approaches have been previously proposed to target high-level synthesis,

none have effectively traded off optimality, performance, and other performance metrics

while simultaneously allowing for rapid, easy design.

Two of the most well-known synthesis tools for the design of asynchronous systems

— Haste (Haste, 2008) and Balsa (Edwards and Bardsley, 2002; Bardsley and Edwards,

2000) — rely on syntax-directed translation of behavioral specifications. Produced cir-

cuits match the input specification one-to-one: every language construct in the spec-

ification is directly implemented as a distinct hardware object, all sequencing in the

specification is preserved, and every arithmetic operation becomes a distinct arithmetic

unit (no automated resource sharing). This paradigm allows for rapid design times;

however, performance of produced circuits is quite low (e.g., 10-100MHz for Haste) and

span large areas on chip.

Research presented in (Nielsen, 2005; Nielsen et al., 2004; Nielsen et al., 2009; Jensen

and Nielsen, 2007) leverages these existing Haste and Balsa flows to perform resource

scheduling, allocation, and binding in an automated fashion. Their solution receives

as input a high-level specification or control/data-flow graph (CDFG), and produces a

resource-shared version in the original source language (either Haste or Balsa), with a

target of minimizing area. However, their method does not target performance, and is

restricted to the syntax-directed compilation approach of their back-end.

4

Several other synthesis approaches exist in the asynchronous domain. Budiu et

al. (Budiu, 2003) introduced the approach of spatial computation, which compiles ANSI

C specifications directly into hardware. However, this approach explicitly forbids re-

source sharing; each computation is given its own dedicated function unit. A recent

approach by Gill (Gill, 2010) targets analysis and optimization of existing pipelined

systems constructed in a hierarchical fashion, but cannot handle sharing of resources.

De-synchronization (Cortadella et al., 2006; Andrikos et al., 2007) is an entirely

different approach in which existing synchronous tools are leveraged to create a syn-

chronous netlist, which is later converted into an asynchronous version by removing

the clock and replacing it with local asynchronous controllers. While this approach

leverages the significant research behind mature synchronous design tools, replacing

low-level clock signals with handshaking does not allow the designer to exploit system-

level concurrency as well as a top-down asynchronous design approach.

Many well-known synchronous approaches exist that specifically target performance

enhancement through optimization. A recent approach by Kondratyev et al. (Kon-

dratyev et al., 2011) performs synthesis that targets high performance implementa-

tions; the authors’ primary aim being feasible, real-world design-space exploration.

The SPARK (Gupta et al., 2003) framework converts high-level specifications in C

to VHDL, performing several powerful high-level optimizations such as parallelization

and loop transformation in the synthesis process. AutoPilot/AutoESL (Coussy and

Morawiec, 2008) is a proprietary solution for converting specifications written in C

variants to FPGAs. These tools and methods specifically target the synchronous realm

and therefore are not easily transferable to the synchronous realm; as I will show later,

näıvely porting synchronous design methodologies to asynchronous design may result

in suboptimal solutions.

Several other synthesis approaches exist, for more detail, surveys of both asyn-

5

chronous (Beerel et al., 2010; Taubin et al., 2007) and synchronous (Coussy and Moraw-

iec, 2008) approaches are available.

Despite the breadth of research in this area, there remains a need for an asyn-

chronous design flow that can produce fast, resource-shared implementations with mini-

mal design effort. This thesis attempts to fill that void by contributing a comprehensive

design flow, one that permits rapid design and allows the designer to easily trade-off

and optimize for several performance metrics.

1.3 Contributions

In this section I will outline the contributions made in this thesis, starting with the

proposed design flow, then stepping through chapter-by-chapter to highlight the contri-

butions discussed in each. The contributions made in this thesis have been published

in (Hansen and Singh, 2008; Hansen and Singh, 2010b; Hansen and Singh, 2010a;

Hansen and Singh, 2012; Gill et al., 2006; Gill et al., 2009).

1.3.1 Proposed Design Flow

The proposed design flow is shown in Figure 1.1. In this figure, italicized items indicate

existing tools. Paths with dashed arcs represent existing design flows.

The leftmost path, highlighted with a dashed arc, represents the original Haste

design flow. This path starts with a high-level behavioral specification and passes

it through the Haste compiler to produce a final implementation. This is a syntax-

directed process, producing directly mapped circuits. Alternatively, the rightmost path

is manual design, in which a designer typically creates a manually optimized design in

a structural hardware description language and passes it through the physical mapping

steps. Some optimization and synthesis tools may also exist on this path.

6

My proposed design flow is shown in the center of the figure. Here, a choice of three

options is presented. The leftmost path is a data-driven pipelining flow, described in

Chapter 3, that performs a source-to-source conversion of a behavioral specification into

an equivalent data-driven pipelined source specification. This path does not perform

any automated resource sharing for conserving area, instead targeting high-performance

pipelined implementations. This path leverages the existing Haste tools as a back-end.

The center path provides an alternate approach that performs resource sharing in

a synthesis step. This path allows the designer to trade off area, performance, power,

and energy using an automated design-space exploration approach. This approach will

be described primarily in Chapter 4, with energy and power considerations discussed

in Chapter 6.

The rightmost path provides a hybrid approach, combining both resource-sharing

and high-performance pipelining to target high-performance, low area circuits. This

section will target synthesis using a multi-token scheduling approach, one in which

multiple instances of a problem are being solved concurrently by the circuit. This

approach is described in detail in Chapter 5.

Now, let us step one-by-one into each chapter, illustrating how the contributions

made in each allow paths in the proposed designed flow to be realized.

1.3.2 Compiler and Source-Level Optimization

The first step in the proposed design flow, in which a behavioral specification is con-

verted to an intermediate representation, is described in Chapter 3. This chapter

proposes a novel source-to-source compiler, which incorporates several concurrency-

enhancing optimizations, including parallelization, arithmetic optimization, and com-

munication optimization. In addition to these optimizations, the compiler includes a

back-end path to produce a pipelined, optimized specification back in the original source

7

High-Level
Specification!

Compiler + Source
Level Optimizations!

(Chapter 3)!

Optimized!
CDFG!

Data-Driven
Pipelining!
(Chapter 3)!

Multi-Token!
Synthesis!

(Chapter 5)!

Single-Token!
Synthesis!

(Chapter 4)!

Data-Driven Haste
Specification!

Haste!
Compiler!

Data-Flow
Representation!

Pipelined Data-Flow
Representation!

Netlist!

Architectural
Mapping!

Physical!
Mapping!

Circuit!

Existing Haste
Design Flow

HDL!
Description!

Tech!
Mapping!

Manual Design

Figure 1.1: Proposed design flow

8

language (Haste), to be fed into an existing syntax-directed design flow. In addition

to having its own synthesis path, the proposed compiler also produces an intermediate

representation that is used in the other two synthesis paths, described in Chapters 4

and 5.

1.3.3 Optimal Resource Sharing and Scheduling

In Chapter 4 I attack the problem of resource sharing in high-level synthesis. Unlike

the area-hungry approach of Chapter 3 that focuses solely on performance, this chapter

will present a shared-resource approach to high-level synthesis that is both fast and

optimal. I will present a novel string-based formulation to the scheduling problem and

an efficient branch-and-bound strategy to target the problem of resource scheduling,

allocation, and binding in an optimal fashion. This chapter will introduce several tight

bounds and optimizations in the branch-and-bound framework that effectively prune

the scheduling and allocation search spaces, enabling the designer to explore a wide

variety of potential solutions in a short period of time.

The work presented in this chapter will provide several scheduling options to the

designer, including latency-minimization under resource or area constraints and area-

minimization under a latency constraint. The approach has been extended to incorpo-

rate mappings of operations to multiple function unit types, including multi-purpose

function units such as ALUs, while still providing optimal solutions rapidly. Because

the allocation space itself can become broad when considering a wide variety of function

units, I will also present a strategy for enumerating the search space of allocations in a

dynamic fashion to improve performance.

9

1.3.4 Pipelining With Shared Resources

Chapter 5 will present an alternate synthesis approach for shared-resource architectures,

in which a high-performance, minimal-area pipelined implementation is the ultimate

goal. Unlike Chapter 4, which focused on latency as a performance metric, this chap-

ter will target throughput as a constraint, and as a result produce multi-token (i.e.,

pipelined) schedules. In this chapter I will introduce a pipelined data-flow architec-

ture in which data travels directly from source to destination with optimal buffering,

synchronizing only when data is needed for computation. The target architecture is

distinct from the data-driven pipelines of Chapter 3.

In this chapter I will introduce a pipeline synthesis method for minimizing area

under a throughput constraint, allocating the minimum number of function units and

buffers required to meet the performance target. I will extend this optimal method for

use with large, real-world examples via a heuristic hierarchical approach; this approach

will be robust enough to handle both loops and conditionals, allowing for a rich set

of input specifications. This approach provides a method for exploring a full spec-

trum of designs, ranging from high-performance pipelines to low-area, control-driven

implementations, simply by tightening and relaxing constraints.

1.3.5 Energy and Power Considerations

Because of the increased necessity for low-power and low-energy implementations, par-

ticularly due to the trend towards mobile computing, in Chapter 6 I extend the approach

first presented in Chapter 4 to incorporate energy and power. This extension involves

creating several new bounds for faster branch-and-bound search space exploration as

well as a new minimization strategy specifically targeting minimum energy implementa-

tions. This modification extends an already rich set of scheduling strategies to provide

all of the following synthesis options to the designer: energy minimization, latency

10

minimization, and area minimization under the bounds of energy, power, latency, and

area.

In this chapter, I will also present a strategy for minimizing energy by performing

voltage scaling as a post-scheduling step, in order to squeeze out even more energy

savings by exploiting available slack in the schedule. This section will incorporate both

heuristic and optimal methods for energy minimization, as well as a method to minimize

energy while limiting the number of unique voltage levels.

1.4 Significance of Contributions

My work in Chapter 3 is the first approach for automatic rewriting of asynchronous high-

level specifications through parallelization and pipelining to obtain higher concurrency.

As a result, my approach obtains dramatic performance improvements even while using

an underlying syntax-driven translation tool. This work overcomes a significant and

long-standing shortcoming of state-of-the-art asynchronous design flows, which tend to

be syntax-driven (Haste, 2008; Edwards and Bardsley, 2002). By efficiently transform-

ing the specification through automated parallelization and automated pipelining using

my approach, the same syntax-driven tools can now produce implementations that are

much more concurrent and, therefore, yield higher performance.

My work in Chapter 4 is the first to demonstrate that the asynchronous (i.e.,

continuous-time) resource scheduling problem is different and harder than the syn-

chronous (i.e., discrete time) problem. My work is the first exact solution to the

asynchronous resource sharing problem. Prior work has either focused on heuristic

asynchronous approaches or synchronous approximations. The key idea in my work is

to solve for the relative order (partial order) of operations, as opposed to solving for

their absolute timing.

11

Prior to this work, the problem of optimal resource sharing for pipelined (i.e., multi-

token) systems has been an unsolved problem, for both synchronous and asynchronous

systems. The work in Chapter 5 is the first exact approach, whether synchronous or

asynchronous, for optimal resource sharing in multi-token systems. Prior approaches

have generally solved only a part of this problem, e.g., some assume the number of

tokens is given, some use a discrete-time approximation, others are heuristic. My ap-

proach is the first to optimize over the full joint search space consisting of all allocations,

schedules and bindings of resources, all possible buffer insertions (i.e., slack matching),

and all token counts. Efficient search space pruning techniques are introduced to make

this approach efficient; further speed up and scalability to larger problem sizes is ob-

tained by my hierarchical method.

The majority of prior approaches to resource sharing (synchronous as well as asyn-

chronous) do not consider power or energy as part of the scheduling step. The ap-

proaches that do consider these metrics typically treat power or energy only as sec-

ondary cost functions, or only provide heuristic solutions. My approach of Chapter 6

incorporates total energy consumption and peak power dissipation as first-class cost

functions during the scheduling step. To the best of my knowledge, this is the first

exact approach to provide optimal resource sharing under energy/power constraints.

The bulk of the work of this dissertation likely is applicable also to synchronous

design, including synchronous elastic systems. In particular, my continuous-time asyn-

chronous resource scheduling approaches (Chapters 4-6) can likely be directly applied

to the discrete-time flavor of this problem as merely a special case. Interestingly, while

working on the asynchronous problem, I was forced to think out-of-the-box—i.e., in

terms of relative order instead of absolute time—because asynchronous systems do not

have a notion of clocking and absolute time. It turns out that, even though application

to synchronous design was beyond the scope of this dissertation, it is likely that my

12

relative order approach is not only applicable to, but highly efficient for, synchronous

systems as well. Similarly, the work of Chapter 3 is likely to be applicable to syn-

chronous systems as well because at the behavioral level there is little to distinguish

asynchronous and synchronous systems.

1.5 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, I will give relevant

background on architectures, languages and representations, and analysis methods.

In Chapter 3, I will discuss the data-driven design approach and several source-level

optimizations to improve the concurrency of a specification. In Chapter 4, I will present

a shared-resource scheduling methodology, focusing on optimality and efficiency. In

Chapter 5, I will introduce an alternative pipelined scheduling strategy, one which

allows multiple problem instances to be computed simultaneously on the same set of

resources. In Chapter 6, I will describe several modifications to the synthesis strategy

in Chapter 4 to incorporate energy and power, as well as provide a voltage scaling

strategy for improving energy consumption as a post-scheduling step. Finally, I will

present conclusions and directions for future work in Chapter 7.

13

Chapter 2

Background

In this chapter I will provide background on several important concepts that will be

relevant for the remainder of the thesis. The following topics will be reviewed:

• Section 2.1 discusses asynchronous architectures, including pipelined and shared-

resource implementations. I will also discuss the method of “slack-matching”, in

which buffers are inserted in order to improve the performance of a circuit.

• Section 2.2 provides background on silicon compilation, from source code to cir-

cuit. A discussion of source languages, graphical models for intermediate repre-

sentations, and design flows is provided.

• Section 2.3 describes the analysis techniques we will use in this thesis, including

canopy graphs, the cycle metric, and simulation-based methods. I will also define

the terms we will use to describe the performance of a circuit, such as latency

and throughput.

2.1 Asynchronous Architectures

Let us start by considering a set of basic architectures for asynchronous designs. I

will begin by describing pipelined architectures, in which there is a high degree of

parallelism, possibly at the cost of high area consumption. Next, I will discuss shared-

resource architectures, in which resources are shared to conserve area, possibly at the

cost of performance. Finally, I will briefly introduce the concept of slack-matching via

buffer insertion, which is often necessary to improve performance in pipelined systems.

2.1.1 Pipelined Architectures

Pipelining is a common technique used in both synchronous and asynchronous design

to improve the throughput of a design. In pipelining, computation is fragmented into

multiple portions that can be performed independently; each portion is given its own

dedicated hardware for storage and computation. Because each stage in the pipeline

has its own dedicated set of resources, it can operate on a different instance of a problem

than its neighbor, much like an assembly line.

In this way, multiple instances of a problem are computed at once, improving per-

formance as a whole, although the time associated with a specific problem instance may

go up due to overheads in the pipelining process. Aggressive, fine-grained pipelining

can result in very high performance circuits since many problems are being solved con-

currently. However, pipelining comes at a cost of area, particularly increased storage to

hold the data associated with each problem instance, as well as resource area associated

with each dedicated function unit.

2.1.1.1 Pipeline Stages and Styles

In hardware, asynchronous pipelines consist of several pipeline stages that communicate

via request-acknowledge handshaking signals (Figure 2.1). Typically, a stage initiates

computation when it receives new data and a request from its left neighbor. Once data

has been accepted (latched), the left neighbor is acknowledged. The stage may then

perform operations on the data and forward the results along with a new request to its

15

Figure 2.1: Simple asynchronous pipeline

clock
handshaking
interface

Figure 2.2: Synchronous vs. asynchronous communication

right neighbor. This behavior is unlike that of a synchronous approach (Figure 2.2), in

which signals are received from a global clock to latch data.

Several techniques exist to transmit data between stages. Two-phase (Sutherland,

1989) and four-phase (Williams, 1991) protocols are used to signal arrival and accep-

tance of data. In two-phase handshaking, a transition on a request line indicates new

data is available, a transition on an acknowledge line indicates the new data has been

latched. A four-phase handshake is level-based rather than transition-based. A legal

four-phase scenario is as follows: a request goes high indicating new data, the acknowl-

edge line goes high to indicate the data has been latched, the request then resets to zero,

and soon after the acknowledge resets to zero. Other variants are possible depending

on the meaning attached to each event. For example, the acknowledge resetting may

indicate that data has been latched. The exact implementation is up to the designer.

16

Aside from the variety in handshake protocols, data can also be encoded in multiple

different ways. Bundled data (Sutherland, 1989) is a common approach in which a

single wire is dedicated to each bit, and the data itself is combined with a control

signal with a matched delay that corresponds to the computation time of logic between

the stages. Dual-rail encoding (Williams, 1991) is a different paradigm where two wires

are associated with each bit of data; some combination of signals on the two wires

indicate that computation has completed. This type of encoding is more robust to

timing variation, but will incur an additional area penalty due to completion detection.

Several different pipeline styles exist, from GasP (Sutherland and Fairbanks, 2001)

to MOUSETRAP (Singh and Nowick, 2001) to Sutherland’s micro-pipelines (Suther-

land, 1989) to high-capacity (Singh and Nowick, 2007) pipelines. The work presented

in this thesis targets two-phase, bundled-data pipelines, but is certainly amenable to

other styles as well.

2.1.1.2 Data-flow Pipelines

In this thesis, I will refer to data-flow pipelines as pipelines in which each individual

piece of data travels through the architecture without any unnecessary synchronization.

That is, each stage will consist solely of data belonging to one “variable”, and will

travel along a channel until it synchronizes with another piece of data only as needed

to perform a computation.

This type of pipeline can have a highly complex topology; rather than a flat, linear

flow of data, there may be many paths forking and joining throughout the full pipeline.

In order to achieve high performance with this type of pipeline, slack-matching is often

needed in order to match the buffering on one path to that of another parallel path;

this will be described in Section 2.1.3. Data-flow pipelines are the specific target of the

synthesis approach proposed in Chapter 5.

17

2.1.1.3 Data-driven Pipelines

Data-driven pipelines are proposed in Chapter 3 as an alternative to data-flow pipelines.

In these pipelines, slack-matching has been explicitly performed via construction; large

blocks of data are synchronized at once and referred to as the “context” of an individual

problem. As data accumulates, the size of each synchronized buffer increases; as data is

consumed and is no longer needed in the pipeline, it is dropped from future synchronized

buffers. This type of pipeline consists of large, linear blocks with minimal fork and join

constructs, in contrast to data-flow pipelines that have lightweight buffers and complex

topologies.

While data-flow pipelines are more efficient; data-driven pipelines are found in ex-

amples such as common pipelined processors, which may have several stages (i.e., fetch,

decode, execute). Data is not directly passed from source to destination, but typically

goes through every stage even if a stage does not operate on the data.

2.1.2 Shared-Resource Architectures

Shared-resource architectures are an alternative to asynchronous pipelines. Unlike

pipelines, in which control is distributed, shared-resource architectures generally rely

on a global controller to transfer data between function units and registers. An example

of such an architecture is illustrated in Figure 2.3.

In this figure, a large, monolithic control block is connected to a set of multiplexers

that control the flow of data into function units. This control block is also connected to

a set of registers to determine which register will latch the result of computation. Here,

the complete schedule of data transfer is encoded in the controller, unlike in pipelines

where data itself triggers computation.

A global controller is not a requirement for shared-resource architectures; instead,

smaller individual controllers can be used, as in (Theobald and Nowick, 2001). While

18

Control FSM

M
U

X

Function
Unit

R
EG

R

EG

M
U

X

Function
Unit

R
EG

M
U

X
M

U
X

M
U

X

Figure 2.3: Shared-resource architecture

other flavors may exist, the most common element of a shared-resource architecture is

control-directed transfer of data between shared registers and resources.

2.1.3 Buffering Requirements (Slack-Matching)

Slack-matching is a technique used by designers to reconcile two paths that have mis-

matched latencies or storage capacities. A slack-mismatch is a performance concern

that results in reduced throughput, as data cannot enter a pair of forked pipelines if

one of the paths is already full. By adding additional buffers on one of the paths, a

slack-mismatch can be alleviated, and performance improved.

The problem of slack-mismatch is illustrated in Figure 2.4a. In this example, two

paths fork off in the pipeline, one with a single stage, another with multiple sequential

stages. Let us assume each stage has the same attributes, i.e., forward and reverse

latency (see Section 2.3). I will briefly illustrate how the performance will be limited

19

datain! dataout!

fork! join!
a)! •!

datain! dataout!

fork! join!
b)!

•!

•!

datain! dataout!

fork! join!
c)!

•!
•!

•! datain! dataout!

fork! join!
d)! •!

•!

•!

•!

•!

Figure 2.4: Slack mismatch example

due to a lack of buffer space in the shorter path.

Consider the operation of this pipeline. To begin, a piece of data enters the start

of the pipeline on the left (Figure 2.4a). The data then splits and travels down each

path, to be synchronized at the join node later in the pipeline (Figure 2.4b). A new

piece of data can then enter, ready to start computation on both forks (Figure 2.4c).

However, the data is stalled because there is no space for it on the shorter path.

By inserting additional buffers on the shorter path, additional room is available

on the shorter path, allowing data to enter, thus alleviating the slack-mismatch (Fig-

ure 2.4d).

The problem of slack-mismatch is automatically avoided in the approach in Chap-

ter 3 by using a data-driven pipeline style. However, in Chapter 5, I incorporate the

slack-matching problem into the proposed synthesis method in order to slack-match

the data-flow pipelines that are generated by that method.

2.2 Languages, Representations, and Compilation

In this section I will review the process of silicon compilation. I will begin by giving an

overview of behavioral specification languages, particularly focusing on the Haste lan-

guage that is used heavily in Chapter 2. Next, I will describe graphical representations,

20

such as abstract syntax trees, data-flow graphs, and Petri nets. Finally, I will give an

overview of existing asynchronous design flows, such as the syntax-directed Haste and

Balsa design tools, as well as review more general synthesis approaches, including those

that attack the common constrained-optimization problem for scheduling, allocation,

and binding of shared resources.

2.2.1 Behavioral Description Languages

2.2.1.1 Overview

The breadth of potential languages for performing asynchronous high-level synthesis is

wide; some designers use software programming languages such as C for their high-level

descriptions, while others use common hardware languages such as Verilog and VHDL,

and yet others utilize highly-specialized languages for asynchronous design, such as

Haste and Balsa. There are several factors that weigh into the selection of a language;

two common desires are tool support and richness of the specification language.

Two syntactical features designers often require in a hardware description language

are channel communication to transmit data between modules, and a simple, explicit

means for representing parallelism in the specification. Unfortunately, these features are

often lacking in software programming languages, hence specialized hardware languages

are often a better match.

In Chapter 3 I will focus specifically on Haste, a specialized asynchronous design

language that is a variant of CSP (Hoare, 1985), as an input specification. This language

was selected because a complete design flow existed at the time, and because it provided

the desirable features of concurrency and channel communication.

21

& byte = type [0..255]

& byteplus = type [-255..255]

& GCD: main proc(IN?chan <<byte,byte>> & OUT!chan byte).

begin

& ab: var <<byte, byte>> ff

& a=alias ab.0

& b=alias ab.1

& s: var byteplus ff

| forever

do

IN?ab;

do a # 0 then

s := a-b;

<<a,b>> := if sign(s)

then <<b,a>>

else <<s,b>>

fi

od;

OUT!b

od

end

Figure 2.5: GCD example

2.2.1.2 Haste Language

Let us focus on the primary source language used by our approach: the Haste language.

Some key Haste constructs are as follows:

• channel reads (IN?ab)

• channel writes (OUT!b)

• assignments (s:=a-b)

• tuples (<<a,b>>)

• sequential composition (b:=a+x ; c:=b+y)

• parallel composition (a:=b+x || c:=d+y)

• loop control (forever do ...od)

• block definition (begin | ...end)

• type definition (byte = type [0..255])

22

• procedure definition (GCD: main proc(...).)

• conditional assignment (x:= if bool then y else z fi)

Figure 2.5 shows the Haste specification of a very simple program that computes

the GCD of two numbers. The program has one input channel, IN, through which it

receives two data items from the environment in a tuple (pair of bytes). It also contains

an output channel OUT, through which it transmits results to the environment. Each

channel consists of a pair of request-acknowledge wires along with the data wires.

In the specification, ab and s are all storage variables, while a and b are merely

aliases/pointers to variables in the tuple ab. The main construct in the body of the

specification is a forever do loop. This loop reads from the input channel, then

enters a second loop that computes the GCD of the input numbers. Once the GCD is

computed, it transmitted to the environment on the output channel, OUT.

The conversion of these language constructs into a final hardware representation

will be discussed in Section 2.2.3.3.

2.2.2 Graphical Representations

The first step in the compilation process is to transform the human-readable behav-

ioral specification into a form that is amenable to processing and optimization by the

compiler. Generally, this new form is an intermediate representation that often takes

a tree-like or hierarchical structure, e.g., an abstract syntax tree. Now, let us consider

several common graphical representations that are used either by the compiler, or by

the designer, in order to represent a specification or model its performance.

2.2.2.1 Abstract Syntax Tree

An abstract syntax tree (AST) is a representation that is generated after the parser

reads the input specification. This tree consists of individual nodes that correspond in

23

while (a!=0){!
!a=a-1;!
!c=d*e;!
}!

while!

!=!

a! 0!

;!

=!

a! -!

a! 1!

=!

c! *!

d! e!

cond body

loc loc exp exp

Figure 2.6: Abstract syntax tree example

a one-to-one fashion with source code constructs. Figure 2.6 illustrates a sample AST

for a while loop. Here each construct is converted directly into a node; the while loop

becomes a control construct with two children, a conditional and a loop body. The

conditional is a binary not-equal operation that requires two children, in this case the

variable a and the literal 0. The remainder of the graph is constructed in a similar

fashion.

After the AST has been generated, the compiler performs several annotations, such

as those linking a variable name to its declaration and type, determining bit-widths

for operations, and so on. A compiler may perform optimizations here as well, such as

conversion to single-static assignment form, dead-code removal, etc.

2.2.2.2 Control Data-Flow Graph

In a data-flow graph (DFG), unlike an AST, the focus is on the flow of data rather than

the original control constructs. A basic DFG consists of several nodes that represent

24

a=x+y;!
b=a*y;!
c=a-b;!
d=b*b!

y!

a!

x!

b!

c!
d!

Figure 2.7: Control/data-flow graph example

operations, and arcs between these nodes that represent the flow of data.

A data-flow graph can be extended to incorporate control information, such as

loops and conditionals. This extension is called a control/data-flow graph (CDFG). In

Chapter 5, a similar construct is used, a folded-dependence graph. This type of graph

incorporates data dependencies between operations, and then inserts additional control

elements, including scheduling arcs, control constructs such as loops and conditionals,

and write-after-read dependencies from which buffering is inferred.

A sample CDFG is shown in Figure 2.7. In this example, the dependence between

c and d is purely control, rather than data, and is shown as a dashed red arc.

2.2.2.3 Petri Nets

A Petri net is a mathematical representation that is often used for modeling concurrency

in systems. Petri nets have a wide range of uses; they can be used for simulation

of operation, to determine correctness of an implementation, to test for deadlocks,

etc. A formal definition of Petri nets is not required for this thesis; however, a basic

introduction can provide some insight.

A Petri net consists a set of places, arcs, and transitions, through which tokens flow

25

while(true){!
 a=x+y;!
 b=a*y;!
 c=a-b;!
 d=b*b!
}!

A!

B!

C!

D!

• •

Figure 2.8: Petri net example

to model data or control transfer. A place is a storage location for tokens, an arc is a

path on which a token can travel, and a transition is a guard that synchronizes data

or control. A sample Petri net is shown in Figure 2.8.

The behavior of a Petri net is as follows. First, tokens are placed in the graph in

an initial marking, which enables some set of transitions (otherwise the Petri net is

not live). However, a specific transition cannot fire until all of its incoming arcs have

a token available, at which point the transition becomes enabled. When a transition

fires, a token is consumed from each input arc to the transition, and a token is produced

on each output arc from the transition, to arrive at a new place. A new marking is

produced, and the Petri net can continue operation by firing another transition.

There are several extensions to Petri nets, e.g., timed Petri nets, and more restricted

versions, e.g., marked graphs. A timed Petri net associates a time penalty with either

a place or a transition, e.g., requiring some amount of time to elapse before a transition

is enabled to fire. A marked graph is a Petri net that does not have the potential for

choice or OR-causality; requiring that each place has only one input and one output

arc. These two specific models are noted because of their ties to this thesis; timed Petri

26

HDL!
Specification!

Compiler!
Front-end!

Intermediate!
Representation!

Synthesis!

Netlist!

Physical!
Mapping!

Circuit!

Figure 2.9: Common high-level synthesis flow

nets were used as an initial model in Chapter 4, while marked graphs were used as an

initial model in Chapter 5.

2.2.3 Compiler Flow

Now that I have discussed languages and representations used in the compilation pro-

cess, let me now describe the flow of compilation in high-level synthesis (HLS).

The flow of a common HLS compiler is shown in Figure 2.9. Here, we start with

an initial behavioral specification (source code), then convert this specification into an

intermediate representation. This representation can then be modified by performing

27

optimizations and synthesis tasks such as scheduling, allocation, and binding of shared

resources. Finally, this modified representation is sent to a back-end for conversion to

hardware.

2.2.3.1 Source to Intermediate Representation

The first step in the hardware compilation process is to convert the input specification

into an intermediate representation; this is often described as the front-end of the

compiler. As with software compilers, an HLS compiler will step through the common

steps of lexical, syntactic, and semantic analysis in order to convert the source to an

intermediate representation. The compiler implemented in Chapter 3 is a recursive-

descent compiler that converts a Haste specification into an annotated AST. After the

intermediate representation is produced, optimizations may be performed prior to being

output by the back-end of the compiler.

2.2.3.2 Synthesis

Once an intermediate representation is created, the next step is to convert it to hard-

ware. In this thesis I will consider two main forms of synthesis. The classic synthesis

problem is one of performing resource sharing as part of a constrained-optimization

problem. Chapters 4 and 5 will focus on this type of synthesis. An alternate method

is syntax-directed translation, which is used by the Haste compiler

Let us describe first three main steps of synthesis:

• Allocation is the step where the designer or design tool determines the number

of resources that will be used in the implementation. This task can include

determining the number of function units, registers, etc. that an implementation

will use. This step is vital as it trades off area for performance; more area generally

means better performance, since there will be less contention for resources.

28

• Scheduling is the step where the designer or design tool determines the order

of execution for a set of operations that share the same type of resources. The

goal of scheduling is often to optimize a performance metric, such as maximizing

throughput or minimizing latency. Alternatively, scheduling may target low-

energy or low-power by scheduling execution appropriately, such as by scheduling

operations on less power-hungry function units, or spreading execution out across

the time domain.

• Binding is the step where schedules and operations are mapped onto specific

pieces of hardware, i.e., resource instances. As an example, an operation may be

scheduled to execute on a type of function unit at a specific time, but the specific

function unit instance may not yet have been determined. The binding step will

finalize these mappings; this is important because different bindings may lead to

different multiplexing costs (in terms of both area and delay).

Often a designer will use a synthesis approach to explore a full design space in

order to balance or optimize for specific metrics, such as area, performance, energy,

etc, as in Chapters 4 and 5. An alternate route is to generate a final implementation

via construction; i.e., applying a specific set of transforms and mappings to create

an implementation without exploring a full design space. In Chapter 3, the proposed

compiler creates a data-driven implementation by applying a series of transforms that

can be manually enabled or disabled by the designer, then the syntax-directed Haste

compiler converts the optimized specification in a one-to-one fashion into hardware.

2.2.3.3 Syntax-Directed Translation

In syntax-directed translation, an intermediate representation is generated from the

source specification, then is directly mapped into hardware. The goal of a syntax-

directed compiler is to produce implementations that have a one-to-one relationship

29

&fifo=proc(IN?chan byte &

OUT!chan byte).

begin

& x: var byte

| forever do

IN?x; OUT!x

od

end

Figure 2.10: Haste example

with the source specification; each language construct typically translates to a specific

hardware library component. This paradigm makes the process very transparent to

the designer, but without manual optimization, syntax-directed translation may lead

to lower performance. Two of the more mature syntax-directed translation approaches

to synthesis are the Haste and Balsa design flows.

2.2.4 The Haste Design Flow

Let us focus on the Haste design flow, which we use heavily in Chapter 2. Given

a specification, the Haste compiler parses the input into an intermediate handshake-

component representation, then syntactically maps each construct onto a predefined

library component to generate a hardware implementation, as shown in Figure 2.10. In

particular, there is a predefined component that implements the forever do construct:

it repeatedly initiates handshakes with its target. Similarly, there is a predefined com-

ponent that implements sequencing, denoted by “;”. The sequencer, upon receiving

a handshake from its parent, performs a handshake with its left child followed by a

handshake with its right child. The variable x maps to a storage element. Finally, the

read and write operations, (e.g., read from channel IN and write to x) map to redefined

components called transferrers, denoted in the Figure by “−→”.

30

In summary, the compilation approach is quite simple but very powerful: fairly

complex algorithms can be easily mapped to hardware. Gate-level implementations

for complex designs, such as complete micro-controller, can be generated from a few

hundred lines of high-level code.

In this work, I will use the syntax-directed paradigm in Chapter 3, but only after per-

forming various automated optimizations (code rewritings) to improve performance.

2.3 Analysis Methods

In this section I will describe several common analysis methods for determining the

performance of asynchronous pipelines. I will start by giving definitions of latency,

throughput, and cycle time: key metrics used in this thesis. Next, I will describe canopy

graphs, a useful tool for determining the throughput bound of a pipelined system. Then,

I will discuss the cycle metric mean problem and its performance implications. Finally,

I will discuss how simulation can be used as a tool for analyzing performance.

2.3.1 Performance Metrics

There are three key performance attributes we will be concerned with in this thesis:

latency, cycle time, and throughput.

2.3.1.1 Latency

The term “latency” often refers to the time it takes for an action to complete from start

to finish, such as the time it takes for data to propagate from one place to another (e.g.,

in networking), or the time it takes for a program or operation to react to stimulus

(e.g., in user interfaces). This general definition is perfectly applicable for use in this

thesis, but let us further define latency for scenarios that are common in the following

31

chapters.

For a schedule, latency will refer to the time it takes for a complete execution of

every operation in a specification, from start to finish. In essence, this refers to the time

from when the first action begins in the schedule to when the final action completes.

In the context of pipelining, the latency of a pipeline is similar; here, the forward

latency of a pipeline is the time it takes for a token to travel from the start to the end

of an empty pipeline (i.e., from input to output). Similarly, the forward latency of a

pipeline stage is the amount of time it takes for data to propagate from that stage to

the next. If Fi represents the forward latency of a stage i in a pipeline, then the overall

forward latency of a linear pipeline is:

F =
∑
∀i

Fi

Correspondingly, the reverse latency of a pipeline is the time it takes for a “hole”

to propagate from the end of the pipeline to the start of the pipeline (e.g., from output

to input) if the pipeline is initially filled. Thus, the reverse latency is determined by

the speed at which acknowledgments propagate backwards. If the reverse latency of a

stage i in a pipeline is Ri, then the reverse latency of a linear pipeline is:

R =
∑
∀i

Ri

Often the designer will be tasked with minimizing the latency of a schedule or partial

schedule in order to meet a set of constraints.

2.3.1.2 Cycle Time

Unlike latency, which is the measure of total time for a set of events to complete, the

term “cycle time” refers to the amount of time that elapses between repeated actions.

32

As an example, in a linear pipeline, the cycle time can refer to the amount of time that

elapses between outputs produced by its final stage, or, similarly, the amount of time

between consumption of inputs by its first stage.

The cycle time of a linear pipeline is actually tied to the cycle time of its slowest

stage. In a homogeneous pipeline, in which all forward and reverse latencies are the

same for each stage, the cycle time of a stage is typically equal to:

CTi = Fi + Ri

In the context of scheduling, the cycle time of a schedule is the time that elapses

between two problem instances starting (or finishing) their schedules. As an example,

a multi-token schedule may allow new problem instances at times 0, 20, 40. . . , and

each problem instance may complete at times 100, 120, 140. . . , thus the schedule has

a cycle time of 20 and a latency of 100.

2.3.1.3 Throughput

The term “throughput” refers to the inverse of cycle time. We often use throughput as

an indicator of the performance of an implementation; the higher the throughput, the

better the performance.

2.3.2 Canopy Graphs

Using canopy graphs for performance analysis was originally explored in the context of

asynchronous pipelined rings (Williams, 1991; Williams et al., 1987). Since then, the

work has been expand to linear and hierarchical pipelines (Lines, 1998), (Singh et al.,

2002), and (Gill, 2010).

The basic concept is as follows: the performance of a pipeline in steady-state is

a function of its occupancy, or, the number of data-items (tokens) that exist in the

33

Occupancy! n!0!

Limiting!
Stage!

Th
ro
ug
hp
ut
!

n+1!n-1!1!

Theoretical!
Maximum!

Figure 2.11: Basic canopy graph

pipeline. If the occupancy is too low, the pipeline is underutilized, and therefore it

cannot achieve its maximum throughput. This is referred to as “data-limited” behavior.

If the occupancy is too high, there is essentially contention for storage space; an item

cannot move ahead to the next stage until that stage is vacated. In order to free

up space, holes must travel backwards in the pipeline. We will refer to throughput

degradation due to congestion as “hole-limited” behavior.

In analysis, data-limited and hole-limited behavior will place an upper bound on the

throughput of a specification, separating the graph into two distinct regions. Figure 2.11

illustrates the achievable throughput versus the number of data items in a pipeline. In

this figure, we see the region on the left-hand side of the graph is limited in the number

of tokens, while the right-hand side is overly congested. The slope of the data-limited

line is actually equal to the reciprocal of the forward latency of the pipeline, while the

slope of the hole-limited line is equal to the negative reciprocal of the reverse latency of

the pipeline (Williams, 1991). The data-limited line traditionally starts at the origin,

34

while the hole-limited line intersects the x-axis where the maximum occupancy of the

pipeline is exceeded.

The graph is further limited by the throughput of the slowest stage; this stage’s

throughput introduces the bounding horizontal line at the top. This is what leads to

the “canopy”-like structure of the graph. The operating region of the graph is the full

region under this set of lines.

Several extensions and generalizations to the theory of canopy graphs have been

introduced, including handling parallel and sequentially composed pipelines (Lines,

1998; Gill, 2010), as well as conditional operation and loops (Gill, 2010). A full review

of this work is available in (Gill, 2010), but two key observations are that the joint

canopy graph of a set of parallel pipelines will be the intersection of their individual

pipelines, while the joint canopy graph of sequential pipelines will be their horizontal

sum.

2.3.3 Maximum cycle mean

The cycle mean is an important property of a graph that can be used to help determine

the performance of an implementation. In Chapter 5, I will use a graph-based model

that is amenable to the classic maximum cycle mean problem (Dasdan and Gupta,

1997), which can be employed in order to bound the cycle time of a potential solution.

The computation of the cycle metric is rather simple. We begin with a cycle in a

graph that has each of its arcs annotated with two values: a weight and a cost. In the

scenario in Chapter 5, that cost will be a delay.

The cycle metric for cycle c in graph G is defined as follows:

Mean(c) =

∑
e∈c delay(e)∑
e∈c weight(e)

35

where e is an edge in the cycle c. The cycle mean for one cycle bounds its minimum

cycle time; the specific cycle cannot work any faster. Since a typical graph may consist

of many cycles (thousands or more), in order to determine the cycle time of the full

graph, we must find the maximum of the cycle means for all cycles in the graph:

Cycle Time(G) = max
c∈G

(Mean(c))

This metric will be utilized heavily to determine performance in Chapter 5.

2.3.4 Simulation

Simulation provides an alternate means to measure the performance of an implementa-

tion. While analysis methods such as canopy graphs and the cycle metric can provide

a model for performance under a certain set of conditions (i.e., steady-state behav-

ior), the stochastic nature of constructs such as conditionals and loops can make such

analysis imperfect at best.

For verification of the work presented in Chapter 3, the built-in Haste simulator was

used. As the Haste tools have since become unavailable, I created my own discrete-event

simulator to verify the performance of the work presented in Chapter 5.

2.4 Summary

In this chapter I have provided background on various topics that will be relevant in the

remainder of the thesis. For each chapter, it will be necessary to keep the target archi-

tecture in mind; therefore, the discussion in Section 2.1 will be particularly relevant. In

addition, the background on compilation and the Haste design flow will be particularly

useful for the upcoming chapter on data-driven design, Chapter 3. Chapter 4 will pri-

marily rely on background from Section 2.1, particularly shared-resource architectures.

36

Finally, the analysis methods discussed in Section 2.3 will be used heavily in Chapter 5,

where the performance of a pipelined data-flow architecture is analyzed.

37

Chapter 3

Data-Driven Design: Unlimited

Resources

A fundamental desire in the process of design, whether in the realm of hardware,

software, or even beyond computing, is to be able to explore a complete design space

to find the best possible solution. Every designer must make some trade-offs; within

the design space of our problem, several unique options exist, some implementations

may focus on performance, while others may focus on area, energy, or power, or any

combination in-between. One key problem, however, is that exploring every possible

design manually is often infeasible within a reasonable time frame.

Therefore, the work presented in this chapter is meant as a stepping stone to-

wards automated and, interestingly, transparent design-space exploration. In this work,

the designer provides a high-level specification, and passes it off to an approach that

performs multiple performance-enhancing optimizations in order to generate a high-

throughput implementation in the original source language (Haste). While this ap-

proach is solely performance-oriented, future synthesis frameworks presented in Chap-

ters 4 and 5 rely on the transformations performed in this work to aid in meeting

performance constraints, but target a more diverse set of implementations by allowing

High-Level
Specification!

Compiler + Source
Level Optimizations!

(Chapter 3)!

Optimized!
CDFG!

Data-Driven
Pipelining!
(Chapter 3)!

Multi-Token!
Synthesis!

(Chapter 5)!

Single-Token!
Synthesis!

(Chapter 4)!

Data-Driven Haste
Specification!

Haste!
Compiler!

Data-Flow
Representation!

Pipelined Data-Flow
Representation!

Netlist!

Architectural
Mapping!

Physical!
Mapping!

Circuit!

Existing Haste
Design Flow

HDL!
Description!

Tech!
Mapping!

Manual Design

Figure 3.1: Data-driven design flow

for shared resources.

In the design flow from Chapter 1, repeated here in Figure 3.1, three main paths

diverge after an intermediate representation is generated. This chapter focuses on two

steps in the design flow: (i) converting the source specification to an intermediate rep-

resentation and (ii) transforming this intermediate representation into a performance-

oriented “data-driven” implementation. The synthesis path followed in this chapter is

highlighted in Figure 3.1.

39

3.1 Introduction

Because of the syntax-directed nature of existing asynchronous design tools, generating

high-speed implementations can be an arduous process. The best-known tools (e.g.,

Haste/Tangram (Haste, 2008), and Balsa (Bardsley and Edwards, 2000)) use syntax-

directed translation to compile behavioral specifications directly to circuits, with few

high-level optimizations. In this type of design flow, each language construct directly

maps to a specific hardware component. Therefore, the performance of a specification

depends on the amount of optimization the designer manually performs. Straight-

forward specifications often have low performance due to unnecessary sequencing and

unpipelined operation. As a result, designers must either contend with relatively slow

implementations or bear the burden of writing highly optimized specifications them-

selves.

Burdening the designer with optimizing a specification has several drawbacks. First,

writing highly concurrent code entails much effort and is error-prone. Second, such code

often lacks readability and maintainability, and is therefore hard to modify and reuse.

Finally, such a manual approach hinders automatic design-space exploration. In an

ideal design flow, performance analysis tools are typically used to identify bottlenecks

in the system, and then local modifications are applied to remove the bottleneck; this

procedure is repeated until desired performance is achieved. Therefore, code rewriting

should ideally be automated.

This chapter introduces an alternative to manual optimization: an automated

“source-to-source” compiler that transforms one behavioral specification into another

behavioral specification with significantly higher concurrency. The proposed approach

introduces a suite of transformations:

• parallelization for increasing statement-level concurrency,

40

• pipelining for increasing concurrency within a statement group,

• arithmetic optimization for increasing concurrency at the sub-statement level,

and

• re-ordering of channel communication for increasing concurrency across modules.

As a result, designers can write straightforward behavioral code, focusing mainly on

its functional correctness rather than on concurrency and performance. The code is

automatically transformed by the proposed source-to-source compiler to be highly con-

current, and then passed back through the original Haste design flow.

The two techniques of arithmetic optimization and communication reordering are

core contributions of our approach. While basic parallelization and pipelining may

help optimize a specification at the granularity of individual statements, there are of-

ten performance bottlenecks due to individual statements with long-latency arithmetic

operations (e.g., 64-bit adds or multiplications). Further, a single statement may have

a complex expression involving multiple arithmetic operators. The proposed approach

pushes concurrency enhancement down to a sub-statement level by introducing all of

the following: expression re-factoring to introduce parallelism, expression pipelining,

and pipelining of individual (‘atomic’) operators. As a result, bottlenecks due to com-

plex arithmetic are alleviated.

The proposed approach to reordering of channel communication actions addresses

a challenging problem. In particular, for a given module, changing the order of two

communication actions is fundamentally different from reordering two computational

actions. In the latter case, dependency analysis can easy help determine which re-

orderings or parallel groupings of those actions preserve the original semantics. How-

ever, channel communication inherently involves subtle synchronization issues, and

näıvely reordering two communication actions may introduce a deadlock into the sys-

41

tem. A conservative approach is to always maintain the original order of channel ac-

tions; although safe, such an approach is suboptimal. The proposed strategy, instead,

is to pursue a more optimal approach that includes a careful analysis to determine

the space of legal code transformations. As a result, our approach provides greater

opportunity for concurrency enhancement.

Previous approaches for improving the throughput of implementations produced by

the Haste and Balsa tools have mostly focused at the circuit and intermediate (hand-

shake) levels, including more optimized circuit-level designs of handshake components

(e.g., more concurrent sequencers (Plana et al., 2005)), and peephole optimization and

re-synthesis at the intermediate level (Chelcea and Nowick, 2002). While some of these

approaches have yielded significant speedup (1.54–2.06x), they are unable to take ad-

vantage of the significantly greater optimization opportunities at a higher level. As

Section 3.5 shows, optimizing at the source level can provide an order of magnitude

greater speedup. Moreover, the intermediate and circuit-level approaches are orthog-

onal to the proposed approach, therefore they are not excluded from being applied

within the design flow.

The domain of specifications targeted by the proposed approach are slack elastic sys-

tems (Manohar and Martin, 1998a). A slack elastic system preserves correct operation

even if extra pipeline buffer stages (i.e., extra slack) are introduced on any communi-

cation channel. It was shown that a system is slack elastic if it is deadlock-free and it

satisfies certain properties regarding channel probing and non-determinism (Manohar

and Martin, 1998a). Since the approach introduces pipelining into a specification, the

assumption of slack elasticity is a requirement.

The proposed approach has been implemented in an automated tool, and eval-

uated on a suite of design examples. The resulting concurrency-enhanced specifi-

cations were run through the commercial Haste tools from Philips/Handshake Solu-

42

tions (Haste, 2008), and synthesized to gate-level netlists and simulated. Experimental

results demonstrate that the original specifications are correctly and efficiently rewrit-

ten into highly concurrent ones. If code length is used as an indicator of designer effort,

the proposed approach reduces the required effort by a factor of 3.3x on average (up

to 8.8x). Alternatively, the impact can be quantified by the throughput improvement

achieved by optimizing the original specification: up to 59x speedup using the basic

approach, and a further 5.2x using arithmetic pipelining.

The remainder of this chapter is organized as follows. Section 3.2 reviews the Haste

flow and asynchronous pipelining, then discusses related previous work. Then, Section

3.3 presents the basic concurrency-enhancing transformations. Section 3.4 discusses

advanced topics, including arithmetic optimization, handling of conditionals and loops,

and reordering of channel communication actions. Section 3.5 presents results, and

finally Section 3.6 gives conclusions and future work.

3.2 Background and Previous Work

This section first briefly reviews the relevant portions of the Haste design flow then

discusses its limitations. Next, asynchronous pipelines are briefly reviewed, along with a

discussion of the distinctions between control-driven, data-driven, and data-flow design

paradigms. Finally, prior related work is presented.

3.2.1 The Haste Design Flow

The examples discussed in this chapter have been synthesized and simulated us-

ing the Haste design flow, which was described in Chapter 2. Recall that the Haste

flow accepts specifications written in a high-level hardware description language, and

compiles them, via syntax-driven translation, into a gate-level circuit. The high-level

43

&fifo=proc(IN?chan byte &

OUT!chan byte).

begin

& x: var byte

| forever do

IN?x; OUT!x

od

end

Figure 3.2: Haste example

language is a close variant of the CSP behavioral modeling language (Hoare, 1985).

The main Haste language constructs that are used in the presentation of this chapter

are:

• channel reads (IN?x)

• channel writes (OUT!x+y)

• assignments (a:=b+c)

• sequential composition (b:=a+x ; c:=b+y)

• parallel composition (a:=b+x || c:=d+y)

Figure 3.2 shows the Haste specification of a simple program, a single stage FIFO.

The program has an input channel IN, through which it receives data items from the

environment, and an output channel OUT, through which it transmits results to the

environment. Each channel consists of a pair of request-acknowledge wires along with

the data wires. In the specification, x is a storage variable. The main construct in

the body of the specification is a forever do loop that performs the following actions

repeatedly: (i) read a value from channel IN and store it into variable x; then (ii) write

the value stored in x to the output channel OUT.

Performance Limitations. As you may recall from Chapter 2, given a specifi-

cation, the Haste compiler syntactically maps each construct onto a predefined library

component to generate a hardware implementation, as shown in Figure 3.2. Therefore,

44

forever do

IN?a;

b:=f1(a);

c:=f2(b);

d:=f3(c);

OUT!f4(d)

od

Figure 3.3: Control dominated (top) vs. data-driven (bottom)

as the number of statements increase in the code snippet in Figure 3.2, the size of the

control cycle increases, resulting in a higher latency block. Several handshakes in the

control tree may be required before an action can occur. As a result, the performance

of the system suffers. We can describe this situation as “control-dominated.”

3.2.2 Asynchronous Pipelining

To overcome the performance limitation of large control cycles, a designer can in-

troduce pipelining to reduce the control overhead. Figure 3.3 illustrates how control

overhead is reduced in this situation. Pipelining replaces a large control tree with a

45

forest of smaller trees governing the actions in the system. These actions are now

initiated by channel communications directly, as opposed to sequenced by a complex

controller. Thus, the single long control cycle in the original tree can be replaced by

several relatively smaller control cycles local to individual computation blocks, thereby

resulting in significantly better throughput.

In channel actions between stages, all of the variables that will be accessed in the

remainder of the pipeline must be communicated. We will refer to this set of variables

as the “context” of a stage.

In a data-driven architecture, the entire context is passed from one stage to the next,

irrespective of whether an individual value is needed in the next stage as long as it is

needed in some subsequent stage. Thus, once a result is produced, it may go through

a number of intermediate stages before reaching the consumer. While this approach

may seem somewhat expensive in terms of area and energy consumption, it is quite

commonly used in practice due to its simplicity, such as in pipelined microprocessors.

In a data-flow architecture, by contrast, concurrency may be further increased by

allowing data to propagate directly to stages in which it is used (Budiu, 2003). As a

result, the pipeline is typically forked off into many branches, which often re-converge.

However, such an approach introduces additional challenges: the performance can suffer

if branches are not properly balanced (i.e., not “slack-matched” (Beerel et al., 2006)) as

discussed in Section 2.1.3, potentially resulting in throughput that may be worse than

that of the slowest stage because of stalls caused by mismatched branching. In order to

avoid slack-mismatch issues, this work presented in this chapter utilizes a data-driven

paradigm instead of full data-flow (which will be considered in Chapter 5).

46

3.2.3 Previous Work

Much research has been done in the domain of performance optimization for high-level

specifications. The most relevant approach to ours is spatial computation, introduced

by Budiu et al. (Budiu, 2003). In spatial computation, ANSI C specifications are

transformed directly into hardware, incorporating a number of optimizations that aim

to enhance concurrency. However, their work fundamentally belongs to a different

domain—ANSI C software specifications—which is less general than the behavioral

specifications targeted in this work. In particular, C specifications, unlike Haste, do not

allow explicit communication via channels between processes to be modeled, whereas

such communication is key to modeling complex asynchronous systems. In addition,

fork-join style of concurrency cannot be explicitly specified by a designer in C; such

concurrency again is central to many asynchronous system specifications. Finally, their

approach does not consider pipelining of atomic units, such as adders and multipliers,

which is a key contribution of our approach.

Teifel et al. (Teifel and Manohar, 2004) and Wong et al. (Wong and Martin, 2001)

have introduced approaches that translate specifications written in CHP (Martin et al.,

1997) (a variant of CSP (Hoare, 1985)) into pipelined implementations. While these

approaches allow channel communication, their communication models can be restric-

tive, e.g., requiring that channel actions be unconditional or occur at most once in

the body of a process. In contrast, this approach allows a more general framework for

communication optimization.

Two recent approaches target conversion of behavioral specifications between CDFG

and Haste/Balsa representations (Nielsen et al., 2004; Jensen and Nielsen, 2007). Their

goal is to leverage mature synchronous tools that are capable of performing resource

scheduling, allocation and binding (under physical constraints), thereby getting around

the limitations of the Haste and Balsa tools, which lack such capability. These ap-

47

proaches also include some peephole optimizations, but do not aim to enhance system-

level concurrency. In contrast, the data-driven approach specifically targets concurrency

enhancement through pipelining, parallelization, and arithmetic and communication

optimizations, with the goal of high system performance.

Many other approaches focus on low-level optimizations at the circuit and handshake

level (Plana et al., 2005), (Chelcea and Nowick, 2002) to improve throughput. However,

solely using lower-level optimizations fails to take advantage of concurrency that can be

gained at a higher level. The proposed approach does not preclude these optimizations,

and in most cases these can be performed in an orthogonal fashion.

3.3 Basic Approach

In this section I describe how the source-to-source compiler optimizes code through

parallelization and pipelining. I will first discuss how performance optimizations change

the hardware structure of the system and give an overview of the optimizations that

are performed at a source level. I then discuss how parallelization and pipelining are

performed in the proposed approach.

3.3.1 Method Overview

3.3.1.1 Hardware Level

Figure 3.4 shows an example of synthesized code and its representation in hardware.

Each small block in the figure represents a basic datapath operation. Similar to the

case in Figure 3.3, control delays dominate, and the throughput obtained is rather low.

The only channel communications that occur are with the environment. In essence,

the original code is synthesized into a single, unpipelined, high latency block. The

throughput of the system is solely determined by the latency of this unpipelined block.

48

proc(IN?chan byte & OUT!chan byte).

forever do

IN?a;

1: b:=a*2;

2: c:=b+5;

3: d:=a+b;

4: e:=c+d:

5: f:=d*3;

6: g:=f+e;

OUT!g

od

Figure 3.4: Original implementation

proc(IN?chan byte & OUT!chan byte).

forever do

IN?a;

b:=a*2;

(c:=b+5 ||

d:=a+b);

(e:=c+d ||

f:=d*3);

g:=f+e;

OUT!g

od

Figure 3.5: Parallelized implementation

Consider now the case where some operations in the original code are parallelized,

as shown in Figure 3.5. The resulting circuit is still control driven, and again channel

communication is only performed with the environment. The control tree is the same

size, however, some parallel blocks replace sequential blocks in the tree. As a result,

the latency of the full system is reduced, but the throughput is still determined by the

latency of the whole system. The system still acts as a single stage, but with lower

latency and higher throughput than that of the previous implementation.

The result of pipelining the original implementation is shown in Figure 3.6. Each

operation now has its own individual latch to store data and channels to connect it

with other stages. Note that the control cycle at each stage is considerably short-

ened. This data-driven pipeline has multiple, low-latency stages, yielding an increase

49

forever do (IN?a;

OUT!<<a,a*2>>) od

...

forever do (IN?<<a,b>>;

OUT!<<a,b,b+5>>) od

...

forever do (IN?<<a,b,c>>;

OUT!<<c,a+b>>) od

...

forever do (IN?<<c,d>>;

OUT!<<d,c+d>>) od

...

forever do (IN?<<d,e>>;

OUT!<<e,d*3>>) od

...

forever do (IN?<<e,f>>;

OUT!<<e+f>>) od

Figure 3.6: Pipelined implementation

forever do (IN?a;

OUT!<<a,a*2>>) od

...

forever do (IN?<<a,b>>;

OUT!<<b+5,a+b>>) od

...

forever do (IN?<<c,d>>;

OUT!<<c+d,d*3>>) od

...

forever do (IN?<<e,f>>;

OUT!<<e+f>>) od

Figure 3.7: Parallelized and pipelined implementation

in system throughput. In this case, the throughput is limited by the cycle time of the

slowest stage, rather than the latency of the whole system. Therefore, the throughput

is increased, though possibly at the cost of some latency overhead.

By performing both optimizations, parallelizing then pipelining, the circuit of Figure

3.7 is produced. This circuit benefits from the reduced latency of parallelization, as

well as the increased throughput of pipelining. Conversion to this design is the goal of

our transformations.

50

3.3.1.2 Source Level

We now give an outline of how our algorithm is applied at the source level. Starting

with a piece of straight-line, sequenced code, Figure 3.4, we transform it into the highly

concurrent code of Figure 3.7.

The first step in the algorithm is to group the statements in a block of code that

can be performed in parallel. In the code fragment in Figure 3.4, the assignments to

variables c and d can be performed in parallel, and e and f can be performed in parallel,

producing the circuit shown in Figure 3.5. This step performs simple instruction-level

parallelization, reducing latency. However, we can further to increase performance by

performing pipelining as well.

To pipeline, a channel is placed between every parallel grouping. This channel

communicates the context for this dataset. A corresponding code fragment is shown

for the pipeline stages for the assignments to b, c, and d in Figure 3.7 (note that the

procedure headers have been removed for clarity).

3.3.2 Class of Specifications Handled

3.3.2.1 Handling Specifications with Cycles

Even though the example of Figures 3.4–3.7 shows a code snippet that is acyclic, the

proposed optimization approach is fully capable of handling specifications with cycles.

In particular, the approach is hierarchical: at each level of code hierarchy, a compound

statement (e.g., if-then-else, while, etc.) as well as any statement group with

cyclic dependencies is treated as an atomic statement for the purpose of performing

parallelization and pipelining. The compound statement or cyclic group can then be

separately optimized when traversing the next lower level of hierarchy.

An example of how a cycle in a specification is handled is shown in Figure 3.8. In

51

Figure 3.8: Handling cycles: a) cyclic dependency graph, b) corresponding source, c)
treating cycle as atomic statement, and d) optimized source.

the code fragment of Figure 3.8b, the variable c is reused across iterations of the loop,

creating a backwards dependency from statement 6 to statement 3. As a result, a cycle

is introduced in the dependency graph (Figure 3.8a). Alternatively, cycles can also be

caused by loop constructs such as for and while.

The optimization approach operates hierarchically, and starts at the top level where

it treats the cycle temporarily as a single node (Figure 3.8c), and parallelizes the body

of the outermost block. Subsequently, the code within the cycle is parallelized. The

resulting code is shown in Figure 3.8d.

While parallelization is performed at all levels of hierarchy, the pipelining trans-

52

formation is typically not performed inside a cycle. Because loops allow only a single

token to be present in them at a time without a more complex approach, pipelining will

not provide a performance benefit. Therefore, in the proposed approach, pipelining is

performed at the top level of the hierarchy, and further down the hierarchy into acyclic

code blocks, until a cycle is encountered.

It is important to note that even if pipelining is not performed for a loop block,

the loop’s performance may still be improved by parallelization. In Figure 3.8d, paral-

lelization can shorten the latency of the cycle, which translates to both shorter latency

and shorter cycle time at the next higher level of the hierarchy. This topic is dealt with

in detail in Section 3.4.

3.3.2.2 Set of Language Constructs

The full set of Haste constructs is permitted in the proposed approach; however, the

transformed specification will be equivalent to the original one only if the original spec-

ification satisfies the conditions for slack elasticity (Manohar and Martin, 1998a). In

particular, loops, conditionals, case statements, function calls, sequential, and paral-

lel constructs are all supported. Similar to Figure 3.8, more complex constructs are

collapsed into a single node and each of these are further hierarchically parallelized.

Similarly, pipelining is hierarchically performed until blocks with cyclic dependencies

are encountered. Details on the handling of some of these complex constructs (specifi-

cally, conditionals and loops) are presented in Section 3.4.

3.3.3 Parallelizing Transformation

At the core of the parallelization transformation is dependence analysis. This sub-

section briefly describes how this analysis is performed, then shows how the results

allow the compiler to modify the program to increase concurrency.

53

expl=proc(IN?chan byte &

OUT!chan byte).

begin

& a,b,c,d,

e,f,g: var byte

| forever do

IN?a;

1: b:=a*2;

2: c:=b+5;

3: d:=a+b;

4: e:=c+d:

5: f:=d*3;

6: g:=f+e;

OUT!g

od

end

Figure 3.9: Precedence graph with parallel groupings

Figure 3.9 shows a sample precedence graph. After the graph is generated, a topo-

logical sort of the graph is performed. (As described in Section 3.3.2.1, any cycles

encountered as treated as atomic statements for the purpose of this sorting.) Each

statement that has no input edges (dependencies) is placed into the first grouping of

parallel statements. These statements are then removed from graph, along with any

edges they produce. Next, all statements that have no input edges are placed into the

second grouping, then their edges are removed. The process repeats iteratively until

all the statements are placed into a grouping.

The compiler then generates a new sub-tree in which parallel groupings are chil-

dren of a parallel (||) construct. The parallel groupings are in turn combined using

sequencers(;).

The compiler employs variable renaming to achieve greater concurrency enhance-

54

ment. Thus, if a second assignment to a variable occurs within a block of code, the

target location is renamed, along with any future accesses. As a result, write-after-read

and write-after-write dependencies are removed from the graph.

Theoretically, even further concurrency can be achieved by using a partial ordering

of the statements, resulting in a full data-flow specification at the cost of greater forking

and joining. However, with increased branching, challenging slack matching issues may

arise, and without an effective pipeline-balancing approach, the resulting specifications

can exhibit reduced throughput. This issue was the motivation behind adopting the

simpler data-driven approach in this chapter, instead of a full data-flow approach, like

that of Chapter 5.

3.3.4 Pipelining Transformation

Pipelining is an orthogonal process to parallelization; it can be performed on code that

is sequential or has already been parallelized. This subsection discusses how pipelining

is achieved for such a specification. In particular, we focus on the process of generating

channel communications between stages using IN and OUT sets. In this section, let

us assume an input specification follows the following basic pattern: read from a set of

input channels, perform a computation, and write to a set of output channels.

To begin the pipelining transformation, the compiler first breaks every group of

statements delimited by a sequencer (;) into its own pipeline stage. In source code,

each stage will be represented by a statement block in which the initial statement is

a channel read and the final statement is a channel write. The channel read accepts

the context from a prior stage; the channel write transmits the updated context to a

subsequent stage.

To complete the transformation, the correct context for each stage must be deter-

mined. First, the compiler visits each stage, building a list of the variables accessed

55

(VARx) by the group of statements in that stage. Next, the compiler generates the

IN set for each stage, which consists of all the variables in use prior to or within the

stage. IN sets are determined using the following productions, where x indicates the

stage number:

INx = INx−1 ∪ VARx, IN1 = ∅

The compiler then determines the OUT set for the stage: the set of all variables

accessed in subsequent stages. A similar production is used (n indicates the final stage

in the pipeline):

OUTx = OUTx+1 ∪ VARx+1, OUTn = ∅

Two important observations are made by comparing the IN and OUT sets for each

stage. First, if a variable is contained in a stage’s IN set but not contained in its OUT

set, that variable will be accessed in this stage, but will not be accessed in any future

stages. Therefore, the variable does not need to propagate beyond this stage.

Second, a variable that exists in the OUT set of a stage but not in its IN set is being

used for the first time in the next stage. If the variable is read in the next stage, the

read can be replaced with the variable’s initialization. In this case, the current stage

sends the initial value of the variable, or zero if the variable is declared without an

initialization. If the variable is only written in the next stage, the current stage does

not need to communicate a value for the variable, since it will merely be overwritten.

Using the IN and OUT sets for each stage, the context for each stage is determined.

For a stage x, the set of variables in the stage’s context is the following:

contextx = OUTx−1 ∩ INx

The variables that must be communicated on its output channel are:

contextx+1 = OUTx ∩ INx+1

Once the contexts have been computed for each stage, channel reads are inserted

for each stage after the first. Likewise, a channel write is inserted for all stages except

56

the last. In operation, each stage will read in the values of each variable needed in

this stage or a future stage. The stage will then perform operations on these variables

using the concurrent statement grouping associated with the stage. If a variable is

modified, the output channel will transmit an expression containing the updated value.

If unmodified, the output channel will merely transmit the original value of the variable.

The channel read, variable modification, and channel write are then nested within a

forever do loop, creating a pipeline stage. This process is followed for each stage to

create a complete data-driven pipeline.

3.4 Advanced Techniques

This section describes several advanced approaches for improving the performance of a

specification. I will first discuss several methods for optimizing arithmetic operations,

then describe how conditionals and loops are handled. Finally, I present an approach

for increasing concurrency in the presence of channel communication.

The two techniques of arithmetic optimization and communication reordering are

key contributions for enhancing performance. The former pushes concurrency enhance-

ment to the sub-statement level, whereas the latter technique enlarges the space of so-

lutions by carefully allowing communication between distinct modules to be reordered

without the introduction of deadlocks.

3.4.1 Arithmetic Optimization

While the basic approach can potentially obtain substantial speedup by optimizing

code at the statement level, further improvement is possible by optimizing at the sub-

statement (i.e., expression and operator) level. I will now describe three methods for

optimizing arithmetic computation: expression tree balancing, which can reduce the

57

latency of a series of arithmetic operations; and expression pipelining and operator

pipelining, which can improve the throughput of a system.

3.4.1.1 Balancing Expression Trees

Many languages, including Haste, rely on both operator precedence and a left-right

expression ordering to determine how sub-expressions are evaluated. Therefore, ex-

pression trees produced by the parser can be unbalanced, even linear in some cases.

Re-factoring sections of the tree by taking advantage of operator associativity can lead

to more balanced expression sub-trees, and introduce additional concurrency into the

specification. This optimization reduces the overall depth of the tree, improving both

latency and throughput for a statement.

For example, the expression a+b+c+d initially requires three sequential addition

stages. Tree balancing converts the expression to (a+b)+(c+d), which requires only two

sequential addition stages since evaluating expressions a+b and c+d can be performed

in parallel. As this optimization may change the meaning of a program in exception

cases (e.g., overflow), it is provided as an option to the user. In effect, this optimization

can be regarded as parallelization pushed to the granularity of arithmetic expression

evaluation.

3.4.1.2 Expression Pipelining

While balancing expression trees can provide some benefit to throughput if the latency

of a statement is reduced, a statement with a large expression tree can still be a major

bottleneck in the specification. By pipelining a computationally complex expression

tree, significant gains in throughput can be attained.

To perform expression pipelining, we can divide the original statement’s expression

tree into several smaller assignments. Each atomic sub-expression becomes its own

58

Figure 3.10: Operator pipelining via source code

individual assignment with a single arithmetic operation. For example, consider a

statement with a complex expression tree: a:=((b+c)*d)+e. Through optimization, a

series of simple statements are produced: t1:=b+c; t2:=t1*d; a:=t2+e. In essence,

expression pipelining replaces one high-latency pipeline stage with multiple low-latency

stages, improving throughput.

3.4.1.3 Operator Pipelining

Further gains in throughput are achieved by decomposing and pipelining individual

arithmetic operators. Haste implementations, however, pose a special challenge to cor-

rectly pipelining an arithmetic function. In particular, näıvely replacing an arithmetic

unit such as a combinational adder with a pipelined adder circuit does not yield any

throughput improvement. This is because the controller associated with the stage that

contains the combinational adder allows only one token in that stage at a time. There-

fore, in order to pipeline the adder, that stage’s controller itself must be modified; this

modification is more easily performed at the source level.

In order to effectively pipeline arithmetic, control must be distributed to individual

stages. This is achieved in source code by breaking down the arithmetic operation

into several smaller assignments. Figure 3.10 illustrates how pipelining using finer

59

expl=proc(IN?chan byte & OUT!chan byte).

begin

& a,b,x,y

| forever do

IN?a;

IN?b;

if a>b

y:=y-1

else

x:=x+1;

y:=y+1;

fi;

OUT!x+y

od

end

forever do

IN?a;

IN?b;

x:=if a>b then x

else x+1 ||

y:= if a>b then y-1

else y+1;

OUT!x+y

od

Figure 3.11: Replacing conditionals with conditional assignments

granularity operators is performed for a 32-bit addition. First, each operand is broken

down into four 8-bit operands. These operands are then fed into four 8-bit adders in

parallel to produce 9-bit results (including the carry out). The partial results are then

combined sequentially to produce the final value.

By implementing operator pipelining at the source level, not only is throughput in-

creased, but latency can be improved as well. In particular, the source-level decompo-

sition of individual operators into several smaller operations affords new opportunities

for parallelization (i.e., exploiting parallelism among stages of distinct pipelined oper-

ators). Performing this task by hand is a time-consuming and error-prone operation,

but is well-suited to a source-to-source compiler.

3.4.2 Conditional Optimization

Not all code the user wishes to synthesize is linear in nature, as conditionals (if-then-

else) are often present. There are many options to handle these breaks in linearity.

Conditional Assignment. If both branches of a conditional consist solely of

variable assignments, i.e., no channel communications or loops exist in either branch,

conditional assignment of variables is the preferred method. To perform a conditional

60

assignment, the assignments in either branch are removed and replaced with a tertiary

assignment outside of the conditional. The form is as follows:

var:=if bool then expthen else expelse

Consider the code in Figure 3.11. In the else branch, the variable x is assigned

x+1. In the then branch, no assignment is made. The assignment can be removed from

the loop and replaced with a conditional assignment:

x:=if a>b then x else x+1

If assignments are made in both branches, such as for variable y, the same idea

applies:

y:= if a>b then y-1 else y+1

If the boolean condition itself is a function of variables modified in either branch, the

boolean must be computed and stored prior to performing the conditional assignments

in order to preserve the semantics of the conditional. Finally, if several writes to the

same variable occur in both branches, variable renaming is employed.

Early Decision. A second option for handling conditionals is early decision. Early

decision (Figure 3.12) is used when either branch contains a channel communication

or internal loop. It is necessary that the pipeline be split into two branches to handle

this situation: one containing the ‘then’ branch, the other containing the ‘else’ branch.

Two additional stages are introduced: one that forks the branches prior to execution,

and one that merges them after execution.

In early decision, the value of the conditional’s boolean is computed prior to entering

either branch, just as it would in a normal system. After the computation, the fork stage

decides the path to which the context should be sent. The context is then operated on

by the proper branch, and then accepted by the merge stage to be sent out.

If the two paths are poorly matched in terms of slack and forward latency, early

decision may result in out-of-order execution of consecutive datasets. In some cases,

61

split merge

…

then

else

… fork

boolean

data
in

data
out

…

…

bool

fork join

…

then

else

boolean

…

…

data
in

data
out

Figure 3.12: Early and late decision in conditionals

such as computer graphics and networking, out-of-order execution is allowable. If,

however, correct order is required by the user, a third boolean path (with buffering)

is introduced between the fork and join stages to indicate which branch the join stage

should read from to preserve execution order.

Late Decision. A final alternative, late decision (Figure 3.12), can be applied in

the case where either branch contains an internal loop, but cannot be applied when

channel communication is performed by the branches. In late decision, both branches

are executed concurrently, and the correct result is later chosen based on the boolean

outcome. This is a form of speculation. Because both paths are taken regardless of

the value of the boolean, channel communication inside the conditional is disallowed;

otherwise unnecessary channel actions could potentially occur, thereby compromising

the system’s correctness.

In late decision, the pipeline must be split into three branches, two for then and

else and one for the boolean value. Again, a fork and a join stage must be included

in the pipeline. At the join stage, all three branches have completed computation.

The join stage selects the context from the correct branch using the boolean value and

forwards it, discarding the context from the incorrect branch.

Late decision suffers from poor energy consumption and can also limit throughput

if the branches are not slack-matched. However, the latency of the conditional can

be reduced if the boolean takes a long amount of time to compute. Early decision,

in comparison, has the advantage of high throughput even if the paths are not slack

62

matched.

3.4.3 Optimization of Loops

Loops are a significant roadblock for designers aiming for high throughput specifica-

tions. In typical implementations, new data items cannot enter the loop until the

current item exits, a loop effectively acts as a single, high-latency stage. Pipelining the

internals of a loop provides no benefit if the loop contains a single token, and in fact

decrease performance of a system due to latency overheads.

The designer does have three potential options for increasing performance: (i) state-

ment parallelization, (ii) expression tree balancing, and (iii) loop unrolling. All three

optimizations have the potential for reducing latency, and thus improving the through-

put of the loop.

I have previously discussed how statement parallelization and expression tree bal-

ancing are performed in the compiler. The third option, loop-unrolling, is performed in

the same manner in this domain as in software, and provides the potential for statement

interleaving across loop iterations. Both full and partial unrolling can be performed.

However, since loop unrolling essentially replicates hardware, this optimization comes

at a cost of area. I have performed full unrolling for one of the benchmarks in Section

3.5.

While traditional design methods typically allow only a single token inside an al-

gorithmic loop, my research collaboration with Gill et al. (Gill et al., 2006) introduced

a novel approach to implementing loops that can operate on multiple tokens concur-

rently. This technique, called loop pipelining, correctly handles the flow of control

and all data dependency challenges created by allowing multiple tokens inside a loop,

thereby significantly increasing throughput.

63

3.4.4 Communication Optimization

The presence of channel communication introduces new challenges for code rewriting.

In particular, simply relying on dependence analysis is not sufficient to determine the

space of legal re-orderings and groupings of statements. The reason is that communica-

tion involves not only flow of data but also control synchronization. In fact, sometimes

communication actions omit data altogether, and are simply used to synchronize two

modules. Näıvely reordering communication actions can introduce a deadlock into the

system.

A safe but suboptimal approach is to prevent re-ordering of channel actions alto-

gether. Instead, I will introduce a more flexible approach for handling communication

which includes a careful analysis of computation and communication actions within

and across modules, to determine the space of legal code rewritings. As a result, the

proposed approach allows more opportunities for concurrency enhancement.

In this subsection, I will first illustrate how channel communication makes code

rewriting challenging, and then describe the proposed solution.

Avoiding Deadlock. Let us start with a simple example that illustrates the effects

of re-ordering a pair of channel communications. Consider module 1 that consists of

three channel communications: A?a; B!a; C?c. Here we see a data dependence only

between the first two communications. Suppose the counterpart channel communica-

tions for A, B, and C are in three distinct modules with no other channel actions.

The channel action on C is ready to be performed earlier in the module, and is only

prohibited by the sequencing of this module. In this example, re-ordering can increase

the concurrency and reduce the latency of the module. One approach would be to

parallelize the channel actions: (A?a||C?c); B!a.

However, suppose that the counterpart channel actions for A, B, and C are all

contained in a single module, in which they are all sequenced: (A!a;B?b;C!b). Here

64

Figure 3.13: Communication optimization via directed graph

a data dependence exists between the channel communications on B and C. By re-

ordering the channel actions in the original module, a deadlock has been introduced.

Solution Overview. To be able to safely optimize, the designer must first deter-

mine the flow of data across channels. This goal can be accomplished by building a

directed graph, as shown in Figure 3.13a.

For each channel in the specification, a node is introduced in the directed graph.

A dashed edge is drawn between two nodes if the two channels have sequenced actions

in any module (IN1?a; IN2?b), while full edges are drawn between nodes that have a

data dependence. Data dependencies can either occur directly: F?f; OUT!f, or due to

statements sequenced between the two communications: A?a; c:=a+b; C!c.

By removing all of the sequencing arcs in the original specification, the directed

graph in Figure 3.13b is produced. The compiler can use the optimized directed graph

to generate a new behavioral specification by creating parallel groupings, similar to

Figure 3.9. More generally, the compiler may re-order and parallelize communications

as long as two criteria are met: (i) by sequencing channel actions in a module, new

65

edges must be inserted in the graph, and (ii) the resulting graph may not contain a

cycle, as this indicates a deadlock has been introduced.

While several orderings are possible from the outlined rules, the proposed approach

is to parallelize all channel communications in a grouping, and ensure that all groupings

are performed in sequence. This precludes the opportunity for introducing deadlock in

a system.

Performance. In general, communication optimization is focused on increasing

the concurrency of a specification. By performing pipelining balancing, the opportunity

exists for improvement in throughput and latency. One scenario where throughput can

be improved is when stalling occurs in the original specification due to unnecessary

sequencing of channel actions. A rough indication of latency can be determined by

counting the number of nodes in the longest path in the directed graph; in the case of

Figure 3.13, the longest path is reduced from 9 nodes to 4 nodes.

3.5 Results

The optimizing compiler presented in this chapter was written in Java and executed

on a 2.16GHz Core Duo processor system with 2GB of RAM. Execution time for the

compiler was 0.2 to 2 sec in all cases, with the exception of one example (ADD) which

took 2 min. These run-times are quite short for a Java implementation, and even in

the slowest case an order of magnitude shorter than the subsequent compilation step

by the Haste compiler.

Experimental Setup. Each example was designed and simulated using the Haste

design flow, described earlier in Section 3.2. All designs were synthesized to the gate

level using a generic tech library supplied with the tools.

Eight different benchmarks were selected to illustrate the effects of our approach:

66

(i) FIR: a simple FIR filter that performs a weighted average of the previous eight

inputs, (ii) ALU: an ALU based on the communication example of Section 3.4 that

receives two inputs and produces their sum and difference, (iii) ADD: a 64-way adder

tree derived from a real-world Boeing project, (iv) UTEA: an unrolled version of the

Tiny Encryption Algorithm, (v) ODE: a differential equation solver, (vi) ROOT: an

specification that performs the square root of an input, (vii) QUAD: a specification

that determines if the quadratic roots of two input polynomials are interleaved, and

(viii) LTEA: a second version of the Tiny Encryption Algorithm, without unrolling.

The first four specifications (FIR, ALU, ADD, UTEA) consist of straight line code,

while the second four specifications (ODE, ROOT, QUAD, LTEA) include one or more

loops. For each example the compiler created several transformed specifications: paral-

lelized, pipelined, and both parallelized and pipelined. Furthermore, arithmetic pipelin-

ing at 32, 16, 8, and 4 bit granularities was performed using three specifications in

addition parallelization and pipelining.

The ROOT, QUAD, and LTEA specifications contain very tight loops with little

room for internal parallelization. ODE’s loop, however, contains several sequenced

operations that have the potential to be parallelized. QUAD contains two ROOT loops

in sequence with no data-dependencies between the loops, as well as several unpipelined

64-bit multiplications in each version.

Performance. Table 3.1 shows the cycle time and latency for each specification

with the arithmetic pipelining option disabled. Throughput generally increases (cy-

cle time generally decreases) from left to right in the table, most notably for the four

straight-line code examples. The four examples with loops also show throughput im-

provement, although in most cases only due to parallelization which tightens the loop

body. As expected, pipelining alone had no benefit on the examples with loops except

for QUAD, which consists of not just one large loop, but two sequential ROOT loops

67

along with several other complex sequential operations. As a result, QUAD was sig-

nificantly sped up (8x) by pipelining. Overall the greatest throughput improvements

were for the straight-line examples: from 2.2x for ALU, to 14x for FIR, 23x for UTEA,

and 59x for the adder tree (ADD).

Latency is generally reduced (or remains unchanged) after performing paralleliza-

tion, but is usually increased after performing pipelining. As a result, the latency of

parallelized and pipelined specifications is increased in some cases and decreased in

others: 1.2x longer for UTEA, but 8.4x shorter for ADD.

The table shows a few intriguing anomalies. The first is the reduced latency of

FIR and ADD after performing parallelization and pipelining, when compared to the

parallelized version. This reduction is due to expression tree balancing, which was only

enabled when both parallelization and pipelining were performed. A second anomaly

is the reduced latency of FIR after performing pipelining. FIR’s original specification

required flip-flop variables due to auto-assignment. The pipelining optimization was

able to replace these flip-flops with lower latency latches, thus reducing the overall

latency of the specification.

A second set of results shows the effect of arithmetic pipelining on the first three

straight-line code examples. As shown in Table 3.2, an additional 5.2x improvement

was achieved by pipelining arithmetic in addition to the previous optimizations, as long

as the pipeline is not limited by other higher granularity stages such as those containing

loops.

Area and Design Effort. Table 3.3 gives numbers for the total area of synthesized

circuits, as well as the number of lines for each specification as an indication of design

effort. By comparing the number of lines in the original specification to the number

of lines in the parallelized and pipelined specification, we can get a sense of how much

effort was saved by using our tool versus performing these optimizations by hand. This

68

amount averages around 3.3x, and is 8.8x in the best case (UTEA). In terms of area,

the original and parallelized specifications have similar numbers, while the pipelined

version generally has significantly more area. The parallelized and pipelined version

falls somewhere between the original and pipelined versions in most cases.

3.6 Conclusion

This chapter proposed a source-to-source compiler to increase the performance of a

specification while maintaining ease of design. The automated approach yielded im-

proved throughput for a full suite of specifications, up to 59x in one case (293x with

arithmetic pipelining). By performing these optimizations using an automated tool

rather than by hand, design effort was reduced by up to 8.8x.

While the approach presented in this chapter targets high-performance data-driven

pipelines, minimizing area is often a designer concern. Therefore, I will propose an

entirely different approach in the next chapter: a resource-shared approach targeting

reduced-area implementations.

69

O
p
ti

m
iz

at
io

n
T

ec
h
n
iq

u
e

O
ri

gi
n
al

P
ar

al
le

l
P

ip
el

in
ed

P
ar

al
le

l+
P

ip
el

in
ed

C
y
c
le

T
im

e
(n

s)
L
a
te

n
c
y

(n
s)

C
y
c
le

T
im

e
(n

s)
L
a
te

n
c
y

(n
s)

C
y
c
le

T
im

e
(n

s)
L
a
te

n
c
y

(n
s)

C
y
c
le

T
im

e
(n

s)
L
a
te

n
c
y

(n
s)

Acyclic

F
IR

19
0.

6
38

1.
2

99
.8

5
19

9.
7

13
.3

7
22

7.
2

13
.3

7
93

.5
9

A
L

U
30

.0
3

90
.0

9
15

.0
2

45
.0

6
13

.2
8

19
9.

3
13

.9
6

97
.7

8
A

D
D

79
0.

3
79

0.
3

79
0.

3
79

0.
3

13
.3

7
16

98
13

.3
6

93
.5

4
U

T
E

A
34

3.
1

34
3.

1
34

3.
2

34
3.

2
14

.7
4

45
7.

2
14

.7
4

44
2.

5

Cyclic

O
D

E
12

18
12

18
57

6.
8

57
6.

8
12

46
49

85
59

1.
3

17
74

R
O

O
T

13
2.

4
13

2.
4

11
8.

6
11

8.
6

13
7.

3
82

4.
3

12
5.

7
50

3.
1

Q
U

A
D

14
97

14
97

74
8.

0
74

8.
0

18
7.

0
41

15
18

7.
0

18
70

L
T

E
A

34
1.

6
34

1.
6

34
1.

6
34

1.
6

34
2.

4
13

69
34

2.
4

13
69

T
a
b

le
3
.1

:
P

er
fo

rm
an

ce
of

or
ig

in
al

an
d

tr
an

sf
or

m
ed

sp
ec

ifi
ca

ti
on

s

70

O
p
ti
m
iz
at
io
n
T
ec
h
n
iq
u
e
/
G
ra
n
u
la
ri
ty

of
O
p
er
at
o
r
P
ip
el
in
in
g

O
ri
gi
n
a
l

P
a
ra
ll
el
+
P
ip
el
in
ed

32
-b
it

16
-b
it

8-
b
it

4
-b
it

C
T

(n
s)

S
ta
g
es

(N
)

C
T

(n
s)

S
ta
g
es

(N
)

C
T

(n
s)

S
ta
g
es

(N
)

C
T

(n
s)

S
ta
g
es

(N
)

C
T

(n
s)

S
ta
g
es

(N
)

C
T

(n
s)

S
ta
g
es

(N
)

F
IR

1
90

.6
4

2
13

.3
7

7
7.
75

15
4.
86

23
3
.4
1

3
9

2
.6
9

71

A
L
U

3
0
.0
3

3
13

.9
6

7
7.
74

11
4.
86

15
3
.4
1

2
3

2
.6
9

39

A
D
D

7
90

.3
1

1
13

.3
6

7
7.
75

19
4.
86

31
3
.4
1

5
5

2
.6
8

10
3

T
a
b

le
3
.2

:
P

er
fo

rm
an

ce
im

p
ro

ve
m

en
t

th
ro

u
gh

op
er

at
or

p
ip

el
in

in
g

71

O
p
ti

m
iz

at
io

n
T

ec
h
n
iq

u
e

O
ri

gi
n
al

P
ar

al
le

l
P

ip
el

in
ed

P
ar

al
le

l+
P

ip
el

in
ed

A
re

a
(µ
m
)2

L
in

es
(n

)
A

re
a
(µ
m
)2

L
in

es
(n

)
A

re
a
(µ
m
)2

L
in

es
(n

)
A

re
a
(µ
m
)2

L
in

es
(n

)

Acyclic

F
IR

12
36

5
45

11
22

5
47

25
20

4
20

9
11

86
9

88
A

L
U

24
41

46
24

82
56

59
13

22
7

34
95

83
A

D
D

44
61

0
76

44
61

0
76

65
89

13
16

61
53

24
8

21
7

U
T

E
A

32
73

1
61

32
73

6
61

31
22

5
55

1
30

75
4

54
0

Cyclic

O
D

E
17

50
28

16
00

34
22

92
91

20
10

84
R

O
O

T
92

8
27

92
4

33
12

45
94

11
22

76
Q

U
A

D
62

13
54

58
80

70
94

12
29

4
69

69
17

0
L
T

E
A

52
68

36
52

68
36

64
75

86
64

75
86

T
a
b
le

3
.3

:
A

re
a

an
d

co
d
e

le
n
gt

h

72

Chapter 4

Resource-limited Design:

Unpipelined

While the approach presented in Chapter 3 can lead to very high-performance circuits,

the conversion to a data-driven implementation comes at the cost of area. Since each

operation is explicitly mapped to its own individual function unit, no sharing of re-

sources is performed. Therefore, we now turn to the other end of the spectrum: an

unpipelined, shared-resource architecture.

In this chapter, conserving area will become the primary concern, either through a

specified bound or via minimization. Yet, in the vein of true design-space exploration,

we will provide a broad suite of options to the designer, providing techniques for both

area-minimization and performance-maximization under a set of constraints. These

constraints will be further expanded in Chapter 6 to incorporate energy and power.

We initially target single-token (or single-threaded) implementations, but will move on

to consider an alternate approach for multi-token scheduling in Chapter 5. The design

flow for this chapter is shown in Figure 4.1.

The primary challenge faced in this chapter is common to most high-level synthesis

approaches; we must determine how to allocate, bind, and schedule function units.

High-Level
Specification!

Compiler + Source
Level Optimizations!

(Chapter 3)!

Optimized!
CDFG!

Data-Driven
Pipelining!
(Chapter 3)!

Multi-Token!
Synthesis!

(Chapter 5)!

Single-Token!
Synthesis!

(Chapter 4)!

Data-Driven Haste
Specification!

Haste!
Compiler!

Data-Flow
Representation!

Pipelined Data-Flow
Representation!

Netlist!

Architectural
Mapping!

Physical!
Mapping!

Circuit!

Existing Haste
Design Flow

HDL!
Description!

Tech!
Mapping!

Manual Design

Figure 4.1: Single-token, shared-resource design flow

This problem, at its core, is intractable, particularly for large examples. However, I

introduce efficient scheduling algorithms that, in practice, show excellent performance

even for large examples.

4.1 Introduction

This chapter targets high-level synthesis of asynchronous systems, and introduces a fast

exact approach to the scheduling and allocation problem for shared resources. Much

of the recent work on this topic has been adapted from synchronous approaches, and

therefore suffers from drawbacks associated with assuming discrete timing (or a discrete

74

approximation) for an asynchronous behavioral specification. In this chapter, I will

present a fresh approach based on string permutations that does not require discrete

timing, and is therefore capable of finding optimal schedules that other approaches may

not be able to find.

Instead of the typical integer-linear-programming (ILP) based formulations used by

prior approaches, my proposed method casts the problem directly as a string permuta-

tion problem. The string encodes events corresponding to starting and completion of

operations, i.e., a total ordering of start and end events. However, this simple repre-

sentation directly encodes partial order among operations (due to dependency and/or

resource constraints), and is powerful enough to encode all of the concurrency inherent

in the specification. Since the string representation merely encodes an order, the associ-

ated search space is significantly smaller than that of an ILP because in the latter, each

discrete time step, each operation, and each resource contributes to the dimensionality

of the search space.

A significant contribution of the proposed approach is a set of powerful pruning

strategies that drastically decreases the size of the search space, allowing for an efficient

branch-and-bound solution. A key pruning strategy is to use heuristics to order the

walk through the search space so as to find a quick, possibly non-optimal, solution,

and use this solution to quickly bound the search space. In addition, several other

techniques are provided to avoid redundant searches, and to quickly determine the

infeasibility of certain solutions.

Several flavors of the high-level synthesis problem are addressed:

• time minimization under resource constraints,

• area minimization under time constraints,

• time minimization under area constraints, and

75

• multi-constrained scheduling.

The approach has been automated and applied to a set of examples. In most cases,

an optimal solution was found in about 1 second or less (typically less than 50ms). Even

for the largest example (1090 operations), all but one test case completed in under five

seconds. For comparison, an ILP formulation based on previous work by Nielsen et

al. (Nielsen, 2005; Nielsen et al., 2004; Nielsen et al., 2009) was also implemented,

though a third-party ILP solver was used instead of simulated annealing or genetic

algorithms used by Nielsen et al. Results show that my approach is faster by 1.9x-180x

for small examples, and faster by multiple orders of magnitude on the larger examples.

The remainder of this chapter is as follows: in Section 4.2 I will describe previous

work in the area of high-level synthesis and explain the drawbacks of using a time-step

based ILP approach for the asynchronous scheduling problem. Then, in Section 4.3, I

explain how the search space is formulated in my approach. Next, I introduce multiple

search strategies for optimizing a specification in Section 4.4. In Section 4.5 I present a

generalization to allow for a broader solution space by allowing many-to-many mappings

of operations to function units. Finally, I present the results of experimentation in

Section 4.6 and present conclusions in Section 4.7.

4.2 Background and Previous Work

Numerous approaches to high-level synthesis have been considered in the last several

decades; a survey of synchronous techniques is available in (Micheli, 1994). The focus

of this chapter is specifically on the problem of scheduling and allocation. Solutions to

this problem fall into multiple categories; an approach may be exact or heuristic, target

synchronous or asynchronous systems, and may be performed by an algorithm/heuristic

or a guided random search (such as genetic algorithms/simulated annealing). In this

76

section I will discuss several techniques, including ILP-based approaches, the graph

based approach of (Bachman et al., 1999), as well as other heuristic approaches.

4.2.1 ILP Approaches

ILP approaches are commonly discussed because they are capable of producing exact

solutions, despite the intractability of the resource-constrained scheduling problem.

The ILP approach fits naturally with a synchronous paradigm. Multiple formulations

exist, one such (Nielsen, 2005) is described here:

1. Create a list of variables representing a range of possible scheduling times for each

node in the data-flow graph (DFG). Exactly one variable in this list must have

the value 1 (all others are 0), meaning the node begins execution at that time.

2. For each node, constraints are added such that the start time of each dependent

node must occur after this node completes execution. These constraints are be

added for each direct dependence.

3. Additional constraints must be added to the ILP such that no more resources are

used than available. For ILP formulations in which the number of resources is

not pre-allocated, a set of variables representing the number of functional units

allocated for each type must be added.

4. An optimizing function is generally applied to complete the ILP. A function to

minimize area would reduce a weighted sum of the variables in step 3. A latency

minimization can be performed by adding a sink node and minimizing its start

time.

While such a formulation can produce exact results in the synchronous realm due

to a fixed time interval associated with the clock, it can miss optimal solutions when

77

0!

1!

2!

3!

4!

5!

6!

7!

8!

9!

10!

11!

add! mult! sub!
0!

1!

2!

3!

4!

5!

6!

7!

8!

9!

add! mult! sub!

Figure 4.2: Illustration of differences between synchronous (left) and asynchronous
(right) scheduling

78

applied to the asynchronous realm. This drawback is illustrated in the simple scenario

in Figure 4.2. In this diagram, we consider a system with one functional unit each

of three resource types: add, multiply, and subtract, with latencies 0.25, 4, and 3,

respectively. Arrows indicate dependencies.

In Figure 4.2a, the optimal synchronous schedule is shown. Because the subsequent

additions cannot be scheduled until the next full cycle, the multiplication on the critical

path can start at earliest at time 4, yielding a best schedule of 11. In contrast, the

adders in the asynchronous schedule do not need to be aligned on a clock boundary,

and can produce the more optimal schedule shown in Figure 4.2b with a latency of 9.

To create a better schedule for the synchronous case, one could reduce the clock

period to the size of the GCD of each operation (in this case, 0.25). However, this

technique has significant drawbacks in terms of complexity and run-time of the ILP

solver, particularly when the clock period becomes small in comparison to operation

length. For this simple case, another technique, operator chaining (Wilson et al., 1995),

can be performed by adding additional constraints to the ILP; but this technique is

only applicable when the latency of a resource is half the clock period or less. Finally,

one can consider pre-scheduling the four sequential adds as an atomic block within a

single clock period; however, this approach may remove more optimal schedules from

the search space.

In the asynchronous domain, the ILP approach has been adapted for use by (Nielsen,

2005) and (Saito et al., 2006). In work by Nielsen et al. (Nielsen, 2005; Nielsen et al.,

2004; Nielsen et al., 2009), the ILP formulation discussed previously is used. Rather

than focus on modification of the ILP to fit the asynchronous domain, their research

describes heuristics to find a solution using guided search: simulated annealing and

genetic algorithms. After scheduling is performed, the synchronous constraints can be

relaxed, and may result in a lower latency asynchronous schedule. This work addi-

79

tionally describes techniques for power-constrained synthesis and other optimizations

targeting reduction of power/energy use.

In (Saito et al., 2006; Saito et al., 2007), the ILP formulation is modified by per-

forming approximation of start times. In essence, this approach can help limit the

number of variables and constraints in a system by removing non-essential start times

from a node’s vector. This approach can feasibly reduce the run-time of a system and

produce more optimal schedules by allowing a finer granularity clock to be considered,

more effectively modeling an asynchronous approach. However, their approach does

not guarantee optimality, as the number of approximated start times for each node

must be limited for efficiency, particularly when the number of nodes in the DFG is

large.

4.2.2 Graph-Based Approaches

The work most relevant to ours is described in (Bachman et al., 1999) and (Bachman,

1998), in which a graph-based approach is applied to produce an exact optimal schedule.

Unlike an ILP approach, the complexity of the design space is independent of the

discretization of time, and the approach accurately models an asynchronous paradigm.

However, the approach is dismissed in later work by one of the authors (Saito et al.,

2006) for having a high computational complexity.

In (Bachman et al., 1999), the input DFG is used as a baseline with data depen-

dencies marked with a forward edge. The initial DFG corresponds to a schedule for a

system with infinite resources and can be analyzed as such. The authors then present

an algorithm to perform scheduling by adding resource edges between nodes. As each

edge is added, a topological sort is performed on the graph, and the result can be re-

analyzed to determine properties such as area and latency. Adding resource edges can

at best reduce the area of the system, but may increase the latency of the schedule.

80

Like our approach, Bachman et al.’s method applies a branch-and-bound strategy

to prune the search space, and applies multiple pruning techniques, such as removal

of infeasible, redundant, and implied edges, and filtering by a minimal latency bound.

Some of these filters have parallels to those in our approach.

4.2.3 Other Approaches and Heuristics

Several other unique approaches have been proposed, some of which target slightly dif-

ferent areas. The approach of (Tugsinavisut et al., 2006) proposes both an ILP and a

list scheduling heuristic using Petri nets rather than DFGs as input. The heuristic pre-

sented in (Burns et al., 2004) presents an approach using “tight packing” and closeness

tables for scheduling, particularly targeting low interconnect solutions.

Other heuristics have been developed with the goal of quickly producing quality

solutions. Approaches such as force-directed scheduling (Paulin and Knight, 1987),

ELS/ELAS (Badia and Cortadella, 1993), and list scheduling (Sllame and Drabek,

2002) have been proposed. While these approaches can be quite effective for producing

results rapidly, these heuristics do not guarantee that the optimal solution will be found.

The SPARK (Gupta et al., 2003) framework is a well-known synthesis method-

ology that includes several high-level optimizations such as parallelization and loop

transformation in the synthesis process. However, this framework primarily targets

performance, and only considers one-to-one mappings of operations to resources.

4.3 Search Space Formulation

In this section I give a high-level overview of my proposed approach. I will start with a

description of the input specification (a data-flow-graph) and describe a few properties

and annotations that will be used in future sections. Next, I explain how the problem

81

is formulated as one of string permutation, describing validity restrictions for string

acceptance. Finally, I describe how the search space is represented, explored, and

pruned.

4.3.1 Preliminaries: Input Specification

4.3.1.1 DFG and CDFG representations

As input, my approach expects a DFG representing the behavior of the system. Each

node in the DFG corresponds to an operation, such as addition or multiplication.

Between nodes in the graph, directed edges are inserted that model the flow of data

between operations, and therefore represent dependencies in the specification.

One aspect absent from the DFG representation is the control associated with the

flow of data, e.g., loops and conditionals, that are included in a control-data-flow-

graph (CDFG) representation. We can apply the approach in a straightforward fashion

to these constructs: loops can be targeted by scheduling the loop body and repeating

this schedule at runtime until the loop terminates. Conditionals can be targeted by con-

version to conditional assignments. However, in most cases an optimal static schedule

for these problems cannot easily be found due to their dynamic runtime behavior. Yet,

these constructs will be explored in the multi-token solution presented in Chapter 5.

For ease of analysis, two additional nodes are added to the DFG: a root node and a

sink node. For all the nodes that do not have a dependence, a dependence is added on

the root node. For all the nodes without any dependent nodes, the sink node becomes

a dependent node. This allows for a single start node and finish node when annotating

DFG nodes.

82

4.3.1.2 DFG node properties and annotations

One of the first steps in the approach is to annotate each DFG node with a few essential

attributes, allowing us to calculate additional properties using the DFG structure. We

assume the initial properties associated with each node include an operation type, a

list of dependent nodes, and a list of nodes for which this node has a dependence. We

will denote dependence by the following: i← j indicates that i is dependent on j.

First, each node in the DFG is assigned a unique string identifier to be used in

scheduling. Each node is also linked with the appropriate “resource class” that contains

properties of its functional unit, i.e., area and latency. From this resource class, we can

associate an execution time, EXE(node), with each node in the DFG. This approach

initially assumes an assignment of one resource type to each operation, a restriction

that will be relaxed in Section 4.5.

With this information, we can calculate two properties: (i) STTS: the shortest time

to start, and (ii) STTF : the shortest time to finish. The STTS indicates the earliest

that a node can start in the system given infinite resources. This computation is per-

formed by analyzing the nodes upon which a node is dependent. The STTF indicates

the earliest that this node and all its children can complete execution, given infinite

resources, and is determined by analyzing a node’s dependencies. The formulation for

these properties are as follows:

STTS(Ni) = max
j|i←j

(STTS(Nj) + EXE(Nj)) (4.1)

STTF (Ni) = max
j|j←i

(STTF (Nj)) + EXE(Ni) (4.2)

Note that the execution time of the root and sink nodes is zero. These properties are

computed prior to scheduling. An example computation of these properties is shown

in Figure 4.3.

83

root!

a! b!

c! d!

e!

sink!

0! 24!

8! 8! 8! 16!

0! 16!

16! 8!

24! 0!

0! 24!

STTF!STTS!

Figure 4.3: DFG example annotated with STTS and STTF properties (each opera-
tion executes for 8 time units)

4.3.2 Scheduling as a String Permutation Problem

The key idea of the proposed approach is to model the scheduling problem as a string

permutation problem. In this approach, each event in the system is associated with a

specific string, and multiple event strings are concatenated into one large scheduling

string. Several restrictions must be placed on the formulation of these strings to ensure

a valid schedule is generated.

4.3.2.1 Terminology

As noted in the previous section, each node is assigned a unique string identifier. For

each node in the DFG, two unique event strings most be present in the scheduling

string: node+ and node−. The node-start string, node+, corresponds to operation

node commencing execution, while the node-finish string, node−, corresponds to its

completion.

84

4.3.2.2 Basic restrictions on valid strings

Several basic restrictions must be placed on the set of valid scheduling strings:

• every unique event string must appear exactly once,

• for a specific node, node+ must always precede node−,

• j− must always precede i+, for every i← j.

From the first restriction, it follows that the length of the scheduling string must

be equal to twice the number of nodes in the DFG.

4.3.2.3 String interpretation and temporal restrictions

Since strings do not include timing information, any valid string can be interpreted as

an infinite number of schedules. Therefore, let us interpret the scheduling string as

the most tightly packed schedule possible in an ASAP (as-soon-as-possible) fashion,

for which time is monotonically increasing as the string is read from left to right. The

primary constraint required in this interpretation is that each node− must complete

EXE(node) time units after its node+ commences. A secondary constraint is to require

consecutive node-start strings to have zero time occurring between them.

For example, assume a and b are additions with a latency of 10 units, and the

schedule produced is a + b + a− b−. In this approach, the interpretation is as follows

(times associated with each event are given in parentheses): a+ (0) b+ (0) a− (10) b−

(10). Without the secondary constraint, other valid interpretations could exist, one

such is: a + (0) b + (5) a− (10) b− (15).

This choice of interpretation has been selected for two reasons: (i) it most closely

matches an asynchronous data-driven paradigm, and (ii) this interpretation provides

a schedule that is in the set of optimal schedules for a specified string. While other

85

root+!

root-!

a+! b+! c+!

a+! b+! c-!a+! c+! b-!b+! c+! a-!

Figure 4.4: Partial expansion of search space for a three-statement DAG

schedule interpretations may be valid, any monotonically increasing interpretation can

have a latency no better than that of the interpretation we have chosen.

Due to the monotonically increasing time requirement of our interpretation, only a

subset of valid node− strings can be considered for selection at any point in the schedule.

As an example, consider the case where a is an addition with a latency of 10 time units,

and b is a multiplication with a latency 20 time units. The string a + b + b − a−

is not valid, as time is not monotonically increasing: a + (0) b + (0) b− (20) a− (10).

However, were both a and b additions of latency 10, the following schedule would be

valid: a + (0) b + (0) b− (10) a− (10).

4.3.3 Representing and Exploring the Search Space

In order to traverse the search space of valid scheduling strings, the scheduling problem

is mapped onto a directed acyclic graph (DAG). In this subsection, I will describe how

the DAG is generated and interpreted, how events are represented as nodes in the DAG,

how children are selected for each node, and finally, how the search space is pruned via

branch-and-bound and redundancy removal in order to significantly reduce runtime.

86

4.3.3.1 Building and interpreting the DAG

To start building the DAG, let us begin by inserting the node-start event of the root

node, root+ as the first event in the system, as shown in Figure 4.4. From there, we can

generate a list of possible other events that can be started in the system; these events

become child nodes of root+. In order to be considered for selection as a child node,

the requirements on string ordering in 4.3.2 must be met, including both dependence

restrictions (for node+ nodes) and temporal restrictions (for node− nodes). Due to

these restrictions, root− is the only node that can follow root+, as all other nodes have

a dependence on root or another node.

After root− completes, we can again continue this procedure of selecting valid events

that can be triggered at this time; in this case, this set includes any events that have

no dependencies in the original DFG. These children are enumerated, and each can

then be explored in the same fashion, until sink− is reached (a node with no possible

children). If one were to näıvely expand every node in the graph, this would essentially

generate a list of all possible schedules for this DFG. However, the approach does not

perform a full enumeration in practice, as it would be an incredibly time-consuming

process. Instead, the search space is pruned by applying several different bounds and

optimizations; these will be described in later sections.

In the generated graph, the path from the root node to the current node gives the

partial schedule of events occurring in the system up until that point. Each edge in the

graph can be considered to have a weight corresponding to the time elapsed between

two events, according to the interpretation described in Section 4.3.2. Any full path

from root+ to sink− represents a complete and valid schedule.

87

4.3.3.2 Node properties

In addition to the unique string identifier associated with a node in the DAG, several

other properties are associated with each node in order to reduce redundant computa-

tion when traversing the graph:

• a link to the corresponding annotated node in the DFG,

• the start or end time associated with this node,

• a list of computations that have been started and finished by the time this node

is reached,

• the start times associated with computations that have started but not yet fin-

ished, and

• the number of free resources in the allocation at this node.

Each of these items could be generated simply by inspecting the path from the root

to the current node. For performance reasons, however, we can pass as much of this

information as possible from one node to the next, rather than recomputing it based on

the full path each time. This choice is a storage/time trade-off that effectively reduces

the run-time of the implementation.

The final item in the list above is determined at each node by counting the number

of node+ nodes in the path for which a node− node has not been encountered, for each

resource type. This information is used to help prune the search space in resource-

constrained scheduling.

4.3.3.3 Pruning the search space and branch-and-bound

As exhausting the full search space of the DAG would be highly inefficient, a key

contribution of this work is the development of several methods for pruning the search

88

root+!

root-!

a+! b+! c+!

c-!c+! b-!b+! c+! a-!

Figure 4.5: Pruning via lexicographical ordering

space. The cornerstone of our approach is a branch-and-bound technique to cut portions

of the search space (DAG) entirely when constraints are not met, specifically time and

resource usage.

There are several key components to effectively pruning the search space in the

proposed approach:

1. developing several safe but tight bounds,

2. rapidly generating a quality schedule, and

3. removing redundancy in the search space.

Items 1 and 2 will be discussed in depth in Section 4.4 in relation to time bounds;

item 3 is discussed below.

4.3.3.4 Redundancy in the search space

Due to the timing interpretation we selected, multiple redundancies in scheduling

strings are removed by adding further restrictions on the validity of a string. Con-

ceptually, the timing interpretation does not place any restrictions on the ordering of

89

events occurring within the same time frame. For example, the scheduling substrings

a + b + c+ and b + a + c+ are both valid and will represent two different paths in the

search space.

By enforcing a lexicographical ordering on node-start strings, we can reduce the

overall search space without losing optimal solutions. For example, c+b+a+ no longer

becomes a valid scheduling substring, but the same schedule will exist elsewhere in the

graph as a + b + c+. These two strings have the same meaning: start operations a, b,

and c; but this meaning can be represented in multiple redundant ways. By enforcing

an ordering, we prune out that redundancy, as shown in Figure 4.5.

A similar ordering is enforced on node-finish strings. In the case where consecutive

node-finish events occur at the same time in the schedule, multiple orderings can exist,

as in the earlier example of a + b + a − b− and a + b + b − a−. Again, we enforce

an ordering on these node-finish events to remove redundancy. Note that this ordering

is not enforced when time elapses between two node-finish events. As a result of the

restrictions on node-finish ordering, at most a single node− node may be selected as a

child for any node.

We add one final constraint on the ordering of node-finish strings in relation to node-

start strings: if both a node+ and node− event occur within the same time instant,

the node− node must precede the node+ node.

The combination of these three restrictions on string ordering results in a single

possible order for concurrent event firings: all node− events are listed in lexicographical

order, followed by all node+ events listed in lexicographical order. These ordering

restrictions can have a very significant impact on performance, as shown in Section 4.6.

90

4.4 Search Strategies

Given the problem formulation just described, we can now move on to explore multiple

synthesis techniques, each targeting different objective functions and restricted by a

set of constraints. First, I will describe the core method, resource-constrained time-

minimization, along with several optimizations to reduce the search space. Then, I

will continue by describing time-constrained area-minimization, area-constrained time-

minimization, and multi-constrained search, all of which are meta-level optimization

algorithms for which resource-constrained time-minimization is an underlying step.

4.4.1 Resource-Constrained Time-Minimization

4.4.1.1 Objective Function and Constraints

In resource-constrained time-minimization, the goal is to produce the lowest-latency

schedule for a DFG given a set of resource constraints. For this method, we assume

allocation has already been performed, leaving us with a maximum number of function

units that can be used concurrently when generating a schedule.

4.4.1.2 Basic Algorithm

The basic algorithm is shown in Figure 4.6. From the DFG, a worst-case maximum

time can be computed by summing the latencies of every operation; this worst-case

scenario corresponds to a completely serialized schedule, i.e., one with no concurrent

operations. This will serve as an upper bound for schedule latency, and the algorithm

will replace this value as it finds better solutions.

The next step is to enter into a recursive procedure, expand(), that performs a

depth-first search on the search space. When a sink node is reached, further expansion

on this path terminates. If the start time associated with the sink node is less than the

91

int RCTM(DFG dfg, Allocation alloc){

minTime = getWorstCaseTime(dfg)+1;

expand(rootNode, alloc);

return minTime;

}

void expand(Node node){

if (isSinkNode(node)){

if (node.startTime<minTime)

minTime = node.startTime;

return;

}

NodeList children = getChildren(node, alloc);

for each child in children

if (child.startTime>=minTime)

return;

for each child in children

expand(child);

}

Figure 4.6: Basic algorithm for resource-constrained time-minimization

current minimum time, the new best time is logged, as well as the schedule (not shown

in code).

One of the core procedures in the basic algorithm is the getChildren() procedure,

shown in Figure 4.7. This method enforces the restrictions on strings given in Sec-

tion 4.3 and lists only the nodes that can be executed by considering dependencies,

availability of resources, and lexicographical ordering. As this method generates the

child nodes, it also must set properties such as timing information and resource use on

this path; this is represented as the updateProperties() procedure.

The only bound to prune the search space in the basic algorithm is a very loose

bound: if a node is reached with start time at or exceeding the current best time,

exploration further down this path is terminated.

92

NodeList getChildren(Node parent,Allocation alloc){

NodeList list = new NodeList();

for each child in unscheduled start-nodes:

updateProperties(child,parent);

if (dependenciesResolved(child)&&

resourceAvailable(child, alloc)&&

lexicographicallyOrdered(parent,child))

list.add(child);

Node finishNode;

for each child in executing nodes:

if (timeLeft(finishNode) > timeLeft(child))

finishNode = child;

if (timeLeft(finishNode)==0)

return new NodeList(finishNode);

if (finishNode!=null)

list.add(finishNode);

return list;

}

Figure 4.7: Algorithm for selecting child nodes in the DAG

93

4.4.1.3 Optimizations

In order to more effectively prune the search space, several optimizations are performed,

as described below. These optimizations are applied to the basic algorithm given in

Figure 4.6.

Sorting. The first optimization is a sorting of the child nodes selected by the

getChildren() method, according to their STTF . In the original algorithm, the order

of selection of children is based on an arbitrary lexicographical order. However, this

ordering does not consider any specific property of each node.

By assigning ascending lexicographical identifiers to each node in the order of de-

creasing STTF , we can ensure that the paths with the greatest STTF are explored

first for execution. This choice will allow the critical path in the DFG to be considered

for scheduling first, leading a good quality initial solution for more effective pruning in

later steps. As you may recall, in a step prior to exploring the search space, each node

in the DFG was annotated with its STTF. Thus, this sorting does not incur any extra

performance penalty.

Dominance check using hashing. There are several partial schedules generated

by the graph for which the same set of operations have been scheduled to start and

finish, albeit in different orders. So, as each node is generated, a hashing string is also

created that corresponds to an unordered set of events that have occurred in the partial

schedule. A global hash is then accessed to locate an array of other nodes that have

also performed the same set of events.

The properties of the current node, particularly latency, can then be compared to

that of other nodes with the same set of events. If this node is inferior to any of the

nodes in that hash location, further exploration of this path is no longer considered. In

order to be considered inferior, two conditions must hold:

1. the node must have a latency greater than or equal to the compared node, and

94

2. all active computations in a node must have end times greater than or equal to

those in the compared node.

In most other cases, the two nodes cannot be accurately compared to determine

superiority. In the case that the current node is found to be superior to a node in the

array, the compared node is evicted from the array. If after comparison to all nodes in

the array, this node cannot be found to be inferior, it is inserted into the array at this

hash location.

Tightening time bounds. In the original algorithm, pruning was performed only

when a node in the graph met or exceeded the current best time. To improve pruning,

we can consider two tighter bounds on time: STTF and RCSTTF .

The STTF bound is implemented rather simply. The best possible finish time for

a node and its children, given infinite resources, is equal to the current time in the

partial schedule plus the STTF for this node. Therefore, rather than checking that the

current time is less than the current best time, we can instead check to see that the

current time plus the STTF for this node falls below the best time bound.

Using the same logic, a more complicated bound is generated, the resource con-

strained shortest-time-to-finish (RCSTTF). The aim of this bound is to consider the

start-time overhead of scheduling the unscheduled nodes in remaining on a path while

considering resource constraints.

For this bound, a list of node+ events that have yet to execute is accumulated,

sorted in descending order of STTF , for each resource. As a reminder, note that this

sorting is performed prior to exploration of the DAG. We then compute a minimum

time bound for this set of operations to finish in the best case. This is performed by

adding together the current time, the STTF for each node, and an additional wait-time

delay for this operation to gain access to a resource. This sum is then compared to the

best time, and if the result is greater than or equal to the best time, the current node

95

Table 4.1: Sample RCSTTF bound for two adders

Node Current Time STTF Wait Term Estimated Finish

q+ 50 22 0 72
r+ 50 16 0 66
s+ 50 16 8 74
t+ 50 14 8 72
u+ 50 10 16 76
v+ 50 8 16 74

is dropped from the search space.

A sample table showing the intuition behind the RCSTTF bound is shown in

Table 4.1. In this scenario, we have six operations that have not yet been started at

the current time of 50. These operations are sorted in descending order by STTF .

Two adders have been allocated in the system, each with an execution time of 8

time units. As a result, no more than two operations can have access to the adder

resources at a time, and the other adds are forced to wait. If we assume the first two

operations can execute immediately, the next two operations can commence at earliest

at time 8, the next two at time 16, and so on. These wait delays are represented in the

table as the “Wait Term.”

In the end, the objective is to find the ordering of statements that will minimize the

maximum value of the elements in the “Estimated Finish” column. The descending

STTF ordering as shown will give an earliest estimated finish of 76, which will be

our RCSTTF bound for this node. Any other ordering than the one shown here will

produce at least one element in the estimated finish column that meets or exceeds the

calculated bound of 76.

Note that the RCSTTF bound does not perform any scheduling; the sorted schedule

is used only to produce a tighter bound for pruning. As the STTF term on which

RCSTTF relies considers infinite resources, it may be that an alternate ordering will

be what produces an optimal schedule. However, this alternate schedule will not be

96

discarded by the RCSTTF bound.

4.4.2 Area-Constrained Time-Minimization

Now let consider a related, but more general problem, that of area-constrained time-

minimization.

4.4.2.1 Constraints and targets

In area-constrained time-minimization, the goal is to produce the lowest latency sched-

ule for a DFG given an area constraint. This method differs from resource-constrained

area-minimization in that allocation has not been performed, so multiple allocations

become part of the search space. Hence, our approach is a meta-level search for which

the resource-constrained time-minimization method is run for each allocation.

4.4.2.2 Enumerating the search space

For area-constrained time-minimization, multiple unique allocations from the allocation

search space must be enumerated and analyzed in order to determine a minimum value.

Conceptually, one could build this space by generating a list of all possible allocations,

removing any allocations with greater area than the constraint, and then removing any

allocation in the list that is subsumed by another allocation.

If the search space is small enough, this list of possible allocations can be performed

up-front for analysis. As the number of combinations increases, a more dynamic method

of enumerating this space must be performed to reduce run-time and prevent unneces-

sary combinations from being considered.

Although the full search space under an area bound consists of a multi-dimensional

“volume” of allocations (bounded by integer constraints), an allocation on the surface

of this volume is guaranteed to provide the best possible solution. Because allocations

97

0,0!

1,0! 0,1!

2,0!

3,0!

1,1!

2,1!

3,1!

1,2!

2,2!

3,2!

Figure 4.8: Allocation search space for two function unit types

below the surface will contain fewer function units than an allocation on the surface,

they can at best match a surface allocation in terms of performance. Since we are only

concerned with time-minimization, we can therefore ignore the subsumed allocations

that exist below the surface.

The allocation surface can be generated in a variety of ways. In the proposed

approach, a tree of allocations is created, starting with an empty allocation node as

shown in Figure 4.8. The tree is then expanded at the root by creating a set of new

nodes under a set of restrictions:

1. each child node can add only one additional allocated function unit,

2. each child node must be distinct from its siblings,

3. the generated node’s allocation must not exceed the area bound,

98

void ACTM(DFG dfg, int areaBound){

AllocationList allocations =

getPossibleACTMAllocations(areaBound);

int bestTime=getWorstCaseTime(dfg)+1;

for (int x=0; x<allocations.length; x++)

bestTime = min(RCTM(dfg,allocations[x]),

bestTime);

}

Figure 4.9: Algorithm for area-constrained time-minimization

4. the selection of children may not break a lexicographical ordering.

A detailed description of the final restriction is the following: each function unit

type is assigned a string (e.g., mult1), and the full set of function unit strings are

given a lexicographical ordering. Each time a function unit is added to an allocation,

that function unit’s string is appended to the path’s string. Paths generated in the

allocation tree are legal as long as the path string is in lexicographical order. This

restriction prevents redundancy in the search space, as illustrated in Figure 4.8: only

one path exists to each node.

A simple example of the lexicographical restriction is the following: if a node’s

grandparent adds an ALU to the allocation, then the current node adds a multiplier to

the allocation, its children are barred from adding ALUs to the allocation.

When a node can no longer be expanded and it meets the validity requirements

(i.e., each operation in the DFG can be mapped to a function unit), it is considered for

selection in the final allocation pool. When fully enumerating the search space under

an area constraint, the final step is to prune allocations that are subsumed by others;

this step is performed by removing any leaf node for which a function unit can be added

when ignoring lexicographical order.

4.4.2.3 Algorithm

A basic algorithm for area-constrained time-minimization is shown in Figure 4.9.

99

First, a list of all possible allocations is generated. A best time bound is set as in

the resource-constrained time-minimization scenario. Then the resource-constrained

time-minimization algorithm is run for each allocation, however, each subsequent call

to RCTM is bounded by the best time determined so far, rather than a worst case

time for the DFG.

4.4.3 Time-Constrained Area-Minimization

4.4.3.1 Constraints and targets

In time-constrained area-minimization, the goal is to produce the lowest-area schedule

for a DFG given a time constraint. For this method, allocation has not been performed,

so each unique allocation becomes part of the search space.

4.4.3.2 Enumerating the search space

The search space for area-minimization now consists of the full multi-dimensional vol-

ume of possible allocations. However, the full search space need not always be consid-

ered; if a low-area solution is found, any higher-area allocations are discarded.

Unlike time-minimization where the full allocation search space must be expanded,

the search space can be enumerated dynamically in area-minimization. A similar tree

allocation approach to that of generalized time-minimization is performed, with the

exception that nodes are not expanded indefinitely. Starting with the initial empty

allocation, child nodes are expanded in each path in a depth first fashion, as in Fig-

ure 4.8. When a legal allocation is found, the path is prevented from further expansion

temporarily, and added to a list of “leaf” nodes. The initial leaf nodes are shaded gray

in the figure.

When this initial expansion pass is complete, a list of low-area legal allocations is

now recorded. The list of allocations is then sorted from least to greatest area. The

100

void TCAM(DFG dfg, int timeBound){

AllocationList allocs = new AllocationList();

do{

Allocation alloc = nextSortedAllocation(dfg);

allocs.add(alloc);

}while(RCTMHeuristic(alloc)>timeBound);

int bestArea = getArea(allocs.lastElement());

while (allocs.size()>0){

Allocation last= allocs.lastElement();

if(RCTM(dfg, last)<=timeBound){

bestArea = getArea(last);

removeAllocsWithGTEArea(allocs, last);

}else

removeAllocsWithLessFU(allocs, last);

}

}

Figure 4.10: Algorithm for time-constrained area-minimization

lowest area allocation is then considered heuristically to see if it meets the constraints.

If so (for the initial case) the lowest area allocation is found. If not, it is added to a list

of heuristically failed allocations for later consideration. The node is then expanded

and its legal children are added to the list of low-area allocations. This list is re-sorted

and then the next lowest area allocation is considered.

When a heuristic solution is successful, any failed allocations have to be considered

using an exact resource-constrained time-minimization approach. If successful, a new

minimization result is found. If the allocation fails, then it is removed from the list

of possible allocations, as well as any of the allocations it dominates. This process

continues until the list of failed allocations is exhausted and the best area solution is

found.

4.4.3.3 Algorithm

The algorithm for time-constrained area-minimization is shown in Figure 4.10. At

101

the top level, the goal is to explore the search space in ascending order of area, trying

to find the first allocation that will meet the bound via a heuristic. Then, the nodes

that failed the heuristic search are considered in an exact fashion to ensure that an

optimal solution was not missed.

The first step in the algorithm is to generate an empty list of allocations that will

expand as we explore the search space. The initial loop produces the next unconsidered

allocation in the search space with the lowest area. This allocation is added to the list,

and a heuristic version of the resource-constrained time-minimization method is then

run on the allocation. This heuristic method consists of finding the latency of the first

path to a sink node in the graph.

If this allocation does not meet the time bound heuristically, the next lowest area

allocation is considered. If it does meet the time bound, the loop is exited, and execution

begins in the next loop, which considers lower area allocations in an exact fashion. If

an allocation does not meet the time bound, any allocations with fewer function units

are removed from the list. If an allocation does meet the time bound, we have found

a new allocation with a best area bound. Any allocation with greater or equal area is

then removed from the list. This process repeats until the list of allocations is empty.

4.4.4 Multi-Constrained Search

One final scheduling problem is a multi-constrained search. For multi-constrained

search with minimization functions, additional constraints can easily be added to the

methods above. For example, one may perform time-constrained area-minimization

under an area-constraint; this type of search results in a reduced search space.

For methods with no minimization functions, the objective function is to find any

valid schedule that meets the constraints. As an example, for resource-constrained and

time-constrained search, the method involves adding a time bound to the resource-

102

constrained time-minimization approach, and returning the first valid schedule. For

area-constrained and time-constrained search, the area-constrained time-minimization

approach is used, returning the first valid schedule meeting the time constraint.

4.4.5 Binding

The final step of the synthesis process in our approach is performing binding. A rela-

tively simple binding technique is used in the proposed approach. Moving in ascending

order of time in the schedule, a node+ is assigned to the first available function unit in a

round-robin fashion. As the binding step is performed in a post-processing fashion, the

effects of binding (e.g., number of multiplexers) on the overall time/area consumption

of the scheduling string are not considered in the scheduling process. In other words,

we assume the multiplexing time and area to be a fixed value for each function unit.

4.5 Generalized Mapping Extension

The basic approach described in Sections 4.3 and 4.4 is limited to a many-to-one map-

ping of operations to function units. Using this mapping, a function unit may accept

multiple classes of operations, but each operation class can be bound to a single func-

tion unit type. As an example, an ALU may accept both multiply and add operations,

but if so, multiply and add operations can only be scheduled on an ALU, and no other

function unit type. As a result of this limitation, no choice exists when binding an

operation to a resource.

Therefore, a more general strategy for binding is needed. In this section, I describe

an extension to the proposed scheduling approach to allow for a many-to-many mapping

of operations to function units. In practice, this extension allows for a wider variety of

legal schedules and allocations, and therefore may produce better solutions.

103

4.5.1 Modified annotations

In Section 4.3, each node is immediately bound to a specific resource class containing

function unit properties such as area and latency. This binding allows for one-time

analysis of some computed DFG annotations but prevents an operation from execut-

ing on alternative function units, e.g., an addition operating on either an ALU or a

dedicated adder.

Instead, we would prefer to bind each DFG node simply to an operation class, such

as addition or multiplication. The actual binding of node to resource (i.e., function

unit) is performed during the scheduling process. As a result, certain DFG annotations

must be parametrized by allocation and recomputed multiple times during execution

of the solver.

The main computed annotation used in the original approach is the STTF , or

shortest time to finish. This property indicates the earliest that a node and its children

can complete execution in the presence of infinite resources.

The computation of STTF in Section 4.3 is as follows:

STTF (Ni) = max
j|Ni→Nj

(STTF (Nj)) + EX(Ni) (4.3)

where Ni → Nj indicates that Nj is dependent on Ni and EX(N) represents the execu-

tion time of the function unit this node is bound to. However, as the modified approach

does not initially bind a node to a function unit, the equation must be changed:

STTF (Ni) = max
j|Ni→Nj

(STTF (Nj)) + min
k|Rk⇐Ni

(EX(Rk, Ni)) (4.4)

where EX(R,N) represents the execution time of a function unit R for N ’s operation,

and Rk ⇐ Ni indicates node Ni can operate on function unit Rk. This formulation

is subject to the restriction that a resource Rk can only be considered if its allocation

104

root+!

root-!

b(A)+! b(*)+!

a(A)+! a(*)+!

a(*)+!

a-! b-!

a-!

b(A)+! b(*)+!

b-!

b(A)+! b(*)+!

a-!

a(A)+!

sink+!

sink-!

b-!

Figure 4.11: Full expansion of the DAG for a two-operation DFG with one ALU and
one multiplier

count is greater than zero, hence the requirement that the DFG must be re-annotated

with each new allocation.

This equation highlights several benefits of the modified approach: (i) an operation

can be scheduled on multiple different types of function units, (ii) a function unit

may accept multiple different types of operations, and (iii) a function unit may have

parametrized latencies for each operation type it accepts.

4.5.2 Expanding the search space

The modified approach adds complexity to the search space by allowing multiple node+

nodes corresponding to the same operation to exist as children of a single node. For

example, a(A)+, which represents node a operating on an ALU, and a(∗)+, which

represents node a operating on a multiplier, can both be children of the same node, as

shown in Figure 4.11. The selection of possible children nodes is allocation-dependent,

105

as some allocations may lack certain function unit types.

4.5.3 Modified time bound

One of the keys to the branch-and-bound approach is the selection of safe but effective

bounds to reduce the overall search space. In Section 4.4, the resource-constrained

shortest-time-to-finish bound (RCSTTF) is used to effectively prune the search space.

Conceptually, this bound solves a simpler, less-constrained scheduling problem: find

the best possible schedule in the absence of dependencies.

The bound is calculated by generating a list of nodes that have yet to start for

a specific operation type and sorting them by their STTF value. At this point, the

maximum STTF node can be summed with the latency of the current node, giving a

loose bound on the earliest this path could finish. An additional RC term is added that

takes into consideration the time that a node can be expected to wait to gain access

to the resource it is bound to under the current allocation. The addition of this term

forms an even tighter minimum bound on latency.

Because the original bound relied on having a many-to-one mapping of operations

to resources, we must now modify the (RCSTTF) bound to incorporate the possibility

of a many-to-many mapping. Since a node could be executed on a function unit that

accepts multiple operation types, the best option is a conservative approach. In order

to ensure that the bound is safe, when analyzing wait terms for a specific operation

class (e.g., addition) the wait terms associated with multi-operation function units (e.g.,

ALUs) operate under the assumption that this operation class has exclusive access to

the function unit. A sample calculation for this bound for a single class of operation is

shown in Table 4.2, in which an add operation takes 6 time units on a dedicated adder

and 10 time units on an ALU.

106

Table 4.2: Modified RCSTTF bound for one adder (6 unit latency) and one ALU
(10 unit latency)

Node Current Time STTF Wait Term Estimated Finish

q+ 50 22 0 72
r+ 50 16 0 66
s+ 50 16 6 72
t+ 50 14 10 74
u+ 50 10 12 72
v+ 50 8 18 74

4.5.3.1 Additional optimizations and considerations

When performing time-minimization in Section 4.4, each allocation generated is run

through the resource-constrained time-minimization method and the best solution is

maintained at each step to aid in rapidly pruning the search space. Because the number

of legal allocations may increase significantly when multiple resource types are available,

we can now extend this algorithm by performing two additional optimizations: (i) a

heuristic pass is first performed for each allocation to provide a good initial time bound,

and (ii) the allocation that provided the best heuristic solution is explored first.

The rationale behind these optimizations is that several allocations have a minimum

latency which is much greater than true minimum provided by another allocation.

Minimizing latency with respect to these allocations is generally a fruitless and time-

consuming endeavor. Therefore, a heuristic pass can help order these allocations such

that the best allocations are considered first.

One final optimization is to sort children of a node by considering the latency of

the bound function unit type in addition to STTF . In this way, the algorithm will

prioritize execution on lower-latency function units over higher-latency function units,

if both are available.

107

4.6 Results

In this section, the runtime and optimality of our approach are compared to that of

a traditional synchronous ILP formulation (as described in Section 4.2). The ILP

formulation used for comparison is based on that of (Nielsen, 2005) with a further

reduced variable space for comparison purposes.

4.6.1 Setup

To illustrate the benefit of our technique, the proposed branch-and-bound approach

was compared to the ILP approach in three different scenarios:

1. time-constrained area minimization,

2. area-constrained time minimization, and

3. area-constrained and time-constrained search, selecting the first solution meeting

both constraints.

For each case, both solvers were given a maximum run-time bound of 60 seconds, at

which point they were terminated and their best results given. The decision to bound

run-time was made because the ILP solver could take hours (or days) to complete; by

comparison, the worst-case run-time for the branch-and-bound solver was under five

seconds in all but one test case.

For the area-constrained time minimization scenario, results could not be produced

within the run-time bound for ILP in many cases. As a result, an additional upper-

bound schedule latency constraint was added to the ILP formulation to reduce its

number of variables and constraints, effectively reducing run-time. This additional

constraint was not used in the branch-and-bound approach, as it would only improve

performance. For two test cases for the ILP solver, the run-time bound was relaxed

108

until the first solution was found. For a very large test case (1090 nodes), the ILP

formulation itself was too complex to complete within the time bound, so no results

were recorded.

The parameters corresponding to the functional units used in experimentation are

shown in Table 4.3. These parameters were selected to be equivalent to those used in

(Saito et al., 2006).

The proposed branch-and-bound approach was implemented in Java using standard

packages. The ILP solver used for comparison results was lp solve (lpsolve, 2009), a

free open-source MILP solver with a Java interface. In order to produce results for both

methods, a benchmark class file was coded for each DFG to be fed into the appropriate

Java interface.

In an additional experiment, the branch-and-bound technique was tested with var-

ious optimizations disabled to illustrate the relative effectiveness of each optimization.

The benchmarks were tested using on a Macbook Pro with a 2.8 GHz Intel Core

2 Duo processor and 4GB of RAM and JVM 1.5. Run-times were measured with an

accuracy of one millisecond.

4.6.2 Benchmark Description

Five different benchmarks were used in experimentation:

• ODE: solves ordinary differential equations using the Euler method. It receives

as input the coefficients of a third-degree ordinary differential equation, along

additional parameters such as step size.

• DotProd8: performs a dot product on two eight-element vectors. This example

was used due to its high initial concurrency, resulting in a large number of unique

schedules.

109

• Cosine: approximates the cosine of a number using the first nine terms of it’s

Taylor series.

• Seventh: runs a seventh order filter from the IMEC cathedral system. This

benchmark was provided by (Nielsen, 2005).

• Elliptic: runs a fifth order elliptic wave filter. This benchmark was provided

by (Nielsen, 2005).

• TEA: performs two unrolled implementations of the unrolled tiny-encryption

algorithm in parallel (a very large example).

The node count of each benchmark, including root and sink nodes, is given in

Table 4.4.

4.6.3 Discussion of Results

4.6.3.1 Table labels and interpretation

Tables 4.5-4.7 use several acronyms as labels:

• BB: results using branch-and-bound approach

• ILP: results using synchronous ILP approach

• TC: time constraint of the circuit (see Table 4.3)

• AC: area constraint of the circuit (see Table 4.3)

In Tables 4.5 and 4.6, items in bold indicate an optimal schedule was found with

the specific area or latency minimized. In Tables 4.5 and 4.6, items *italicized with an

asterisk indicate that the solver did not complete execution within the 60 second limit,

so the time the solver’s best solution was found is shown. In Table 4.7, items italicized

indicate that no solution is possible.

110

4.6.3.2 Discussion

Table 4.5 shows the results under time-constraint with the objective of minimizing

area. Using the branch-and-bound algorithm, the run-time to exhaust the search space

to find the minimal area is 50ms or less in 13 of 16 test cases. The ILP approach,

however, failed to complete execution within the time bound in 9 of 16 test cases and

missed the optimal solution half of the time. In cases where the ILP solver was able

to complete execution, run-times were 1.9x-180x longer than that of the branch-and-

bound approach. In cases where the ILP solver was unable to complete execution, the

branch-and-bound solver outperforms the ILP approach by several orders of magnitude.

One additional note is that for the TEA example, which contains 1090 operations, the

ILP solver was unable to even generate the variables and constraints within the time

bound, and in fact the number of constraints was so great that the JVM eventually

exceeded its available heap space (2GB).

Table 4.6 shows the results under area-constraint with the objective of minimizing

latency. As previously stated, a time-constraint was added to the ILP formulation after

results for ILP were unable to be produced within the 60 second limit. In the case of

Elliptic with an area constraint of 100 units, this 60 second time limit was relaxed until

its first solution was found at 79 seconds.

Under the area constraint, the branch-and-bound approach generated optimal re-

sults within the time bound in 12 of 13 test cases and completed execution in under

40ms in 10 of 13 test cases. For the very large example, TEA, one difficult test case

took 73 seconds to find the optimal solution, so the best solution found at 60 seconds is

shown. The ILP approach, on the other hand, completed execution in only 2 of 13 test

cases, and found the optimal solution in only 3 of 13 test cases. The run-time of the

ILP solver exceeded 7.9 seconds in all cases. For the TEA example, again, generation

of the constraints did not even complete within the time bound. An improvement of

111

Table 4.3: Functional unit pa-
rameters

Fn Unit Area Delay
(units) (ns)

Add 8 8
Subtract 8 8
Multiply 48 9
XOR 8 8
Shift 8 8

Table 4.4: DFG nodes per benchmark

Benchmark # of Nodes

ODE 11
DotProd8 17

Cosine 26
Seventh 31
Elliptic 36
TEA 1090

several orders of magnitude is seen over the ILP approach.

Table 4.7 shows the run-time of both approaches while under both time and area

constraints for the benchmark DotProd8. For cases with a valid solution, the branch-

and-bound approach produces its first legal result in 5-6ms in all cases. The ILP

approach ranges from 121-366ms, 20-60x as long. Both approaches are generally faster

when no solution can be found: 3ms for the branch-and-bound approach, and 69-92ms

for 4 of 5 test cases for ILP. However, it took 71 seconds for the ILP to determine that

no solution could be found in one test case.

Table 4.8 shows the effect of removing individual optimizations from the branch and

bound approach. With no optimizations removed, each test case runs in 25ms or less.

For the Cosine test case, removing the lexicographical ordering of start nodes (Node+)

has the greatest impact on run-time, and removing hashing has the least impact. For

Elliptic, removing the shortest-time-to-finish (STTF) sort has the greatest impact,

while removing lexicographical ordering of finish nodes (Node−) and the resource-

constrained shortest-time-to-finish (RCSTTF) have the least impact. The RCSTTF

bound relies on the STTF sort, and includes the STTF bound, so when removing the

latter two optimizations, the RCSTTF bound must also be removed.

112

Table 4.5: Run-time and results for time-constrained area minimization

Run-time (ms) Area (units) ILP Parameters
Benchmark TC BB ILP BB ILP #cons #vars

ODE 34 4 61 160 160 133 179
ODE 50 4 100 112 112 181 355

DotProd8 35 32 62 416 416 118 181
DotProd8 50 6 205 208 208 148 436
DotProd8 90 6 *3600 104 112 228 1116

Cosine 75 9 *5600 208 208 235 1047
Cosine 100 16 *1200 104 160 285 1697
Cosine 160 8 *5000 56 112 405 3257
Seventh 90 43 *300 168 264 360 1296
Seventh 100 1044 *500 120 168 390 1606
Seventh 120 11 *900 112 112 450 2226
Elliptic 115 23 4151 168 168 353 2490
Elliptic 120 13 *800 120 176 363 2670
Elliptic 160 9 *22900 64 120 443 4110
TEA 2575 4648 - 48 - 11500 45571
TEA 2800 1332 - 32 - 12175 49846

4.7 Conclusion

This chapter presented an efficient technique to perform high-level synthesis – a branch-

and-bound approach that out-performs the traditional synchronous ILP by orders of

magnitude. By quickly finding a quality solution and utilizing safe and aggressive

pruning, the proposed approach reduces the search space and solver run-time signifi-

cantly. Experimentation illustrates its effectiveness for both area-constrained and time-

constrained synthesis, showing run-times of 50ms or less in most test cases. Further,

the approach presented in this chapter accurately models an asynchronous paradigm by

removing the notion of integer time and relying on only actual events. As a result, this

approach can find optimal solutions that cannot be feasibly reached in a synchronous

ILP approach.

The work presented in this chapter focuses primarily on latency and area of an

implementation, scheduling operations in a “single-token” fashion; that is, only one

113

Table 4.6: Run-time and results for area-constrained latency minimization

Run-time (ms) Latency (ns) ILP Parameters
Benchmark AC BB ILP BB ILP #cons #vars TC

ODE 100 4 9724 53 53 248 575 70
ODE 150 5 7920 35 35 248 575 70

DotProd8 150 8 *3100 60 62 253 1286 100
DotProd8 280 9 *29300 42 42 193 776 70

Cosine 150 15 *7100 97 125 340 2347 125
Cosine 320 10 *15800 69 84 290 1697 100
Seventh 150 30 *26700 95 119 472 2381 125
Seventh 200 38 *1100 83 100 397 1606 100
Elliptic 100 20 *79400 126 150 428 3750 150
Elliptic 150 14 *55600 116 150 428 3750 150
TEA 70 1478 - 2560 - 12776 53646 3000
TEA 50 *59000 - 2584 - 12776 53646 3000
TEA 30 3736 - 4608 - 18776 91646 5000

Table 4.7: Run-time comparison for both time and area constrained synthesis for
DotProd8

Area Constraint
Time 250 200 150 100

Constraint BB ILP BB ILP BB ILP BB ILP

45 ns 5 273 3 72 3 73 3 69
60 ns 5 185 6 121 6 270 3 92
80 ns 6 158 6 145 5 252 3 71041
100 ns 6 173 6 193 5 261 6 366

instance of the problem is computed at a time. In the following chapter, we will

consider a more general problem, multi-token scheduling, in order to allow multiple

problem instances to be scheduled on the same set of resources concurrently. The

search space of this problem is significantly more complex, but will allow us to target

the throughput of an implementation rather than latency, improving performance.

114

Table 4.8: Effect of optimization removal on run-time and total nodes explored

Optimization(s) Cosine Elliptic
Removed #Nodes Runtime #Nodes Runtime

(1000s) (ms) (1000s) (ms)

All optimizations enabled 0.72K 25 0.52K 22
No Node+ Ordering 424K 3068 6.65K 91
No Node- Ordering 39.9K 377 1.97K 42

No Node+ or Node- Ordering 4033K 27220 38.1K 405
No RCSTTF Bound 38.7K 423 5.87K 85

No STTF/RCSTTF Bounds 317K 4007 173K 2211
No STTF Sort/RCSTTF Bound 255K 2735 353K 3592

No Node Hashing 2.74K 28 18.6K 139

115

Chapter 5

Resource-limited Design: Pipelined

In Chapters 3 and 4, I described two different synthesis approaches with opposing

goals; Chapter 3 targeted high-performance specifications, while Chapter 4 introduced

resource sharing to minimize area. In this chapter, I will propose a hybrid alternative: a

novel synthesis approach that merges both pipelining and resource sharing for low-area,

high-performance circuits.

5.1 Introduction

This chapter introduces a new approach for performing resource sharing in pipelined

asynchronous systems. Since the pipelined paradigm is mainly meant for designing

high-performance systems, conserving area is secondary to achieving high performance.

Therefore, existing approaches to designing pipelined systems typically do not handle

resource sharing (e.g., (Budiu, 2003)). On the other hand, high-level synthesis ap-

proaches that handle allocation, scheduling and binding of shared resources in an au-

tomated fashion generally assume a control-driven architecture (e.g., (Nielsen, 2005;

Nielsen et al., 2004; Nielsen et al., 2009)). These latter approaches do not lend them-

selves easily to fast pipelined multi-token operation. This work attempts to bridge the

gap between pipelined data-flow systems and control-driven shared-resource systems.

The key contribution in this chapter is a novel multi-token scheduling approach

that targets throughput rather than latency. My proposed approach specifically targets

resource sharing in a pipelined context, one where multiple instances of the problem

are being computed at once. This domain is distinct from that of Chapter 4, which

focused on single-token scheduling in order to minimize the overall latency.

In particular, it is assumed that a cycle time (or throughput) bound is provided,

and the goal is to generate an implementation that minimizes area while meeting the

cycle time constraint. The rationale is that typically a performance bound is specified

to the designer, and their objective is to reduce area in order to improve yield, lower

die costs, and reduce leakage power.

After minimizing function unit area, the designer may perform buffer insertion via

slack-matching in order to help meet performance goals without allocating additional

function units. My proposed approach, on the other hand, incorporates slack matching

during the scheduling and area minimization process, and therefore the minimizes the

sum of buffer area coupled with function unit area.

The work presented in this chapter consists of the following contributions: first, I

introduce a graphical representation of a system that models both resource scheduling

and buffer requirements. Next, I propose an architecture that combines the best of

both worlds: a resource-shared, data-flow pipeline. Then, I introduce an approach

that concurrently performs allocation, scheduling, and binding of resources along with

slack-matching to meet performance targets. Finally, in order to handle large examples

for which an exact method is too slow, I introduce a hierarchical method for scheduling

on a per-block basis in order to heuristically minimize area for larger examples. This

work follows the design flow illustrated in Figure 5.1.

A key feature of the multi-token scheduling approach is that it does not repeat-

edly perform “unfolding” of the data-flow graph, followed by scheduling, and finally

117

High-Level
Specification!

Compiler + Source
Level Optimizations!

(Chapter 3)!

Optimized!
CDFG!

Data-Driven
Pipelining!
(Chapter 3)!

Multi-Token!
Synthesis!

(Chapter 5)!

Single-Token!
Synthesis!

(Chapter 4)!

Data-Driven Haste
Specification!

Haste!
Compiler!

Data-Flow
Representation!

Pipelined Data-Flow
Representation!

Netlist!

Architectural
Mapping!

Physical!
Mapping!

Circuit!

Existing Haste
Design Flow

HDL!
Description!

Tech!
Mapping!

Manual Design

Figure 5.1: Multi-token, shared-resource design flow

118

compaction in order to determine the schedule for multi-token operation. Instead, it

directly determines a compact, multi-token schedule in an optimal fashion for each

block.

The class of schedules produced on each function unit are “single-stride cyclic”

schedules. Each function unit has a single static schedule that repeats indefinitely. Each

operation is mapped to only one function unit, and that operation occurs only once in

that function unit’s repeated schedule. The approach assumes a slack-elastic (Manohar

and Martin, 1998b) model for correctness, that is, the order of outputs on a channel

must remain the same (no out-of-order execution).

Experimental results are promising. Multiple different test cases were considered,

each was synthesized using several different throughput constraints. In each case, our

approach performed resource scheduling to meet the throughput constraints and re-

ported the area of the implementation. As expected, as throughput constraints were

relaxed, the area of the implementation improved.

The remainder of this chapter is organized as follows. Section 5.2 discusses previous

work on synchronous and asynchronous scheduling. Sections 5.3-5.6 introduce my opti-

mal method for scheduling resources in a multi-token fashion. In particular, Section 5.3

gives background on dependence graphs as a graphical model. Section 5.4 describes

how the model presented in Section 5.3 is extended by incorporating buffering and

resource schedules. Section 5.5 introduces the shared-resource pipelined architecture

that implements by the multi-token scheduling approach, then Section 5.6 presents the

multi-token scheduling and slack-matching algorithm itself. Next, in order to handle

large examples for which an optimal method is too slow to solve, Section 5.7 describes

a heuristic hierarchical scheduling method. Section 5.8 presents experimental results,

and we conclude with Section 5.9.

119

5.2 Previous Work

Several techniques have been proposed for performing high-level synthesis of syn-

chronous and asynchronous systems; a general survey of techniques is available in

(Micheli, 1994). The majority of proposed techniques are heuristic, such as force-

directed scheduling (Paulin and Knight, 1987), list scheduling (Sllame and Drabek,

2002), and others (Badia and Cortadella, 1993; Burns et al., 2004). In the asynchronous

realm, synchronous ILP approaches have been adapted in order to approximate optimal

schedules, but these approaches may end up being either slow or sub-optimal depend-

ing on the discretization of time. Such asynchronous ILP-based approaches have been

reported in (Nielsen et al., 2009; Saito et al., 2007).

All of these approaches, however, allow only one problem instance to be computed

at a time, limiting their performance substantially. Section 5.8 compares my proposed

multi-token approach to the single-token approach described in Chapter 4 to illustrate

how our multi-token method can produce higher-performance, lower area circuits that

are infeasible in a single-token context.

Other approaches, such as (Tugsinavisut et al., 2006) can allow multiple threads of

execution, but the designer must specify how many tokens will exist in the implemen-

tation.

In contrast to these approaches, the approach I present in the following sections

creates a multi-token schedule, subject to a throughput constraint, that optimally min-

imizes the total function unit and buffer area of a pipeline. This approach searches the

full space of multi-token schedules and concurrently performs slack-matching to meet

a throughput constraint.

120

while(true){

a=read();

b=((3*b)+a)*0.25;

} //Loop A

while(true){

a=read();

b=3*d;

c=a+b;

d=c*0.25;

} //Loop B

Figure 5.2: Simple code example

5.3 Basic Graphical Model

This section reviews folded dependence graphs (Williams, 1991) as a convenient graph-

ical model for representing repeated sets of dependent computations. The next section

will introduce extensions to this model for incorporating resource sharing and buffering

(i.e., storage).

5.3.1 Dependence Graphs

Dependence graphs are used to model data dependencies between the individual op-

erations in a specification. An example representation is shown in Figure 5.3a, corre-

sponding to the specification in Figure 5.2. Here the graph has been expanded to show

data and control dependence across iterations. Each node in the graph represents the

an operation with its iteration number as a subscript; each arc represents a dependence

between operations.

Because the dependence graph of Figure 5.3a becomes unwieldy as the iteration

count increases, a more compact, but equally expressive version, is used: a folded

dependence graph (Figure 5.3b). Here, a single node a represents the execution of

the operation over all iterations (a0, a1, a2, · · ·); the subscripts representing iteration

numbers are dropped. A weight is associated with each arc to represent the difference

in subscripts from the source node to the destination node. Thus, intra-iteration arcs,

such as the one between operation b and c, will have a weight of 0. Inter-iteration arcs,

121

b)

b

c

d

0

0

0

1

b

c

d

b

c

d

b

c

d

0

0

0

1

1

1

2

2

2

a a a a
0 1 2

…

…

…

…

1

1

1

1

a)

Figure 5.3: a) Unfolded and b) folded dependence graphs

such as the arc from d to b, have a non-zero weight, in this case 1. The self-ordering

arcs become self-ordering cycles, each with weight 1.

To ensure liveness of the specification, the following property must be met:

Property 1. (Liveness)

∑
e∈c

weight(e) ≥ 1 (∀c ∈ G)

where c is a cycle in the graph G, and e is an edge in c. This property ensures that

all cycles must have a weight greater than or equal to one. A cycle weight cannot be

less than or equal to 0, because if it were, it would imply a deadlock.

5.3.2 Cycle Time Analysis

For performance analysis, let us now assume that the delays of each operation are given.

Using this information, a dependence graph can be analyzed to determine its maximum

throughput (or, equivalently, its minimum cycle time). The analysis approach belongs

122

to the classical category of maximum cycle mean computations (Dasdan and Gupta,

1997). This type of analysis has been used for folded dependence graphs (Williams,

1991) and recently in marked graphs (Tugsinavisut et al., 2006).

We briefly review the analysis approach here. Let there be a delay associated with

each arc in the folded dependence graph (a “fixed-delay model”). The delay associated

with an arc from node x to node y represents the length of time that must elapse from

the instant that the x operation completes to the instant the y operation completes. No

delays are associated with the nodes; instead all delays are represented on arcs. This

delay is distinct from the weight associated with an arc.

The cycle mean for cycle c in graph G is defined as follows:

Mean(c) =

∑
e∈c delay(e)∑
e∈c weight(e)

where e is an edge in the cycle c. The cycle time is given by the maximum of the cycle

means for all cycles in the graph:

Cycle Time(G) = max
c∈G

(Mean(c))

Intuitively, this analysis shows that the cycle time of an individual cycle is the total

delay of the cycle divided by the number of tokens on that cycle. As described in

Chapter 2, the cycle time of the full graph is limited by the worst cycle time of any

cycle in the graph.

5.4 Extended Graphical Model

The basic model of Section 5.3 captures data-dependencies (RAW constraints). Now,

let us extend that model to incorporate two additional types of dependencies: (i)

123

b)

b

c

d

0

0

0

a

1

0 1

1

1

c)

c

0

0

0

a

1

0 1

1

1

a)

b

c

d

0

0

0

a

1

1

1

0 1 b

d

Figure 5.4: Adding a) data, b) buffering, and c) resource arcs to the graph

write-after-read (WAR) constraints, which prevent data from being overwritten until

it has been consumed; and (ii) resource scheduling constraints, which are necessary

when resources are shared. Both of these types of constraints are modeled by adding

additional arcs to the dependency graph.

A key contribution of this section is illustrating how buffering (i.e., storage) require-

ments can be directly inferred from the dependency graph. In addition, this section also

describes how the delays of those buffers are modeled appropriately in the dependency

graph.

5.4.1 Modeling Write-After-Read (WAR) Constraints

WAR constraints are necessary to ensure that a storage location is written only after

its previous value has been read. Because there exists contention for storage, the extent

of allowable concurrency in execution scenarios becomes limited.

124

To illustrate an example of the necessity of WAR constraints in the graph, let us

begin by assuming that there is exactly one storage location to store the result of each

operation (we will relax this constraint later). Therefore, the result of a new operation

cannot be stored into a location that is holding a previously generated value, i.e., one

that is still waiting to be used by some other operation. For example, when a is read

from the environment in Figure 5.4a, the value of a must remain in its storage element

until it is consumed to produce c. Therefore, an execution scenario where an+1 is

produced before cn is illegal because cn needs the value of an (which will have been

overwritten by an+1).

In order to model this restriction, we add WAR arcs to the dependency graph. For

each data dependence arc between a pair of nodes, we add a WAR arc between the

same nodes in the reverse direction, as shown in Figure 5.4b. Here, the dotted black

arcs represent data dependence, and the dashed green arcs represent WAR constraints.

In the remainder of this chapter, the terms WAR arc, reverse arc, and acknowledgment

arc are used interchangeably.

To appropriately model a single storage location, the sum of the weights on the

pair of forward and reverse arcs must equal 1. In the example in Figure 5.4, c0 enables

d0 through a data dependence, and once d0 computes, it enables c1 via a WAR arc.

Therefore, because of the difference between the subscripts, the WAR arc from c to d

must have a weight of 1. Similarly, WAR arcs must be added between every other pair

of nodes with a data dependence arc.

5.4.2 Inferring Buffering Requirements

We can now prove a more general result regarding buffering requirements: the number

of buffers required for a data channel between two nodes is simply the sum of the

weights of the data dependence arc (i.e., forward arc) and the WAR arc (i.e., reverse

125

b m

b m+1

a 1

a 2

a m+n

…

b) a) a

b
m n

Delays:
d: operation delay
r: reverse delay

buffF: buffer forward
buffR: buffer reverse

Arc Weights:
m: data arc

n: reverse arc

a

a
0 1

a
0 1

a
1 0

b
1 0

1

n

m+n-1

f r

f r

f r

d r

c)

n
ch

an
ne

ls

m
 c

ha
nn

el
s

0

…

d)

a

b

m n

d+
(m

+n
-1

)*
bu

ffF

r+
(m

+n
-1

)*
bu

ffR

d+buffR

buffF+r

Figure 5.5: Inferring buffering requirements and modeling buffer delays

arc).

Theorem 1. Given a data channel between two nodes a anqd b, with m the weight

of the forward arc, and n the weight of the reverse arc (as shown in Figure 5.5a), the

number of buffers required for correct operation is m + n.

Proof. Assume an instant in time such that bm has occurred (and therefore bk for all

k < m have also already occurred), but bm+1 has not occurred. Then, by virtue of

data dependence, a0 must have occurred. Also, because of the reverse arc from b to a,

am+n+1 cannot have occurred yet since bm+1 has not occurred. At this point in time, the

events a1 · · · am+n may occur before any further events on b, and therefore the results

from each of these must be stored and preserved as the future events bm+1 · · · b2m+n will

need them. As a result, up to m + n buffers may be required to queue up the values

a1 · · · am+n. Figure 5.5b graphically illustrates the proof.

126

5.4.3 Modeling Buffer Delays

When buffers are present on a data channel, their delays must be correctly included

during timing analysis. In particular, the forward latency through the buffers will add

to the total delay from the source node to the destination node. In addition, each

buffer also has a reverse latency: the time from the instant the buffer is emptied to the

instant its predecessor is enabled to produce the next value.

The proposed approach to modeling the delays due to buffering is illustrated by

Figure 5.5c. In the figure, the node a is replaced by m + n new nodes, numbered

a0 · · · am+n−1, each new nodes representing a distinct buffer. After buffering a, there

are now a total of m+n data channels strung end-to-end from node a0 to node b. For m

of these channels, chosen arbitrarily, set the weight on the forward arc to 1 and on the

reverse arc to 0. For the remaining n of these channels, set the weight on the forward

arc to 0 and on the reverse arc to 1. This selection can be done arbitrarily; it merely

determines which of the intermediate channels are initialized full versus empty. The

example in Figure 5.5c has chosen n channels near the top and the m channels toward

the bottom.

Next, let us confirm that this new graph preserves all the constraints of the original

graph, and then determine how to correctly assign the delays to the arcs for correct

timing analysis.

Theorem 2. The graph of Figure 5.5c preserves all the constraints of the graph of

Figure 5.5a.

Proof. The forward arc in original graph implies the constraint ak → bk+m. In the new

graph, there is a transitive dependence ak → a1k → · · · am+n−1
k → bk+m enforcing the

same constraint. The reverse arc in the original graph implies the constraint bl → al+n.

Similarly, in the new graph, there is a transitive dependence bl → am+n−1
l · · · al+n.

127

For correctly modeling the timing behavior, we can set the delays along the arcs are

as follows:

• the weight of the forward arcs a0 → a1 · · · am+n−2 → am+n−1 is equal to the

buffer forward latency, bufff

• the weight of the forward arc am+n−1 → b is equal to d

• the weight of the reverse arc b→ am+n−1 is equal to r

• the weight of the reverse arcs am+n−1 → am+n−2 · · · a1 → a0 is equal to the buffer

reverse latency buffr

Therefore, for timing modeling and analysis, we can use the simplified graphical

representation of the channel as shown in Figure 5.5d by setting the delays appropri-

ately:

• set the forward arc delay from a to b equal to d + (m + n− 1) ∗ bufff

• set the reverse arc delay from b to a equal to r + (m + n− 1) ∗ buffr

• add a self loop on a with weight bufff + buffr

• add a self loop on b with weight d + r

With these delay assignments, the computation of the maximum cycle mean for

any graph that contains the sub-graph of Figure 5.5c will be correctly computed by

including instead the sub-graph of Figure 5.5d.

5.4.4 Modeling Resource Sharing

Scheduling of shared resources is modeled by adding new arcs to the dependence graph,

called resource arcs. In particular, one cycle of resource arcs is created for each available

128

resource. The delay associated with each of these resource arcs is the latency of that

resource.

The sum of the weights of the arcs in each such cycle is equal to 1 as the proposed

multi-token approach only considers cyclic schedules with a unit stride. As an example,

if a certain function unit executes the sequence of operations ai, bj, ck · · · in one iteration,

then the same function unit must execute the same sequence of operations in the next

iteration, ai+1, bj+1, ck+1 · · ·. Therefore, the weight of each resource cycle will be equal

to 1.

Property 2. (Unit Stride Property) The cycle weight for a resource cycle with unit

stride must be equal to 1.

Example

Figure 5.4c illustrates the addition of resource scheduling arcs (solid blue). Here, only

one multiplier is available, so it must be shared by the two operations, b and d. There-

fore two resource arcs are added to the graph, one from b to d and one from d back

to b, each with a delay equal to the multiplier latency. The sum of the weights of

these arcs is equal to 1, which represents the execution sequence bk → dk → bk+1 · · ·.

Further, assume one adder resource is available. Since only operation c uses an adder,

the corresponding resource arc is a self-cycle on c with a weight of 1 and a delay equal

to the adder latency. Operation a similarly uses a “channel-read” resource and has its

own self cycle, with a weight of 1 and a delay equal to the input’s cycle time.

In practice, the delays on each arc consist of overheads beyond the operation latency.

The controller delay associated with a function unit, multiplexing delay, and the forward

delay of a buffer stage are also incorporated,

129

5.4.5 Converting the Graph to Architecture-Ready Form

Once a graph has been scheduled and slack-matched using the model above, one ad-

ditional step is performed to prepare the graph for conversion into hardware. The

method for mapping a graph to a hardware implementation (to be described in Sec-

tion 5.5) is straightforward, provided there are no negative weights on any arcs in

the graph. Therefore, we must remove these negative arcs, and do so in such a way

that the schedule, circuit performance, and buffer requirements are preserved. This

re-weighting transformation has some parallels to the problem of retiming (Leiserson

and Saxe, 1991).

Here, we prove that any graph with negative arc weights can be converted to an

equivalent non-negative graph which we call the architecture-ready form by following a

series of transformations under the constraints above.

To begin with, let us define the method of re-weighting. In this method, we select

a node that has all positive incoming arcs, reduce the weight of the smallest positive

incoming arc to 0, and add that difference to the outgoing arcs. Since we are adding

the same value to every outgoing arc that we are subtracting from the incoming arc,

this method preserves the total weight on any cycle going through the node. One key

aspect of re-weighting is that the weight of any non-negative arc can never become

negative through re-weighting.

Theorem 3. For a deadlock-free, strongly-connected graph, there must be at least one

node in the graph that has positive weights on all its incoming arcs.

Proof. We prove this by contradiction. First, we select an arbitrary node and begin

to trace a path in the graph in reverse until a cycle is formed. At each visited node,

we follow the path of the smallest weighted incoming arc. As we step through this

path to each new node, each arc has a non-positive weight. Since there are a finite

number of nodes that can be reached before a cycle is formed, and since the graph is

130

strongly-connected, a cycle must eventually be formed. This cycle must have a total

weight of less than 1, implying deadlock. Hence, by contradiction, a node must exist

that has positive weights on all its incoming arcs.

Corollary 4. For a deadlock-free, strongly-connected graph, we can perform an infinite

number of re-weightings.

Proof. This corollary is trivially true, as re-weighting can occur on any node as de-

scribed in Theorem 3, and each graph is guaranteed to have such a node.

Lemma 5. For a deadlock-free, strongly-connected graph, all nodes in a graph will have

been re-weighted after a finite number of re-weightings.

Proof. We begin by considering a node that has not been re-weighted, X. Because our

graph is strongly-connected, there is a path from X to every other node in the graph.

For a path from X to any other node in the graph Y , we can sum up all the weights

on this path to give a finite value. Because Y can only be re-weighted if its incoming

arc is positive, this sum corresponds to the maximum number of times that Y could

be re-weighted before X must be re-weighted.

Since there are a finite number of nodes in the graph, and since each can only be re-

weighted a finite number of times before X is re-weighted, there are a finite number of

re-weightings that can occur before X must be re-weighted. Since the number of legal

re-weightings is infinite according to Theorem 3, X must eventually be re-weighted. By

the same token, all nodes in the graph must be re-weighted within a finite number of

re-weightings.

Theorem 6. Any deadlock-free, strongly-connected graph that contains arc(s) with neg-

ative edge weight(s) can be converted into an equivalent graph where no arcs have neg-

ative edge-weights.

131

a

b

d

e

c

f

g
+

*

*

a b

c

!

g

f

d e

*

+

*

a) b)

a

b

d

e

c

f

g
+ *

c)

Figure 5.6: a) Sample DFG, b) unshared architecture, and c) shared architecture
with buffering

Proof. According to Theorem 5, all nodes in the graph must be re-weighted after per-

forming a finite number of re-weightings. Therefore, we can perform re-weighting in any

legal order until each node has been re-weighted at least once. Since the re-weighting

process cannot reduce any arc’s weight below 0, and each arc has been re-weighted

to have a weight of at least 0, the graph cannot contain any negative arcs after each

node has been re-weighted. In addition, because re-weighting does not change the total

weight of any cycle that contains the node (or the delays, for that matter), the minimum

cycle time remains the same. Therefore, the graph is equivalent, and non-negative.

Because the total weight on a cycle remains unchanged, each channel will have

the same number of buffer stages after the conversion process. Additionally, since no

arcs were added, removed, or redirected, the cyclic schedule on a resource remains the

same.

5.5 Architectural Model

This section introduces a data-flow, shared-resource architecture that implements the

extended graphical model of Section 5.4. I will begin with a general overview of the dat-

apath, then discuss the different types of components used in the proposed architecture:

132

buffers, forking data latches, and resources (function units).

5.5.1 Overview

An diagram illustrating the basic architecture is illustrated in Figure 5.6. Figure 5.6a

shows a simple DFG that performs a dot-product of two two-element vectors:

< a, c > · < b, d >= a · b + c · d

Figure 5.6b shows a basic architecture for this DFG without resource sharing. Fi-

nally, Figure 5.6c shows our architecture with a shared multiplier and additional buffers

on two data channels. This example features the three key components in the proposed

architecture: (i) storage locations for variables (a− g) that come directly from the en-

vironment or function units, (ii) extra data buffers (in gray), and (iii) resources (shared

or dedicated).

To generate an architecture from a given dependence graph, we begin by replacing

each node in the graph with a data latch. This step ensures that we have at least one

storage location for each variable in the original specification. Then, between nodes

with data-dependencies, we build a channel that consists of zero or more additional

buffers, necessary for slack matching and data synchronization. Multiple channels may

be generated from the same data latch source, since a variable may be needed for

different computations, but each channel from the same source variable may contain a

different number buffers. At the end of a channel, the final buffer feeds into a function

unit. The function unit will, in turn, feed into a new data latch.

133

a)

Control
FSM

LATC
H

Control
FSM

. . .

b)

req

ack ack

req req

ack

ack1

req1

reqn

ackn

. . .

LATC
H

Figure 5.7: a) Buffer and b) forking data latch implementations

5.5.2 Components

5.5.2.1 Buffers

The purpose of a buffer in this architecture is (i) hold older data while new data is being

computed, preventing old data from being overwritten, and (ii) to improve performance

via slack-matching, as described in Section 5.3.2. A series of buffers may be placed on

a channel between a data latch and the function unit it feeds into. The total count of

all buffers on a channel (including a forking data latch) is described in Section 5.4.

The buffer stage consists of a basic storage element manipulated by a simple con-

troller, as shown in Figure 5.7a. The behavior of a single buffer stage repeats as follows:

(i) wait for an incoming request, (ii) latch data, acknowledge, send an outgoing request,

(iii) wait for acknowledgement. While we have selected this specific pipeline style, other

pipeline styles can certainly be used (refer to Chapter 2.1 for alternatives).

Based on the architecture-ready graph produced by our algorithm, a buffer stage

will either be initialized as full (a 1 on a forward data arc) or empty (a 1 on the reverse

134

data arc).

5.5.2.2 Forking Data Latch

The purpose of a forking data latch in the proposed architecture is to capture the output

of a function unit and then forward the data down one or more buffered channels. The

data latch is similar to a buffer in terms of behavior and design, with the exception

that it may fork its data to multiple channels. Therefore, it sends multiple outgoing

requests concurrently, and must wait for all of them to be received before accepting

new data. The diagram for a storage unit is shown in Figure 5.7b.

Like a standard buffer, a forking data latch will either be initialized as full or empty,

although this initialization occurs on a per-channel basis.

Because a forking data latch is shared across channels, the number of additional

standard buffers on a channel is one less than the sum of the forward and reverse arcs

that constitute the channel.

Note that a joining latch is not necessary since synchronization of data occurs at a

function unit.

5.5.2.3 Function Unit and Control

Function units may be dedicated or shared. If dedicated, no complex control is nec-

essary. If a function unit is shared, there will be multiple inputs to be multiplexed

and outputs that need to be routed. The controller for each function unit has N input

channels and M output channels; for a binary function unit, N = 2M , for a unary

function unit N = M . The diagram for a function unit is shown in Figure 5.8.

All of the handshake channels feed into a state machine that controls the schedule of

operations on the function unit. This state machine is not global, but is instead a local

controller, one per function unit. The state machines repeats the following steps indef-

135

Control
FSM

M
U

X
M

U
X

FU

D
EM

U
X

LATC
H

LATC

H

LATC
H

LATC

H

LATC
H

LATC

H

ack1

req1

reqn

ackn

. . .
ack1

req1

reqn

ackn

. . .

. . .

. . .

. . .

Figure 5.8: Shared resource implementation

initely: (i) consult schedule to set input and output multiplexers, (ii) forward incoming

request to data latch with appropriate matched delay, (iii) forward acknowledgement

from data latch to inputs.

5.6 Optimal Problem Formulation

In this section, I describe an optimal approach for synthesis. I first give a top-level

overview of the approach, then describe a branch and bound strategy for scheduling,

allocation, and binding of resources. Next, I describe an ILP-based approach for veri-

fying the throughput constraint by performing slack-matching.

136

5.6.1 Overview of Approach

The multi-token scheduling problem can be broken down into two specific sub-problems:

(i) scheduling and allocating function units, and (ii) verifying that the schedule meets

the throughput constraint after optimal buffering. Therefore, the proposed solution

has been broken down into two phases: a branch-and-bound scheduling phase, and

an ILP-based technique for optimal buffer insertion and ensuring satisfaction of the

throughput constraint.

At the top level, the proposed approach steps through the scheduling process for

each function unit, allocating additional units as necessary. This branch-and-bound

algorithm fully schedules each resource one by one. As each function unit is scheduled,

an ILP instance is run to ensure it meets the throughput constraint given the opportu-

nity for buffer insertion. Once a legal schedule is found with all operations scheduled

that meets the cycle constraint, this schedule compared with the best solution so far,

and searching continues until no better schedules can be found.

5.6.2 Scheduling, Binding, and Allocation: Branch and Bound

The branch and bound portion of the proposed approach begins with the original graph

with all the data-dependencies in place. Next, a reverse arc is added between each data-

dependent node in order to produce a complete channel.

A basic version of the recursive scheduling algorithm is given in pseudocode in

Figure 5.9, the steps are as follows:

1. Generated a list of unscheduled items, sorted lexicographically. Select the first

unscheduled item from the ordered list.

2. Create a list of resources on which this item could execute, subject to an area

constraint.

137

3. Explore scheduling the operation on each one of these resources in a depth-first

fashion.

4. After an operation has been scheduled, create a list of unscheduled nodes remain-

ing that could execute on the same resource. Also include in this list the first

node on this resource’s schedule in order to complete the resource’s cycle.

5. Explore scheduling each child operation on this resource in a depth-first fashion,

adding a resource arc from the previously scheduled node to the current node.

6. If the resource cycle has been closed, compute the buffering needed to achieve

the throughput constraint by running ILP described in 5.6.3. If buffering cannot

meet the throughput constraint, or if the total area exceeds the best area, we stop

exploring this partial schedule.

7. If there are unscheduled nodes remaining, return to Step 1. Otherwise, a new best

area solution has been found. This value is recorded and scheduling continues.

Beyond the basic bounding performed in Step 6, we can improve run-time by adding

a few additional optimizations. The first optimization is to estimate the minimum area

for unscheduled operations by using utilization analysis, and use this value to help

prune.

Second, after calculating the minimum amount of buffers needed for a partially

scheduled implementation, we know that this amount cannot decrease as we continue

to schedule more items. The justification for this pruning is that adding an additional

scheduling arc to the graph can only reduce performance, therefore the number of

buffers needed to improve performance must be monotonically increasing as more arcs

are added to the graph.

Third, we sort child nodes in the tree by choosing dependent nodes first. Since these

arcs already exist in the graph, the resource arcs may end up becoming redundant, and

138

procedure scheduleOptimally(Block){

if no resource selected or resource cycle closed {

slack_match_ILP()

if slack match failed

exit with failure

if all operations scheduled

update bestArea

nextOp = select next unscheduled operation

for each legal resource for nextOp {

allocate resource

bind nextOp to resource

scheduleOptimally(resource, block)

unbind nextOp

deallocate resource

}

}else{

for each unscheduled operation eligible for curResource {

bind operation to resource

scheduleOptimally(resource, block)

unbind operation

}

}

}

Figure 5.9: Basic optimal area-minimization algorithm

therefore may not limit performance. These pruning techniques are safe, and thus do

not affect the optimality of the results.

A final optimization is to run the ILP on partial function unit schedules, i.e., those

that do not have their cyclic schedule closed. This method is employed via backtracking

at any point when additional buffers have been inserted to meet the throughput con-

straint. This optimization allows the scheduler to determine at what specific scheduling

step additional buffers became necessary, rather than relying on the full schedule to be

enumerated.

139

5.6.3 Buffering and Cycle Time Constraints: ILP

After the step of scheduling each specific resource, the result must be confirmed to meet

the performance constraint specified by the designer. In order to meet the throughput

constraint, additional buffers may be inserted automatically by the algorithm. Be-

cause the designer’s goal is area minimization, we aim to minimize the count of these

additional buffers.

The steps of buffer insertion and confirming that a schedule meets the throughput

constraint are performed in tandem using an ILP approach. In this process, we will

insert the performance constraints as linear constraints in the ILP, and allow the solver

to vary the number of buffers used. The sum of buffers in the implementation will be

the minimization target.

The following notation is used below:

• F : the set of forward arcs (data dependencies)

• R: the set of reverse arcs (WAR constraints)

• S: the set of resource scheduling arcs

• C: the set of cycles in the dependence graph

• CS: the set of cycles consisting solely of scheduling arcs

5.6.3.1 ILP Variables and Constants

The set of variables to be determined is:

• weight(e) for each e ∈ R ∪ S

The set of known values/constants in the ILP are:

• weight(e) for each e ∈ F

140

• T : the target cycle time specified by the designer

• ch#: the number of channels in the graph

• n#: the number of nodes in the graph

5.6.3.2 Cost Function

The cost function to minimize is simply the total number of buffers required. As

described in 5.4.2, the total number of buffers required on a channel is given by the sum

of the weights on the forward and reverse arcs that constitute that channel. However,

if a node has more than one output channels (i.e., it represents a fork), then the first

latch is common to all channels; any additional buffers added are disjoint. Therefore

the cost function is: ∑
e∈(F∪R)

weight(e)− ch# + n#

5.6.3.3 Constraints

For each cycle in the graph, we need to enumerate three sets of constraints to ensure

that (i) the liveness property is met; (ii) only schedules with stride of 1 are allowed;

and (iii) the performance target is met.

Liveness constraint According to Property 1, the sum of the weights on a cycle

must be greater than or equal to 1:

∑
e∈c

weight(e) ≥ 1 for all c ∈ C

141

Unity stride of schedules According to Property 2, the cycle weight for a cycle

consisting solely of resource scheduling arcs must be equal to 1:

∑
e∈c

weight(e) = 1 for all c ∈ CS

Performance constraint Section 5.3.2 explains how the minimum cycle time is

computed for the graph. Therefore, the cycle mean for each cycle in the graph must

be less than or equal to the target cycle time specified, T :

Mean(c) ≤ T for all c ∈ C

Since Mean(c) =
∑

e∈c delay(e)∑
e∈c weight(e)

, this constraint is rewritten as:

∑
e∈c

delay(e) ≤ T ·
∑
e∈c

weight(e) for all c ∈ C

Note that the the expression for delay(e) will, in general, include delay terms for for-

ward and reverse buffer latencies, which is in turn dependent on the number of buffers

required on the corresponding data channel. As discussed in Section 5.4.3, the number

of buffers is determined by the sum of the weights of the forward arc (known con-

stant) and the weight of the reverse arc (a variable in ILP). Therefore, the cycle mean

constraints are linear in the variables.

5.6.3.4 Implementing the circuit

After the ILP determines the fewest buffers needed for a completely scheduled imple-

mentation, we can then extract the values on each arc in order to produce our final

schedule. The first step in this process is to convert any negative-weighted arcs to

positive arcs, as described in Section 5.4.5, to generate an architecture-ready represen-

142

tation.

After converting to this representation, each resource cycle will have exactly one

arc with a positive weight. This location of this arc in the resource cycle indicates

where the cyclic schedule for the resource starts. In particular, the destination node of

this positively-weighted arc will be the first operation that will execute on the node,

followed by the next node on the resource cycle, and so on until the cycle is closed.

The state of the buffers is determined by the value on the forward and reverse arcs.

For a specific channel, if there is a weight of 5 on the forward arc, and a weight of 1 on

the reverse arc, 5 buffers on the channel will initialize full while 1 initializes empty.

5.7 Hierarchical Extension: Block-based Modeling

5.7.1 Overview

While the approach described in Section 5.6 can quickly provide optimal solutions for

a specific set of examples, an exact approach can become too complex for significantly

larger specifications. Therefore, as an alternative to the scheduling approach described

in Section 5.6, I now propose a hierarchical method specifically for dealing with large,

real-world examples by hierarchically scheduling portions of the graph (blocks) indi-

vidually and replacing them with a simplified model. In addition to the performance

benefits of a hierarchical approach, my proposed method also accepts a more general

class of specifications, allowing both loops and conditionals to be scheduled.

Because the complexity of the optimal multi-token scheduling problem may grow ex-

ponentially with the size of the benchmark, an exact approach is not tractable for large

problems. Therefore, instead of scheduling the full graph (Figure 5.10a) at once, the

graph can be scheduled in multiple sections, or blocks, as shown in Figure 5.10b. Each

block in the graph can be scheduled separately with its own disjoint set of resources,

143

A!

X!a)! b)! X!

Y! Z!

c)!

Y! Z!

Figure 5.10: a) Original DFG, b) block-partitioned DFG, and c) block-partitioned
DFG after blocks Y and Z are scheduled and simplified

minimizing area while meeting the target throughput constraint. After scheduling, a

block can then be abstracted into a simpler model, to be easily incorporated into larger

blocks that have yet to be scheduled, as shown in Figure 5.10c. This procedure repeats

for each nested layer of blocks until the full graph is scheduled.

In comparison to the optimal algorithm of Section 5.6, this algorithm may not

produce a globally optimal solution, but it will take significantly less time to compute.

Because resources are no longer shared across blocks, this method will essentially trade

off optimality for efficiency, dependent on the size and partitioning of blocks. While the

final solution may not be the exact optimal solution in terms of area, it is guaranteed

to meet the throughput constraint.

The remainder of this section is organized as follows. Subsection 5.7.2 will describe

the type of input specifications allowed by this approach. Next, Subsection 5.7.3 defines

a block, and explains how blocks are abstracted into a simpler model. Subsection 5.7.4

then illustrates how blocks are combined, using parallel and serial composition as ex-

amples. Finally, Subsection 5.7.5 describes a heuristic algorithm for area minimization

based on the hierarchical constructs and transformations described.

144

5.7.2 Input Specifications

Unlike the approach described in Section 5.6, the proposed hierarchical approach is

more general, allowing for loops, conditionals, and nested blocks. However, there are

some restrictions placed on input specifications:

1. Channel communication within the body of a loop is disallowed, since multiple

instances of the problem are occurring within the same loop concurrently, and

therefore the channel transactions will necessarily occur out of order. If the

environment is capable of producing and consuming these values out of order,

this restriction can be relaxed.

2. Cross-problem feedback in loops is disallowed. The cost of synchronizing data

across problem instances in loops (in terms of both area and performance) be-

comes prohibitive as the iteration count increases. However, cross-iteration de-

pendence in loops is allowed (i.e., data synchronization across loop iterations

for the same token/problem), as well as cross-problem feedback outside of loop

structures.

3. Variable iteration-count loops are disallowed. The primary reason is to prevent

out-of-order execution. Additionally, modeling the performance of stochastic

loops can become tricky, particularly when trying to model the performance of

a combination of loops. One can conceivably place a re-order buffer at the end

of each loop to solve the problem of out-of-order execution, but the proposed

approach cannot accurately model how performance would be impacted.

145

5.7.3 Modeling Blocks

5.7.3.1 Block Definition

In the source CDFG provided by a specification, two types of blocks can be defined: a

basic block (one that contains only DFG nodes), and a more general block, which may

contain blocks itself.

A basic block is a selection of multiple DFG nodes that are usually connected to

each other via dependence. The block’s boundaries may be defined by the original

source specification (e.g., the body of a function, procedure, loop, conditional, etc.),

or may be partitioned automatically by the tool if the source block is larger than a

designer-specified limit.

A general block, on the other hand, may contain not only DFG nodes but one or

more lower-level blocks as well. In the following subsections, use of the term block will

refer to the more encompassing class of general blocks (rather than basic blocks).

As an illustration of a block in the graph, refer again to Figure 5.10b. Here we see

two nested basic blocks, Y and Z inside a general block X.

At the edge of each block there exists an interface to external nodes and blocks.

This block interface consists of the channels in and out of items at the edge of a block.

These channels exist to carry data between pairs of dependent nodes that straddle a

block’s boundary.

Figure 5.11 illustrates the interface to Block Y from the earlier example in Fig-

ure 5.10b. Here only the data arcs (solid black arcs) and buffering arcs (green dashed

arcs) are shown. An internal interface node for a block is one that exists inside the

block but has channels exiting the block; these are highlighted in blue and labeled A, B,

and C. Similarly, an external interface node exists outside the block, but has channels

connecting to an internal interface node for a block; these are highlighted in orange.

146

A!

C!

B!

Y!

Figure 5.11: Block Y and its associated internal interface nodes, A, B, and C

5.7.3.2 Interface-Level Abstraction

In the proposed hierarchical approach, each individual block will be scheduled inde-

pendently from other blocks in the graph (the full procedure will be described in Sub-

section 5.7.5). However, in order to easily combine blocks at higher levels of hierarchy

without a prohibitive amount of computational complexity, each block must be ab-

stracted into a simpler representation. One can successively simplify the block model

and reduce the search space by performing the following: (i) ignoring internal cycles

in the scheduled block and considering only paths between nodes on the interface of

the block, (ii) reducing the number of arcs between interface pairs by approximation,

and (iii) reducing the number of nodes on the interface by synchronizing inputs and

outputs to a single node each.

In the following discussion, let us consider Block Y , as shown in Figure 5.12a. Here

147

A!

C!

B!

Y!

23!

12!

17! 0!

1!

1!

Forward Paths!
(Simplified)!

A!

C!

B!

Y!

3!
2!

4! 4!

9!

10!

10!

0!
0! 0!

1!
1!

0!

0!

Forward Paths!
(Original)!

2!
0!

12! 0!

A!

C!

B!

Y!

12!

8!

12! 3!

3!

2!

Reverse Paths!
(Simplified)!

8! 2!

a)! b)! c)!

Figure 5.12: Simplifying the internals for Block Y (reverse path not shown for original
graph)

we have re-introduced the notion of weights and delays on arcs; recall that the delay

is the time associated with the computation of a node, while the weight is a difference

in iteration count between two operations. For simplicity, only the forward arcs are

illustrated in this figure; let us assume the reverse arcs all have a weight of 1 and a

delay of 4. We will also assume the remainder of the graph consists of straight-line

pieces of code (no loops, conditionals, or feedback). Now, let us begin simplifying the

representation of Block Y .

In order to schedule the whole graph concurrently, we can follow the method outlined

in Section 5.6 to achieve the optimal solution. Block Y will share a set of resources with

the rest of the graph, since scheduling of resources can occur across blocks. However, as

noted, this approach can become unwieldy as the number of nodes increases. Instead,

let us assume that Block Y has been scheduled individually with its own set of resources,

independent from the rest of the graph. Turning again to Figure 5.10b, we can now

attempt to schedule Block X containing Y (assume Block Z has also been scheduled).

148

In this case, we can use the approach described in Section 5.6, but modify it to take

advantage of the fact that Block Y has already been scheduled. The first change is that

the branch-and-bound algorithm now no longer needs to explore resource schedules for

any node in Block Y . Additionally, the weights of all the variable arcs in the ILP

for Block Y can now be statically fixed (both resource and reverse arcs). Therefore,

the search space of both the branch-and-bound and the ILP (in terms of number of

variables) have been reduced.

We can prune the ILP even further by reducing the number of total constraints.

For example, there is no need to enumerate the internal cycles of Block Y , because

they have already been completely scheduled and are therefore guaranteed to meet the

throughput constraint. To shrink the ILP, we can prune these unnecessary cycles out

before entering them in the ILP, but it would preferable in terms of runtime to not

enumerate them in the first place.

Instead, we want to ignore the structure of the internals of Block Y , and consider

only the paths between interface nodes of the block, effectively ignoring any internal

cycles in Block Y , since they have already met the throughput constraint. To do so,

we enumerate every path between each pair of interface nodes, summing up their delay

and weight terms. We then introduce a new arc between the interface nodes with these

attributes for every such path between the nodes. Finally, we remove any other internal

nodes within the block that are not on the interface, along with any arcs connected to

them, leaving a simplified graph.

The result of performing this abstraction of Block Y is illustrated in Figure 5.12, in

which we have separated the forward and reverse paths for readability. The simplified

forward path is shown in Figure 5.12b, while the simplified reverse path is shown in

Figure 5.12c.

149

A!

C! Y!

23!

17! 0!

1!

Simplified!
Internals!

12! 1!

A!

C! Y!

19! 0!

Single Path!
Approximation!

A!

C! Y!

3! 2!

4! 4!

9!

10!

10!

0!
0!

0!

1!
1!

0!

0!

Original Paths!
(A to C only)!

Figure 5.13: Performing a single-path approximation on Block Y (reverse path not
shown)

5.7.3.3 Single-path Approximation

After abstracting out the internals of the block, the block’s abstract model consists

only of the nodes on the block’s interface and their connections to each other. Because

there may be a significant number of unique paths from one interface node to another,

maintaining every one of these paths as an arc in the block’s model at the next level

of abstraction may still severely impact the runtime of the solver. Therefore, reducing

the number of arcs between each pair of nodes is the next step in simplification, and is

performed by single-path approximation.

An example of single-path approximation is shown in Figure 5.13. In Figure 5.13a

we focus on the path between two interface ports A and C in Block Y from the pre-

vious example. In Figure 5.13b, we have replaced the internals of the block by arcs

representing the paths from A to C. The block has been simplified to contain only

150

A B C E F

G

D

B

C

G

D

F

C

G

D Q R

B F

Throughput Constraint

Q R

B

C

F
G

D

Y Z

Y Z

Throughput Constraint

a)

b)

a)

b)

Figure 5.14: Modeling a block interface as a canopy graph

three arcs and two nodes, rather than seven arcs and three nodes. Now, we reduce the

block even further: in Figure 5.13c we have replaced three arcs with a single arc that

safely bounds their throughput.

To perform single path approximation, we make use of canopy graphs as an analysis

tool (previously described in Section 2.3.2), in order to help us visualize the bounds on

attainable throughput.

While our analysis approach applies to any arbitrarily large interface, for simplicity,

we will now consider a block consisting of only two interface nodes (e.g., one input and

one output), between which there are multiple arcs with different weights and delays.

Remember that each arc represents a path through the internals of the block. We will

label the set of directed arcs from the input node to the output node as set A, and the

set of arcs traveling in the opposite direction B.

Recall that in the basic canopy model, the forward slope of the “data-limited” line

is determined by the inverse of the total forward latency between a begin and end stage

in a pipeline. However, in this case we have multiple paths between the pair of interface

nodes, these are defined in the set A. As a result we will have several lines bounding

the maximum achievable throughput, as shown in Figure 5.14. In the figure, these lines

151

are labeled A− C.

Furthermore, unlike the basic canopy model, in which the “data-limited” line starts

at the origin, the lines corresponding to the arcs in our abstract block may have dif-

ferent x-intercepts in the canopy, because each path may necessarily have a different

occupancy at runtime.

Modeling each arc as a throughput-limiting line in the canopy graph is straight-

forward: the slope and intercept of each line can be directly determined by the delay

and weight of the arcs they correspond to. For the arcs in set A, the slope of the line

corresponding to each arc will merely be the reciprocal of the delay associated with the

arc. The intercept of the line on the x-axis will be equal to the weight of the arc with

its sign inverted. This leaves us with the set of inequalities:

TPUT ≤ 1

delay(e)
∗ (occ + weight(e)) ∀e ∈ A

As an example, a path with a delay of 100 and a weight of 2 has its throughput bounded

by the inequality:

TPUT ≤ 1

100
∗ (occ + 2)

Each of the arcs in set A will produce inequalities that coalesce to form the left-

hand side of the canopy graph. The other side of the canopy graph will be bounded

by the arcs traveling in the reverse direction, those in set B. Those inequalities can be

represented in a similar fashion:

TPUT ≤ − 1

delay(e)
∗ (occ− weight(e)) ∀e ∈ B

where the slope is the negative reciprocal of the delay associated with the arc and

the x-axis intercept is equal to the arc’s weight. These lines are labeled D − F in

152

A B C E F

G

D

B

C

G

D

F

C

G

D Q R

B F

Throughput Constraint

Q R

B

C

F
G

D

Y Z

Y Z

Throughput Constraint

a)

b)

a)

b)

Figure 5.15: Removing redundant arcs from the canopy graph

Figure 5.14.

Finally, in basic canopy graph analysis, the graph is bounded from above by the

throughput of the slowest stage. In our case, we instead bound the canopy graph by

the throughput constraint set by the designer, shown as line G in Figure 5.14. While

the circuit may be capable of achieving higher throughput, we can safely remove the

region above it from our search space to reduce the solver’s run-time. Bear in mind

that G must be no higher than the throughput of any cycle in the block, because if the

internals of the block could not originally meet the throughput constraint, scheduling

would necessarily have failed.

After constructing the full canopy graph, we can now easily determine which arcs

are limiting and which arcs are redundant in order to help simplify the graph, as shown

in Figure 5.15. Here, each side of the canopy needs only two lines, rather than three, to

bound its throughput; the inequalities A and E are dominated by the other constraints.

Therefore, their associated arcs in our abstract block model can be removed, simplifying

our block.

To simplify our model even further, we can replace the set of inequalities that limit

one side of the canopy with a single inequality that dominates the full set. Going back

153

A B C E F

G

D

B

C

G

D

F

C

G

D Q R

B F

Throughput Constraint

Q R

B

C

F
G

D

Y Z

Y Z

Throughput Constraint

a)

b)

a)

b)

Figure 5.16: Näıve approximation of throughput constraints

to the cycle metric formulation, we want to create an arc that satisfies the following:

D + d

W + w
≥ D + delay(e)

W + weight(e)
∀e ∈ A

where d and w are the delay and weight of the dominating arc we would like to create

to replace the set of arcs in A (the constraint is equivalent for B). Here, D and W

represent the sum of the remaining delays and weights of a cycle on which this arc is

contained (these values are unknown).

In a näıve fashion, we can simply satisfy this constraint by setting d and w to the

following values:

d = max(delay(e)) ∀e ∈ A

154

A B C E F

G

D

B

C

G

D

F

C

G

D Q R

B F

Throughput Constraint

Q R

B

C

F
G

D

Y Z

Y Z

Throughput Constraint

a)

b)

a)

b)

Figure 5.17: Our method’s approximation of throughput constraints

w = min(weight(e)) ∀e ∈ A

This produces the canopy graph shown in Figure 5.16a. Here, the dominating arc for

A is represented by Q, and the dominating arc for B is represented by R. As you can

see from Figure 5.16b, the canopy is so limited by this pair of dominating arcs that the

block does not appear to meet the throughput constraint, thus scheduling will fail.

Instead, we aim replace the arcs with a better approximation, as illustrated in

Figure 5.17. Conceptually, the goal is to replace this convex region with the largest

trapezoid that can fit in the region while meeting the throughput constraint.

Let us begin by considering the set A that bounds the left-hand portion of the

canopy. Here, we approximate this side of the canopy by drawing a new line that

starts on the x-axis where the largest x-intercept of all the arcs in A is located. This

155

corresponds to setting the dominating arc’s weight to the lowest weight of all the arcs

in A. Then, we connect this point to the line modeling the throughput constraint. The

intersection at this line occurs at the greatest x-value of all the intersections of this line

with constraints specified by A. We can determine these values mathematically; we

know that for arc e:

slopee = 1/delay(e)

tpute = 1/delay(e) ∗ (x + weight(e))

and we want to determine maximum x-value where each arc intercepts the throughput

bound:

xmax = max

(
delay(e)

CT
− weight(e)

)
∀e ∈ A

where 1/CT is the throughput constraint set by the designer. Since we know the

x-intercept of the line by determining w:

w = min(weight(e)) ∀e ∈ A

We can determine d to be:

d = CT ∗ (w + xmax)

This pair of values (w, d) will determine the attributes of the dominating arc for the

set A. This procedure can be performed equivalently for the set B.

Unlike the näıve approach, this approach ensures that the throughput constraint

can still be met at some occupancy, as shown in Figure 5.17b.

Thus, the full set of arcs in A and the full set of arcs in B can be approximated

by a single dominating arc; all other arcs in the set can be removed. Therefore, each

pair of nodes will have only two arcs between them, as in Figure 5.13c, significantly

simplifying the block interface.

156

Join!

Join!

Join!

Join!n*(n+1)!
2!

Total Arcs:!

2!

Total Arcs:!

a)! b)! c)!

Figure 5.18: Converting a block to a two-port representation

5.7.3.4 Two-port Specifications

Even after performing a single-path approximation for each pair of nodes on the inter-

face, the number of arcs going through the interface may still be significant. The total

number of arcs in the block grows with the number of interface nodes on the order of

Θ(n2) when every interface node is connected, as shown in Figure 5.18a.

Therefore, an additional transformation can be performed on a block to further

simplify its abstract model: we can reduce the interface to only two ports. This trans-

formation can be done up-front by the designer modifying the input specification to

match the two-port restriction, but can be automated. By modifying the original spec-

ification such that a single input and output node will exist on the interface, one can

further simplify the internals of the block down to a single pair of arcs: one forward

157

and one reverse arc.

The two-port transformation merely requires a synchronization of inputs to the

block into a single node, and a synchronization of outputs to a single node, as illustrated

in Figure 5.18b. In practice, these synchronizations are performed by join operations

on the input and output sides of a block, in which a full tuple of values are combined at

once into one large buffer. When the data is transferred to another block, it is then split

back into individual buffers allowing the appropriate data to flow through the internals

of the next block in a decoupled fashion. Once the synchronization has occurred on the

input and output of a block, the block’s abstract model can be simplified into a single

pair of nodes and a single pair of arcs, as in Figure 5.18c.

While the two-port specification style can significantly reduce the complexity of the

hierarchical approach, the downside is increased area cost. Additional buffering will

generally become necessary in a block due to the introduced synchronization blocks.

It is interesting to note that the two-port specification transformation and schedul-

ing procedure begins to resemble the data-driven style of Chapter 3, particularly as the

block size begins to decrease and there is less opportunity for resource sharing.

5.7.3.5 Handling Conditionals and Loops

The proposed hierarchical block-abstraction method not only improves run-time over

the optimal approach, it also allows for a straightforward modeling of conditionals and

loops as individual blocks in the hierarchy. Here I will describe how conditionals and

loops are handled hierarchically by our approach.

Conditionals. Two methods are employed for handling conditionals: conditional

assignment and early evaluation. The former method executes both branches of the

conditional in parallel and selects the appropriate value at the output. The latter

conditionally selects a branch to forward data (based on a boolean value), and thus

158

gt

a b

boolean

c

select

add

b_tmp a_tmp

add

if (a>b)!
 c=a+1;!
else!
 c=b+4;!

Figure 5.19: Conditional assignment

does not perform unnecessary computation.

Figure 5.19 illustrates conditional assignment. Here the notion of control-level choice

has been replaced by computation. In this example, the expressions a+ 1 and b+ 4 are

computed in parallel (or sequentially if the adder is shared), then the proper output is

chosen by the select element. The select element operates repeatedly as follows:

1. Wait for all three inputs to be available: input1, input2 and sel.

2. When all three values are available, select the appropriate value based on the

value of sel and feed it through its output port, along with a request.

3. Wait for an acknowledgement from the output channel to ensure that the data

was received.

4. Acknowledge all inputs.

159

data_in

boolean

data_out

split

order

A

B

if (boolean)!
 data_out=A(data_in);!
else!
 data_out=B(data_in);!

if (boolean)!
 A;!
else!
 B;!

p 1-p

Figure 5.20: Early evaluation

The benefit of the conditional assignment route is it essentially removes control-

driven choice, allowing us to easily model conditionals using our ILP method. However,

this approach does have significant drawbacks: (i) increased energy consumption, (ii)

worst-case latency, and (iii) increased area. For example, while operations in both paths

are mutually exclusive and could share an adder with no additional cost, conditional

assignment requires both to be computed, therefore sharing the adder would incur a

latency penalty for the block, while allocating an additional adder would incur an area

penalty.

160

The second method for handling conditionals is illustrated in Figure 5.20. Here we

have converted the original source into a two-port specification style for simplicity.

In this example, the value of the boolean is computed prior to execution of either

branch. Then, the appropriate data is forwarded to one of the branches using a split

element. The appropriate branch then performs computation on the data. After per-

forming computation, the block forwards the output data to the order element that

operates as follows:

1. Wait for sel value to indicate which port to read from.

2. Wait for value on port indicated by sel.

3. Transmit the value through its output port, along with a request.

4. Wait for an acknowledgement from the output channel to ensure that the data

was received.

5. Acknowledge both inputs.

The order element therefore selects the appropriate value based on the value of

the conditional and forwards it on its output port. Here, we must keep in mind that

the value of the boolean must be appropriately slack-matched on its way to the order

element (indicated by the dashed arc).

There are two caveats with this approach: (i) it introduces true choice in the model,

which is not handled by the analysis in Section 5.6, (ii) it can incur additional latency

because the boolean must be computed prior to execution of the branches. However,

this approach has its merits: lower energy consumption and the potential for better

average case performance.

In order to handle the problem of choice in the performance analysis, we can turn to

the method described by (Gill, 2010). In this work, the author illustrated one possible

161

method to model the performance of a conditional block is by multiplying the computed

throughput for each block by the inverse of the probability of each path being taken.

In a normal block where the probability of being taken is 1, the block must always

be able to support the full throughput constraint specified by the designer. However,

if the probability of a block being taken is 0.5, it only needs to support half the rate.

Therefore, when we schedule the branch, we only require that the branch meet a

throughput constraint of p∗T , where p is a pre-computed probability of the branch being

taken, and T is the throughput constraint set by the designer. When we replace the

block with a pair of single-path approximation arcs, the delay on each arc is multiplied

by p in order to appropriately model its throughput.

There are a few limitations to this model: (i) the conditional probabilities must

be pre-computed, (ii) each conditional probability is assumed to be independent, (iii)

the interface elements are assumed to be infinitely fast in (Gill, 2010), and (iv) clus-

ters of items selecting the same branch may have a significant detrimental impact on

throughput.

One final item to note is that during scheduling, we may consider both branches

as separate blocks, and schedule each with a disjoint set of resources. However, if the

blocks are sufficiently small, they can be scheduled simultaneously with the same set

of resources, allowing mutually exclusive operations to share the same resource.

Loops. Let us now consider how loops are handled in the hierarchical approach.

Let us begin with our proposed architecture, as shown in Figure 5.21. In this example

we assume the throughput constraint is so tight that each operation has received its

own dedicated function unit, but no additional buffers have been added.

Figure 5.21a shows the body of a Fibonacci loop without any additional control

structure. Here, data enters at the top and is routed through the appropriate function

units, trickling down until the final values are produced for k, a, and b through a

162

k_in!

k!

sub!

k_tmp!

a_in! b_in!

a! b!

tmp!

a_tmp! b_tmp!

add!

a_out!

noop!

noop!

k_in!

k!

sub!

k_tmp!

a_in!

merge!merge! merge!

b_in!

a! b!

tmp!

a_tmp! b_tmp!

guard!

add!

a_out!

gtz!

noop!

noop!

boolean!

a)! b)!

Figure 5.21: a) Loop body without control elements and b) loop body with control
elements inserted

single iteration. This original implementation does not include any choice points, and

is therefore easily modeled.

Now, we must incorporate control to feed data back in order to allow multiple

iterations. Figure 5.21b shows how data is routed back into the loop using merge

elements. Here, the input values k in, a in, and b in are fed into merge elements that

will select either these new input values (i.e., a new problem instance), or the values

produced at the end of the loop (an previous problem instance), k tmp, a tmp, and

b tmp, respectively. The appropriate data is selected based on the value of the boolean

clause k tmp > 0.

The operation of the merge element repeats as follows:

1. Wait for all three inputs to be available: varin, which is the input to the loop,

varloop, which is the value of a variable after executing the loop body, and sel,

which decides which value to select for input.

2. When all three values are available, select the appropriate value and feed it

through its output port, sending out a request.

163

3. Wait for an acknowledgement from the output channel to ensure that the data

was received.

4. If the item selected was varin, an acknowledgement occurs on the varin channel.

5. In all cases, an acknowledgement occurs on the varloop channel, regardless of

which data was selected.

On the opposite end of the loop, data is being selected for output via a guard

element. The operation of the guard element repeats as follows:

1. Wait for both inputs to be available: varloop, which is the value of a variable after

executing the loop body, and kill, which decides whether to allow the value to

pass through the loop or be consumed.

2. When both values are available, the guard block consults the value of kill. If

kill is false, a request is sent on the output channel, allowing the value to pass

through. Otherwise, no request is sent on the output channel.

3. If a request was transmitted, wait for an acknowledgement from the output chan-

nel to ensure that the data was received.

4. All input signals are acknowledged.

By constructing the merge and guard elements in this fashion, we can essentially

remove the notion of choice from inside loop body itself. The choice points occur on

the outside of the loop: either external data is read by the merge element or it waits,

and either data is produced by the guard to the external block or the external block

must wait. Therefore, in all cases, the internals of the loop operate without choice.

This allows us to model the loop much like we did a general block, with one modi-

fication. Because a token must repeat the computation in a loop body multiple times

164

before exiting the block, the throughput constraint on the loop becomes tighter by a

factor of the iteration count of the loop. As an example, if the throughput constraint

of the full specification is T = 100, and the iteration count of the loop is 10, the loop

must be able to produce a throughput of 10x, or TL = 1000. Therefore, every cycle in

the loop must meet the tighter constraint. This modification allows us to model the

interface to the loop where the choice points are now occurring, since data is being

consumed every 10 iterations.

When modeling the full loop as a block, we can turn once again to canopy graphs

for analysis. Since the block’s forward latency is multiplied by the iteration count of the

loop, the slope of each forward path’s line will become shallower. Therefore, the single-

path approximation arc that represents the block must have its delay multiplied by the

iteration count. However, on the reverse path, the reverse latency of only one iteration

need be considered. We can reduce the reverse latency further if a global controller is

managing the token count of the loop; then, the reverse delay can be modeled as the

delay from the controller to the loop’s input port.

One additional optimization is performed by the hierarchical method: automatic

selection of token count. In Figure 5.21b, the dashed red arcs highlight feedback data

paths that are initialized with a single token representing the loop’s occupancy. The

ILP approach presented in Section 5.6.3 has been modified to allow these feedback data

arcs to become variable, and instead fixes the associated reverse arcs to a static value

of 0. In the ILP, each of these data arcs are required to have the same value, otherwise

data will be synchronized erroneously across problem instances. In this way, we can

allow the ILP to select the preferred token count for the loop.

165

a)! b)!

Join!

Join!

Join!

Join!

Join!

Join!

Join!

Join!

Join!

c)!

26! 1!

12! 3!

16! 0!

8! 1!

26! 1!

12! 3!

16! 0!

8! 1!

42! 1!

20! 4!

Figure 5.22: Composing sequential blocks into a single block

5.7.4 Hierarchical Composition

Once a block is scheduled and has been replaced with a simplified model, we can then

schedule it in the next higher level in the hierarchy. In this subsection, we illustrate

how blocks are combined when they are constructed sequentially, in parallel, or when

one is nested inside another. In this section, we will use examples two-port specification

for simplicity of explanation.

5.7.4.1 Example: Sequential Blocks

Let us start with the example shown in Figure 5.22a. Here we have two blocks that

have already been scheduled and simplified. Each block now contains only a pair of

arcs with unique weights and delays between two join buffers.

The first key observation is that since the data produced at the output of the first

166

Join!

Join!

26! 1!

12! 3!

a)!

Join!

Join!

b)!

Join!

Join!

16! 0!

8! 1!

30! 1!

20! 4!

Join!

Join!

2!
0!
4!
1!

2!
0!

4!
1!

2!
0!

4!
1!

2!
0!
8!
2!

Join!

Join!

24! 0!

20! 4!

c)!

20! 5!

20! 0!

Figure 5.23: Composing parallel blocks into a single block

block and consumed at the input of the second block are the same, we can optimize by

merging the two join buffers into a single buffer, as shown in Figure 5.22b.

Next, we aim to create a single block that represents the sequential behavior of the

two blocks. In this case, the process is simple: we sum up the weights and delays on

the forward path from input to output to produce a representative forward arc, and

sum up the weights and delays on the reverse path to produce a representative reverse

arc, as shown in Figure 5.22c.

It is worth noting that the throughput bounds provided by each individual block

no longer exist in the model, but can be represented as a self loop with the appropriate

delay and weight. However, had either block failed to meet the throughput constraint,

the scheduling procedure would have failed prior to joining the blocks, and therefore

these self-loops are unnecessary for scheduling.

5.7.4.2 Example: Parallel Blocks

Combination of parallel blocks is illustrated in Figure 5.23, using the same pair of

blocks from Figure 5.22.

167

In this example, we have already scheduled the two parallel blocks, and have intro-

duced a pair of synchronizing joins to model a two-port specification of their encap-

sulating block. The buffering requirements between the joining buffers and each block

have already been determined and are shown in Figure 5.23a.

Observe in this example that the block on the right requires an additional buffer in

order to meet the throughput constraint due to the slack mismatch between the two

blocks. This situation can be contrasted with that of sequential composition, in which

no additional buffers are needed for slack matching when combining the blocks.

In Figure 5.23b, we have removed the internals of the encapsulating block by enu-

merating all the paths between its interface nodes, leaving two arcs in either direction.

We therefore perform a single path approximation to produce the final block, shown in

Figure 5.23c.

5.7.4.3 Nested Blocks

The example of parallel composition illustrated in Figure 5.23 is actually one of nested

composition: in this case there are two separate blocks nested inside an encapsulating

block with its own buffering. A more general encapsulating block is capable of having

its own computation nodes in addition to any nested blocks.

Arbitrary levels of nesting are handled by our approach, the only caveat being that

blocks nested in loops must follow the rules specified in Subsection 5.7.3.5. In particular,

the throughput of the internals of a loop must meet the throughput constraint multiplied

by the iteration count of the loop. Thus, loops nested within loops will see this factor

become the product of their iteration counts.

5.7.5 Hierarchical Area-Minimization

Figure 5.24 gives a basic overview of the proposed hierarchical area-minimization

168

procedure hierarchicallySchedule(block, parent){

for each child_block in block{

hierarchicallySchedule(child_block, block)

}

scheduleOptimally(block)

compute interface for block

for each pair (A,B) of interface nodes{

compute all paths from A to B

add single path approximation arc from A to B

compute all paths from B to A

add single path approximation arc from B to A

}

remove block internals

replace block in parent with simplified representation

}

Figure 5.24: Basic hierarchical area-minimization algorithm

algorithm. The algorithm begins with the top-most block, and descends into its children

depth-first until a block with no children is encountered (a “leaf” block). The block is

scheduled optimally using the approach outlined in Section 5.6 in order to produce the

minimum area implementation for the block.

Next, the solver computes the interface nodes for the block. For each pair of nodes

on the interface, the solver determines the delay and weight of each path that goes

between the nodes. Next, a single-path approximation is performed to replace the set

of arcs going from one node to the other with a single arc. The same approximation

task occurs for all the paths that travel in the opposite direction as well.

After all the single-path approximation arcs are generated between each interface

node, the solver then removes all other internal nodes and arcs from the block. The

new simplified model is then inserted in place of the original block for scheduling in its

parent block.

If the parent block contains children that have yet to be scheduled, these blocks

are then scheduled and simplified using the same method. Eventually the parent block

169

itself will be ready for scheduling; this process continues up the chain until the top level

block is scheduled.

5.8 Results

This section illustrates the proposed method’s capability to find an area-minimized

solution under a variety of constraints. Utilizing benchmarks described in Section 4.6,

the solver was run on a total of 21 test cases and compared to the previous results.

5.8.1 Setup

In experimentation, seven different benchmark DFGs were used for analysis. For each

test case, we set constraints for cycle time and optimized for minimum area. We

provided the same library of functional units to all benchmarks; Table 5.1 shows the

parameters used in experimentation in the optimal approach, while Table 5.2 shows

a different set of parameters used for the hierarchical approach. Buffer delays were

modeled as 1 in both the forward and reverse directions.

Section 4.6 provides a description of six of the benchmarks. One additional bench-

mark was added, FIB, which computes the Fibonacci number of a given input. The

TEA and FIB benchmarks both contained loop structures that were unrolled in a set

of experiments for the hierarchical method.

The approach was implemented in Java using standard libraries. Benchmarks were

tested on a Macbook Pro with a 2.8 GHz Intel Core 2 Duo processor and 4GB of RAM

on JVM 1.6. Run-times are shown in seconds or milliseconds.

170

5.8.2 Discussion of Results

Table 5.3 shows the experimental results for the optimal approach. The first two

columns list the benchmark and throughput constraint respectively. For the single-

token solver in Chapter 4, this throughput constraint was equal to the latency con-

straint, as only single-token schedules were produced. The next column shows the logic

area a single token schedule could produce using the single-token approach (this method

ignores buffer area). The next three columns show the results of the multi-token ap-

proach, including logic, buffer, and total area. The final column shows the run-time in

seconds.

The results shown in the table clearly show that a multi-token approach is superior

to a single-token approach in terms of function unit area. In all test cases, the logic

area was less than or equal to that of the single-token solver. In fact, in most cases, the

total area (including buffering) was lower than the function unit area of the single-token

solver. Given the available numbers, one can conclude that the multi-token approach

provides a lower total area solution in terms of resource and buffer area in each case

with the possible exception of TEA.

Further, there are several instances where the single-token approach cannot meet

the throughput constraint, even if infinite resources were provided.

Now let us consider the effect of the throughput constraint on buffer area: when

the throughput constraints become very tight we begin to see an increase in buffer area

because more pipelining is needed. For example, consider the first two test cases of

COS, where the buffer area is 52 under a tight throughput constraint of 16, but when

the throughput constraint is relaxed to 32, the buffer area reduces to 48.

Finally, the runtime of this approach is illustrated in the last column. For the single-

token approach, the run-time was under 5 seconds in each test case. In the multi-token

test cases, the runtime was under 10 seconds in all but four test cases. Three of those

171

successfully completed in under an hour, while one test case did not complete within 8

hours and was manually terminated.

Now, let us consider a different set of results, shown in Table 5.4. The results in

this table run exclusively on the FIB benchmark, a specification with a loop construct.

The FIB benchmark had its main loop unrolled eight times, and in this table, the effect

of average iteration count and cycle time constraint on total area is shown.

In this table, we see that the total area of a circuit increases as the cycle-time

constraint becomes tighter. However, this ratio is not one-to-one. For example, halving

the cycle-time from 200 to 100 for the 8-iteration case only results in 1.23x more area

but provides 2x the throughput. Another observation that can be drawn from this table

is that increasing the iteration count of a loop causes a circuit to consume additional

area. This is illustrated by comparing the iteration counts at cycle-time constraint of

500; a loop with an iteration count of 16 requires about half the resources needed for a

loop with an iteration count of 64.

Let us now consider the effect of unroll count and block size on the area of a circuit

produced by our tool, as shown in Table 5.5. By unrolling a specification, the total area

consumed increases, due to the fact that additional storage is needed in the pipeline.

The total area seems to roughly double when increasing unrolling by a factor of 2x. By

increasing the size of partitioned blocks, we see that the area cost is generally lower

as the solution trends closer to the optimal value. One anomaly exists between TEA

unrolled 4x with 12 versus 16-node blocks. This anomaly is due to the fact that the

automated partitioning scheme does not optimally generate blocks; a better partitioning

would likely produce a lower area circuit.

Finally, consider the run-time of the hierarchical method as a function of benchmark

size and block size. When approximately doubling the number of nodes from 94 to

174, the execution time of the solver increased by 4-25x, dependent on block size.

172

Table 5.1: Functional unit parameters

Function Area Latency
Unit (unit) (unit)

Add 8 8
Subtract 8 8
Multiply 48 9

Shift/Logical 8 8
Buffer 2 1 / 1

Table 5.2: Functional unit parameters

Function Area Latency
Unit (unit) (unit)

Add 8 32
Subtract 8 32
Multiply 256 64

Shift/Logical 8 32
Buffer 2 1 / 1
Merge 3 2
Join 3 2

Guard 1 2

However, when approximately doubling the number of nodes again to 334, the execution

time of the solver only increased by 3.5-4.5x. The key observation to take away from

this example is that the hierarchical scheduling approach does not exhibit exponential

increases in run-time based on node size, at least for this example.

The effect of block size on run-time is more significant. A 1.3-4x increase in run-time

is shown when increasing the blocks size from 8 to 12. Increasing the block size from

12 to 16 shows a 2.5-7x increase in run-time. Based on this observation, maintaining

smaller block sizes can make a significant impact on run-time, albeit at the cost of

optimality.

173

Table 5.3: Run-time and results for throughput-constrained area-minimization

Area (unit)
Cycle Time 1-• Multi-• Run-time

Benchmark Constraint Logic Logic Buffers Total (S)

ODE 9 - 272 30 302 0.2
ODE 34 160 112 18 130 0.2
ODE 50 112 64 18 82 0.2
DP8 9 - 440 48 488 0.3
DP8 27 - 168 32 200 0.4
DP8 35 416 160 32 192 0.4
DP8 50 208 112 32 144 0.7
DP8 90 104 56 32 88 0.7
COS 16 - 800 52 852 3.8
COS 32 - 304 48 352 355
COS 75 208 104 48 152 1908
7TH 9 - 832 88 920 0.7
7TH 16 - 776 58 834 1.1
7TH 45 - 168 58 226 51
7TH 90 168 112 58 170 493
ELP 9 - 592 202 794 2.5
ELP 115 168 - - - >8hr
TEA 32 - 40 36 76 7.8
TEA 40 48 32 36 68 4.1
TEA 43 32 32 34 66 5.9

5.9 Conclusion

In this chapter I described an optimal method for generating multi-token schedules

for performing resource sharing in a pipelined system. I then illustrated how these

schedules could be modeled graphically, described an architecture to implement these

schedules, and developed an algorithm to minimize overall logic and buffer area while

meeting a throughput constraint using a branch and bound approach. Finally, I pro-

posed a hierarchical method for dealing with large, real-world examples.

The focus of this chapter has been specifically on the trade-off between performance

and area. In the next chapter, a new set of constraints will be considered: power and

energy.

174

Table 5.4: Effect of cycle-time constraint and iteration count on implementation area

Block size
Iteration Cycle-Time 32 nodes

Benchmark Count Constraint Area Time (ms)

FIB 8 500 128 1100
FIB 8 200 168 580
FIB 8 100 208 880
FIB 8 50 344 700
FIB 16 500 152 1160
FIB 16 200 208 560
FIB 16 100 344 670
FIB 32 500 208 930
FIB 32 200 344 530
FIB 64 500 320 780

Table 5.5: Effect of unroll count and block size on implementation area and tool
performance for TEA benchmark

Block size
Unroll Node 8 nodes 12 nodes 16 nodes
Count Count Area Time (s) Area Time (s) Area Time (s)

4 94 2797 1.8 2291 2.3 2389 5.9
8 174 5927 6.4 5075 23.4 3745 142
16 334 11163 21.3 9173 95 7131 654

175

Chapter 6

Energy and Power Considerations

The previous chapters of this thesis have focused primarily on circuit area and perfor-

mance, and have largely ignored two other aspects of emerging interest in high-level

synthesis: power and energy. Particularly as consumer demand trends more and more

towards mobile devices, battery life and peak power are significant constraints that

need to be considered in the design process. Therefore, this chapter proposes several

additions to consider power and energy in the synthesis process.

6.1 Introduction

This chapter presents two contributions in the area of energy and power in high-level

synthesis. The first contribution is to incorporate modifications to the scheduling strat-

egy given in Chapter 4 in order to make it energy and power-aware. These modifications

include two additional constraints, one to constrain the maximum power consumption

for a specified schedule (i.e., reducing the maximum instantaneous power draw during

the full runtime of a schedule), the other to constrain the maximum energy consumption

of a full schedule. Another key modification is to incorporate energy-minimization as an

alternate target of our scheduling approach, in addition to time and area-minimization.

The second significant contribution, orthogonal to that above, is to detect under-

utilization of resources in a schedule (i.e., scheduling slack) and dynamically scale down

the voltage supply in order to trade off idle time for significant savings in energy and

power (without lengthening the total execution time of the schedule). In the least

intrusive fashion, this optimization can be done as a post-scheduling step by modifying

the binding of operators to resources as to provide the greatest opportunity for voltage

scaling.

The first half of this chapter focuses on the first contribution: extending the branch-

and-bound strategy in Chapter 4 in two ways: (i) incorporating of power and energy

constraints, and (ii) introducing an algorithm for energy-minimization. As the branch-

and-bound method relies heavily on pruning for reducing the search space to improve

performance, several additional bounds have been developed that take power and energy

into account. In addition, new optimizations have been developed for exploring the

search space in order to more quickly approximate the best solution.

This second half of this chapter focuses on the second contribution: an approach

for energy reduction in an asynchronous shared-resource system by exploiting slack in

the schedule. In particular, the approach accepts a high-level specification for which

resource allocation, scheduling and binding have already been performed, along with

an upper bound on the latency of the schedule. Given this input, the proposed method

then determines available slack in the schedule, both along the critical path (e.g., if

critical path length is shorter than the given latency bound) and along non-critical

paths. Finally, an assignment of supply voltages for the resources is determined such

that energy consumption is minimized, while still satisfying the upper bound on the

schedule’s latency. I also address the practical problem of imposing a limit on the

number of distinct voltage sources used by the implementation.

The experimental results are quite promising. The performance of the energy-

177

minimization approach is on par with that of the highly-optimized area and time-

minimization approaches. The overhead of implementing each additional bound was

minimal; in the end, each test case completed in under 5 seconds. For the proposed

voltage scaling approach, the heuristic methods found a solution with an energy cost

within 5% of the energy cost of the optimal solution for all but one test case. The

runtime of the heuristic solutions was negligible (typically in milliseconds), and several

orders of magnitude faster (from 20x to 10,000x faster) than the optimal one that

searched the complete search space.

The rest of this chapter is organized as follows. First, Section 6.2 discusses rele-

vant prior work. Next, Section 6.4 presents modifications to the scheduling approach

presented in Chapter 4 to incorporate energy and power. Then, Section 6.4 presents

several approaches to voltage scaling, including the optimal geometric programming

formulation, and two faster heuristic ones. Section 6.5 presents experimental results,

and we will conclude with Section 6.6.

6.2 Background

6.2.1 Energy and Power

Let us first start by distinguishing the terms energy and power. In this chapter, the

total “energy” of a schedule refers to the total amount of energy consumed from start

to finish, irrespective of how that energy is distributed. The term “power” refers to the

instantaneous rate of draw of energy at a point in time.

As an example, let us consider two implementations that perform the same compu-

tation but have different schedules and bindings. Schedule X completes computation

with latency L = 100 and total energy consumption E = 500, while schedule Y has

the attributes L = 50 and E = 400. Here, schedule X consumes more energy than

178

schedule Y . However, if we assume the energy consumption is uniformly distributed

over time, schedule X has a power consumption of P = 500
100

= 5 while schedule Y has

a power consumption of P = 400
50

= 8. Thus, schedule X is lower power, but higher

energy than schedule Y .

In practice, energy consumption will not be uniformly distributed over time for a

full schedule. Instead, a designer will be concerned with the peak instantaneous power

draw, since it defines the requirements on the source providing power to the circuit.

Therefore, the proposed approach will parametrize each operation with the at-

tributes latency, energy consumption, and peak power for each function unit on which

it can operate.

6.2.2 Previous Work

For performing scheduling and allocation under area, time, or resource constraints,

several different high-level synthesis techniques have been discussed in Chapter 4. The

majority of these approaches do not consider power or energy as part of the schedul-

ing processes. However, heuristic solutions do exist that take into power, latency,

and resource constraints into consideration in the scheduling process: (Manzak and

Chakrabarti, 2002; Lin et al., 1997; Johnson and Roy, 1997).

Many other approaches address the task of energy minimization by static or dy-

namic scaling of voltages, but are often developed for synchronous uni-processor or

uniform multiprocessor systems. However, most of these approaches are on a coarse

granularity scale, considering several independent multi-instruction tasks operating on

uniform function units (processors). By contrast, my approach is applied at a very

fine granularity, on the order of individual operations. As a result, my approach is ca-

pable of handling heterogeneous function units, and must carefully consider operation

dependencies at this granularity.

179

One recent approach is described in (Chen et al., 2006), where the authors provide

an optimal solution to voltage assignment and resource binding for two voltage levels.

However, my approach is capable of handling an arbitrary number of voltage levels,

limiting the count only when specified by the designer.

In contrast to these approaches, my energy and power-aware scheduling work tar-

gets exact solutions (as defined in Section 6.1) to the scheduling and allocation process,

given area, time, power, and energy constraints, for both the asynchronous and syn-

chronous domains. I target a robust solution space by incorporating many-to-many

operation to functional unit mappings, functional unit energy and power consumption,

energy and power constraints, and minimization for energy in our approach. Then,

since even a energy-minimized schedule may have further opportunities for energy re-

duction by voltage scaling, my approach further refines these low-energy solutions by

performing voltage scaling as a post-processing step.

6.3 Incorporating Energy and Power Constraints in

Scheduling

In this section we will address the problem of incorporating power and energy into

the scheduling approach presented in Chapter 4. Since the resource-constrained time-

minimization algorithm is at the core of the other minimization methods, I will first

show how this method is modified to take into account specified upper bounds on

peak power and total energy consumption. Next, I will explain how the allocation

search space is modified. Finally, I describe an alternate scheduling strategy: energy-

minimization.

180

6.3.1 Resource-constrained time-minimization

6.3.1.1 Constraints and targets

Recall that resource-constrained time-minimization aims to find the lowest latency

schedule for a DFG given a specific resource allocation. In the energy and power-aware

approach, the additional constraints of total energy consumption and peak power can

be set to restrict possible solutions. This type of search may be employed by a designer

working with a static architecture aiming to find the highest performance solution under

the additional constraints of energy consumption and peak power.

6.3.1.2 Algorithm

The core algorithm for resource-constrained time-minimization is given in Section 4.4,

but its most basic behavior will be briefly described here.

The initial step is to generate a worst case maximum time by summing up the

worst case latencies for each operation. This will serve as an initial “best solution

found” while exploring the search space.

The main procedure for exploring the search space is then initiated: a recursive

method that expands the DAG in a depth-first fashion. As each node is reached,

starting with the root+ node, all possible children are enumerated. Once a sink− node

is reached, the latency of that path is compared to the best time so far; if it is lower, this

is the new best schedule. Along the way, several pruning optimizations are performed,

such as tight, safe bounds, redundancy removal, and hashing.

Key additions. One of the core aspects of this algorithm is the selection of child

nodes for each node in the DAG. In the original algorithm, only four aspects were

considered: (i) dependence restrictions, (ii) availability of resources, (iii) binding of

operation to functional unit type, and (iv) lexicographical ordering (to remove redun-

dancy).

181

However, an energy and power-aware approach includes on top of those constraints:

(i) free power remaining, and (ii) free energy remaining. These considerations serve to

further reduce the search space.

The amount of free power and energy remaining are calculated by analyzing the

schedule produced up to the current node in the DAG. As each binding of operation

to functional unit is parametrized by an energy and power cost, the sum of all the

energy costs of already scheduled nodes is subtracted from the total energy constraint

to produce a “free-energy-remaining” term. The sum of all the power costs of currently

executing nodes plus the leakage power of idle components is then subtracted from the

power constraint to produce a “free-power-remaining” term. These two terms help trim

the size of the DAG.

As a simple example, consider the case where two potential operations are available

for execution, an add and a multiply. Assume the add and multiply can operate on an

ALU as well as their own dedicated functional unit types. Here, let us assume that an

add consumes a power amount P+ = 4 on a dedicated adder, and P+ALU
= 6 on an

ALU. The multiply consumes P∗ = 16 on a dedicated multiplier and P∗ALU
= 20 on an

ALU.

In this case, four total node+ nodes are initially possible as children of the current

node. However, as the selection of children is dependent on the other constraints (i.e.,

power/energy), multiple children may be pruned. For example, assume the power

budget is PMAX = 50, but the currently budgeted draw is PB = 40. In this scenario,

only enough power remains to execute an add, so the multiply children are pruned from

the search space as direct children of this node. They must therefore must be executed

at a future time, when enough free power becomes available. This constraint will leave

only the node+ nodes corresponding to the add operating on the ALU or a dedicated

adder.

182

root+!

root-!

b(A)+! b(*)+!

a(A)+! a(*)+!

a(*)+!

a-! b-!

a-!

b(A)+! b(*)+!

b-!

b(A)+! b(*)+!

a-!

a(A)+!

sink+!

sink-!

b-!

Figure 6.1: Full expansion of the DAG for a two-operation DFG with one ALU and
one multiplier

Further, should the power budget be restricted further such that PMAX = 45, then

only the dedicated adder will be considered for the add to be executed (the ALU option

is now pruned), leaving only one node+ node possible. If the power budget is restricted

even further, e.g. PMAX = 40, then no node+ nodes can be selected; a node− node

must occur before another operation can be scheduled.

6.3.1.3 Optimizations

Each of the optimizations of Chapter 4 remain intact in the energy and power-aware

approach in order to help reduce search time. However, because of the additional energy

constraint, dominance for hashed nodes must be revisited.

Modified dominance check using hashing. At several stops during the explo-

ration of the DAG, the same set of operations have been scheduled to start and finish,

although in different orders. In Figure 6.1 we illustrated this by coalescing these paths

183

into the same location. However, despite arriving at the same location in the DAG, it

is frequently the case that the paths have unique attributes, i.e., latency and energy

consumption.

Therefore, as each node is generated, a hashing string corresponding to all of the

events that have occurred on this node’s path is generated and a global hash is accessed.

Any node that has the same set of started and finished events hashes to the same

location, regardless of the order the events occurred. The current node is compared to

all other nodes hashing to this location. If any node is found to be inferior, it is evicted

from the hash. If the current node is found to be inferior, then all of its children are

pruned from the search space. A node is determined to be inferior if:

1. the node has a latency greater than or equal to the compared node,

2. all active computations in a node have end times greater than or equal to those

in the compared node, and

3. the energy consumption of this node is greater than or equal to the compared

node.

The key addition under hashing is the final restriction; if one partial schedule’s

performance is better, but the other’s energy cost is better, we cannot necessarily rule

out either solution.

Additional time bounds. Utilizing a similar strategy as the RCSTTF bound,

we can introduce several additional time bounds based on the power constraint. Each

of these additional time bounds are computed by solving a simpler scheduling problem

in which one or more constraints are relaxed.

For the first bound, let us begin by relaxing the requirement that an operation

may only execute on its legal set of functional units. In this case, we can select the

lowest power units possible and schedule each operation on these units in STTF sorted

184

fashion while remaining under the power bound. This relaxed scheduling will maintain

the minimum legal execution time of an operation, rather than that of the function

unit it is assigned to.

Another bound is to perform the above power bound on a per-operation-class basis,

where only minimum power function unit types that can execute a given operation

are considered. This approach prevents a high-power operation from executing on

a low power unit on which it is unable to operate (which is allowed in the above

scenario). However, this bound will require multi-purpose function units (e.g. ALUs)

to be considered as available exclusively to each operation class when analyzing each

class individually, much like the RCSTTF bound.

One final simple bound is to sum the minimum-power by minimum-delay products of

the outstanding unscheduled operations. This sum is compared to the power-constraint

multiplied by the time remaining before the time bound is met. If the latter value is

exceeded, then the current node is pruned from the search space.

6.3.2 Enumerating the allocation search space

Now let us consider resource allocation. Recall that the full search space under an area

bound consists of a multi-dimensional “volume” of allocations (bounded by integer con-

straints), but, in terms of time minimization, an allocation on the surface of this volume

is guaranteed to provide the best possible solution. Allocations below the surface will

only contain fewer functional units than an allocation on the surface, therefore at best

matching a surface allocation in terms of latency.

The method outlined in Chapter 4 for enumerating the search space is to create

a tree of allocations, starting with a node with an empty allocation, as shown in Fig-

ure 6.2. This node is expanded by creating a set of new nodes under a set of restrictions:

1. each child node can add only one additional allocated functional unit,

185

0,0!

1,0! 0,1!

2,0!

3,0!

1,1!

2,1!

3,1!

1,2!

2,2!

3,2!

Figure 6.2: Allocation search space for two functional unit types

2. each child node must be distinct from its siblings,

3. the generated node must not exceed the area bound,

4. the selection of children may not break a lexicographical ordering, and

5. the number of functional units of a specific type multiplied by its minimum

parametrized power cannot exceed the power bound.

The final restriction has been added in the power-aware approach in order to limit the

overall search space. The intuition behind this restriction is that if more function units

are allocated than the power bound can budget instantaneously, one or more function

units will always be idle during operation, thus, making them unnecessary. These

solutions would eventually be pruned by the algorithm, however, we remove them early

in the process to avoid any unnecessary searching.

6.3.3 Energy-Minimization

Chapter 4 discussed several search strategies that can be employed by the designer, such

as time-minimization and area-minimization. Now, let us consider a different strategy,

186

energy-minimization.

6.3.3.1 Constraints and targets

In energy-minimization, we aim to find the solution with the lowest energy consumption.

Here, the area and time constraints are set, and we aim to find the lowest energy

solution. This energy-minimization search strategy would most likely be employed by

a designer aiming to find the most-energy efficient solution for applications such as

mobile devices and embedded systems where battery life is a concern.

6.3.3.2 Algorithm and search space

The algorithm and search space we selected for energy-minimization are similar to that

of generalized time-minimization. However, a few changes need to be made. For refer-

ence, refer to the pseudocode for energy minimization in Figure 6.3, where we illustrate

a basic approach to both generalized energy-minimization and resource-constrained

energy minimization.

In this basic approach, the most obvious difference to notice is that rather than

recording minimum time, minimum energy consumption is considered. Of course, the

solution must still meet latency, area, and power bounds set by the designer.

There are a few final optimizations to consider in the search algorithm. Energy-

minimization can be aided in the allocation process by prioritizing low-energy function

units. When deciding which allocations to test first between a set of “equal” function

units, we can start by selecting allocations that do not include energy-hungry function

units, then try more energy-hungry alternate allocations if the time constraint cannot

be met. Similarly, in the scheduling process, we can sort otherwise equal children of

a node (based on STTF) by minimum energy of the bound functional unit. This

guarantees that the lowest energy solutions are considered first when attempting to

187

void EM(DFG dfg, int areaBound){

AllocationList allocations =

getPossibleEMAllocations(areaBound);

int bestEnergy=getWorstCaseEnergy(dfg)+1;

for (int x=0; x<allocations.length; x++)

bestEnergy = min(RCEM(dfg,allocations[x]),

bestEnergy);

}

int RCEM(DFG dfg, Allocation alloc){

expand(rootNode, alloc);

return bestEnergy;

}

void expand(Node node){

if (isSinkNode(node)){

if (node.totalEnergy<bestEnergy)

bestEnergy = node.totalEnergy;

return;

}

NodeList children = getChildren(node, alloc);

for each child in children

if (node.totalEnergy>=bestEnergy)

return;

for each child in children

expand(child);

}

Figure 6.3: Basic algorithms for energy-minimization

188

find a solution.

6.4 Voltage Scaling

In this section I will first describe the objective of the voltage scaling approach and

describe preliminaries such as the input specification. I then formulate the energy

minimization problem in an optimal fashion. Next, I will describe two heuristics, de
dt

and dE
dL

, to approximate the minimum energy solution. Finally, I introduce a method

to minimize the number of unique voltages using our heuristic approaches.

6.4.1 Objective and Preliminaries

In this section, the general objective is to minimize the overall energy consumption of a

schedule by statically scaling the voltage of each function unit, while at the same time

meeting a latency bound. The input to our approach is a scheduled, resource-bound

DFG, and a maximum constraint on its latency. The solution space consists of all

legal voltages for each function unit, and may be constrained by a maximum number

of unique voltages (see section 6.4.5).

6.4.1.1 Binding

The general binding of operation-to-resource-class must be specified (a + b on ALU vs

Adder). However, the specific binding of operation to specific resource instance need

not be specified (a + b on ALU1 vs ALU2). In cases where the specific binding is not

specified, we utilize a round-robin approach to distribute operations across function

units in order to increase the opportunity for scaling.

189

6.4.2 Exact Problem Formulation: Convex Optimization

Now, let us formulate the problem by analyzing the operations and their data depen-

dencies in the DFG, as well as the additional dependencies introduced by scheduling

the operations on a finite set of resources. The following definitions will be used:

• ri, resource i

• oj, operation j

• vi, the voltage of ri

• v0i , the initial voltage of ri

• ej, the energy consumed by oj

• e0j , the initial energy consumed by oj

• tj, the latency of oj

• t0j , the initial latency of oj

• E, total energy for schedule

• L, total latency for schedule

• Lmax, maximum latency for schedule

The function we aim to minimize is the sum of the energy of each operation, after

voltage scaling:

E =
∑
∀j

e0j ∗ (
vi
v0i

)2 (6.1)

where i is mapped such that ri corresponds to the function unit on which oj is bound.

This sum is minimized by reducing the values of each vi, subject to a set of constraints.

190

The constraints we specify are meant to ensure that the scaling performed does not

violate the original schedule. The first constraint is to ensure that an operation occurs

only after its dependencies have been resolved. For each operation oj, we introduce

a variable sj that corresponds to the operation’s start time. We generate a set of

inequalities for each oj. For each operation ok that is dependent on oj:

sj + t0j ∗
v0i
vi

<= sk (6.2)

where i is mapped such that ri corresponds to the function unit to which oj is bound.

This constraint ensures ok cannot begin until oj completes execution.

Two additional cases must also be considered. If an operation is dependent on no

other operations, the same inequality is used, omitting sj:

t0j ∗
v0i
vi

<= sk (6.3)

If an operation has no dependent operations, the same inequality is used, replacing

sk with the value of the latency constraint.

sj + t0j ∗
v0i
vi

<= Lmax (6.4)

This constraint ensures that the operation on a resource does not exceed the latency

bound.

This optimal formulation is solved using a convex optimization solver; in exper-

imentation the constraints and minimization function were fed into CVX, a package

for specifying and solving convex programs (Grant and Boyd, 2011; Grant and Boyd,

2008).

191

6.4.3 Basic Heuristic Method: de
dt

Because a convex minimization problem can be complex to solve, particularly as the

number of variables and constraints increases, let us now consider an alternative al-

gorithm, which we refer to as de
dt

, in order to approximate the optimal solution in

significantly less time.

The primary goal of this heuristic method is to reduce the voltage of the function

units that can produce the greatest reduction in energy (de) for a given change in

latency (dt). We can calculate this given the following equations

e = e0 ∗ (
v

v0
)2 (6.5)

v = v0 ∗ t
0

t
(6.6)

from which we can formulate the following equation

e = e0 ∗ (
t0

t
)2 (6.7)

which has the following derivative with respect to t

de

dt
= −2 ∗ e0 ∗ (t0)2

t3
(6.8)

Based on these equations, we can select the function unit with the greatest |de
dt
| for

scaling.

The basic heuristic algorithm using de
dt

shown in Figure 6.4. The algorithm starts

by creating a list of all the function units available to scale, and stores them in a list

of legally scalable function units. The algorithm then finds the maximum de
dt

of all

function units in the list, and selects those to scale. Those units are scaled until either

192

DEDT{

Initial:

scalable units = all function units

Start:

I. calculate maximum DEDT for scalable units

II. select function unit(s) with maximum DEDT

III. scale selected function units until

a) next closest DEDT is hit

b) latency bound is met

1. calculate units on critical path

2. remove all units on critical path

from list of scalable units

IV. repeat until list of legal units is empty

}

Figure 6.4: Algorithm for de
dt

based energy minimization

a) b) c)

o1

d)

o2
o1

o2

o1

o2

o1 o2

Latency
Bound

f1* f2* f1* f2 f1 f2* f1 f2

Figure 6.5: Parallel example of de
dt

scaling

193

a) b) c) f1* f2

o1

o2

o1

o2

o1

o2
Latency
Bound

f1* f2* f1 f2

Figure 6.6: Sequential example of de
dt

scaling

(i) their de
dt

value matches that of another, previously lower de
dt

function unit, or (ii) the

latency bound is met.

In the case that a de
dt

match occurs, the matching de
dt

function unit(s) will now be

scaled along with the current set of scaled function units. In the case that the latency

bound is met, the algorithm calculates the list of function units on the critical path,

and removes all those function units from the list of legal function units to scale.

Once the list of legal function units to scale is exhausted, execution completes.

Two example scalings are shown in Figures 6.5 and 6.6. In Figure 6.5a, two

operations are being executed in parallel on separate function units. In this example,

we assume operation o1 has a greater de
dt

than o2. As a result, f1 is scaled until its de
dt

matches that of f2, as in Figure 6.5b. Then, both function units are scaled concurrently,

as they have equal de
dt

. In Figure 6.5c, o1 meets the latency bound, so f1 is no longer

scaled. Because f2 is not on the critical path, it can continue scaling until o2 meets the

latency bound (Figure 6.5d).

194

In Figure 6.6a, two operations are being executed in sequence on separate function

units, with the same de
dt

values as before. Again, f1 is scaled until its de
dt

matches that

of f2, as in Figure 6.6b. Then both function units are scaled concurrently, as they have

equal de
dt

. In Figure 6.6c, the latency bound is met, and since both function units are

on the critical path, they can no longer be scaled.

6.4.4 Advanced Heuristic Method: dE
dL

While de
dt

is a good starting heuristic, the algorithm presented in 6.4.3 does not consider:

(i) the number of operations executing on a function unit, and (ii) internal slack within

the schedule. In particular scaling a function unit may have no impact on the overall

latency of the schedule due to internal slack, or scaling a unit may have only a slight

impact on latency but reduce the energy consumption of multiple operations. As a

result, I formulated a different metric, dE
dL

.

The dE
dL

metric is similar to the de
dt

metric, with the exception that we calculate the

total amount of energy change for a change in the total schedule latency. To calculate

dE
dL

, we compute the following:

dE =
∑

(
de

dt j
∗ tj) (6.9)

which sums up the current de
dt

value of each scaled operation, weighted by its current

latency. We then divide this term by:

dT =
∑

tk (6.10)

consisting of only the tks on the critical path.

We then follow a similar algorithm as before, as shown in Figure 6.7. However,

two new steps must be performed: (i) we stop scaling a set of function units if two

195

DEDL{

Initial:

scalable units = all function units

Start:

I. calculate maximum DEDL for scalable units

II. select function unit(s) with maximum DEDL

III. calculate impact of scaling on each path

IV. scale selected function units until

a) next closest DEDL is hit

b) two new operations abut

b) latency bound is met

1. calculate units on critical path

2. remove all units on critical path

from list of scalable units

V. repeat until list of legal units is empty

}

Figure 6.7: Algorithm for dE
dL

based energy minimization

operations freshly abut, and (ii) we determine when future abutments will occur at

each scaling step.

In Figure 6.8a, a new scenario is illustrated with the same de
dt

values as before. Here,

the initial dE
dL

of f2 is greater than that of f1, because it is scaling two operations at the

cost of only the increased latency of one operation. So, f2 is scaled until an abutment

occurs (Figure 6.8b), which results in the dE
dL

of f2 being cut in half abruptly. Then, f1

is scaled until the latency bound is met (Figure 6.8c).

6.4.5 Minimizing Unique Voltages

As the number of unique voltages available on a chip is typically limited, I incorporated

into the proposed heuristics an additional method to reduce the number of unique

voltages. Here, I will explain these using dE
dL

as an example.

The first step is to run the dE
dL

heuristic, and generate a list of the unique dE
dL

values

that constitute the initial solution. We then generate a voltage grouping that minimizes

overall energy consumption, using the algorithm shown in Figure 6.9. This algorithm

196

a) b) c) f1 f2*

o1

Latency
Bound

f1* f2 f1 f2

o2

o3

o2 o1

o3

o2
o1

o3

Figure 6.8: Example of abutment in dE
dL

scaling

aims to minimize the total energy while increasing the voltages of some units such that

there are N unique groups.

After the grouping is complete, new slack may be available, since the voltages of

some units may have increased. We can therefore re-run the dE
dL

method, computing

the dE
dL

in a group-wise fashion, which equations 6.9 and 6.10 are amenable to, keeping

in mind that each time any member of a voltage group is scaled, the full group must

be scaled with it.

6.5 Results

This section illustrates each method’s capability to quickly determine an optimal so-

lution under a variety of constraints and minimizations. Utilizing the benchmark set

from Section 4.6, a total of 36 test cases were run for the scheduling approach. Next,

197

Grouping{

Initial:

Run DEDL

Start:

I. sort function units by voltage selected

II. create an N pointers for the maximum groups

-> all function units are mapped to the

voltage of the closest pointer above it

III. set each pointer to the highest voltage unit

IV. if any pointer can be shifted to a lower

voltage unit and energy is reduced,

shift and update

V. repeat IV until no energy reduction possible

}

Figure 6.9: Grouping algorithm for voltages

the heuristic voltage scaling solution was evaluated by comparison to the optimal for-

mulation in section 6.4.2. For the voltage scaling optimization, a suite of over 120 test

cases were performed to verify its effectiveness.

6.5.1 Setup

Two sets of experiments were performed: one set for the modified scheduling approach

from Section 6.3, and another for the voltage scaling approach for Section 6.4. Each

section used the same set of benchmarks, with the exception of the TEA test case which

was slightly modified for each.

For each benchmark the same library of function units was provided, with param-

eters as shown in Table 6.2 for the synthesis approach and Table 6.4 for the voltage

scaling approach. Each operation type was given its own dedicated function unit type,

and a multi-purpose ALU was introduced on which any operation could run. The

latency and energy of the ALU varied depending on the class of operation executed,

but the power consumption remained constant. These values are assumed to include

the latency and energy cost of handshaking when using asynchronous communication;

198

these additional costs can be ignored when targeting a clocked system.

Each approach was implemented in Java using standard libraries. Benchmarks were

tested on a Macbook Pro with a 2.8 GHz Intel Core 2 Duo processor and 4GB of RAM

on JVM 1.5. Run-times recorded are the output generated by the Unix time command.

6.5.1.1 Synthesis Experiments

For the first set of experiments the proposed synthesis approach was evaluated. In

experimentation, six different benchmark DFGs were used for analysis, described in

section 6.5.2. Two sets of constraints were generated for each DFG, constraining la-

tency, area, energy, and power as shown in Table 6.3. The first set of constraints

demands low latency but allows for greater area and power consumption, while the

second set demands low area and power consumption but allows for a greater latency.

Energy constraints were equal for each case. For one very large test case, TEA, con-

straints were selected that could not be met to illustrate the amount of time necessary

to make the “no solution” determination for each minimization type.

For each DFG, six different test cases were performed, varying the parameters for

each case by minimizing for either time, area, or energy, then performing each mini-

mization strategy on both sets of constraints.

6.5.1.2 Voltage Scaling Experiments

For the voltage scaling approach, an area and time constraint were set for each DFG

during scheduling, as shown in Table 6.5. Each DFG was then run through the scheduler

to produce both a minimum energy schedule, ME and a minimum latency schedule,

MT. These two schedules were compared to determine whether or not the minimum-

latency schedule would have more opportunity for scaling despite the initially higher

energy cost.

199

For two of the benchmarks, ELP and TEA, the ME and MT schedules were the

same. In these cases, the latency bounds and allocations were varied to show the impact

on the effectiveness of each heuristic.

For each test case, the resulting schedule had some remaining slack, in other words,

it completed execution before the time bound was met. The percent of slack in the

schedule is shown in Table 6.5.

Each of the schedules were run through the optimal (OPT), de
dt

(DEDT), and

dE
dL

(DEDL) voltage scalers. For the large TEA test case, the optimal solver could not

produce a solution, and it is therefore absent from the table.

Finally, each solution was then constrained by limiting the number of discrete volt-

ages allowed by the DEDT and DEDL solvers, reducing the maximum number of

discrete voltages to between one and four, as described in section 6.4.5.

The optimal voltage scaling approach was implemented in MATLAB 7.11 (MAT-

LAB, 2010) and run using the CVX package (Grant and Boyd, 2011; Grant and Boyd,

2008).

6.5.2 Benchmark Description

Six different benchmarks were used in experimentation:

• ODE: solves ordinary differential equations using the Euler method. It receives

as input the coefficients of a third-degree ordinary differential equation, along

with additional parameters such as step size.

• DotProd8: performs a dot product on 8-element vectors.

• Cosine: approximates the cosine of a number using the first nine terms of its

Taylor series.

• Seventh: runs a seventh order filter from the IMEC cathedral system.

200

• Elliptic: runs a fifth order elliptic wave filter.

• TEA1: performs two complete passes of the fully unrolled (32x) tiny-encryption

algorithm in parallel (very large example). This test case was used only in syn-

thesis experimentation.

• TEA2: performs four passes of the unrolled tiny-encryption algorithm in par-

allel, each unrolled eight times. This test case was used only in voltage scaling

experimentation.

The node count of each benchmark, including root and sink nodes, is given in

Table 6.1.

6.5.3 Discussion of Results

Since two main sets of experiments were performed, I will first discuss the results

corresponding to the approach described in Section 6.3, then discuss the voltage scaling

results based on the approach in Section 6.4.

6.5.3.1 Synthesis Results

Table 6.3 shows the experimental results as well as the given constraints for each test

case. For each minimization result listed, the associated run-time of our tool is also

given. Note that these run-times include JVM startup/shutdown time, which was

estimated to be about 0.13s in experimentation.

Using the proposed method, the search space was exhausted within a second in 31 of

36 test cases. The most anomalous result in terms of performance is that of DotProd8

under latency minimization. This example has significantly higher initial concurrency,

beginning with 8 parallel multiplications, each with an equal STTF. In this case, the

solver compared several schedule permutations in which it chose between an ALU and a

201

dedicated multiply unit for each multiplication. The high concurrency mixed with this

specific set of constraints compounded to result in a higher run-time. Under a tighter

area constraint, the run-time may be reduced, as the ALU could not be selected for

use. Under a broader area constraint, the run-time may also be reduced, since a more

optimal solution with only dedicated function units would be explored.

Because the both the energy cost and the latency of the ALU are greater than that

of the dedicated function units, in most cases the solution that minimized for energy

was also the one with the lowest latency. However, for ODE and DotProd8, area and

latency constraints were selected in such a way that an ALU was required to meet

the latency constraint. In these cases, varying minimal energy results were produced

dependent on the constraints specified.

In the final TEA example, in which the constraints were too tight for a solution

to be found, we can see that the area minimization example took the longest to fail.

In this case, each possible unique permutation (25 total) was tried heuristically in a

lowest to greatest area fashion, all failing. After the full heuristic pass failed, an exact

time-minimization was attempted for each failed allocation. As each allocation failed,

any allocation subsumed by the failed allocation was also discarded; resulting in only

four “surface” allocations that needed to be attempted by the solver. When these four

failed, the solution space was exhausted. In contrast, the energy-constrained and time-

constrained solutions needed to only consider the four surface allocations that dominate

the other 21 allocations, resulting in a lower run-time.

6.5.3.2 Voltage Scaling Results

Table 6.6 shows a comparison of the optimal method (OPT) to our two heuristic

methods. In this table there are three results columns: the energy consumed by the

schedule after scaling, the energy consumed by the schedule when normalized to the

202

original energy of the schedule, and the run-time of the solver.

First let us compare the ME and MT scheduling methods. For ODE, COS, and

7TH, the energy of the solution provided by all solvers is lower when using the ME

schedule, but for DP8 the energy is lower when using the MT schedule. Some insight

can be gained by comparing the difference in energy between the ME and MT schedules

to the slack on the schedule. For DP8, there is significantly more slack (7x) using an MT

schedule at the cost of 14% more energy, while in the other examples the difference in

slack is less pronounced. More experimentation is needed to determine which scenarios

are more amenable to scaling using ME versus MT schedules, but at first glance the

ME schedule seems to be a better choice.

Next, we can compare the solutions provided by the optimal solver to the DEDL

and DEDT solvers. In the worst case (7TH-ME), the heuristic solution consumed 9.7%

more energy than the optimal solution. For all other test cases, either the DEDL or

the DEDT found a solution within 5% of the energy of OPT. For over half of the test

cases, these heuristics found a solution that was within 1% of the optimal: (ODE-ME,

DP8-MT, COS-ME, COS-MT, ELP-2, ELP-3).

Table 6.7 shows the results of reducing the maximum number of unique voltages.

The first results column shows the normalized energy when using a separate voltage for

each function unit. The next four columns show the normalized energy as the number

of unique voltages is reduced from four to one. In some cases there were not enough

function units to have four unique voltages (e.g., ODE-MT has only two ALUs), so

these results are omitted as they are the same as those in the first column.

Here we can see a general trend where the overall energy increases as we reduce

the number of unique voltages. In some cases, a poor grouping is selected, limiting the

amount of scaling on some function units by another function unit. As an example,

consider ODE-ME, where the Nv = 3 grouping creates a higher energy solution than

203

Table 6.1: DFG nodes per benchmark

Benchmark # of Nodes

ODE 11
DotProd8 17

Cosine 26
Seventh 31
Elliptic 36
TEA 1090

the Nv = 4 (expected) and Nv = 2 solutions. By modifying the grouping algorithm in

future work, I aim to target these anomalies.

Table 6.7 gives insight into the effectiveness of DEDT versus DEDL, particularly

the number of voltage groups changes. With a maximum number of voltages, DEDL

outperforms DEDT in only two test cases, and does significantly worse in one test

case. As the number of unique voltages is reduced to four, DEDL outperforms DEDT

in four test cases. At three unique voltages, DEDL outperforms DEDT in six test

cases. At two voltages, DEDL outperforms DEDT in all but one test case, TEA-2,

where the difference is negligible. At one voltage, there is no difference between the

two. We can draw the conclusion from these results that DEDL is more effective than

DEDT at reducing energy consumption as the number of unique voltages decreases,

while impacts are more varied at the maximum number of unique voltages.

Finally, consider the run-time of each solver, as shown in Table 6.6. In eighteen of

the test cases, the solver ran in 40ms or less. Only two examples took longer than a

second, those solving the large TEA benchmark. When compared to the run-time of

the optimal solver, which took 2-14 seconds, the heuristic results were several orders of

magnitude faster: from 20x at worst (DP8-MT) to 10, 000x at best (ELP-1). For the

TEA benchmark, the optimal solver ran for several minutes but was unable to find a

solution.

204

Table 6.2: Function unit parameters

Function Operation Area Latency Energy Power
Unit Class (unit) (unit) (unit) (unit)

Adder + 24 8 80 10
Subtracter − 24 8 80 10
Multiplier ∗ 96 16 240 15

XOR ˆ 8 6 60 10
Shifter <<, >> 8 4 40 10
ALU + 104 10 200 20
ALU − 104 10 200 20
ALU ∗ 104 20 400 20
ALU ˆ 104 8 160 20
ALU <<, >> 104 6 120 20

6.6 Conclusion

In this chapter I described two key extensions to a branch-and-bound framework for

high-level synthesis. The first was to incorporate power and energy constraints into the

synthesis and scheduling process, which included developing an approach for minimizing

energy consumption. Through experimentation I have shown that this approach is

capable of performing many different flavors of optimization rapidly, generates optimal

solutions under a minute for each test case.

Next, I formulated an exact solution for energy minimization via static voltage

scaling in the form of a convex optimization problem. Then, I presented two efficient

heuristics for energy reduction, de
dt

and dE
dL

, that compute a close approximation of the

solution in a fraction of the time (20-10,000x faster than the optimal solution). In

experimentation, these metrics were within 5% of the optimal energy in 10 of 11 test

cases, and 1% of the optimal solution in 6 of 11 test cases.

Finally, I described a method for reducing the total number of voltages by grouping

function units of similar voltages into distinct scalable groups. In future work, I plan to

further investigate the relationship between ME, MT, and schedule slack, look at more

205

T
a
b
le

6
.3

:
C

on
st

ra
in

ts
an

d
re

su
lt

s
fo

r
ea

ch
b

en
ch

m
ar

k

C
o
n

st
ra

in
ts

M
in

im
iz

a
ti

o
n

R
e
su

lt
s

B
e
n

ch
m

a
rk

L
at

en
cy

A
re

a
E

n
er

gy
P

ow
er

L
at

en
cy

R
u
n
ti

m
e

A
re

a
R

u
n
ti

m
e

E
n
er

gy
R

u
n
ti

m
e

(u
n
it

)
(u

n
it

)
(u

n
it

)
(u

n
it

)
(u

n
it

)
(s

)
(u

n
it

)
(s

)
(u

n
it

)
(s

)

O
D

E
12

0
14

0
30

00
40

11
0

0.
17

12
8

0.
15

24
40

0.
17

O
D

E
50

35
0

30
00

60
48

0.
16

32
0

0.
18

15
20

0.
15

D
ot

P
ro

d
8

13
0

21
0

40
00

40
12

6
42

.9
1

20
0

0.
18

36
40

6.
77

D
ot

P
ro

d
8

75
60

0
45

00
60

56
0.

17
32

0
0.

31
24

80
0.

15
C

os
in

e
18

0
24

0
45

00
40

16
0

0.
18

21
6

0.
17

44
80

0.
16

C
os

in
e

13
0

45
0

45
00

60
11

2
0.

18
31

2
0.

19
44

80
0.

16
S
ev

en
th

18
0

26
0

48
00

40
14

4
0.

22
24

0
0.

18
47

20
0.

16
S
ev

en
th

12
0

40
0

48
00

60
11

2
0.

24
33

6
0.

21
47

20
0.

17
E

ll
ip

ti
c

16
0

24
0

50
00

40
15

2
0.

19
24

0
0.

20
40

00
0.

16
E

ll
ip

ti
c

14
5

32
0

50
00

60
14

4
0.

21
24

0
0.

24
40

00
0.

16
T

E
A

50
00

60
90

00
0

40
46

08
8.

86
40

2.
72

71
68

0
3.

89
T

E
A

19
25

12
8

90
00

0
60

-
3.

11
-

38
.6

6
-

0.
57

206

Table 6.4: Function unit parameters

Function Operation Area Latency Energy
Unit Class (unit) (unit) (unit)

Adder + 24 10 100
Subtracter − 24 10 100
Multiplier ∗ 96 12 240

XOR ˆ 8 8 80
Shifter <<, >> 8 6 60
ALU + 104 12 240
ALU − 104 12 240
ALU ∗ 104 14 280
ALU ˆ 104 10 200
ALU <<, >> 104 8 160

effective methods for grouping voltages to improve our results, and utilize design hints

from our static voltage scaling approach as feed-back into the scheduling and binding

portions of synthesis.

207

T
a
b
le

6
.5

:
B

en
ch

m
ar

k
p
ar

am
et

er
s

B
e
n

ch
m

a
rk

O
p
s

S
ch

ed
u
le

L
at

en
cy

S
ch

ed
u
le

F
u
n
ct

io
n

U
n
it

A
ll

o
ca

ti
o
n

(#
)

E
n
er

gy
B

ou
n
d

S
la

ck
A
L
U

+
−
∗

>
>

ˆ

O
D

E
-M

E
11

16
00

80
12

.5
%

0
3

1
1

0
0

O
D

E
-M

T
11

23
60

80
17

.5
%

2
0

0
0

0
0

D
P

8-
M

E
17

26
20

80
2.

5
%

0
5

0
2

0
0

D
P

8-
M

T
17

29
80

80
17

.5
%

1
1

0
2

0
0

C
O

S
-M

E
26

46
40

20
0

44
%

0
1

0
3

0
0

C
O

S
-M

T
26

50
40

20
0

47
%

1
1

0
2

0
0

7T
H

-M
E

31
50

00
11

0
5.

5
%

0
2

4
4

0
0

7T
H

-M
T

31
55

00
11

0
7.

3
%

1
1

1
4

0
0

E
L

P
-1

36
45

20
15

0
2.

7
%

0
3

0
3

0
0

E
L

P
-2

36
45

20
20

0
27

%
0

3
0

3
0

0
E

L
P

-3
36

45
20

75
0

80
.5

%
0

3
0

3
0

0
T

E
A

-1
61

0
46

72
0

35
00

17
.7

%
0

1
0

0
1

1
T

E
A

-2
61

0
46

72
0

15
00

32
%

0
3

0
0

2
1

208

Table 6.6: Comparison of optimal and heuristic methods

Exp. Setup Energy Energy Runtime
Benchmark Strategy (scaled) (normalized) (seconds)

ODE-ME OPT 1120 0.701 1.934
ODE-ME DEDL 1120 0.701 0.004
ODE-ME DEDT 1120 0.701 0.002
ODE-MT OPT 1480 0.629 2.006
ODE-MT DEDL 1520 0.645 0.002
ODE-MT DEDT 1610 0.681 0.001
DP8-ME OPT 2190 0.836 3.033
DP8-ME DEDL 2310 0.881 0.006
DP8-ME DEDT 2300 0.877 0.001
DP8-MT OPT 1820 0.611 3.033
DP8-MT DEDL 1880 0.631 0.143
DP8-MT DEDT 1820 0.611 0.001
COS-ME OPT 1260 0.271 8.880
COS-ME DEDL 1260 0.272 0.555
COS-ME DEDT 1260 0.272 0.003
COS-MT OPT 1380 0.273 6.849
COS-MT DEDL 1390 0.276 0.005
COS-MT DEDT 1500 0.297 0.001
7TH-ME OPT 2880 0.575 6.132
7TH-ME DEDL 3160 0.632 0.284
7TH-ME DEDT 3160 0.631 0.007
7TH-MT OPT 3330 0.606 8.729
7TH-MT DEDL 3420 0.622 0.008
7TH-MT DEDT 3400 0.618 0.014
ELP-1 OPT 4080 0.903 13.062
ELP-1 DEDL 4180 0.924 0.001
ELP-1 DEDT 4160 0.919 0.001
ELP-2 OPT 2300 0.508 14.115
ELP-2 DEDL 2320 0.514 0.040
ELP-2 DEDT 2300 0.510 0.001
ELP-3 OPT 163 0.036 13.112
ELP-3 DEDL 165 0.037 0.124
ELP-3 DEDT 164 0.036 0.001
TEA-1 DEDL 22100 0.473 0.450
TEA-1 DEDT 22100 0.472 1.406
TEA-2 DEDL 20600 0.442 4.086
TEA-2 DEDT 20600 0.442 0.302

209

Table 6.7: Normalized energy versus number of unique voltages

Exp. Setup Number of Voltages (Nv)
Bchmark Strat Max Four Three Two One

ODE OPT 0.478 0.478 0.478 0.479 0.490
ODE DEDL 0.479 0.479 0.479 0.485 0.490
ODE DEDT 0.526 0.526 0.526 0.487 0.490
ODE DEDS 0.479 0.479 0.479 0.479 0.490
ODE OPT 0.701 0.701 0.741 0.719 0.766
ODE DEDL 0.701 0.701 0.744 0.719 0.766
ODE DEDT 0.701 0.701 0.744 0.719 0.766
ODE DEDS 0.703 0.703 0.745 0.719 0.766
DP8 OPT 0.854 0.854 0.854 0.854 0.964
DP8 DEDL 0.943 0.943 0.986 0.963 0.964
DP8 DEDT 0.943 0.943 0.986 0.963 0.964
DP8 DEDS 0.945 0.945 0.986 0.963 0.964
DP8 OPT 0.836 0.863 0.889 0.891 0.951
DP8 DEDL 0.881 0.904 0.891 0.948 0.951
DP8 DEDT 0.877 0.912 0.944 0.948 0.951
DP8 DEDS 0.885 0.914 0.947 - 0.951
COS OPT 0.297 0.321 0.332 0.341 -
COS DEDL 0.303 0.325 0.335 0.343 0.360
COS DEDT 0.306 0.326 0.327 0.344 0.360
COS DEDS 0.3 00 0.323 - 0.343 0.360
COS OPT 0.271 0.271 0.271 0.295 0.314
COS DEDL 0.272 0.272 0.271 0.295 0.314
COS DEDT 0.272 0.272 0.272 0.295 0.314
COS DEDS 0.272 0.272 0.271 0.295 0.314
7TH OPT 0.575 0.620 0.655 0.691 0.894
7TH DEDL 0.632 0.824 0.848 0.894 0.894
7TH DEDT 0.631 0.824 0.848 0.895 0.894
7TH DEDS 0.633 0.824 0.848 0.894 0.894
7TH OPT 0.616 0.617 0.631 0.622 -
7TH DEDL 0.623 0.624 0.626 0.658 0.683
7TH DEDT 0.648 0.648 0.7 00 0.697 0.683
7TH DEDS 0.624 0.663 0.624 0.655 0.683
ELP OPT 0.903 0.903 0.903 - -
ELP DEDL 0.924 0.93 0.93 0.951 0.947
ELP DEDT 0.919 0.919 0.919 0.951 0.947
ELP DEDS 0.923 0.919 0.919 0.951 0.947
ELP OPT 0.508 0.508 0.508 - -
ELP DEDL 0.514 0.513 0.518 0.514 0.533
ELP DEDT 0.510 0.510 0.510 0.543 0.533
ELP DEDS 0.515 0.522 0.520 0.539 0.533
ELP OPT 0.036 0.036 0.036 - -
ELP DEDL 0.037 0.036 0.037 0.037 0.038
ELP DEDT 0.036 0.036 0.036 0.039 0.038
ELP DEDS 0.037 0.037 0.037 0.038 0.038
TEA DEDL 0.473 0.473 0.473 0.477 0.677
TEA DEDT 0.472 0.472 0.472 0.477 0.677
TEA DEDS 0.477 0.477 0.477 0.479 0.677
TEA DEDL 0.442 0.449 0.448 0.463 0.462
TEA DEDT 0.442 0.462 0.462 0.462 0.462
TEA DEDS 0.442 0.450 0.448 0.463 0.462

210

Chapter 7

Conclusion

7.1 Summary of Contributions

The work presented in this thesis aimed to provide a high-level synthesis approach,

robust and powerful, in order to address a gap in existing asynchronous design flows. At

the highest level, the overall goal was to develop an automated tool for designers in order

to significantly reduce overall effort, particularly by allowing design-space exploration

to be handled in an automated fashion. I have provided a comprehensive, systematic

approach to meet this goal, developing several synthesis techniques and optimizations

addressing specific problems in the realm of asynchronous high-level synthesis.

In Chapter 3, I provided an alternative to the low-to-medium performance, syntax-

directed Haste design flow by producing a source-to-source compiler to transform

a sequential specification into a highly concurrent one. This work produced high-

performance, slack-matched, data-driven pipelines for situations when a designer is

concerned primarily with speed, while still leveraging much of the Haste tool suite.

In Chapter 4, I tackled the problem of resource sharing. In this chapter I showed a

fast, optimal approach for performing resource sharing under a variety of constraints.

This work is further extended in Chapter 6 by incorporating energy and power. The

approach provided several synthesis strategies to the designer, allowing optimization

for area, latency, and energy, as well as constraints on these quantities in addition to

peak power. Key algorithms for scheduling and dynamic allocation were presented, as

well as many optimizations to significantly increase the performance of the proposed

branch-and-bound strategy.

Chapter 5 provided yet another path to the designer, a powerful hybrid approach

that targeted both performance and area. In this work I developed a strategy for syn-

thesis of pipelined, resource-shared systems. A key novelty is that this approach con-

currently performs slack-matching and scheduling in order to produce high-performance

data-flow pipelines. I further extended the approach to model loops and conditionals

and provided a heuristic hierarchical method for attacking large examples.

Finally, Chapter 6 provided a means for considering power and energy. Beyond

extensions to the work presented in Chapter 4 to incorporate these constraints, I devel-

oped a post-scheduling method for voltage-scaling in order to further improve the energy

consumption of a specification. This approach included both optimal and heuristic for-

mulations to the problem, as well as a heuristic method for limiting the total number

of unique voltage levels.

My work has tackled several challenging problems in asynchronous high-level synthe-

sis, and provided solutions to several problems that either had not been solved before or

had not been solved before exactly. In particular, my approach to single-token schedul-

ing (Chapter 4) is the first exact solution to the asynchronous version of the problem.

Furthermore, my approach to multi-token scheduling (Chapter 5) is the first exact so-

lution to this problem in both asynchronous as well as synchronous domains. Elevating

energy and power considerations as first-class constraints into scheduling (Chapter 6)

is also the first exact approach to this problem.

The bulk of the work of this dissertation likely is applicable also to synchronous

design (including synchronous elastic systems). Interestingly, while working on the

212

asynchronous problem, I was forced to think out-of-the-box—i.e., in terms of relative

order instead of absolute time—because asynchronous systems do not have a notion of

clocking and absolute time. It turns out that, even though application to synchronous

design was beyond the scope of this thesis, it is likely that my relative order approach

is not only applicable to, but highly efficient for, synchronous systems as well.

Together, these contributions combine to create a rich set of synthesis methods, al-

lowing a designer to quickly and easily perform design-space exploration in an effective,

automated fashion.

7.2 Future Work

An exhaustive consideration of high-level synthesis for asynchronous systems is beyond

the scope of any thesis; many significant avenues have yet to be explored. Several

extensions were not incorporated into this thesis due to scope. I will briefly note here

future directions for the research I have presented.

One key component missing in the synthesis flow is an appropriate back-end. The

research in Chapter 3 produces a new Haste specification to run back into their com-

piler. However, this compiler is still syntax-directed, and the circuit produced, although

relatively much faster, is highly control driven. Further, licencing for academic use has

been discontinued, and therefore another viable option is needed. Similarly, the work

presented in Chapters 4, 5, and 6 did not have an available back-end, and thus relied

on my own event-driven simulator for verification.

A more robust treatment of loops and conditionals is needed across the board.

Chapters 3 and 5 presented methods for handling conditionals, such as early and late

decision, but a heuristic or optimal method for selecting the best conditional architec-

ture has not been developed. A starting point for handling loops via loop pipelining

213

was illustrated in joint work with Gill et al. in (Gill et al., 2006), but an approach

for determining token and unroll count has not yet been developed. A method for full

design-space exploration for these constructs would be a key addition.

One necessary requirement to incorporate choice and non-determinism is a method

for analyzing constructs that are stochastic in nature. The work in Chapter 5 could be

extended to model variable count loops. Average-case analysis for operations could be

considered rather than worst-case for the approaches in Chapters 4 and 5.

The energy and power approach in Chapter 6 still has opportunity for refinement.

More sophisticated heuristics could be considered to produce results closer to the op-

timal values. Further, the voltage scaling method itself could possibly be incorporated

into the scheduling procedure to produce even better results.

Finally, more experimentation is always needed to analyze where each approach is

lacking and what opportunities exist for further optimization. Testing on large, real-

world examples is needed. Average case performance of each tool based on attributes

such as specification size, branching level, etc., would be highly useful.

Combining these proposed extensions with the existing approach in this thesis would

potentially provide an immensely useful and robust design flow. I hope to have the

opportunity to attack these problems in future work.

214

BIBLIOGRAPHY

Andrikos, N., Lavagno, L., Pandini, D., and Sotiriou, C. P. (2007). A fully-automated
desynchronization flow for synchronous circuits. In DAC, pages 982–985.

Bachman, B. M. (1998). Architectural-level synthesis of asynchronous systems. Master’s
thesis, Utah.

Bachman, B. M., Zheng, H., and Myers, C. J. (1999). Architectural synthesis of timed
asynchronous systems. In In Proc. International Conf. Computer Design (ICCD),
pages 354–363.

Badia, R. M. and Cortadella, J. (1993). High-level synthesis of asynchronous systems:
Scheduling and process synchronization. In In Proc. European Conference on
Design Automation (EDAC), pages 70–74. IEEE Computer Society Press.

Bardsley, A. and Edwards, D. A. (2000). The Balsa asynchronous circuit synthesis
system. In Forum on Design Languages.

Beerel, P., Ozdag, R., and Ferretti, M. (2010). A Designer’s Guide to Asynchronous
VLSI. A Designer’s Guide to Asynchronous VLSI. Cambridge University Press.

Beerel, P. A., Kim, N.-H., Lines, A., and Davies, M. (2006). Slack matching asyn-
chronous designs. In Proc. Int. Symp. on Asynchronous Circuits and Systems,
page 184, Washington, DC, USA.

Budiu, M. (2003). Spatial Computation. PhD thesis, Carnegie Mellon University,
Computer Science Department. Technical report CMU-CS-03-217.

Burns, F., Shang, D., Koelmans, A., and Yakovlev, A. (2004). Scheduling and allocation
using closeness tables. Computers and Digital Techniques, IEE Proceedings -,
151(5):332–340.

Chelcea, T. and Nowick, S. M. (2002). Resynthesis and peephole transformations for the
optimization of large-scale asynchronous systems. In Proc. ACM/IEEE Design
Automation Conf.

Chen, D., Cong, J., Fan, Y., and Xu, J. (2006). Optimality study of resource binding
with multi-vdds. In DAC ’06: Proceedings of the 43rd annual Design Automation
Conference, pages 580–585, New York, NY, USA. ACM.

Cortadella, J., Kondratyev, A., Lavagno, L., and Sotiriou, C. P. (2006). Desynchroniza-
tion: Synthesis of asynchronous circuits from synchronous specifications. IEEE
Trans. on CAD of Integrated Circuits and Systems, 25(10):1904–1921.

215

Coussy, P. and Morawiec, A. (2008). High-Level Synthesis: From Algorithm to Digital
Circuit. Springer.

Dasdan, A. and Gupta, R. K. (1997). Faster maximum and minimum mean cycle
algorithms for system performance analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17:889–899.

Edwards, D. and Bardsley, A. (2002). Balsa: An asynchronous hardware synthesis
language. The Computer Journal, 45(1):12–18.

Gill, G., Hansen, J., Agiwal, A., Vicci, L., and Singh, M. (2009). A high-speed gcd
chip: A case study in asynchronous design. In VLSI, 2009. ISVLSI ’09. IEEE
Computer Society Annual Symposium on, pages 205 –210.

Gill, G., Hansen, J., and Singh, M. (2006). Loop pipelining for high-throughput stream
computation using self-timed rings. In Proc. Int. Conf. Computer-Aided Design
(ICCAD), pages 289–296.

Gill, G. D. (2010). Analysis and optimization for pipelined asynchronous systems.
PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
AAI3402352.

Grant, M. and Boyd, S. (2008). Graph implementations for nonsmooth convex pro-
grams. In Blondel, V., Boyd, S., and Kimura, H., editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited. http://stanford.edu/~boyd/graph_

dcp.html.

Grant, M. and Boyd, S. (2011). CVX: Matlab software for disciplined convex program-
ming, version 1.21. http://cvxr.com/cvx.

Gupta, S., Dutt, N., Gupta, R., and Nicolau, A. (2003). Spark: A high-lev l syn-
thesis framework for applying parallelizing compiler transformations. In VLSID
’03: Proceedings of the 16th International Conference on VLSI Design, page 461,
Washington, DC, USA. IEEE Computer Society.

Hansen, J. and Singh, M. (2008). Concurrency-enhancing transformations for asyn-
chronous behavioral specifications: A data-driven approach. In Asynchronous
Circuits and Systems, 2008. ASYNC ’08. 14th IEEE International Symposium
on, pages 15 –25.

Hansen, J. and Singh, M. (2010a). An energy and power-aware approach to high-level
synthesis of of asynchronous systems. In Proc. Int. Conf. Computer-Aided Design
(ICCAD).

Hansen, J. and Singh, M. (2010b). A fast branch-and-bound approach to high-level
synthesis of asynchronous systems. In Proc. Int. Symp. on Asynchronous Circuits
and Systems (ASYNC).

216

Hansen, J. and Singh, M. (2012). Multi-token resource sharing for pipelined asyn-
chronous systems. In Proc. Design, Automation and Test in Europe (DATE).

Haste (2008). The Haste/TiDE Design Flow. http://www.handshakesolutions.com.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

Jensen, J. B. and Nielsen, J. R. (2007). Compiling from haste to CDFG: a front end
for an asynchronous circuit synthesis system. Bachelor of Engineering thesis,
Technical University of Denmark (IMM-DTU), 2007.

Johnson, M. C. and Roy, K. (1997). Datapath scheduling with multiple supply voltages
and level converters. ACM Trans. Des. Autom. Electron. Syst., 2(3):227–248.

Kondratyev, A., Lavagno, L., Meyer, M., and Watanabe, Y. (2011). Realistic
performance-constrained pipelining in high-level synthesis. In Proc. Design, Au-
tomation and Test in Europe (DATE), pages 1382–1387.

Leiserson, C. and Saxe, J. (1991). Retiming synchronous circuitry. Algorithmica, 6(1):5–
35.

Lin, Y.-R., Hwang, C.-T., and Wu, A. C.-H. (1997). Scheduling techniques for variable
voltage low power designs. ACM Trans. Des. Autom. Electron. Syst., 2(2):81–97.

Lines, A. M. (June 1995, revised 1998). Pipelined asynchronous circuits. Master’s
thesis, California Institute of Technology.

lpsolve (2009). lp solve: A Mixed Integer Linear Programming (MILP) solver. Available
online at http://lpsolve.sourceforge.net/.

Manohar, R. and Martin, A. J. (1998a). Slack elasticity in concurrent computing.
Lecture Notes in Computer Science, 1422.

Manohar, R. and Martin, A. J. (1998b). Slack elasticity in concurrent computing.
In Proceedings of the Fourth International Conference on the Mathematics of
Program Construction, Lecture Notes in Computer Science 1422, pages 272–285.
Springer-Verlag.

Manzak, A. and Chakrabarti, C. (2002). A low power scheduling scheme with re-
sources operating at multiple voltages. IEEE Trans. Very Large Scale Integr.
Syst., 10(1):6–14.

Martin, A. J., Lines, A., Manohar, R., Nyström, M., Pénzes, P., Southworth, R., and
Cummings, U. (1997). The design of an asynchronous MIPS R3000 microproces-
sor. In Advanced Research in VLSI, pages 164–181.

MATLAB (2010). version 7.11.0 (R2010b). The MathWorks Inc., Natick, Mas-
sachusetts.

217

Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education.

Nielsen, S. F. (2005). Behavioral synthesis of asynchronous circuits. PhD thesis, Infor-
matics and Mathematical Modelling, Technical University of Denmark, DTU.

Nielsen, S. F., Sparsø, J., Jensen, J. B., and Nielsen, J. S. R. (2009). A behavioral
synthesis frontend to the haste/tide design flow. In Proc. Int. Symp. on Asyn-
chronous Circuits and Systems), pages 185–194, Washington, DC, USA. IEEE
Computer Society.

Nielsen, S. F., Sparsø, J., and Madsen, J. (2004). Towards behavioral synthesis of
asynchronous circuits - an implementation template targeting syntax directed
compilation. Digital Systems Design, Euromicro Symposium on, pages 298–305.

Paulin, P. G. and Knight, J. P. (1987). Force-directed scheduling in automatic data path
synthesis. In DAC ’87: Proceedings of the 24th ACM/IEEE Design Automation
Conference, pages 195–202, New York, NY, USA. ACM.

Plana, L. A., Taylor, S., and Edwards, D. (2005). Attacking control overhead to improve
synthesised asynchronous circuit performance. In Proc. Int. Conf. Computer De-
sign (ICCD), pages 703–710.

Saito, H., Hamada, N., Jindapetch, N., Yoneda, T., Myers, C., and Nanya, T. (2007).
Scheduling methods for asynchronous circuits with bundled-data implementations
based on the approximation of start times. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., E90-A(12):2790–2799.

Saito, H., Jindapetch, N., Yoneda, T., Myers, C., and Nanya, T. (2006). Ilp-based
scheduling for asynchronous circuits in bundled-data implementation. Computer
and Information Technology, International Conference on, page 172.

Singh, M. and Nowick, S. (2001). Mousetrap: ultra-high-speed transition-signaling
asynchronous pipelines. In Computer Design, 2001. ICCD 2001. Proceedings.
2001 International Conference on, pages 9 –17.

Singh, M. and Nowick, S. (2007). The design of high-performance dynamic asyn-
chronous pipelines: High-capacity style. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 15(11):1270 –1283.

Singh, M., Tierno, J. A., Rylyakov, A., Rylov, S., and Nowick, S. M. (2002). An
adaptively-pipelined mixed synchronous-asynchronous digital FIR filter chip op-
erating at 1.3 GigaHertz. In Proc. Int. Symp. on Asynchronous Circuits and
Systems, Manchester, UK. IEEE Computer Society Press.

Sllame, A. M. and Drabek, V. (2002). An efficient list-based scheduling algorithm
for high-level synthesis. In DSD ’02: Proceedings of the Euromicro Symposium

218

on Digital Systems Design, page 316, Washington, DC, USA. IEEE Computer
Society.

Sutherland, I. and Fairbanks, S. (2001). Gasp: a minimal fifo control. In Asynchronous
Circuits and Systems, 2001. ASYNC 2001. Seventh International Symposium on,
pages 46 –53.

Sutherland, I. E. (1989). Micropipelines. Commun. ACM, 32(6):720–738.

Taubin, A., Cortadella, J., Lavagno, L., Kondratyev, A., and Peeters, A. M. G. (2007).
Design automation of real-life asynchronous devices and systems. Foundations
and Trends in Electronic Design Automation, 2(1):1–133.

Teifel, J. and Manohar, R. (2004). Static tokens: Using dataflow to automate con-
current pipeline synthesis. In Proc. Int. Symp. on Asynchronous Circuits and
Systems, pages 17–27.

Theobald, M. and Nowick, S. (2001). Transformations for the synthesis and optimiza-
tion of asynchronous distributed control. In Design Automation Conference, 2001.
Proceedings, pages 263 – 268.

Tugsinavisut, S., Su, R., and Beerel, P. A. (2006). High-level synthesis for highly
concurrent hardware systems. Application of Concurrency to System Design,
International Conference on, pages 79–90.

Williams, T. E. (1991). Self-timed rings and their application to division. PhD thesis,
Stanford University, Stanford, CA, USA. UMI Order No. GAX92-05744.

Williams, T. E., Horowitz, M., Alverson, R. L., and Yang, T. S. (1987). A self-timed
chip for division. In Losleben, P., editor, Advanced Research in VLSI, pages
75–95. MIT Press.

Wilson, T. C., Mukherjee, N., Garg, M. K., and Banerji, D. (1995). An ilp solution
for optimum scheduling, module and register allocation, and operation binding
in datapath synthesis. VLSI Design 3, 1:21–36.

Wong, C. G. and Martin, A. J. (2001). Data-driven process decomposition for the
synthesis of asynchronous circuits. In IEEE Int. Conf. on Electronics, Circuits
and Systems.

219

