7,435 research outputs found

    The Brownian limit of separable permutations

    Full text link
    We study random uniform permutations in an important class of pattern-avoiding permutations: the separable permutations. We describe the asymptotics of the number of occurrences of any fixed given pattern in such a random permutation in terms of the Brownian excursion. In the recent terminology of permutons, our work can be interpreted as the convergence of uniform random separable permutations towards a "Brownian separable permuton".Comment: 45 pages, 14 figures, incorporating referee's suggestion

    Counting real rational functions with all real critical values

    Full text link
    We study the number of real rational degree n functions (considered up to linear fractional transformations of the independent variable) with a given set of 2n-2 distinct real critical values. We present a combinatorial reformulation of this number and pose several related questions.Comment: 12 pages (AMSTEX), 3 picture

    The Hopf algebra of diagonal rectangulations

    Get PDF
    We define and study a combinatorial Hopf algebra dRec with basis elements indexed by diagonal rectangulations of a square. This Hopf algebra provides an intrinsic combinatorial realization of the Hopf algebra tBax of twisted Baxter permutations, which previously had only been described extrinsically as a sub Hopf algebra of the Malvenuto-Reutenauer Hopf algebra of permutations. We describe the natural lattice structure on diagonal rectangulations, analogous to the Tamari lattice on triangulations, and observe that diagonal rectangulations index the vertices of a polytope analogous to the associahedron. We give an explicit bijection between twisted Baxter permutations and the better-known Baxter permutations, and describe the resulting Hopf algebra structure on Baxter permutations.Comment: Very minor changes from version 1, in response to comments by referees. This is the final version, to appear in JCTA. 43 pages, 17 figure

    Permutads

    Full text link
    We unravel the algebraic structure which controls the various ways of computing the word ((xy)(zt)) and its siblings. We show that it gives rise to a new type of operads, that we call permutads. It turns out that this notion is equivalent to the notion of "shuffle algebra" introduced by the second author. It is also very close to the notion of "shuffle operad" introduced by V. Dotsenko and A. Khoroshkin. It can be seen as a noncommutative version of the notion of nonsymmetric operads. We show that the role of the associahedron in the theory of operads is played by the permutohedron in the theory of permutads.Comment: Same results, re-arranged and more details. 38 page

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure

    Harmonic analysis on the infinite symmetric group

    Full text link
    Let S be the group of finite permutations of the naturals 1,2,... The subject of the paper is harmonic analysis for the Gelfand pair (G,K), where G stands for the product of two copies of S while K is the diagonal subgroup in G. The spherical dual to (G,K) (that is, the set of irreducible spherical unitary representations) is an infinite-dimensional space. For such Gelfand pairs, the conventional scheme of harmonic analysis is not applicable and it has to be suitably modified. We construct a compactification of S called the space of virtual permutations. It is no longer a group but it is still a G-space. On this space, there exists a unique G-invariant probability measure which should be viewed as a true substitute of Haar measure. More generally, we define a 1-parameter family of probability measures on virtual permutations, which are quasi-invariant under the action of G. Using these measures we construct a family {T_z} of unitary representations of G depending on a complex parameter z. We prove that any T_z admits a unique decomposition into a multiplicity free integral of irreducible spherical representations of (G,K). Moreover, the spectral types of different representations (which are defined by measures on the spherical dual) are pairwise disjoint. Our main result concerns the case of integral values of parameter z: then we obtain an explicit decomposition of T_z into irreducibles. The case of nonintegral z is quite different. It was studied by Borodin and Olshanski, see e.g. the survey math.RT/0311369.Comment: AMS Tex, 80 pages, no figure
    • …
    corecore