2,219 research outputs found

    A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems

    Get PDF
    In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner, based on a distributed Schur complement formulation, for solving general linear systems. The novelty of the proposed method is to combine factorization techniques of both implicit and explicit type, recursive combinatorial algorithms, multilevel mechanisms and overlapping strategies to maximize sparsity in the inverse factors and consequently reduce the factorization costs. Numerical experiments demonstrate the good potential of the proposed solver to precondition effectively general linear systems, also against other state-of-the-art iterative solvers of both implicit and explicit form

    Totally parallel multilevel algorithms

    Get PDF
    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance

    A fast semi-direct least squares algorithm for hierarchically block separable matrices

    Full text link
    We present a fast algorithm for linear least squares problems governed by hierarchically block separable (HBS) matrices. Such matrices are generally dense but data-sparse and can describe many important operators including those derived from asymptotically smooth radial kernels that are not too oscillatory. The algorithm is based on a recursive skeletonization procedure that exposes this sparsity and solves the dense least squares problem as a larger, equality-constrained, sparse one. It relies on a sparse QR factorization coupled with iterative weighted least squares methods. In essence, our scheme consists of a direct component, comprised of matrix compression and factorization, followed by an iterative component to enforce certain equality constraints. At most two iterations are typically required for problems that are not too ill-conditioned. For an M×NM \times N HBS matrix with MNM \geq N having bounded off-diagonal block rank, the algorithm has optimal O(M+N)\mathcal{O} (M + N) complexity. If the rank increases with the spatial dimension as is common for operators that are singular at the origin, then this becomes O(M+N)\mathcal{O} (M + N) in 1D, O(M+N3/2)\mathcal{O} (M + N^{3/2}) in 2D, and O(M+N2)\mathcal{O} (M + N^{2}) in 3D. We illustrate the performance of the method on both over- and underdetermined systems in a variety of settings, with an emphasis on radial basis function approximation and efficient updating and downdating.Comment: 24 pages, 8 figures, 6 tables; to appear in SIAM J. Matrix Anal. App

    Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods

    Full text link
    Use of the stochastic Galerkin finite element methods leads to large systems of linear equations obtained by the discretization of tensor product solution spaces along their spatial and stochastic dimensions. These systems are typically solved iteratively by a Krylov subspace method. We propose a preconditioner which takes an advantage of the recursive hierarchy in the structure of the global matrices. In particular, the matrices posses a recursive hierarchical two-by-two structure, with one of the submatrices block diagonal. Each one of the diagonal blocks in this submatrix is closely related to the deterministic mean-value problem, and the action of its inverse is in the implementation approximated by inner loops of Krylov iterations. Thus our hierarchical Schur complement preconditioner combines, on each level in the approximation of the hierarchical structure of the global matrix, the idea of Schur complement with loops for a number of mutually independent inner Krylov iterations, and several matrix-vector multiplications for the off-diagonal blocks. Neither the global matrix, nor the matrix of the preconditioner need to be formed explicitly. The ingredients include only the number of stiffness matrices from the truncated Karhunen-Lo\`{e}ve expansion and a good preconditioned for the mean-value deterministic problem. We provide a condition number bound for a model elliptic problem and the performance of the method is illustrated by numerical experiments.Comment: 15 pages, 2 figures, 9 tables, (updated numerical experiments
    corecore