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Abstract

In this paper we introduce an algebraic recursive multilevel incomplete

factorization preconditioner, based on a distributed Schur complement

formulation, for solving general linear systems. The novelty of the proposed

method is to combine factorization techniques of both implicit and explicit type,

recursive combinatorial algorithms, multilevel mechanisms and overlapping

strategies to maximize sparsity in the inverse factors and consequently reduce

the factorization costs. Numerical experiments demonstrate the good potential

of the proposed solver to precondition effectively general linear systems, also

against other state-of-the-art iterative solvers of both implicit and explicit form.

Keywords: linear systems; iterative solvers; preconditioners; sparse

approximate inverse methods; multilevel reordering algorithms.

1. Introduction

Krylov subspace methods may be considered the method of choice for solving

large and sparse systems of linear equations arising from the discretization of

(systems of) partial differential equations on modern parallel computers. This

class of algorithms are iterative in nature. At every step k, they compute the5

approximate solution xk of a linear system Ax = b from the Krylov subspace of
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dimension k

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b},

according to different criteria for each given method. The computation requires

matrix-vector products with the coefficient matrix A plus vector operations,

thus potentially reducing the cumbersome costs of sparse direct solvers on large10

problems, especially in terms of memory. All of the iterative Krylov methods

converge rapidly if A is somehow close to the identity. Therefore, it is common

replacing the original system Ax = b by

M−1Ax = M−1b, (1)

or

AM−1y = b, x = M−1y, (2)

for a nonsingular matrix M ≈ A. Systems (1) and (2) are referred to as left and15

right preconditioned systems, respectively, and M as the preconditioner matrix.

In the case M is factorized as the product of two sparse matrices, M = M1M2,

like in the Hermitian and positive definite case, one might solve the modified

linear system

M−1
1 AM−T2 y = M−1

1 b, x = M−T2 y. (3)

If one may choose M so that M−1A, AM−1 or M−1
1 AM−T2 approximate the20

identity, and linear systems with M or with M1 and M2 as coefficient matrices

are easy to invert, it is more efficient to apply a Krylov subspace method to the

modified linear system.

Optimal analytic preconditioners based on low order discretizations, nearby

equations that are simple to solve, or similar ideas have been proposed in25

the literature for specific problems. However, the problem-specific approach is

generally sensitive to the characteristics of the underlying operator and to the

details of the geometry. In this study, we pursue an algebraic approach where the

preconditioner M is computed only from the coefficient matrix A. Although not

optimal for any specific problem, algebraic methods are universally applicable,30

they can be adapted to different operators and to changes in the geometry
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by tuning a few parameters, and are well suited for solving irregular problems

defined on unstructured grids.

Roughly speaking, most of the existing techniques can be divided into

either implicit or explicit form. A preconditioner of implicit form is defined35

by any nonsingular matrix M ≈ A, and requires to solve an extra linear

system with M at each step of an iterative method. The most important

example in this class is represented by the Incomplete LU decomposition

(ILU), where M is implicitly defined as M = L̄Ū , L̄ and Ū being triangular

matrices that approximate the exact L and U factors of A according to a40

prescribed dropping strategy adopted during the Gaussian elimination process.

These methods are considered amongst the most reliable in a general setting.

Well known theoretical results on the existence and the stability of the

factorization can be proved for the class of M -matrices [35], and recent studies

are involving more general matrices, both structured and unstructured. The45

quality of the factorization on difficult problems can be enhanced by using

several techniques such as reordering, scaling, diagonal shifting, pivoting and

condition estimators (see e.g. [16, 44, 36, 7, 9]). As a result of this active

development, in the last years successful results are reported with ILU-type

preconditioners in many areas that were of exclusive domain of direct solution50

methods like in circuits simulation, power system networks, chemical engineering

plants modelling, graphs and other problems not governed by PDEs, or in

areas where direct methods have been traditionally preferred, like in structural

analysis, semiconductor device modelling and computational fluid dynamics

applications (see e.g. [41, 6, 1, 34, 43]). One problem with ILU-techniques55

is the severe degradation of performance observed on vector, parallel and GPUs

machines, mainly due to the sparse triangular solves [33]. In some cases,

reordering techniques may help to introduce nontrivial parallelism. However,

parallel orderings may sometimes degrade the convergence rate, while more fill-

in diminishes the overall parallelism of the solver [17].60

Explicit preconditioning tries to mitigate such difficulties by approximating

directly A−1, as the product M of sparse matrices, so that the preconditioning
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operation reduces to forming one (or more) sparse matrix-vector product, and

consequently the application of the preconditioner may be easier to parallelize

and numerically stable. Some methods can also perform the construction phase65

in parallel [23, 10, 26, 37, 38]; additionally, on certain indefinite problems with

large nonsymmetric parts, the explicit approach can provide better results than

ILU techniques (see e.g. [14, 8, 24]). In practice, however, some questions

need to be addressed. The computed matrix M could be singular, and the

construction cost is typically much higher than for ILU-type methods, especially70

for sequential runs. The main issue is the selection of the non-zero pattern of

M . The idea is to keep M reasonably sparse while trying to capture the ‘large’

entries of the inverse, which are expected to contribute the most to the quality

of the preconditioner. On general problems it is difficult to determine the best

structure for M in advance, and the computational and storage costs required75

to achieve the same rate of convergence of preconditioners given in implicit form

may be prohibitive in practice.

In this study, we present an algebraic multilevel solver for preconditioning

general nonsymmetric linear systems which attempts to combine characteristics

of both approaches. Assuming that the matrix A admits the factorization80

A = LU , with L a unit lower and U an upper triangular matrix, our method

approximates the inverse factors L−1 and U−1. Sparsity in the approximate

inverse factors is maximized by employing recursive combinatorial algorithms.

Robustness is enhanced by combining the factorization with recently developed

overlapping strategies and by using efficient local solvers.85

The paper is organized as follows. In Section 2 we describe the proposed

multilevel preconditioner. In Section 3 we show how to combine our

preconditioner with overlapping strategies, and in Section 4 we assess its overall

performance by showing several numerical experiments on realistic matrix

problems, also against other state-of-the-art solvers. Finally, in Section 5 we90

conclude the study with some remarks and perspectives for future work.
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2. The AMES solver

Let

Ax = b (4)

be a n × n general linear system with nonsingular, possibly indefinite and

nonsymmetric matrix A = {aij} ∈ Rn×n, and vectors x, b ∈ Rn. We assume95

that A admits for a triangular decomposition

A = LU

and we precondition system (4) as

MLAMUy = MLb

with ML ≈ L−1 and MU ≈ U−1, clearly preserving symmetry and/or positive

definiteness of A. This approach of preconditioning linear systems has been

extensively investigated in a series of papers by Kolotilina and Yeremin [29,100

30, 32, 31], who prescribed the nonzero pattern of the inverse factors ML and

MU of A in advance equal to the pattern of the lower and upper triangular part

of A + AT , respectively, and determined the entries of ML and MU explicitly

by solving linear equations involving the principal submatrices of A (the ‘FSAI’

preconditioner). Chow suggested to use as pattern for the inverse factors the105

structure of the lower and upper triangular part of (A + AT )p, where p is a

positive integer [12, 13, 45]. The larger p, in general the higher the quality of the

computed preconditioner, although the construction, storage and application

costs tend to increase rapidly with p. Blocking and adaptive strategies have

been recently studied to overcome these problems [26, 18, 25]. Benzi and Tůma110

proposed to compute the entries of matrices ML and MU by means of a (two-

sided) Gram-Schmidt orthogonalization process with respect to the bilinear form

associated with A, and to determine the best structure for the inverse factors

dynamically, during the construction (the ‘AINV’ preconditioner). Sparsity is

preserved in the process by discarding elements having magnitude smaller than115

a given positive threshold [3, 4].
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In this study we analyse multilevel mechanisms, recursive combinatorial

algorithms and overlapping techniques, combined with efficient local solvers, to

enhance robustness and reduce costs for the approximation of the inverse factors.

We refer to the resulting preconditioner as AMES (Algebraic Multilevel Explicit120

Solver). It is easier to describe the AMES method by using graph notation,

dividing the solution of system (4) in five distinct phases:

1. a scale phase, where the coefficient matrix A is scaled by rows and columns

so that the largest entry of the scaled matrix has magnitude smaller than

one;125

2. a preorder phase, where the structure of A is used to compute a suitable

ordering that maximizes sparsity in the approximate inverse factors;

3. an analysis phase, where the sparsity preserving ordering is analyzed and

an efficient data structure is generated for the factorization;

4. a factorization phase, where the nonzero entries of the preconditioner are130

computed;

5. a solve phase, where all the data structures are accessed for solving the

linear system.

Below we describe each phase separately.

2.1. Scale phase.135

We initially scale system (4) by rows and columns as

D
1/2
1 Ay = D

1/2
1 b, y = D

1/2
2 x, (5)

where the n× n diagonal scaling matrices D1 and D2 have the form

D1(i, j) =


1

max|aij |
i

, if i = j

0 , if i 6= j

, D2(i, j) =


1

max|aij |
j

, if i = j

0 , if i 6= j

.

For simplicity, we still refer in this paper to the scaled system (5) as Ax = b.
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2.2. Preorder phase.

We use standard notation of graph theory to describe this computational140

step. We denote by Ω(Ã) the undirected graph associated with the matrix

Ã =

 A, if A is symmetric,

A + AT , if A is nonsymmetric.

First, Ω(Ã) is partitioned into p non-overlapping subgraphs Ωi of roughly equal

size by using the multilevel graph partitioning algorithms available in the Metis

package [28]. For each partition Ωi we distinguish two disjoint sets of nodes (or

vertices): interior nodes that are connected only to nodes in the same partition,145

and interface nodes that straddle between two different partitions; the set of

interior nodes of Ωi form a so called separable or independent cluster. Upon

renumbering the vertices of Ω one cluster after another, followed by the interface

nodes as last, and permuting A according to this new ordering, a block bordered

linear system is obtained, with coefficient matrix of the form150

Ã = PTAP =

 B F

E C

 =



B1 F1

B2 F2

. . .
...

Bp Fp

E1 E2 · · · Ep C


. (6)

In (6), each diagonal block Bi corresponds to the interior nodes of Ωi, and

the blocks Ei and Fi correspond to the interface nodes of Ωi; the block C

is associated to the mutual interactions between the interface nodes. In our

multilevel scheme we apply the same block downward arrow structure to the

diagonal blocks Bi of Ã; the procedure is repeated recursively until a maximum155

number of levels is reached, or until the blocks at the last level are sufficiently

small to be easily factorized. As an example, in Figure 1(b) we show the

structure of the sparse matrix rdb2048 from Tim Davis matrix collection [15]

after three reordering levels.

To reduce factorization costs, a similar permutation is applied to the Schur160
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complement matrix S = C − EB−1F as follows

S̃ =



BS1 FS1

BS2 FS2

. . .
...

BSp FSp

ES1 ES2 · · · ESp CS


. (7)

2.3. Analysis phase.

In the analysis phase, a suitable data structure for storing the linear system

is defined, allocated and initialized. We use a tree structure to store the block

bordered form (6) of Ã. The root is the whole graph Ω, and the leaves at165

each level are the independent clusters of each subgraph. Each node of the

tree corresponds to one partition Ωi of Ω(Ã), or equivalently to one block Bi

of matrix Ã. The information stored at each node are the entries of the off-

diagonal blocks E and F of B′is father, and those of the block C of Bi after

its permutation, except at the last level of the tree where we store the entire170

block Bi. All these matrices are represented in the computer memory using a

compressed sparse row storage format, except for blocks Fi that are stored in

compressed sparse column format. Blocks Ei and Fi can be very sparse; many

of their rows and columns can be zero, and this leads to a significant saving of

computation.175

2.4. Factorization phase.

The approximate inverse factors L̃−1 and Ũ−1 of Ã write in the following

form

L̃−1 ≈



U−1
1 W1

U−1
2 W2

. . .
...

U−1
p Wp

U−1
S


, Ũ−1 ≈



L−1
1

L−1
2

. . .

L−1
p

G1 G2 · · · Gp L−1
S


(8)
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where

Bi = LiUi,Wi = −U−1
i L−1

i FiU
−1
S , Gi = −L−1

S EiU
−1
i L−1

i (9)

and LS , US are the triangular factors of the Schur complement matrix180

S = C −
p∑

i=1

EiB
−1
i Fi. (10)

Some fill-in may occur in L̃−1 and Ũ−1 during the factorization, but only

within the nonzero blocks. This two-level reordering scheme was used in the

context of factorised approximate inverse methods for the parallelization of

the AINV preconditioner in [2]. Differently from [2], we apply the arrow

structure (6) recursively to the diagonal blocks and to the first level Schur185

complement as well, to gain additional sparsity. The multilevel factorization

algorithm requires to invert only the last level blocks and the small Schur

complements at each reordering level; the blocks Wi, Gi do not need to be

assembled explicitly, as they may be applied using Eqn (9). For the rdb2048

problem, in Figure 1(c) we display in red the actual extra storage required by the190

exact multilevel inverse factorization in addition to matrix A; these represent

only 34% of the total nonzeros of A. From the knowledge of the red entries, the

blue ones can be retrieved from Eqn (9), using the off-diagonal blocks of A. We

also permute the large Schur complement at the first level into a block bordered

structure, until we reach a maximal number of levels or a given minimal size.195

The last-level matrix is inverted inexactly. An inexact solver is also used to

factorize the last-level blocks Bi in (10).

2.5. Solve phase.

In the solve phase, the multilevel factorization is applied at every iteration

step of a Krylov method for solving the linear system. Notice that the inverse200

factorization of Ã may be written as

(
PAPT

)−1
=

 U−1 W

0 U−1
S

×
 L−1 0

G L−1
S

 (11)
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(a) The original structure of

the rdb2048 matrix.

(b) The structure of rdb2048

after permutation.

(c) The structure of the

inverse factor. In red

are displayed the entries

actually stored.

Figure 1: Structure of the multilevel inverse-based factorization for the matrix rdb2048.

where W = −U−1L−1FU−1
S , G = −L−1

S EU−1L−1, and LS , US are the inverse

factors of the Schur complement matrix S = C − EB−1F .

From Eqn. (11), we obtain the following expression for the exact inverse B−1 + B−1FS−1EB−1 −B−1FS−1

−S−1EB−1 S−1

 . (12)

We can derive preconditioners from Eqn. (12) by computing approximate solvers205

B̃−1 for B and S̃−1 for S. Hence the preconditioner matrix M will have the

form

M =

 B̃−1 + B̃−1FS̃−1EB̃−1 −B̃−1FS̃−1

−S̃−1EB̃−1 S̃−1

 .

and the preconditioning operation

 y1

y2

 = M

 x1

x2

 writes as Algorithm 1.

Notice that Algorithm 1 is called recursively at lines 1-3, as B̃ and S̃ also have

a block bordered structure upon permutation.210
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Algorithm 1 The preconditioning operation in the AMES solver.

1: p1 = B̃−1x1

2: [p2, p3] = S̃−1[E · p1, x2]

3: [p4, p5] = B̃−1[F · p2, F · p3]

4: y1 = p1 + p4 − p5

5: y2 = p3 − p2

3. Combining the AMES solver with overlapping

In [20], Grigori, Nataf and Qu have introduced an overlapping technique

to enhance the robustness of multilevel incomplete LU factorization

preconditioning computed from matrices reordered in arrow form, e.g. using215

the nested dissection method by George [19]. The multilevel mechanism

incorporated in the AMES preconditioner described in the previous section is

based on a nested dissection-like ordering, and thus it can easily accomodate

for overlapping. We have tested this idea in our numerical experiments, and

in this section we shortly describe the procedure adopted. The results of our220

experiments are reported in Section 4.

3.1. Background

Let Ω = (V (Ω), E(Ω)) be the graph of A, V (Ω) denoting the set of vertices

and E(Ω) the set of edges in Ω. If the graph is directed, we denote an edge

of E issuing from vertex u to vertex v as (u, v); u is called a predecessor of v,225

and v a successor of u. If the graph is undirected, we denote the edges of E by

non-ordered pairs {u, v}; u is called a neighbour of v. As in the previous section,

we assume that Ω is partitioned into p independent non-overlapping subgraphs

Ω1, . . ., Ωp, and we call S the set of separator nodes, straddling between two

different partitions. Goal of overlapping is to extend each independent set of230

Ω by including its direct neighbours, similarly to the overlapping idea used in

other domain decomposition methods, for example in the restricted additive

Schwarz method [39, 40].
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Following [20], we denote by V (Ωi,ext) the separator nodes that are

successors of Ωi,235

V (Ωi,ext) = {v ∈ V (S)|∃u ∈ V (Ωi), (u, v) ∈ E(Ω)} ⊂ V (S), (13)

and by V (Ωext) the complete set of successor nodes of all the subdomains

V (Ωext) =
⋃

i=1:p

V (Ωi,ext). (14)

Then Ωi is extended to the set Ω̂i as

V (Ω̂i) = V (Ωi) ∪ V (Ωi,ext), i = 1, . . . , p, (15)

and the separator S is extended to Ŝ by adding the successors of nodes in

V (Ωext), that is

V (Ŝ) = V (S) ∪ {v ∈ V (Ωi), i = 1, . . . , p | ∃u ∈ V (Ωext), (u, v) ∈ E(Ω)}. (16)

Using this notation, the overlapped graph of A, Ω̃ = (V (Ω̃), E(Ω̃)), is

introduced as follows. First define the overlapped subgraph Ω̃i and the

overlapped separator S̃ as, respectively,

V (Ω̃i) = {(x, i) : x ∈ Ω̂i},

V (S̃) = {(x, s) : x ∈ Ŝ}.

For simplicity we refer to (x, i) as xi. Then the vertex set V (Ω̃) of the overlapped240

graph Ω̃ is formed by the disjoint union of the V (Ω̂i)’s and of V (Ŝ) as

V (Ω̃) =

 ⋃
i∈1:p

V (Ω̂i)

 ∪ V (Ŝ). (17)

Recall that, given the union B of a family of sets indexed by the index set I,

B =
⋃
i∈I

Ai =
⋃
i∈I
{x : x ∈ Ai},

their disjoint union C is defined as the set

C =
⋃
i∈I
{(x, i) : x ∈ Ai}.
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At this stage, it is useful to introduce the two projection operators Π1 and Π2

such that

Π1 : (x, i) 7→ x

and

Π2 : (x, i) 7→ i.

With this notation, the set of edges of the overlapped graph Ω̃ is defined

according to their projection onto the original graph as follows

E(Ω̃i) = {(ui, vi)|ui ∈ V (Ω̃i), vi ∈ V (Ω̃i), (Π1(ui),Π1(vi)) ∈ E(Ω)}, (18)

E(S̃) = {(us, vs)|us ∈ V (S̃), vs ∈ V (S̃), (Π1(us),Π1(vs)) ∈ E(Ω)}, (19)

E(Ω̃i, S̃) = {(ui, vs)|ui ∈ V (Ω̃i), vs ∈ V (S̃), (Π1(ui),Π1(vs)) ∈ E(Ω),

245

@vi ∈ V (Ω̃i), (ui, vi) ∈ E(Ω̃i)}, (20)

E(S̃, Ω̃i) = {(us, vi)|us ∈ V (S̃), vi ∈ V (Ω̃i), (Π1(us),Π1(vi)) ∈ E(Ω),

@vs ∈ V (S̃), (us, vs) ∈ E(S̃)}. (21)

The following property, established in [20], ensures an equivalence between

the equations of the overlapped system and those of the original system.

Property 1. Let Ω be the associated directed graph of a given system of linear

equations and u be a vertex of V (Ω). Let Ω̃ be the overlapped graph, and let ui250

be a vertex of V (Ω̃) such that Π1(ui) = u ∈ V (Ω). For each edge (u, v) ∈ E(Ω),

there is a unique vj ∈ V (Ω̃) such that we have both Π1(vj) = v and (ui, vj) ∈

E(Ω̃).
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This property shows that there exists a bijection between the nonzeros of

the equation corresponding to vertex u in the original system and the nonzeros255

of the equation corresponding to its dual ui, where Π1(ui) = u. From a matrix

viewpoint, to each nonzero entry ãui,vi in the overlapped matrix there is a unique

nonzero entry au,v in the original matrix, where Π1(ui) = u and Π1(vi) = v.

Therefore there is a one-to-one correspondence between equations in the original

system and those in the overlapped system. By solving the overlapped system,260

we can automatically obtain the solution of the original system.

3.2. Example

We display a simple example from [20] to describe shortly how the

overlapping procedure works in practice. We consider a 5 × 5 matrix having

the structure shown in Figure 2(a). The graph consists of two independent265

subgraphs Ω1 = {1, 2}, Ω2 = {3} and one separator S = {4, 5}. We just pick

the first subgraph and the separator set to explain. Separator nodes that are

successors of Ω1 are the set

V (Ω1,ext) = {4, 5}

and we have

V (Ω̂1) = V (Ω)1 ∪ V (Ω1,ext) = {1, 2, 4, 5},

so that270

V (Ω̃1) = {11, 21, 41, 51}.

Analogously,

V (Ω2,ext) = {4, 5}

and

V (Ωext) = Ω1,ext ∪ Ω2,ext = {4, 5}.

Next, we compute the overlapped separator set S̃. The vertices of V (Ω1) and

V (Ω2) directed by V (Ωext) are {1, 3}, so

V (Ŝ) = V (S) ∪ {1, 3} = {4, 5, 1, 3}

14



and275

V (S̃) = {4s, 5s, 1s, 3s}.

According to Eqns. (18)-(21), the edges of the overlapped subdomain E(Ω̃1)

are defined based on their projection onto the original graph. The first diagonal

block of the overlapped matrix is formed by picking the V (Ω̂1) = {1, 2, 4, 5}

rows and columns of the original matrix



1 2 4 5

1 � � � �

2 � �

4 � �

5 � �

.

Similarly for the other two diagonal blocks, and this is shown in Figure 2(b).

From Eqn. (20), we can construct the edges from Ω̃1 to S̃. These are the

nonzero entries of the overlapped interface block F̃1, adopting the same notation

as in (6). We pick the V (Ω̂1) = {1, 2, 4, 5} rows and V (Ŝ) = {4, 5, 1, 3} columns

of the original matrix, and we set the columns corresponding to the common

vertexes of Ω̂1 and Ŝ to zeros. In our example this results in zeroing out the

columns of F̂1 indexed by Ω̂1 ∪ Ŝ = {4, 5, 1}, giving



4 5 1 3

1 × × �

2 �

4 ? × ×

5 × × ×

 −→


4 5 1 3

1

2

4 ×

5 ×

.

Similar procedure is followed for the other blocks F̃i, Ẽi. Finally, the overlapped

matrix has the form given in Figure 2(b). The block arrow structure of the

original matrix is preserved. However, symmetry is lost and the sparsity pattern

also changes significantly.280

3.3. Analysis

It is interesting to analyse the effect that overlapping may produce on

15





a11 a12 a14 a15

a21 a22

a33 a34 a35

a41 a43 a44

a51 a53 a55


(a) The original matrix

a11 a12 a14 a15

a21 a22

a41 a44 a43

a51 a55 a53

a33 a34 a35

a43 a44 a41

a53 a55 a51

a44 a41 a43

a55 a51 a53

a12 a14 a15 a11

a34 a35 a33



(b) The matrix after one-level overlapping

Figure 2: Matrix structure before and after applying the overlapping procedure.
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the AMES method. According to (15) and (18), the size and the number

of nonzeros in each subgraph is increased after overlapping. According to

(20), the interconnections between subdomains and separator are reduced in285

the overlapped system, as the original interconnectivities are all removed.

The more nodes are added to the subgraphs, the richer they are in terms of

information about the system matrix, and a larger performance improvement

may be expected. In the overlapped system, each block B̃i has the following

structure290


V (Ωi) V (Ωi,ext)

V (Ωi) B E(Ωi,Ωi,ext)

V (Ωi,ext) E(Ωi,ext,Ωi) E(Ωi,ext)

.

From Eqn. (13) we see that the set of neighboring nodes V (Ωi,ext)

corresponds to the nonzero columns of the block Fi, and the nonzero elements

of Fi are determined by the set of interconnections E(Ωi,Ωiext). Therefore, the

more dense and larger the blocks Fi, i = 1 : p, (that is, the size of separator)

in the original matrix, the more nodes and interconnections are added to295

subdomains, and a larger reduction of the number of iterations can be achieved.

3.4. Algorithmics

The AMES preconditioning algorithm described in Section 2 with one extra

overlapping phase writes as follows:

1. a scale phase, where the matrix A is scaled by rows and columns so that300

the largest entry of the scaled matrix has magnitude smaller than one;

2. a preorder phase, where the structure of A is used to compute a suitable

ordering that can maximize sparsity in the approximate inverse factors;

3. an overlap phase, which extends each block Bi and the Schur complement,

and generates the overlapped matrix Ã and the right-hand side vector b̃;305

4. an analysis phase, where the sparsity preserving and overlapping orderings

are analyzed and an efficient data structure is generated for the

factorization;
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5. a factorization phase, where the entries of Ã are processed to explicitly

compute the approximate inverse factors;310

6. a solve phase, that accesses all the data structures for solving the

overlapped linear system.

7. a restriction phase, that restricts the solution obtained from the

overlapped system to the original system, and obtains the solution.

315

4. Numerical experiments

In this section we present the results of our numerical experiments to

illustrate the performance of the AMES preconditioner, also against other state-

of-the-art methods and software for solving general linear systems. The selected

matrix problems are extracted from the public-domain matrix repository320

available at the University of Florida [15], and arise from various application

fields. We present a summary of the characteristics of each linear system in

Table 1. We applied AMES as a preconditioner for the Generalized Minimal

Residual (GMRES) method by Saad and Schultz [42]. In all our runs we

started the iterative solution from the zero vector and we stopped it when325

either the initial residual was reduced by twelve orders of magnitude or when no

convergence was achieved after 5000 matrix-vector products. To limit memory

costs, we restarted the GMRES algorithm every 500 iterations. The right-hand

side b of the linear system was chosen so that the solution is the vector of all

ones, that is b = Ae with e = [1, ..., 1]T . In each run we recorded the following330

performance measures:

1. the density ratio nnz(ML+MU )
nnz(A) , that is the ratio between the number of

nonzeros in the preconditioner matrix M = MUML versus the number of

nonzeros in the coefficient matrix A;

2. the number of iterations Its required to reduce the initial residual by 12335

orders of magnitude starting from the zero vector;
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Matrix problem n Field nnz(A)

orsirr 1 1,030 Oil reservoir simulation 6,858

1138 bus 1,138 Bus Power System 4,054

bcsstk27 1,224 BCS Structural Engineering Matrix 28,675

epb0 1,794 Plate-fin heat exchanger 7,764

cz20468 20,468 Closest Point Method 206,076

raefsky3 21,200 Fluid Structure Interaction 1,488,768

ABACUS shell ud 23,412 ABAQUS benchmark 218,484

sme3Db 29,067 3D structural mechanics problem 2,081,063

viscoplastic2 32,769 FEM discretization 381,326

cz40948 40,948 Closest Point Method 412,148

rma10 46,835 3D CFD Model 2,374,001

finan512 74,752 Portfolio optim 596,992

helm2d03 392,257 Helmholtz eq. on a unit square 2,741,935

parabolic fem 525,825 Parabolic FEM 3,674,625

Table 1: Set and characteristics of the test matrix problems.

3. the CPU time cost in seconds for completing the preorder phase (denoted

by tp), for constructing the approximate inverse factorization (tf ), and for

solving the linear system (ts). Symbol “-” means that the corresponding

phase does not apply to the given run. For example, some of the340

preconditioners used for the comparison against our method do not have

a preorder phase.

The codes were developed in Fortran 95 and the experiments were run in

double precision floating point arithmetic on a PC equipped with an Intel(R)

Core(TM)2 Duo CPU E8400, 3.00 GHz of frequency, 4 GB of RAM and 6144 KB345

of cache memory. In the coming sections we study the effect of using different

parameter settings, and we illustrate the overall performance on the selected

matrix problems.
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4.1. Performance of the multilevel mechanism

350

The AMES method can be seen as a multilevel generalization of factorized

approximate inverse techniques such as the FSAI preconditioner by Kolotilina

and Yeremin, and the AINV preconditioner by Benzi and Tůma, that we

recalled in Section 2. Therefore, first we present some comparison between

these methods, to show the benefit of the multilevel mechanism. The results355

are reported in Table 2. For these runs, we considered four matrix problems from

Table 1, that are orsirr 1, 1138 bus, bcsstk27 and epb0. In our AMES solver, we

inverted the last level blocks using ILU, FSAI and AINV factorizations. For ILU,

we used the multilevel implementation available in the ILUPACK package [5]

(this combination is referred to as AMES ILU in the table). For FSAI, we360

used the structure of the nonzero pattern of the lower (resp. upper) triangular

part of the symmetrized block for the approximate inverse factors, and also

the square of this pattern (this combination is referred to as AMES FSAI ).

Finally, for AINV we used the implementation kindly provided by the authors

(this combination is referred to as AMES AINV ). The dropping threshold value365

selected for the AINV, AMES AINV and AMES ILU methods (referred to as

Drop in the Table) is an absolute value, and was computed so that the resulting

preconditioners had roughly equal memory cost. We used the default value for

the parameter condest = 10 (norm bound for the inverse factors L−1 and U−1)

in ILUPACK.370

In our runs, the multilevel variants AMES FSAI and AMES AINV

performed consistently better than the FSAI and AINV solvers in terms of

convergence rate and storage cost. This is probably due to the multilevel

mechanism that enabled us to exploit sparsity in the inverse factors more

effectively. The best solutions with AMES were obtained using ILU as local375

solver, while the threshold-based dropping rules of the AINV method often

computed a better pattern for the approximate inverse factors than the static

approach used in the FSAI method. We can see evidence of this behaviour in

Figures 3 - 6, where for one of the last-level blocks of the permuted coefficient
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matrix (6) we compare the structure of its exact inverse factor L−1, and of380

the approximations ML and WT of L−1 as computed by, respectively, the

AMES FSAI code using the square of the pattern of the symmetrized block,

and by the AMES AINV code. Large to small entries are depicted in different

colors, from red to orange and yellow. The approximation is good for the

1138 bus problem (Figure 3) but poor for the orsirr 1 matrix (Figure 4), and385

this is confirmed by the different convergence results for the two problems,

reported in Table 2. On some larger problems, like the cz40948 and the

ABACUS shell ud problems, shown in Figures 5 - 6, we found that L−1 had

no evident structure; in this case we had to increase the number of nonzeros in

ML and WT significantly to converge. For example on the ABACUS shell ud390

problem, AMES AINV converged in 468 iteration with nnz(Z+W )
nnz(A) = 11.6 while

AMES FSAI did not converge at this value of density. In these situations,

uniformly better convergence were obtained using ILU as local solver. We will

focus mostly on this choice of local solver for the experiments of this paper.

Notice that in this case the entries of the inverse factors are not computed395

explicitly, and the application of the preconditioner is carried out through a

backward and forward substituion procedure. Other options may be considered

for the last level solver, such as the ARMS method [44] and enhanced FSAI

methods [27], but these are not included in the presented analysis.

4.2. Varying the number of independent clusters at the first level400

We considered three matrix problems in our runs: cz20468,

ABACUS shell ud and cz40948. In Table 3 we show the results varying the

number of independent clusters p at the first level of reordering of A in (6). For

each problem, we used the same number of levels nlev in the AMES structure,

and tuned the drop tolerance in the local ILU factorization to keep the memory405

ratio nnz(ML+MU )
nnz(A) roughly constant while increasing p in different runs. Clearly,

larger p results in more independent clusters of smaller size, and in larger Schur

complement matrices. In the table we report the ratio sizeB
sizeAS

between the

average size of the independent clusters Bi and the size of the Schur complement
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(a) orsirr 1

Method Pattern Drop/condest Its nnz(ML+MU )
nnz(A) tp tf ts

AMES FSAI

FSAI
A + AT -

273

304

1.42

1.45

0.011

-

0.023

0.070

0.22

0.23

AMES FSAI

FSAI
(A + AT )2 -

217

236

3.43

3.76

0.013

-

0.035

0.088

0.17

0.16

AMES AINV

AINV
-

0.03

0.07

67

80

2.27

2.22

0.016

-

0.014

0.016

0.034

0.024

AMES ILU - 8e-3/10 31 1.24 0.012 0.013 7.4e-3

(b) 1138 bus

Method Pattern Drop/condest Its nnz(ML+MU )
nnz(A) tp tf ts

AMES FSAI

FSAI
A + AT -

7

9

2.24

2.32

5.2e-3

-

0.032

0.074

1.2e-3

8.9e-4

AMES FSAI

FSAI
(A + AT )2 -

5

6

2.70

2.88

5.0e-3

-

0.035

0.077

1.0e-3

6.4e-4

AMES AINV

AINV
-

0.6

0.7

13

16

2.85

2.88

7.0e-3

-

2.0e-3

6.0e-3

1.9e-3

3.2e-3

AMES ILU - 0/10 1 1.00 5.1e-3 3.9e-3 7.0e-4

at the first level. Increasing p reduces in turn sizeB
sizeAS

to values smaller than 1.410

Using ILU as local solver, the best convergence results were obtained when

sizeB
sizeAS

≈ 1. Our experiments indicate that for good performance the size of

each independent cluster should be approximately equal to that of the Schur

complement.

4.3. Varying the number of reduction levels for the diagonal blocks415

We consider again matrices cz40948, ABACUS shell ud and cz20468 for

our tests. We varied the number of levels nlev from 1 to 3 in the multilevel

reordering of the diagonal blocks. In each run we tuned the dropping threshold
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(c) bcsstk27

Method Pattern Drop/condest Its nnz(ML+MU )
nnz(A) tp tf ts

AMES FSAI

FSAI
A + AT -

8

19

0.90

1.27

0.062

-

0.041

0.20

0.021

4.1e-3

AMES FSAI

FSAI
(A + AT )2 -

5

13

1.16

2.72

0.063

-

0.071

0.47

0.018

3.7e-3

AMES AINV

AINV
-

1e-3

0.06

6

16

1.18

0.98

0.055

-

0.040

0.063

7.3e-3

5.7e-3

AMES ILU - 0.01/10 6 0.978 0.059 0.016 0.010

(d) epb0

Method Pattern Drop/condest Its nnz(ML+MU )
nnz(A) tp tf ts

AMES FSAI

FSAI
A + AT -

277

400

1.67

1.69

0.020

-

0.011

0.19

0.66

0.59

AMES FSAI

FSAI
(A + AT )2 -

161

290

4.32

4.81

0.021

-

0.023

0.23

0.40

0.27

AMES AINV

AINV
-

0.5

0.9

132

347

3.32

4.26

0.024

-

4.5e-3

0.015

0.21

0.42

AMES ILU - 0.1/10 7 1.848 0.020 4.1e-3 0.019

Table 2: Numerical experiments on selected matrix problems illustrating the performance

of the multilevel sparse approximate inverse preconditioner AMES against the factorized

approximate inverse methods FSAI and AINV.
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(a) L−1 (b) ML

(c) WT

Figure 3: The exact (left) and approximate (middle and right) inverse lower triangular factors

of the 1138 bus matrix.

parameter to have roughly the same memory cost in the experiments for each

matrix. We chose the value of p for each problem so that sizeB
sizeAS

≈ 1 as reported420

in Section 5.2. The last level blocks were factorized using ILUPACK [5]. The

results reported in Table 4 show that using more levels can reduce the number

of iterations for similar memory ratio as we can gain additional sparsity during

the factorization. However, probably due to our non optimized implementation,

the solution cost tends to increase. From our experiments, a small number of425

reduction levels is recommended to use.
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(a) L−1 (b) ML

(c) WT

Figure 4: The exact (left) and approximate (middle and right) inverse lower triangular factors

of the orsirr 1 matrix.

4.4. Varying the number of reduction levels for the Schur complement

The Schur complement matrix relative to the block C in (6) typically

preserves a good deal of sparsity, and this can be further exploited during the

factorization by applying, e.g., the multilevel nested dissection reordering to AS ,430

similarly to what is done to the upper leftmost block B. We implemented this

idea at the first permutation level, using ILU factorization as local solver and

selecting the same values of p and nlev for each matrix problem. We tuned the

drop tolerence in the ILU factorization to have roughly the same memory costs

in different runs. We varied nlevAS from 0 to 3 (nlevAS = 0 means that only the435

diagonal blocks of the upper-left block B are permuted). The results reported

25



(a) L−1 (b) ML

(c) WT

Figure 5: The exact (left) and approximate (middle and right) inverse lower triangular factors

of the cz40948 matrix.

in Table 5 show that the simultaneous permutation of both the diagonal blocks

of B and of the Schur complement can make the preconditioner more robust.

We adopted this strategy in the experiments illustrated in the coming sections,

selecting in each run the value of nlevAS that minimized the total solution cost.440

4.5. Comparison against other solvers

We compared the performance of the AMES preconditioner against other

three popular algebraic preconditioners for solving linear systems, that are the

ILUPACK solver developed by Bollhöfer and Saad [5], the Algebraic Recursive

Multilevel Method (ARMS) proposed by Saad and Suchomel [44], and the445

SParse Approximate Inverse preconditioner (SPAI) introduced by Grote and
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(a) L−1 (b) ML

(c) WT

Figure 6: The exact (left) and approximate (middle and right) inverse lower triangular factors

of the ABACUS shell ud matrix.

Huckle [21]. As in the previous experiments, for each run we recorded the CPU

time from the start of the solution until the initial residual was reduced by

12 orders of magnitude or until the process failed. We declared a solver failure

when no convergence was achieved after 5000 iterations of the restarted GMRES450

method. We selected the parameters carefully to have a fair comparison between

different methods. In AMES, following our conclusions from Section 4.2, we

selected the number of blocks Bi at the first level so that their average size

is almost equal to the size of the Schur complement. For every problem we

tested different combinations of number of levels nlev of recursive factorization455

and different values for the dropping threshold parameter droptol for the
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Matrix p Its tp tf ts tper it
sizeB
sizeAS

cz20468

15

20

30

40

151

139

131

137

0.4

0.4

0.5

0.5

0.3

0.3

0.4

0.6

3.0

2.8

2.5

2.6

0.020

0.020

0.019

0.019

4.3

2.5

1.1

0.6

ABACUS shell ud

4

6

12

15

258

242

213

253

0.5

0.5

0.5

0.5

1.2

1.2

2.0

2.1

9.1

8.3

6.8

8.7

0.035

0.034

0.032

0.034

7.8

3.8

1.0

0.7

cz40948

15

30

45

50

219

212

198

207

1.1

1.1

1.1

1.1

0.5

0.7

1.2

1.9

10.8

10.0

9.2

9.8

0.049

0.047

0.046

0.047

8.7

2.2

0.9

0.5

Table 3: The best performance of the multilevel sparse approximate inverse preconditioner

are observed when sizeB
sizeAS

≈ 1.

factorization of the last level blocks Bi and of the Schur complements. We chose

the best combination in terms of memory and time to solution costs for the given

problem. Then we tuned the value of the dropping threshold in the ILUPACK,

ARMS, SPAI and AINV solvers to have roughly equal memory costs as in460

AMES, setting the other parameters equal to their default values defined in those

packages. The performance of these methods is rather sensitive to the dropping

threshold parameter. For example, on the rma10 problem, ILUPACK converged

in only 9 iterations using the default value droptol = 0.01, but the computation

costed nnz(M)
nnz(A) = 8.9 and tf = 45s; ARMS converged in 26 iterations with the465

default droptol = 0.001, costing nnz(M)
nnz(A) = 33.9 and tf = 1111s; and SPAI

could not converge in 5000 iterations with nnz(M)
nnz(A) = 0.19, using the default

value droptol = 0.6. The number of levels of recursive factorization in the

multilevel methods ILUPACK and ARMS are calculated automatically by the

original codes developed by their authors. We point out that the performance470
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Matrix nlev Its tp tf ts tper it

cz20468

1

2

3

113

80

71

0.5

0.5

0.6

0.4

0.5

0.5

1.9

2.3

4.1

0.017

0.028

0.058

ABACUS shell ud

1

2

3

388

381

294

0.5

0.5

0.6

1.7

1.9

1.9

17.6

21.9

22.7

0.045

0.057

0.077

cz40948

1

2

3

198

154

133

1.1

1.2

1.3

1.2

1.3

1.3

9.2

10.4

17.3

0.046

0.068

0.13

Table 4: The number of iterations of the multilevel approximate inverse preconditioner can be

reduced by increasing the number of reduction levels nlev for the diagonal blocks, at roughly

equal memory costs.

comparison between AMES and the other solvers at fixed memory occupation

may be a little penalizing for the AINV, FSAI and SPAI preconditioners as one-

level approximate inverses inherently need more memory; the ARMS method is a

multilevel solver, but it factorizes the diagonal blocks without any permutation.

In Table 6, we show the complete results of our experiments. These include475

number of iterations (Its), density ratio (nnz(ML+MU )
nnz(A) ), time costs for the

preordering (tp), factorization (tf ) and solve phase (ts). We also tested the

unpreconditioned GMRES for these matrices problems, and no convergence

is achieved. We clearly see the good potential of the multilevel mechanism

incorporated in the AMES preconditioner to reduce the number of iterations480

of Krylov methods, also in comparison to other multilevel solvers at low to

moderate memory costs. In our examples, AMES was more robust than these

solvers especially at low memory ratios.
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Matrix nlevAS Its tp tf ts

cz20468

0

1

2

3

331

228

209

181

0.5

0.4

0.4

0.4

0.2

1.3

1.3

1.3

8.2

5.6

4.8

4.0

ABACUS shell ud

0

1

2

3

576

485

414

393

0.5

0.5

0.5

0.5

1.8

1.8

1.4

1.6

35.0

29.5

24.4

22.2

cz40948

0

1

2

3

183

166

157

152

1.9

1.9

1.9

1.8

0.5

6.4

6.1

6.1

23.7

16.6

14.8

14.3

Table 5: At roughly equal memory costs, larger reduction levels for the Schur complement

can improve the convergence rate.

4.6. Effect of overlapping

485

We solved several problems from Table 1 combining the AMES method with

overlapping after the first level of reordering in (6). In these runs, we set nlev =

2, and we tuned the droptol parameter to have roughly the same memory costs

in the experiments with and witout overlapping. In the last two columns of

Table 7 we give the effect of overlapping on the change in size and in number of490

nonzeros for the overlapped system. The number of iteration (Its) are almost the

same after overlapping for problems cz20468 and cz40948, while for problems

sme3Db, ABACUS shell ud and raefsky3 we observed a consistent reduction of

the number of iterations Its by a factor between 9.5% and 23.8% and of the

solving time ts by a factor between 21.4% and 29.9%. This is in agreement495
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(a) cz20468

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

1.26

1.24

1.16

1.64

187

2500

+5000

+5000

0.3

-

-

-

0.2

0.4

0.1

4.0

4.2

40.3

+6.5

+8.0

(b) raefsky3

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

0.54

0.55

2.38

1.83

235

1224

+5000

+5000

2.4

-

-

-

3.7

2.8

2.4

5040

10.0

25.2

+23.5

+243.0

(c) ABACUS shell ud

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

1.79

1.82

1.88

2.41

453

1411

+5000

+5000

0.3

-

-

-

0.8

0.5

0.2

11.0

22.1

26.6

+7.6

+12.0

(d) sme3Db

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

0.85

0.74

5.61

1.23

407

1210

+5000

+5000

3.5

-

-

-

8.4

4.1

39.0

3360

39.3

41.4

+54.9

+123.0

with our analysis of Section 3. In Table 8, for each problem we studied the

sparsity pattern of block F and the size of blocks B and C before and after

overlapping is applied at the first reordering level. The quantity SpF denotes

the ratio between the number of nonzero elements and the size of F , that is
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(e) viscoplastic2

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

3.07

4.00

3.02

3.37

78

2500

+5000

+5000

0.9

-

-

-

14.3

1.6

0.9

244.0

3.9

70.0

+10.9

+24.0

(f) cz40948

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

1.41

1.48

1.70

1.64

170

1627

+5000

+5000

0.7

-

-

-

0.4

1.0

0.9

8.5

7.4

51.1

+21.8

+17.2

(g) rma10

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

2.33

2.27

14.30

4.84

164

1242

+5000

+5000

3.9

-

-

-

13.1

8.6

203.9

11280

34.5

82.9

+111.3

+180

(h) finan512

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

0.59

0.62

0.58

0.61

9

11

36

7

0.8

-

-

-

0.5

0.7

0.4

4.2

0.8

0.1

0.5

0.2
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(i) helm2d03

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

0.88

0.91

0.93

0.87

6

7

12

15

6.1

-

-

-

4.3

3.7

1.4

100.7

4.6

0.4

1.5

2.7

(j) parabolic fem

Method nnz(ML+MU )
nnz(A) Its tp tf ts

AMES

ILUPACK

ARMS

SPAI

0.75

0.68

0.76

0.77

4

10

12

4

4.7

-

-

-

5.7

5.3

2.0

175.3

1.3

0.5

2.0

0.8

Table 6: Performance comparison of the multilevel approximate inverse preconditioner against

other iterative solvers, both one-level and multilevel.
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the sparsity degree nnz(F )
size(F ) . As we can see, the cz20468 and cz40948 problems500

have the smallest relative size of the separator C and also the smallest value of

SpF ; this means that less information is added to the subdomains. Following

the analysis reported in Section 3, the overlapping technique is less likely to

help on these two matrices, and this is also confirmed by the numerical results.

Differently, problems sme3Db and raefsky3 show larger values of sizeC and SpF505

and in fact overlapping has a better effect on convergence for these two problems.

In our experiments we found that a small number of independent clusters p is

recommended to use when overlapping.

Matrix Method nnz(ML+MU )
nnz(A) Its ts

n(Aoverlapped)
n(A)

nnz(Aoverlapped)
nnz(A)

cz20468
overlapping

without overlapping

1.33

1.32

147

149

4.3

4.5

1.005

-

1.004

-

raefsky3
overlapping

without overlapping

0.56

0.56

218

286

14.3

20.3

1.134

-

1.135

-

ABACUS shell ud
overlapping

without overlapping

3.06

3.03

238

263

13.6

17.4

1.020

-

1.019

-

sme3Db
overlapping

without overlapping

0.91

0.91

389

495

49.1

62.5

1.588

-

1.639

-

cz40948
overlapping

without overlapping

1.42

1.40

175

172

12.0

17.5

1.006

-

1.004

-

Table 7: Experiments on the effect of block overlapping on the performance of the multilevel

sparse approximate inverse.

4.7. Utilizing direct solvers in the AMES framework

510

The results of previous sections indicate that the multilevel mechanism can

be effective to reduce the memory burden but, at least in our implementation,

tends to increase the cost per iteration. As an attempt of a possible remedy, we
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Matrix problem Method sizeB sizeC SpF

cz20468
original

after overlapping

20405

20450

63

116

1.1e− 4

4.3e− 5

raefsky3
original

after overlapping

19776

21184

1424

2864

1.1e− 4

5.1e− 4

ABACUS shell ud
original

after overlapping

23184

23412

228

458

1.3e− 4

6.1e− 5

sme3Db
original

after overlapping

19956

25932

9111

20214

9.2e− 4

3.4e− 4

cz40948
original

after overlapping

40825

40925

123

250

5.2e− 5

2.4e− 5

Table 8: Effect of overlapping on matrix blocks size and sparsity.

performed some runs setting the dropping threshold parameter droptol equal

to zero, and using a sparse direct solver, namely the routine MA38 from the515

HSL Mathematical Software Library [22], as a local solver. No approximation

is introduced and the Schur complements are exact. Therefore in each problem

we can obtain convergence in one or two iterations, and the solving phase is

much cheaper. This can be observed in Table 9 on selected matrix problems.

Comparing against the results with inexact inversion, we see that using a direct520

solver as local component can save computational time at only moderate extra

storage cost.

5. Conclusions

In this paper a recursive multilevel implementation of factorized sparse

approximate inverse preconditioners for Krylov subspace methods was discussed.525

We used recursive combinatorial techniques and overlapping strategies as an

attempt to remedy two typical drawbacks of explicit preconditioning, that are

lack of robustness and high construction cost. The numerical experiments show
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Matrix nnz(ML+MU )
nnz(A) Its tp tf ts

cz20468 1.28 2 0.7 0.4 1.5

raefsky3 2.74 1 3.4 11.1 1.3

cz40948 1.87 2 1.2 0.3 0.2

rma10 3.01 1 5.2 11.6 0.8

Table 9: Using the AMES factorization as a direct solver.

that these strategies can improve the performance of conventional approximate

inverse methods, yielding iterative solutions that can compete favourably530

against other popular solvers in use today. Parallelism can be exploited at

various levels in our method, alongside other code optimization. Fine-grained

blocking, filtering, postfiltering, adaptive pattern selection strategies have been

shown to be promising approaches in other contexts [26, 18, 25, 13, 12, 11],

and these can be considered also in our setting. In a distributed memory535

implementation, it will be natural to split the oct-tree by assigning the local

problems to different processors. An efficient use of recursive combinatorial

algorithms may reduce considerably the size of the Schur complements, hence

the amount of inter-node communications. Memory demands, an important

bottleneck of modern algorithms, are also limited, but this does not penalize540

much the overall numerical efficiency of the solver, as illustrated by the

experiments of Tables 6 and 9. Overlapping does not destroy the sparsity

structure of the matrix and can reduce further the interconnections between

subdomains and separator set. Hence it is worthwhile considering it in a parallel

setting as well. However, the parallel implementation of a fully distributed Schur545

complement formulation may not be trivial and will be considered in a separate

study.
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