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Abstract 
Four totally parallel algorithms for the solution of a sparse linear system have common characteristics 

which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. 
These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickoon and McBryan, 
Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. 
In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, 
which we will refer to as TPMA. In certain CMM the spectral radius of TPMA is zero, and it is recognized 
to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that 
a single iteration per timestep keeps the local error within the required tolerance. 
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1. Introduction 

The multilevel algorithms we are discussing are all designed to solve large and highly 

parallel problems on massively parallel computers in as short a time as possible. We say 

that a problem is highly parallel if the defining equations can be applied efficiently to a 

proposed solution on a massively parallel computer. The operative definition of the phrase 
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massively parallel computer may well change with time as increasingly parallel machines 

are built. We expect, however, that the Connection Machine [l] is sufficiently parallel that 

the algorithms we demonstrate on it now will be effective on the still larger machines that 

we will see in the near future. Because parallel supercomputers are now becoming available 

it is reasonable to begin the development of algorithms capable of solving those very large 

problems which have, in the past, been too large and complex to consider seriously. 

We describe the general algorithm TPMA (Totally Parallel Multilevel Algorithm) in 

section three, after establishing some notation in section two. In sections four through 

seven we show that this algorithm has as special cases the algorithms PSMG (Parallel 

Superconvergent Multigrid) of Frederickson and McBryan [2,3], RMG (robust Multigrid) 

of Hackbusch [4], the Fast Fourier Transform based Spectral Method [5,6], and Parallel 

Cyclic Reduction [7-91. It seems plausible that the common framework we establish will 

lead to a clearer understanding of the functioning of all of these algorithms, and aid in the 

development of improved algorithms through hybridization of the old. 

To put the algorithm TPMA in a proper perspective we will first describe a class of 

problems for which one version or another of this general algorithm appears to be optimal, 

depending on the circumstances. We will consider, for this purpose, a class of problems that 

arise in computational models of three dimensional fluid flow based on partial differential 

equations. Numerical solution of the generic problem in this class often requires repeated 

solution of an equation of the form 

where 3 denotes a system of nonlinear differential operators, v is a collection of vector 

and scalar fields representing the problem data, and u is the desired solution, also a 

collection of vector and scalar fields. There are no direct algorithms for solving problems 

of this class. Thus we will need to develop a sequence u, of approximate solutions which 

define u as their limit. All known methods for the construction of a convergent sequence 

of approximate solutions to a nonlinear problem of this sort require the evaluation of a 

residual 
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at each step, followed by a defect correction step in which un+1 is specified by constructing 

the increment u , + ~  - un as a function of the residual T n  . 

2. Approximate Inverse Operators. The typical algorithm for the construction 

of un+l - 21, as a function of T, is linear in T,  . It is an algorithmic representation of 

a linear operator B : y + X, and we are able to write 

Since any matrix representation of the restriction of B to finite dimensional subspaces of 

X and y would only be of theoretical interest for problems of the size that interest us 

here, we will restrict our attention to algorithmic representations B of B. 

For the best of the algorithms we are able to provide an error bound of the form 

in which the operator A approximates the linearization of 3 about un. It follows from 

(2.1) and (2.2) that the operators A and B are related by 

We will refer to B as an e-upprozimute inverse of the operator A if it satisfies (2.3). 

Our goal is to construct an approximate inverse operator which is highly parallel, has low 

operation count, and is highly accurate. The algorithm TPMA that we describe below 

appears to meet these needs in many situations of interest. 
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3: The Totally Parallel Multilevel Algorithm T P M A  

Multilevel algorithms for the solution of a large sparse linear system are characterized 

by their effective use of solutions to a hierarchy of smaller and simpler linear systems to 

construct a solution to  the given system. The general multilevel algorithm for the solution 

of a problem at level IC in the hierarchy, which we will denote by B k ,  involves the following 

four steps: 

Projection. The problem data is projected onto one or more smaller systems at 

level IC - 1 using a linear operator that we will denote P k  . 

Subsystem Solution. Each of these smaller systems is solved using the algo- 

rithmic linear operator Bk-' . 

Interpolation. These solutions are combined, using a generalized interpolation 

operator Q k ,  into an approximate solution at level IC. 

Smoothing. A smoothing operator S k ,  usually an approximate inverse in its 

own right, is applied to the resulting residual at level IC. 

Since each of P k ,  Q k  and Sk  is linear, we are able to describe the algorithm Bk for 

k > 0 with the equation 

while at the lowest level Bo = (Ao)- ' .  In some cases, as we shall see, the algorithm 

TPMA is exact with S k  = 0, in which case (3.1) reduces to 

which may be compactly represented by the commutative diagram 
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Xk 

TQk 
Yk 

lpk 

As a result of this simplification we do not need to store the projections of the problem 

data, but always use the data at the highest level. Moreover, we are able to write uk over 

uk-l, so the solution process requires only two arrays in all (in addition to the temporary 

variables introduced by the compiler). The savings is almost a factor of log(n), which 

allows us to solve much larger problems. 

B h -  1 
x k - 1  y k - 1  

In other cases either P k  or Qk is the identity operator, further simplifying the computa- 

tion. The recursive definition of Bk is closely related to the recursive definition of the 

operator Ak at level k using the Galerkin projection Ak-' = P k  A' Q k ,  illustrated in 

the commutative diagram 

X k  2 yk 

T Q k  Ah-1 kk 
X k - 1  - y k - 1  

(3.3) 

This definition of the operator 

although we will see exceptions. 

Ak is used in most versions of the algorithm TPMA, 

4: The algorithm PSMG 

The algorithm PSMG (Parallel Superconvergent Multigrid) is our primary example of 

a totally parallel multilevel algorithm. For clarity we consider first a rather simple problem, 

namely the two dimensional Laplacian on a rectangle with periodic boundary conditions. 

The fact that this problem is singular will cause us no difficulty. In this case the operators 

commute, being convolution operators, and we are able to afford a significant saving in 

storage by taking 

P k  = I, O < k < 1 .  
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Figure 1. A multilevel approximation of a scalar-function on a rectangle. 

We have found that there is considerable advantage to using the mehrstellen dis- 

cretization of the negative Laplacian defined by 

-1 -4 -1 

-4 -1 
A k f  = - [ 20 -41 

6 

rather than the bilinear finite element discretization 

-1 -1 -1 

-1 -1 -1 

A k 1  = - [ -1 8 -11 
3 (4.3) 

which is invariant under the Galerkin projection (3.3), or the always popular five-point 

discretization 

0 -1 

0 -1 

A k = [ -1 4 --HI 
(4.4) 



In our implementation on the Connection Machine we have chosen a data structure for the 

arrays rk and uk which leaves them superimposed on the arrays for the higher and lower 

levels. This means that the operators at level IC are scaled, when k < 1 , to operate on 

grid points a distance 21 apart, where j = 1 - k. The coefficients are invariant from 

one level to the next, in this simple case, but the scales on which they operate are not. 

We have found that there is an advantage to a larger operator Q, which now takes 

on the role of P as well. We have obtained very good results with 

Q =  

-.005464 .013850 -.017536 .013850 -.005464 
.013850 .062500 .097300 .062500 .013850 

.013850 .062500 .097300 .062500 .013850 
-.017536 .097300 .341997 .097300 -.017536 

-.005464 .013850 - .017536 .013850 -.005464 

and the smoothing operator 2 given by 

I .01566 .04649 .01566 
z =  [ .04649 .3059 .04649 

.01566 .04649 .01566 

(4.5) 

(4.5) 

The algorithm PSMG was developed by Oliver McBryan and the author [3,4] after 

McBryan had implemented a standard multigrid algorithm on the Connection Machine and 

observed good convergence but inefficient operation: most of the processors were idle most 

of the time. We asked ourselves how these idle processors could be used most efficiently in 

furthering the computation. For further motivation behind the multigrid method see the 

early paper of Brandt [lo]. The recent book of Hackbusch [ll] provides an excellent review 

of current multigrid algorithms, and puts their convergence analysis in a firm theoretical 

framework, while a variety of parallel implementations are discussed in references [12-161. 

5: Hackbusch's Robust Multi-Grid algorithm RMG 

In the development of PSMG it was assumed that the approximate problems at the 

next lower level would be nearly identical, differing only in their interwoven relationship 

to the finer grid. Hackbusch observes [4] that there are advantages, particularly when the 

given problem is highly variable in space, to using diflerent projection opemtora for each of 
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these lower level approximations. Since the algorithm has a wider domain of convergence 

(even though it may not converge as rapidly for nice problems) he refers to it as RMG, for 

Robust Multi-Grid. 

Hackbusch specifies the four projection operators Po,o,  PO,^, P1,o and  PI,^ in a two- 

dimensional example of PSMG (he uses the notation Ti, j  ) to be the duals of the four 

interpolation operators Q O , ~ ,  Q o , ~ ,  Q1,o and &1,1 (for which his notation is pi , ,  ) given by 

the equations 

( 5 4  

1 .25 .50 .25 -.25 .50 -.25 
QO,O = [ ::! l-: 33)] QI,O = [ -.50 1.0 -.50 

-.25 .50 -.25 

-.25 -.50 -.25 .25 -.50 .25 
QO,I = [ .50 1.0 . S O ]  Q1,l = [ -.50 1.0 -.SO] 

-.25 -.50 -.25 .25 -.50 .25 

It is clear that this may be implemented with essentially the same software that we have 

used in implementing PSMG, with a short preprocessing step in which the signs of some 

of the coefficients are changed. 

6: Spectral  Methods  based on t h e  FFT 
The classical spectral algorithm for the solution of Poisson's problem on a square or 

cube has three steps: take the FFT of the problem data v ,  divide this by the transform 

of the Laplacian (or some other constant coefficient differential operator), and transform 

back. We may, however, equally well describe it as an example of the algorithm TPMA in 

which the operator P is given, in two dimensions, by 

I 
I 

i 
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It is clear that this may be implemented with essentially the same TPMA software that we 

have used in implementing PSMG or RML, which helps to clarify the strong theoretical 

relationship between these fast algorithms. It is often advantageous, however, to implement 

these operators one dimension at a time, in effect first doing 

followed by pair of operators transverse to these. Actually, there may be a strong compu- 

tational advantage in not multiplying by the indicated zero, for on the connection machine 

this means that this data does not need to be communicated. As we will see later, it is 

possible to arrange the communication on a hypercube, and the CM2 in particular, in 

such a way that the communication step takes just half as long. There may also be an 

advantage to keeping the factor - on the cuff until the end of the computation, and 

divide once by 2'. 
d5 

An important observation is that the Fourier multipliers wki need be computed only 

once, on the highest level. Those coefficients needed at the next lower level are a Hamming 

distance at most two away, and are moved in at the start of the computation at that level. 

7: Parallel Cyclic Reduction Algorithms. 
There are important applications which require the solution of a separable elliptic 

equation on a rectangle, or the image of a rectangle under a separable coordinate trans- 

formation. For many years the algorithm of choice, when the circumstances are right, 

has been one of the generalizations of the Cyclic Reduction algorithm of Hockney [17] and 

Buneman [18]. Notable among these generalizations are the Fast Poisson Solver of Buzbee, 

Golub and Nielsen [19], the algorithm FACR of Hockney[20], and the FISHPAK routines 

of Swartztrauber and Sweet [21-221. Jespersen and Levit [23] have recently implemented 

a Navier-Stokes solver on the connection machine at Ames Research Center in which they 

use a parallel algorithm developed by Levit and based on the the work of Hockney and 

Jessope ["I. For further discussions of parallel generalizations see Johnsson [24] and Ortega 

1251. 
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Consider first the classic cyclic reduction algorithm. It is easily described as Gaussian 

elimination in an unusual order: the even numbered rows are eliminated first, then half 
the remaining rows, and so on until Zog(n) steps later only one block remains. (Thus the 

alternate name odd even elimination for the algorithm.) The parallel cyclic reduction 

algorithm of Hockney and Jessope [7] stems from the observation that when one has 

sufficiently many processors it is efficient to apply this transformation in parallel on all 

the rows for all Zog(n) steps of the reduction process at which point one need only do 

one (parallel) solve. When the parallel cyclic reduction algorithm is applied to a block 

tridiagonal system in which the off-diagonal blocks are identity operators it leads to a 

sequence of block tri-diagonal systems of the form 

with the right hand sides defined recursively by 

&-l k k  k k k  k 
i = P v i = v ; - 2 j  - a v i + v ; + 2 j ,  

and in which the diagonal blocks uk are given by 

Observe that the operators A' defined by (7.1) and (7.2) and the projection operators 

P k  defined by (7.2) and (7.3) are related by 

= P k A k ,  (7.4) 
A k - 1  

which is (3.3) with Qk = I . This is another way of saying that the interpolation 

operators are not needed in this version of the algorithm TPMA. 
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8: Information Exchange on the CM2 

All multilevel algorithms require long distance communication, for it is by spreading 

problem information and solution information over long distances that they obtain their 

computational advantage. All of the totally parallel multilevel algorithms that we have 

discussed here have one further characteristic in common: the distances over which they 

communicate is always a power of two. This gives parallel computers with a hypercube 

architecture a considerable advantage, for on hypercubes it is possible to send a message 

a grid distance 2& in only two hops, provided the grid is laid out according to the binary 

reflected gray code BRGC (or at least a gray code which is a bit-permutation of BRGC). 

Moreover, if the computer is built to send information on two lines simultaneously, 

then there is a communication scheme with the property that a distance 2k exchange takes 

no longer, in principle, than a distance one exchange. Moreover, if information can be 

sent in both directions simultaneously on any line an exchange will be twice as fast as 

use of either get or send. We note that the CM2 satisfies the first property, and timing 

experiments indicate that the second property is close to true. 

Figure 2. Communication lines active during phase 0 of a distance 16 exchange 

are shown in (a), and those active during phase 1 of the exchange are shown in 

(b). 
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The exchange of information proceeds in two phases, during each of which half the 

processors are communicating with distant neighbors to their left (or below them) in grid 

ordering and half are communicating with neighbors to their right. As is clear from Fig. 3, 

one communication line is active during both phases, and is therefore a bottleneck which 

prevents a faster communication scheme. This is communication line IC-1 for distance 2& 

communication. (When a higher dimensional grid is in use we consider only one dimension 

at a time, and refer to the lowest order line dedicated to that dimension as line 0.) 

During phase 0 of the exchange line L is also active on all processors, transferring 

information upwards for half of the processors and downward for the other half. Although 

it is not clear from the figure, the set of communication lines active during phase 1 is 

not the same on all processors. If processor i is exchanging with processor j during 

this phase, the other line in use is the index of the highest nonzero bit in i XOR j . 
The three communication lines active during this exchange are, therefore, k - 1, k and 

1 19 ( i X O R  j ) J. At this point we should observe that the communication required by 

the FFT is provided by phase 0 alone, and thus requires only half the time if it is arranged 

in this manner, as the communication required by the other versions of TPMA we have 

discussed. 
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