392 research outputs found

    ILS-ESP: An efficient, simple, and parameter-free algorithm for solving the permutation flow-shop problem

    Get PDF
    From a managerial point of view, the more e cient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most e cient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can a ect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic ‘common sense’ rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate di erent alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.Preprin

    Metaheuristic Optimization Frameworks: a Survey and Benchmarking

    Get PDF
    This paper performs an unprecedented comparative study of Metaheuristic optimization frameworks. As criteria for comparison a set of 271 features grouped in 30 characteristics and 6 areas has been selected. These features include the different metaheuristic techniques covered, mechanisms for solution encoding, constraint handling, neighborhood specification, hybridization, parallel and distributed computation, software engineering best practices, documentation and user interface, etc. A metric has been defined for each feature so that the scores obtained by a framework are averaged within each group of features, leading to a final average score for each framework. Out of 33 frameworks ten have been selected from the literature using well-defined filtering criteria, and the results of the comparison are analyzed with the aim of identifying improvement areas and gaps in specific frameworks and the whole set. Generally speaking, a significant lack of support has been found for hyper-heuristics, and parallel and distributed computing capabilities. It is also desirable to have a wider implementation of some Software Engineering best practices. Finally, a wider support for some metaheuristics and hybridization capabilities is needed

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Aproximações heurísticas para um problema de escalonamento do tipo flexible job-shop

    Get PDF
    Mestrado em Engenharia e Gestão IndustrialEste trabalho aborda um novo tipo de problema de escalonamento que pode ser encontrado em várias aplicações do mundo-real, principalmente na indústria transformadora. Em relação à configuração do shop floor, o problema pode ser classificado como flexible job-shop, onde os trabalhos podem ter diferentes rotas ao longo dos recursos e as suas operações têm um conjunto de recursos onde podem ser realizadas. Outras características de processamento abordadas são: datas possíveis de início, restrições de precedência (entre operações de um mesmo trabalho ou entre diferentes trabalhos), capacidade dos recursos (incluindo paragens, alterações na capacidade e capacidade infinita) e tempos de setup (que podem ser dependentes ou independentes da sequência). O objetivo é minimizar o número total de trabalhos atrasados. Para resolver o novo problema de escalonamento proposto um modelo de programação linear inteira mista é apresentado e novas abordagens heurísticas são propostas. Duas heurísticas construtivas, cinco heurísticas de melhoramento e duas metaheurísticas são propostas. As heurísticas construtivas são baseadas em regras de ordenação simples, onde as principais diferenças entre elas dizem respeito às regras de ordenação utilizadas e à forma de atribuir os recursos às operações. Os métodos são designados de job-by-job (JBJ), operation-by-operation (OBO) e resource-by-resource (RBR). Dentro das heurísticas de melhoramento, a reassign e a external exchange visam alterar a atribuição dos recursos, a internal exchange e a swap pretendem alterar a sequência de operações e a reinsert-reassign é focada em mudar, simultaneamente, ambas as partes. Algumas das heurísticas propostas são usadas em metaheurísticas, nomeadamente a greedy randomized adaptive search procedure (GRASP) e a iterated local search (ILS). Para avaliar estas abordagens, é proposto um novo conjunto de instâncias adaptadas de problemas de escalonamento gerais do tipo flexible job-shop. De todos os métodos, o que apresenta os melhores resultados é o ILS-OBO obtendo melhores valores médios de gaps em tempos médios inferiores a 3 minutos.This work addresses a new type of scheduling problem which can be found in several real-world applications, mostly in manufacturing. Regarding shop floor configuration, the problem can be classified as flexible job-shop, where jobs can have different routes passing through resources and their operations have a set of eligible resources in which they can be performed. The processing characteristics addressed are release dates, precedence constraints (either between operations of the same job or between different jobs), resources capacity (including downtimes, changes in capacity, and infinite capacity), and setup times, which can be sequence-dependent or sequence-independent. The objective is to minimise the total number of tardy jobs. To tackle the newly proposed flexible job-shop scheduling problem (FJSP), a mixed integer linear programming model (MILP) is presented and new heuristic approaches are put forward. Three constructive heuristics, five improvement heuristics, and two metaheuristics are proposed. The constructive heuristics are based on simple dispatching rules, where the main differences among them concern the used dispatching rules and the way resources are assigned. The methods are named job-by-job (JBJ), operation-by-operation (OBO) and resource-by-resource (RBR). Within improvement heuristics, reassign and external exchange aim to change the resources assignment, internal exchange and swap intend changing the operations sequence, and reinsert-reassign is focused in simultaneously changing both parts. Some of the proposed heuristics are used within metaheuristic frameworks, namely greedy randomized adaptive search procedure (GRASP) and iterative local search (ILS). In order to evaluate these approaches, a new set of benchmark instances adapted from the general FJSP is proposed. Out of all methods, the one which shows the best average results is ILS-OBO obtaining the best average gap values in average times lower than 3 minutes

    Modelling and Optimizing Supply Chain Integrated Production Scheduling Problems

    Full text link
    Globalization and advanced information technologies (e.g., Internet of Things) have considerably impacted supply chains (SCs) by persistently forcing original equipment manufacturers (OEMs) to switch production strategies from make-to-stock (MTS) to make-to-order (MTO) to survive in competition. Generally, an OEM follows the MTS strategy for products with steady demand. In contrast, the MTO strategy exists under a pull system with irregular demand in which the received customer orders are scheduled and launched into production. In comparison to MTS, MTO has the primary challenges of ensuring timely delivery at the lowest possible cost, satisfying the demands of high customization and guaranteeing the accessibility of raw materials throughout the production process. These challenges are increasing substantially since industrial productions are becoming more flexible, diversified, and customized. Besides, independently making the production scheduling decisions from other stages of these SCs often find sub-optimal results, creating substantial challenges to fulfilling demands timely and cost-effectively. Since adequately managing these challenges asynchronously are difficult, constructing optimization models by integrating SC decisions, such as customer requirements, supply portfolio (supplier selection and order allocation), delivery batching decisions, and inventory portfolio (inventory replenishment, consumption, and availability), with shop floor scheduling under a deterministic and dynamic environment is essential to fulfilling customer expectations at the least possible cost. These optimization models are computationally intractable. Consequently, designing algorithms to schedule or reschedule promptly is also highly challenging for these time-sensitive, operationally integrated optimization models. Thus, this thesis focuses on modelling and optimizing SC-integrated production scheduling problems, named SC scheduling problems (SCSPs). The objective of optimizing job shop scheduling problems (JSSPs) is to ensure that the requisite resources are accessible when required and that their utilization is maximally efficient. Although numerous algorithms have been devised, they can sometimes become computationally exorbitant and yield sub-optimal outcomes, rendering production systems inefficient. These could be due to a variety of causes, such as an imbalance in population quality over generations, recurrent generation and evaluation of identical schedules, and permitting an under-performing method to conduct the evolutionary process. Consequently, this study designs two methods, a sequential approach (Chapter 2) and a multi-method approach (Chapter 3), to address the aforementioned issues and to acquire competitive results in finding optimal or near-optimal solutions for JSSPs in a single objective setting. The devised algorithms for JSSPs optimize workflows for each job by accurate mapping between/among related resources, generating more optimal results than existing algorithms. Production scheduling can not be accomplished precisely without considering supply and delivery decisions and customer requirements simultaneously. Thus, a few recent studies have operationally integrated SCs to accurately predict process insights for executing, monitoring, and controlling the planned production. However, these studies are limited to simple shop-floor configurations and can provide the least flexibility to address the MTO-based SC challenges. Thus, this study formulates a bi-objective optimization model that integrates the supply portfolio into a flexible job shop scheduling environment with a customer-imposed delivery window to cost-effectively meet customized and on-time delivery requirements (Chapter 4). Compared to the job shop that is limited to sequence flexibility only, the flexible job shop has been deemed advantageous due to its capacity to provide increased scheduling flexibility (both process and sequence flexibility). To optimize the model, the performance of the multi-objective particle swarm optimization algorithm has been enhanced, with the results providing decision-makers with an increased degree of flexibility, offering a larger number of Pareto solutions, more varied and consistent frontiers, and a reasonable time for MTO-based SCs. Environmental sustainability is spotlighted for increasing environmental awareness and follow-up regulations. Consequently, the related factors strongly regulate the supply portfolio for sustainable development, which remained unexplored in the SCSP as those criteria are primarily qualitative (e.g., green production, green product design, corporate social responsibility, and waste disposal system). These absences may lead to an unacceptable supply portfolio. Thus, this study overcomes the problem by integrating VIKORSORT into the proposed solution methodology of the extended SCSP. In addition, forming delivery batches of heterogeneous customer orders is challenging, as one order can lead to another being delayed. Therefore, the previous optimization model is extended by integrating supply, manufacturing, and delivery batching decisions and concurrently optimizing them in response to heterogeneous customer requirements with time window constraints, considering both economic and environmental sustainability for the supply portfolio (Chapter 5). Since the proposed optimization model is an extension of the flexible job shop, it can be classified as a non-deterministic polynomial-time (NP)-hard problem, which cannot be solved by conventional optimization techniques, particularly in the case of larger instances. Therefore, a reinforcement learning-based hyper-heuristic (HH) has been designed, where four solution-updating heuristics are intelligently guided to deliver the best possible results compared to existing algorithms. The optimization model furnishes a set of comprehensive schedules that integrate the supply portfolio, production portfolio (work-center/machine assignment and customer orders sequencing), and batching decisions. This provides numerous meaningful managerial insights and operational flexibility prior to the execution phase. Recently, SCs have been experiencing unprecedented and massive disruptions caused by an abrupt outbreak, resulting in difficulties for OEMs to recover from disruptive demand-supply equilibrium. Hence, this study proposes a multi-portfolio (supply, production, and inventory portfolios) approach for a proactive-reactive scheme, which concerns the SCSP with complex multi-level products, simultaneously including unpredictably dynamic supply, demand, and shop floor disruptions (Chapter 6). This study considers fabrication and assembly in a multi-level product structure. To effectively address this time-sensitive model based on real-time data, a Q-learning-based multi-operator differential evolution algorithm in a HH has been designed to address disruptive events and generate a timely rescheduling plan. The numerical results and analyses demonstrate the proposed model's capability to effectively address single and multiple disruptions, thus providing significant managerial insights and ensuring SC resilience

    Parallel transfer evolution algorithm

    Get PDF
    Parallelization of an evolutionary algorithm takes the advantage of modular population division and information exchange among multiple processors. However, existing parallel evolutionary algorithms are rather ad hoc and lack a capability of adapting to diverse problems. To accommodate a wider range of problems and to reduce algorithm design costs, this paper develops a parallel transfer evolution algorithm. It is based on the island-model of parallel evolutionary algorithm and, for improving performance, transfers both the connections and the evolutionary operators from one sub-population pair to another adaptively. Needing no extra upper selection strategy, each sub-population is able to select autonomously evolutionary operators and local search operators as subroutines according to both the sub-population's own and the connected neighbor's ranking boards. The parallel transfer evolution is tested on two typical combinatorial optimization problems in comparison with six existing ad-hoc evolutionary algorithms, and is also applied to a real-world case study in comparison with five typical parallel evolutionary algorithms. The tests show that the proposed scheme and the resultant PEA offer high flexibility in dealing with a wider range of combinatorial optimization problems without algorithmic modification or redesign. Both the topological transfer and the algorithmic transfer are seen applicable not only to combinatorial optimization problems, but also to non-permutated complex problems

    Combining parallel computing and biased randomization for solving the team orienteering problem in real-time

    Get PDF
    In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based technologies, and navigation satellite services to locate their customers and other team vehicles to plan their routes. Furthermore, the team of vehicles should serve their customers by specified due date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents the planning of vehicle routes as a team orienteering problem. In addition, an ‘agile’ optimization algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm combines an extremely fast biased-randomized heuristic and a parallel computing approach.Peer ReviewedPostprint (published version

    Combining Parallel Computing and Biased Randomization for Solving the Team Orienteering Problem in Real-Time

    Full text link
    [EN] In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based technologies, and navigation satellite services to locate their customers and other team vehicles to plan their routes. Furthermore, the team of vehicles should serve their customers by specified due date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents the planning of vehicle routes as a team orienteering problem. In addition, an 'agile' optimization algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm combines an extremely fast biased-randomized heuristic and a parallel computing approach.This work has been partially supported by the Spanish Ministry of Science and Innovation (PID2019-111100RB-C21/AEI/10.13039/501100011033, RED2018-102642-T). We also acknowledge the support of the Erasmus+ Program (2019-I-ES01-KA103-062602)Panadero, J.; Ammouriova, M.; Juan-Pérez, ÁA.; Agustin, A.; Nogal, M.; Serrat, C. (2021). Combining Parallel Computing and Biased Randomization for Solving the Team Orienteering Problem in Real-Time. Applied Sciences. 11(24):1-18. https://doi.org/10.3390/app112412092118112

    A DIFFERENTIAL EVOLUTION ALGORITHM DEVELOPED FOR A NURSE SCHEDULING PROBLEM

    Full text link
    corecore