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Abstract—Parallelization of an evolutionary algorithm takes 
the advantage of modular population division and information 
exchange among multiple processors. However, existing parallel 
evolutionary algorithms (PEAs) are rather ad hoc and lack a 
capability of adapting to the problem or platform environments. 
To accommodate a wider range of problems and to reduce 
algorithm design costs, this paper develops a parallel transfer 
evolution (PTE) scheme. This is based on the island-model of 
parallel algorithms and, for improving performance, transfers 
both the connections and the evolutionary operators from one 
sub-population pair to another adaptively. Needing no extra 
upper selection strategy, each sub-population becomes 
autonomously able to select evolutionary operators and local 
search operators as subroutines according to both the 
sub-population’s own and the connected neighbor’s ranking 
boards dynamically. The PTE scheme is tested on two typical 
combinatorial optimization problems in comparison with six 
existing ad hoc parallel evolutionary algorithms, and is also 
applied to a real-world case study in comparison with five typical 
parallel evolutionary algorithms. The tests show that the PTE 
scheme and the resultant PEA offer high flexibility in dealing with 
a wider range of combinatorial optimization problems without 
algorithmic modification or redesign. Both the topological 
transfer and the algorithmic transfer are seen applicable not only 
to combinatorial optimization problems, but also to continuous or 
non-permutated complex problems.1 
 

Index Terms—Evolutionary computation, combinatorial 
optimization, parallel algorithm, topological design, algorithmic 
adaptation 

I. INTRODUCTION 
EAL-world non-deterministic polynomial-time hard 
(NP-hard) optimization problems are becoming more 

complex to solve and are presenting more challenges to 
evolutionary algorithms (EAs). An EA mimics natural 
evolution with a population in generational iterations to search 
for feasible and optimal solutions to NP-hard problems [1]. In 
dealing with these problems, parallel evolutionary algorithms 
(PEAs) have become increasingly popular [2]. Intuitive 
parallelism is to divide the EA population into a number of 
sub-populations and map them onto multiple processors that 
work concurrently. It partitions the potential solution space, 
enhances global search for multi-peak problems, and gives 
more room to maneuver for algorithm hybridization. So far, 
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PEAs have seen many successes in solving complex 
optimization problems [3,4]. 

In recent years, three main models of PEAs have been 
reported as design bases. These models are the master-slave 
model, the island model, and the diffusion model [5]. 
Meanwhile, hierarchical hybrid models combining one or more 
of these models have also been reported for certain special 
cases. Owing to the widespread use of multi-core computers 
and clusters, the island model [6–8] has become the most 
common, in which each sub-population evolves in an 
independent processor as an “island.” The “islanders” interact 
periodically via individual migration, in accordance with a 
pre-defined topology. The resultant communication overheads 
are generally lower than in the master-slave and the diffusion 
models [9,10]. 

Owing to the structure of the island model, the migration 
policy and island topology are the most critical elements in 
determining the efficiency of the PEA. 

The migration policy controls the migration frequency, the 
migration rate, the number of migrating individuals, the 
individual replacement rule, and the synchronization of the 
sub-populations [1,11]. Much research and many experiments 
have been reported on designing a migration policy in various 
scenarios, where certain offline schemes [3,12,13] and online 
strategies [14–16] are established not only to set the migration 
policy, but also to adaptively adjust key algorithmic parameters 
of the sub-populations during the runtime. 

The island topology is also an important factor of the PEA in 
determining the neighbors of each sub-population for 
individual exchanges [17]. The most commonly used ones are 
the ring [18], mesh [19], full-mesh [43], and star topologies 
[20]. Generally, an island topology of a PEA is not easy to 
determine optimally, as communication objects of each 
sub-population are difficult to determine during the runtime. 
There are two major reasons for this. First, the correlation 
between the state of evolution and the topology is difficult to 
evaluate quantitatively. Second, the implementation means of a 
specific topology in a PEA is normally fixed. To deal with the 
above problems, studies on random topologies [21,22] and 
graph-based dynamic topologies [23,24] have been carried out. 
Those topologies are first randomly changed during the 
iteration and then are adapted to the problem structure [25]. 
However, the neighbors of each island need to be recalculated 
and broadcast according to the new structure in every iteration. 
This takes a long time, resulting in performance degradation on 
the parallel evolution. Today, the design of an efficient PEA 
with a low communication overhead remains a challenge. 

One attempt to address this issue has been to tailor a PEA to 
the characteristics of the problem being tackled [26,27]. 
Another has been to assign multiple problem-dependent 
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heuristics to a sub-population. A third approach has been to 
adapt the size of the sub-populations. Nevertheless, the 
migration policy and the topology are generally kept 
unchanged. The deficiency of these problem-specific PEAs is 
that once the characteristics of the problem change, the 
algorithm is hard to cope or adapt. This issue is partially 
addressed using memetic algorithms and hyper-heuristics with 
multiple EAs [28]. The most common design is to allocate a 
group of operators or memes (i.e., local search strategies) to 
different islands directly and let them interact with one another 
via individual migration [26,29–32]. However, it requires an 
extra upper-layer algorithm selection process to update 
individuals inside the sub-population, which will largely 
degrade the parallel efficiency as well. For a 
multiple-EA-based PEA, as its operators or upper-layer 
adaptation rules inside each sub-population are generally 
uniform, the performance of the PEA is lower than those of the 
underlying EAs if the islands are not well balanced. Therefore, 
research on self-adaptation of the island topology and dynamic 
selection of multiple EAs is imperative for PEAs. 

To extend the current research, in this paper, we develop a 
parallel transfer evolution (PTE) scheme to structure a flexible 
PEA. At the topological level, the connection between 
sub-population pairs is transferred adaptively during each 
period of communication. With only one single connection, the 
communication overhead is maintained to be the minimum and 
the diversity of the sub-populations are also preserved. At the 
algorithmic level, superior operators can be transferred from a 
sub-population to its neighbor to enhance the search capability 
of the sub-populations. For applications, we focus on 
permutation-based combinatorial optimization, where multiple 
variables of the problem form a permutation such as in the case 
of a scheduling, assignment, or routing problem. 

The remainder of the paper is structured as follows. In 
Section 2, we review the state-of-the-art PEAs. In Section 3, we 
provide a framework of the proposed PTE and detail its 
topological and algorithmic transfers. The PTE is then fully 
tested with the combination of several classical evolutionary 
operators on various benchmarks and on a real-world virtual 
channel scheduling problem found in communication systems, 
in Sections 4 and 5, respectively, giving comparisons with both 
traditional EAs and PEAs. Conclusions are drawn and potential 
future work is highlighted in Section 6. 

II. STATE OF THE ART OF PEAS 
According to the number of evolutionary algorithms adopted 

in PEAs, existing research has focused mainly on two aspects to 
construct efficient PEAs progressively. These are the design of 
PEA with a single EA and the adaptation of PEA with multiple 
EAs. 

A. The design of PEA with a single EA 
The island model reveals that migration policy and 

cooperative topology are two crucial factors in the design of a 
PEA [2,33].  

(1) Migration policy 
For relatively simple problems, a linear or near linear 

speed-up can be achieved, owing to relatively even divisions of 
the population and the solution space [34]. For example, Alba 
[4] has summarized and classified performance evaluations on 
parallelization, and has given instances to show that a linear 
speed-up is possible in a PEA, although the population division 
reduces the search capability of each sub-population. 
Considering the diversity collapse phenomenon that results 
from the introduction of high-fitness individuals [35], Alba and 
Trova [36] studied the influence of random emigration on the 
population diversity and suggested when to use fitness-based or 
random emigration at different states of evolution. Qian et al. 
[37] further introduced parallel processors to generate new 
individuals for multi-objective optimization and adopted a 
merge strategy to accelerate the comparisons in updating a 
Pareto archive. With low communication overhead between the 
processors, this method was proved to be approximately linear 
both in theory and in practice. 

(2) Cooperative topology 
To obtain higher collaborative capability and search quality 

during parallel search, Cantú-Paz [11] introduced the concept 
of selection pressure and takeover time to evaluate the diversity 
and convergence of the entire population. Given the PEA 
topologies reported in [18–20], Matsumura et al. [17] 
compared them and concluded that the ring topology would 
simultaneously guarantee high population diversity and 
information diffusion with a single migration policy. However, 
Hijaze and Corne [38] and Wang et al. [39] applied these 
topologies to distinct cases and showed that the influence of 
each topology varies according to the context. In view of the 
performance limitations of a fixed topology, Giacobini et al. 
[40] investigated small-world graphs and scale-free graphs as 
new candidate topologies for the construction of the 
sub-populations. In addition, Li et al. [41] introduced 
β-graph-based network topologies and discussed their 
construction, complexity, and diversity. Liu et al. [42] have 
established an optimal r-regular graph topology for particle 
swarm optimization (PSO) and proved its efficiency both 
theoretically and practically. 

(3) Adaptation in migration policy and cooperative topology 
It has become clear that a uniform migration policy and 

topology cannot usually offer efficient collaboration among 
islands, as the states of the population at different search stages 
are different. Therefore, adaptive strategies in both migration 
policy and island topology are desirable.  

For a migration policy, Noda et al. [14] provided a series of 
knowledge-based rules to guide the selection and replacement 
of migrants. Lardeux and Goëffon [15] proposed a dynamic 
strategy to control the migration probability based on a 
complete graph. Following these efforts, Yang and Tinos [43] 
provided an elite set, instead of a random or a 
high-fitness-based migration strategy, to determine which 
individuals to exchange. Further, Araujo and Merelo [16] 
applied entropy as a representation of diversity and tested 
various adaptive migration policies in accordance with the 
distance between the migrant and the target island. In addition, 
Zhan et al. [44] proposed a mean-fitness-rank-based approach 
to migrate individuals from poor-performing populations to 
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better-performing populations, so as to maintain the diversity 
and a balanced search pace in the entire population. Their 
results provide comprehensive insight into the setting of a 
migration policy. 

In addition, Whitacre et al. [45] attempted to make the 
topology co-evolve with the population by locality and 
interaction epistasis. Arnaldo et al. [25] placed an emphasis on 
the importance of the topology and hence attempted to match 
various island topologies to the problem structure by varying 
the topology at runtime for the first time. However, a drawback 
of this adaptation is that the topology-generating and 
co-evolving processes take a relatively long time and a 
relatively large amount of memory in a normal parallel 
programming environment, such as the message passing 
interface (MPI). To be specific, when the topology has changed, 
the algorithm needs to recalculate, store, and broadcast the 
communicating neighbors for each sub-population in every 
iteration. Hence, this method is inefficient and is seldom 
applied in practice. To reduce the communication overhead and 
improve the exchange dynamics between islands, Tao et al. [46] 
developed an adaptive pre-detection mechanism based on a 
full-mesh topology. This efficiently reduced the 
communication overhead in each iteration and simultaneously 
enhanced the search capability of the PEA developed therein. 

B. The adaptation of PEA with multiple EAs 
As a growing number of EAs have been developed in recent 

years, researchers have integrated multiple EAs in concurrent 
islands to realize parallel hybridization. The earliest memetic 
algorithms were developed based on this idea [47,48]. 
Subsequent representative parallelization work still follows this 
approach, and divides a population into islands in order to apply 
adaptive selection of memes to fine-grained individuals 
[29,49,50]. Although all of the algorithm (or meme) candidates 
act uniformly on each sub-population, tailored PEAs with a 
collaborative use of multiple EAs [30] are also developed for 
certain problems.  

However, the migration policy and the topology are both 
static. Although multiple EAs are collected and the algorithm 
selection strategy for individuals is pre-designed [51–55], most 
of these schemes are unsuitable for a PEA for two reasons. First, 
with conventional parallelism the search capability of a PEA is 
not well maintained compared to its serial counterpart. Second, 
the strategies for both adjusting the action scope of an 
algorithm candidate and the sub-population size will result in 
load imbalance in different processors. With the increased time 
complexity of the PEA, the adjustment of algorithms among the 
sub-populations has not been addressed. 

So far, studies on how to adapt a topology dynamically to 
implement flexible parallel search are very limited. Without a 
suitable algorithm adaptation mechanism for a PEA of multiple 
EAs, algorithms applied to specific problems will result in a lag 
in the search pace and reduce the algorithm efficiency. No 
matter how far the dynamics of the migration policy is explored, 
the search scope and diversity of the PEA are restricted, as the 
efficiency and flexibility of a PEA of multiple algorithms are 
far from fully exerted. 

III. THE PARALLEL TRANSFER EVOLUTION SCHEME 
In this section, we first illustrate a framework of the PTE 

being proposed. Dynamic topological transfer and algorithmic 
transfer are elaborated following this framework. The 
evolutionary states used in the PTE are also analyzed. 

A. Main structure of the PTE 
The basic structure of the PTE is established as shown in Fig. 

1. The execution process consists of three main steps: (1) 
sub-population evolution, (2) topological transfer, and (3) 
algorithmic transfer. 
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Fig. 1 Main structure of the PTE 

(1) Sub-population evolution: This refers to the evolutionary 
operations combined with cdertain local search heuristics for 
producing a new sub-population in each generation. Inspired by 
memetic computing [49][50], the evolutionary operators are 
primarily applied for exploration, while the local search 
heuristics are adopted to exploit better solutions in a randomly 
located local area and therefore enhance the search capability. 

(2) Topological transfer: To minimize the communication 
overhead in each period of exchange, we restrict the number of 
connections among the sub-populations to 1. The topological 
transfer then means to delete the existing connection and create 
a new one between another sub-population pair according to the 
updated evolutionary state. 

(3) Algorithmic transfer: Instead of using an upper-layer 
algorithm selection mechanism on each sub-population, an 
algorithmic transfer is designed to immigrate superior 
evolutionary operator from the dynamic connected neighbor 
along with the individual to be migrated.  

B. Evolutionary states for communication control 
Despite parameter tuning in a single EA or the algorithm 

adjustment in multiple EAs, evolutionary states are of 
significant importance in both performance and evaluation 
control. The most commonly used states for a population 
include the best fitness ever found in the evolution process (BF), 
the number of generations for unchanged best fitness (UN), the 
variance of fitness values (VF), the convergence degree (CD), 
and the distance between two individuals (D). Assume that the 
best, the average and the worst fitness values of a 
sub-population for minimization problem in generation t is 

min ( )f t , ( )f t  and max ( )f t , Fmin and Fmax as the best and the 
worst fitness value that have been found ever by the specific 
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sub-population. Then, the above states can be calculated as 
follow: 

minmin ( )BF f t= ,                        (1) 
2 2

max min max min( ) ( ( ) ( )) ( ( ) ( )) / ( )VF t f t f t f t f t F F δ= − + − − + ,  (2) 

( 1) / ( )CD VF t VF t= − ,                      (3) 
In Eq. (2), δ  is a small number that used to avoid the 

‘division by zero’ error when max minF F= . Among the states, 
VF reflects the diversity of the current population, while UN 
and CD measure the convergence of the search process. The 
larger VF is, the higher the diversity.  

Correspondingly, 1CD ≥  implies that the population is 
gradually converged, and 1CD <  implies an increase in 
diversity. According to CD, only the states of the recent two 
generations are reflected. As a supplement, UN offers another 
perspective on the convergence of the entire evolutionary 
process. Therefore, we define a generation convergence 
measure, GM, as the control state for the following step. It is 
calculated as 

(1 )GM UN CD= + ⋅ .                          (4) 
When BF is updated, 0UN = , and GM represents only the 

diversity of the current generation. Conversely, if 0UN > , then 
GM reflects a convergence degree of the entire iterative 
process. 

It should be noted that there are many other metrics that can 
be used to evaluate the diversity of a population. Therefore, Eq. 
(2) can be replaced by other diversity formula to guide the 
following evolution. 

For simplifying the evolutionary process and reducing the 
communication time, we set only one migrant and apply the 
above states to determine whether the best individual or a 
random one is to be sent out, as illustrated in Algorithm 1. The 
migration policy is that the immigrant is always introduced to 
replace the worst individual in the target sub-population. 
Algorithm 1: Communication preset: 
Step 1 If () 2 / (1 e ) 1GMrand −< + −  
Step 2  Set the best individual as the migrant 
Step 3 Else 
Step 4  Randomly select an individual as the migrant 

In the step of communication preset, GM is saturation-scaled 
by a sigmoid function within the interval (0,1). The smaller GM 
is, the greater the probability is in selecting a diverse individual. 

C. Topological transfer 
Among the typical topologies for PEAs, the ring topology 

has been seen as the most efficient, which can simultaneously 
guarantee a high population diversity and information diffusion 
with the same migration policy [17]. However, it appears that 
only the predominant migrant can produce useful impact on a 
specific sub-population. Other less competitive migrants 
introduced during periodic communication will be replaced 
quickly by the locally generated new individuals. Therefore, 
certain connections are unnecessary. 

Since only the best migrant has a major impact on the search, 
this implies that the removal of other connections has almost no 

negative impact on the solution quality or convergence, and 
still produces a positive impact on acceleration owing to the 
decreased load in model communication. This means that we 
only need to migrate the predominant migrant in each 
communication period to one of the other groups. The 
migration destination can be randomly picked or designated 
using prior knowledge. Based on this analysis, a connection 
transfer mechanism is developed, as illustrated in Fig. 2. 

c+3

c-1

m-1

c+2 m

c+1 1

2

c-2 3

……

……

c

c'+3

c'-1

m-1

c'+2 m

c'+1 1

2

c'-2 3

……

……

c'

 
Fig. 2 Illustration of the connection transfer between sub-population pairs 
Assume there are m sub-populations in total and the c-th 

sub-population holds the best individual obtained thus far till 
the current generation. Borrowing the virtue of ring topology, 
we pick the c-th sub-population as the sender at which to 
generate a single directed connection to one of the remaining 
sub-populations. The receiver is selected in a random ergodic 
manner by simply increase the serial number of the remaining 
sub-populations. 

In the next period of communication, a new sender c’ which 
holds the global best individual and a new receiver whose serial 
number is near the last one are selected. The connection will be 
transferred to the new pair as well. No matter how the position 
of the predominant sender changes, each sub-population can 
communicate with the global best sequentially during a certain 
period of time. The information propagation speed is exactly 
the same as in traditional ring topology, which is m times of 
communication at most. The additional computational load of 
finding the sender to which the most prominent individual 
belongs is taken by the root processor, i.e., the first processor. 
In finding the global best fitness value from m fitness values 
collected from all sub-populations, the additional computation 
complexity is only O(m). More importantly, the 
communication load in each period is reduced to O(m+n), 
where n refers to the dimension of the specific problem. That is, 
only m fitness values and a migrant with n dimensions are 
passed from the transferred connection in each communication 
period. This complexity is much lower than that in 
conventional topologies and other dynamic ones. To better 
understand the topological transfer process, its pseudo-code is 
shown in Algorithm 2. 
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Algorithm 2: Topological transfer 
Step 1 Reduce the fitness value of the best individual xf  in 
each group x to the root processor; 
Step 2 Find the sender ' arg min , [1, ]xc f x m= ∈ ; 
Step 3 Set the receiver as d’ = (d + 1) mod m; 
Step 4 Send the global best individual from the new sender c’ 
to the new receiver d’; 
Step 5 Replace the worst individual by the migrant in d’. 

Here, d and d’ represent the receiver of the last 
communication period and of the current period, respectively. 
It can be initially set as the root processor or a randomly 
selected one. In each period of communication, the receiver is 
changed one by one, as shown by the dashed lines in Fig. 2. 
Algorithm 2 is executed only in the root and the destination 
processors. Others will hand over their best individual to start 
the next generation independently. For maintaining 
synchronization, a communication check in each period of 
communication should be set. 

D. Algorithmic transfer 
Algorithmic transfer is established based on the above 

topological transfer. To record the performance of the 
under-layer evolutionary operators and find the superior one to 
be transferred, we introduce the tabu strategy presented by 
Burke et al. [54] for each sub-population. Assume that there are 
NE evolutionary operators applied in the PTE scheme. In each 
sub-population i, we set a rank list 

{ | [1, ], [1, ]}ik ER i N k N= ∈ ∈iR  and a tabu list  
{ | [1, ], [1, ]}ik ET i N k N= ∈ ∈iT  to record the ranks and states of 

operators in the step of evolutionary state update, as shown in 
Algorithm 3. The operator with the highest rank in the sender 
will be passed accompanied by the emigrant individual to the 
receiver. The receiver can decide autonomously whether to 
apply the immigrant operator and individual or not, as 
demonstrated in Algorithm 4. 
Algorithm 3: Rank record: 
Step 1 For each sub-population i 
Step 2  If iBF  is updated 
Step 3   1ik ikR R= +  
Step 4  Else 
Step 5   1ik ikR R= −  and 1ikT =  
Step 6  If all operators are tabooed 
Step 7   For k = 1 to NE 
Step 8    0ikT =  
Step 9  Set Ei be the one with the highest rank 
                max , [1, ]ik ER k N∈  

Algorithm 4: Evolutionary operator configuration: 
Step 1 For each sub-population i 
Step 2  If the fitness value of Ii is better than iBF  
Step 3 Adopt Oi for the next generation 
Step 4  Else 
Step 5   Adopt Ei for the next generation 

In the pseudo-code of Algorithms 3 and 4, iBF  represents 
the best fitness value of the sub-population i and Ii represents 

the immigrant of the sub-population i. Here, Ii is an 
n-dimensional vector to represent a solution. Oi represents the 
operator with the highest rank in the source sub-population that 
provided the immigrant Ii. 

Different from the strategy in [54], Ei is not directly used in 
the next generation, but sent to the neighboring group in the 
step of communication as Oi. With such a mechanism, the 
sub-populations are capable of exchanging good operators in 
each period and quickly eliminating weak operators for 
different sorts of problems. The selection of the evolutionary 
operators in this way is included in the communication. The 
transformation of only one index number will not increase the 
communication complexity, but will simplify the selection 
process and enhance the search efficiency significantly. 

Following the information exchange, the evolution as 
designed will configure the operators according to both the 
local performance records and the incoming algorithm indices 
for the next generation. The pseudo-code is illustrated in 
Algorithm 4. 

The time complexity of the rank record in steps 1–5 of 
Algorithm 3 is O(1). From step 6 to step 9 of Algorithm 3, the 
computational complexity is ( )EO N  due to the parallel nature 
of sub-population. Additionally, Algorithm 3 uses two extra 
lists with length NE to support the rank. Hence, both the total 
computational complexity and the space complexity of the 
algorithmic transfer including Algorithms 3 and 4 are ( )EO N . 

To further improve the search efficiency of sub-population, 
local search heuristics are introduced in this paper. Local search 
is often used as a complementary component to enhance the 
exploitation of an EA. It is able to bring more neighborhood 
information for each individual to accelerate the evolutionary 
pace of the sub-populations. Without loss of generality, we 
assume that NLS local search heuristics are collected after the 
evolutionary operation. Then, a random permutation-based 
mechanism as displayed in Algorithm 5 is brought to adjust 
several local heuristics for each individual in a sub-population. 
Algorithm 5: Local search heuristic configuration: 
Step 1 For each sub-population i 
Step 2  For each individual j 
Step 3   Get a random permutation Rperm from 1 to NLS 
Step 4   0 ,  1T T k= =  
Step 5   While endT T>  
Step 6    perm[ ]ijLS R k=  
Step 7    Apply the No. LSij operator to individual j 
Step 8    old new( , ) ( , )f i j f i j∆ = −  
Step 9    If 0 || () exp( / )rand T∆ > < ∆  
Step 10     =ij,old ij,newI I  
Step 11    decayT T T= ⋅  
Step 12    If LSk N>  
Step 13     Regenerate Rperm and set 1k =  
Step 14            1k k= +  

In the above pseudo-code, Rperm represents a randomly 
generated permutation and T, T0, and Tdecay represent the current 
annealing temperature, the initial temperature, and the decay 
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rate, respectively. Further, old ( , )f i j  and new ( , )f i j  represent 
the old and new fitness values, respectively, of individual j in 
sub-population i before and after the local search. ij,oldI  and 

ij,newI  represent the old individual j and the new individual j in 
sub-population i before and after the local search. In order to 
promote a short local search time, a small initial temperature 

0 10T =  and fast decay rate decay 0.9T =  are set in this paper. 
Observably, this is a classical random permutation selection 

strategy combined with an annealing rule to control step length. 
There are two reasons for applying such a random strategy. For 
combinatorial optimization, the shape of the solution space is 
usually irregular and even unknown. When we reach a point in 
the solution space, we actually do not know which kinds of 
local search heuristics should be used to search its near range 
without problem-dependent information. More importantly, a 
local search heuristic that is suitable for one point in searching 
its neighborhood may not adaptable for another point because 
they are located in entirely different landscapes. Therefore, 
passing the local search heuristic that performs well in a 
sub-population to its neighbor as well as the evolutionary 
operators seems meaningless. 

Following the two-layer operations, i.e., the evolutionary 
operation and local search operation, the stopping criterion is 
set as either the theoretical optimum is reached or as the 
maximum number of generations is reached, or GM is larger 
than a predetermined threshold GMmax. 

In general, the time complexity of an evolutionary operator is 
dynamically varied with different problems. Let 

iEg  and 
jLSg  

be the complexity of the i-th evolutionary operator and the j-th 
local search heuristic, respectively, the complexity of the 
evolutionary operation be max

iNSg , and the complexity of the 

local search operation be max
iEg . Furthermore, we set the size 

of the sub-populations as Nsub uniformly. The complexity of the 
topological communication is ( )O m n+  and the evolution is 

( max ) ( max )
i iE E sub LS LSO N g O N N g+ + + . Hence, the PTE is 

highly dependent on its operator candidates employed in 
generating new populations. 

It should be noted that local search is not a necessary part in 
the framework of the PTE if the candidate evolutionary 
operators are capable of operating a balanced exploration and 
exploitation. Likewise, the local search heuristics can also be 
replaced by a group of problem-related rules. In short, the PTE 
is more likely a parallel pattern that can be used to integrate 
multiple evolutionary operators and local search heuristics in a 
collaborative form, and that can generate more extendable and 
fast hybrid algorithms. 

IV. EXPERIMENTAL TESTS ON TWO COMBINATORIAL 
OPTIMIZATION PROBLEMS 

In this section, we comprehensively test the performance of 
the PTE on a generic combinatorial optimization problem, the 
job-shop scheduling problem (JSP), which is often seen in the 
manufacturing industry [66]. We also test it on a second generic 

combinatorial optimization problem, the quadratic assignment 
problem (QAP) [72]. 

The JSP is a problem to search for an effective dispatch 
sequence with a minimal machining makespan C. Given n jobs 

1 2, , , nJ J J  of varying sizes, each job consists of a certain 
number of operations, which should be performed by m 
identical machines. Assume that ( , )O i j  is the operation of job 
j processed by machine i, ijp  is the processing time of ( , )O i j , 

ijC  is the completion time of ( , )O i j , and jM  is the set of 
machines by which job j is processed. 

The objective is 
maxMin C                              (5) 

s.t. 

max ijC C≥ , ij ij klC p C− ≥ , 0ij ijC p− ≥ , 
 or ,  , ,j

ij ij kj kj kj ijC p C C p C i k M i k− ≥ − ≥ ∈ ≠ , 
 or ,  ij ij il il il ijC p C C p C j l− ≥ − ≥ ≠ . 

The QAP is a combinational optimization problem in which 
n facilities need to be duly located among n locations. Given a 
set of facilities P and locations L, 1 2( , )c p p  represents the 
commodities of a certain flow between facilities 1p  and 2p , 
and 1 2( , )d l l  represents the distance between locations 1l  and 

2l . Considering a problem of size N, we define a bijective 
function :f P L→ . 

The objective is 

1 2
1 2 1 2,

 ( , ) ( ( ), ( ))
p p P

Min c p p d f p f p
∈

⋅∑ .          (6) 

A. Experimental settings 
To solve a generic, permutation-based combinatorial 

optimization problem, we adopt an integer coding scheme to 
represent solution phenotypes in evolution. The PTE is capable 
of being configured with existing EAs, and 12 such EAs used in 
the scheme are listed in Table 1, with explanations of acronyms 
used hereafter. The learning operator of PSO, CMPSO, and 5 
types of DE algorithms are replaced with the “swap operator” 
and “swap sequence” recommended in [64] to ensure that the 
new real-coded individual is a complete permutation sequence. 
For the same reason, a two-point swapping mechanism is 
applied as the basic operation to HS, ILS, and VNS. 

TABLE 1 Evolutionary algorithm examples used in the PTE 
Abbreviation Evolutionary algorithm 
GA Genetic algorithm [56] with swap sequence and swap operator 
NGA Genetic algorithm with niched strategy [57] 
PSO Particle swarm optimization [58] 
CMPSO Particle swarm optimization with Cauchy mutation [59] 
DE1 Differential evolution with rand/1 mutation [60] 
ILS Iterative local search [61] 
DE2 Differential evolution with best/1 mutation [60] 
DE3 Differential evolution with rand/2 mutation [60] 
HS Harmony search [62] 
DE4 Differential evolution with best/2 mutation [60] 
DE5 Differential evolution with target-to-best/1 mutation [60] 
VNS Variable neighborhood search [63] 

The PTE is designed to be able to utilize the 9 local search 
heuristics reported in [65], which are listed in Table 2. We 
assume that the length of the block in the local search heuristics 
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is no more than n and is also randomly generated within the 
interval [2, n] on every call. The population size in all of these 
experiments is set to 40 and the maximum number of 
generations is set to 1000N , where N is the number of 
variables in the test functions. In comparison, the migration 
period is set to 100. 

TABLE 2 Local search heuristics [65] used in the PTE 
Abbreviation Strategies 
Swap select two points and swap them 
Pre-insert select a point and insert it in the head of the sequence 
Pos-insert select a point and insert it in the tail of the sequence 
Swap-block Exchange two selected blocks in a sequence 
Pre-block-insert Insert a selected block in the head of the sequence 
Pos-block-insert Insert a selected block in the tail of the sequence 
Swap-max/min Swap a point with the maximal or the minimal value 
Rand-circle Exchange two adjacent points with a given probability 

from the beginning to end successively 
Inverse Select a piece of sequence and inverse it 

All the simulations are coded in C++ and tested in a MAC 
OS X environment with a clang and MPI compiler. The 
hardware configuration is based on a 2.3-GHz Intel Core i7 
CPU with 8 GB of 1.6-GHz DDR3 RAM. There are four cores 
in total. All of the tests are run 20 times. The best fitness values, 
the average fitness values, and the search times for each 
problem are recorded and compared with the best-known 
solutions (BKSs). 

B. Results and discussions in solving the JSP and the QAP 
The results of the PTE for the JSP benchmark instances (i.e. 

LA21-LA40) are summarized in the boxplots as shown in Fig. 3. 
For the 5 simple instances (LA23, LA31-LA33, and LA35) 
shown in Fig. 3(a), the speed-up from 2 processors to 4 
processors is significant, although the speed-up from 4 

processors to 16 processors is less significant. For the rest 15 
harder instances, the speed-up is well observed in Figs. 3(b). 
Overall, with the increase of the processor number, the decision 
times of the PTE are nearly linearly reduced. 

 
(a)                                                    (b) 

Fig. 3 Boxplots corresponding to the CPU times (s) of the PTE on two 
groups of JSP instances, (a) PTE on LA23, LA31–LA33, and LA35, and (b) 
PTE on LA21, LA22, LA24–LA30, LA34, and LA36–LA40. 

To compare the efficiency of the topological transfer and 
algorithmic transfer, the PEA with a ring topology and a 
random algorithm selection mechanism in each sub-population 
is tested and termed a Ring-PEA in this paper. The Ring-PEA is 
a typical parallel scheme without a topology configuration or an 
algorithm configuration. Similarly, the PEA with only 
topological transfer and random selection of the evolutionary 
operators in sub-population is also tested and termed a 
PTE/AT. 

 
TABLE 3 COMPARISON OF THE RING-PEA, PTE/AT, AND PTE IN SOLVING THE JSP (20 RUNS) 

Best 
Time (s) 

Ring-PEA PTE/AT PTE 
2 4 8 16 2 4 8 16 2 4 8 16 

LA21 1113 
95.1284 

1111 
62.0936 

1074 
43.2733 

1097 
50.6899 

1087 
82.2437 

1079 
53.0961 

1073 
18.3006 

1070 
33.9262 

1046 
50.8246 

1046 
42.8212 

1046 
34.1372 

1046 
32.5141 

LA22 962 
64.3132 

945 
60.0469 

942 
42.4670 

953 
45.8086 

941 
58.3960 

932 
51.5039 

935 
41.4189 

939 
28.1890 

935 
53.1203 

927 
45.5661 

927 
40.2871 

932 
37.3018 

LA23 1038 
50.0005 

1044 
64.1751 

1032 
17.5194 

1051 
52.2266 

1032 
45.4322 

1032 
17.0080 

1032 
9.3262 

1032 
10.8048 

1032 
11.2068 

1032 
8.0023 

1032 
6.8349 

1032 
5.7106 

LA24 998 
72.3252 

984 
55.6767 

1006 
46.1206 

1002 
42.1305 

967 
64.7975 

991 
49.3416 

991 
55.2058 

985 
38.5012 

939 
59.7715 

935 
45.7829 

935 
40.0118 

940 
34.5910 

LA25 1028 
78.3462 

1053 
64.1038 

1029 
50.9584 

991 
101.963 

1025 
68.9161 

1022 
52.0715 

986 
54.2061 

1004 
39.2465 

984 
66.3077 

977 
56.0303 

977 
48.3889 

986 
38.8948 

LA26 1282 
136.123 

1239 
91.8122 

1250 
82.8408 

1218 
68.8742 

1261 
90.2576 

1218 
81.9801 

1221 
69.3567 

1247 
55.4596 

1218 
96.7305 

1218 
86.5698 

1218 
68.1117 

1218 
55.7823 

LA27 1312 
207.838 

1342 
122.413 

1286 
103.432 

1286 
88.7586 

1313 
89.4123 

1296 
55.5565 

1281 
53.9323 

1292 
30.0097 

1256 
103.781 

1249 
85.1423 

1249 
78.8039 

1256 
66.2894 

LA28 1300 
133.143 

1289 
98.4433 

1276 
74.4165 

1285 
66.7367 

1289 
90.9272 

1233 
79.263 

1260 
62.9837 

1260 
29.4939 

1232 
105.883 

1216 
86.4273 

1222 
76.6387 

1235 
63.9851 

LA29 1274 
175.0565 

1261 
138.516 

1233 
135.700 

1250 
92.6267 

1246 
82.0519 

1240 
62.2127 

1233 
32.5237 

1245 
25.9899 

1216 
86.6730 

1210 
67.9818 

1210 
58.7412 

1215 
54.9975 

LA30 1408 
87.6503 

1391 
83.8414 

1392 
80.4635 

1356 
56.0052 

1391 
62.1359 

1387 
36.0310 

1355 
37.3242 

1367 
25.1080 

1355 
53.6943 

1355 
45.8109 

1355 
30.7131 

1355 
23.4347 

LA31 1784 
46.4500 

1784 
39.1031 

1784 
23.4566 

1784 
26.8770 

1784 
22.4226 

1784 
16.2061 

1784 
15.9824 

1784 
9.2351 

1784 
12.9699 

1784 
10.5546 

1784 
7.0003 

1784 
5.8920 

LA32 1850 
104.114 

1850 
45.9913 

1850 
28.9017 

1850 
49.4104 

1850 
38.2363 

1850 
28.9859 

1850 
18.4508 

1850 
12.8825 

1850 
14.3852 

1850 
10.6065 

1850 
8.2136 

1850 
5.3321 

LA33 1719 
89.3159 

1719 
41.9318 

1719 
33.8317 

1719 
34.6119 

1719 
21.9266 

1719 
18.9948 

1719 
8.1248 

1719 
6.3302 

1719 
12.0076 

1719 
9.4833 

1719 
6.7910 

1719 
4.9963 

LA34 1721 
175.595 

1721 
165.773 

1721 
74.0150 

1721 
85.3784 

1721 
54.8783 

1721 
57.0182 

1721 
40.6377 

1721 
29.9956 

1721 
48.4446 

1721 
27.3473 

1721 
25.6408 

1721 
22.8219 

LA35 1888 
56.2926 

1888 
34.5302 

1888 
35.9220 

1888 
30.3115 

1888 
19.5839 

1888 
20.5997 

1888 
16.8295 

1888 
15.7469 

1888 
15.0536 

1888 
12.2713 

1888 
7.0639 

1888 
6.0064 

LA36 1378 
139.8962 

1349 
81.2775 

1319 
70.2488 

1298 
64.4265 

1315 
95.9613 

1300 
58.4591 

1296 
45.9586 

1316 
33.6278 

1296 
100.983 

1268 
66.5589 

1268 
52.2995 

1296 
41.3735 

LA37 1496 
103.956 

1473 
92.1454 

1463 
64.533 

1469 
51.6995 

1493 
65.4058 

1471 
45.6660 

1471 
46.9057 

1470 
40.3616 

1434 
94.4580 

1422 
67.6901 

1422 
60.1195 

1434 
49.8878 
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LA38 1311 
150.018 

1297 
93.6981 

1297 
80.0434 

1287 
80.0374 

1312 
93.2303 

1289 
70.0681 

1268 
65.9753 

1270 
43.0126 

1237 
103.881 

1237 
77.1148 

1222 
68.3370 

1237 
61.8856 

LA39 1358 
126.519 

1311 
98.8735 

1287 
80.7876 

1311 
67.3212 

1267 
71.869 

1266 
44.8561 

1256 
38.2662 

1279 
26.4701 

1252 
98.7793 

1248 
76.5589 

1252 
66.3664 

1257 
53.6549 

LA40 1288 
105.828 

1297 
82.0641 

1297 
91.2737 

1287 
80.6748 

1280 
93.2163 

1258 
71.5151 

1259 
72.5371 

1255 
60.2887 

1244 
102.378 

1233 
80.9734 

1244 
65.7741 

1244 
50.8519 

P of W-test 0.000 0.0 00 0.000 0.0 00 0.001 0.015 0.009 0.017 - - - - 
In addition, the local search heuristics with a random 

selection strategy (shown in Algorithm 5) are applied in both 
the Ring-PEA and the PTE/AT to make sure that they are tested 
under the same conditions as the PTE. The best results and 
average search times of the Ring-PEA, PTE/AT, and PTE on 20 
JSP instances (i.e., LA21–LA40) are shown in Table 3. The 
boldface in the table indicates that the best known solution is 
found within a specific time. 
TABLE 5 COMPARISON OF WILCOXON-TEST RESULTS OF THE PTE RELATIVE TO 

6 AD HOC EAS IN SOLVING THE JSP 

PTE 
vs 

Nowicki et 
al. (1996) 

[66] 

Goncalves 
et al. (2005) 

[67] 

Aiex et al. 
(2003) [68] 

Binato et 
al. (2002) 

[69] 

Sha et al. 
(2006) [70] 

 0.004 0.069 0.415 0 0.003 
 0.042 0.563 0.219 0 0.028 
 0.021 0.476 0.261 0 0.018 
 0.003 0.065 0.374 0 0.003 
The performance of the Ring-PEA is seen as the worst. Only 

the 6 simplest instances (LA26 and LA31–LA35) are well 
solved with the best known solution (i.e. BKS). When the 
topological transfer is implemented, the PTE/AT performs 

much better than the original Ring-PEA. As observed in Table 
3, 9 instances are solved with BKS by the PTE/AT. Its search 
times with two parallel processors are decreased to 19.5839 and 
95.9613 s. As the number of processors continues to increase, 
the CPU times are further reduced to 6.3302 s at most. 

When the algorithmic transfer is implemented, the 
performance of the PTE is further enhanced. 16 instances are 
well solved by the PTE within the BKS. As the number of 
processors increases further, the CPU times are reduced to 
66.2894 s at least and 4.9963 s at most. To examine the 
differences between the other PEAs and the PTE, pair-wise 
Wilcoxon-tests (abbreviated as W-tests) are carried out at a 
significant level of 0.05α = . The statistical test results of each 
kind of PEA are compared in a pairwise manner with those 
obtained by the PTE with the same processor number and are 
listed in the last two rows of Table 3. With 95% confidence, the 
PTE performs better than the Ring-PEA and PTE/AT. 

TABLE 4 SOLUTION CONSISTENCY OF THE PTE WITH PARALLEL PROCESSORS  COMPARED TO 6 AD HOC EAS IN SOLVING THE JSP (20 RUNS) 

 BKS 

Nowicki 
et al. 

(1996) 
[66] 

Goncalves 
et al. 

(2005) 
[67] 

Aiex et al. 
(2003) 
[68] 

Binato et 
al. (2002) 

[69] 

Sha et al. 
(2006) 
[70] 

Zhang et 
al. (2013) 

[71] 

PTE 

2 4 8 16 

LA21 1046 1047 1046 1057 1091 1046 1049 1046 1046 1046 1046 
LA22 927 927 935 927 960 927 - 935 927 927 932 
LA23 1032 1032 1032 1032 1032 1032 - 1032 1032 1032 1032 
LA24 935 939 953 954 978 935 940 939 935 935 940 
LA25 977 977 986 984 1028 977 982 984 977 977 986 
LA26 1218 1218 1218 1218 1271 1218 - 1218 1218 1218 1218 
LA27 1235 1236 1256 1269 1320 1235 1243 1256 1249 1249 1256 
LA28 1216 1216 1232 1225 1293 1216 - 1232 1216 1222 1235 
LA29 1157 1160 1196 1203 1293 1163 1180 1216 1210 1210 1215 
LA30 1355 1355 1355 1355 1368 1355 - 1355 1355 1355 1355 
LA31 1784 1784 1784 1784 1784 1784 - 1784 1784 1784 1784 
LA32 1850 1850 1850 1850 1850 1850 - 1850 1850 1850 1850 
LA33 1719 1719 1719 1719 1719 1719 - 1719 1719 1719 1719 
LA34 1721 1721 1721 1721 1721 1721 - 1721 1721 1721 1721 
LA35 1888 1888 1888 1888 1888 1888 - 1888 1888 1888 1888 
LA36 1268 1268 1279 1287 1334 1268 1274 1296 1268 1268 1296 
LA37 1397 1407 1408 1410 1457 1397 1408 1434 1422 1422 1434 
LA38 1196 1196 1219 1218 1267 1196 1196 1237 1237 1222 1237 
LA39 1233 1233 1246 1248 1290 1233 1238 1252 1248 1252 1257 
LA40 1222 1229 1241 1244 1259 1224 1233 1244 1233 1244 1244 
Moreover, the performance of the PTE is further analyzed 

and compared with 6 EAs developed elsewhere specifically for 
the JSP. The experimental results, pairwise Wilcoxon-tests 
carried out on the 6 ad hoc EAs and PTE are shown in Tables 
4–6, respectively. When the processors are set to two, the PTE 
does not perform well. However, as the number of processors 
increases, the solution quality is substantially enhanced. When 

the number of processors is 4 or 8, the PTE is better than the 
EAs proposed by Nowicki et al. [65] and by Binato et al. [68], 
with 95% confidence ( 0.05α = ), similar to the EAs proposed 
by Goncalves et al. [66] and by Aiex et al. [67], although not as 
good as the EA proposed by Sha et al. [69]. With only a group 
of basic operators, the search time of the PTE is 10 times 
shorter than the others, as shown in Table 6. 

TABLE 6 TIMES (IN S) TAKEN BY THE PTE COMPARED TO 6 AD HOC EAS IN SOLVING THE JSP 

Problem 
Nowicki et 
al. (1996) 

[66] 

Goncalves et 
al. (2005) 

[67] 

Aiex et al. 
(2003) 

[68] 

Binato et 
al. (2002) 

[69] 

Sha et al. 
(2006) 

[70] 

Zhang et 
al. (2013) 

[71] 

PTE 

2 4 8 16 

LA21-25 - 602 - - 295 - 49.75 39.4011 33.7274 29.0959 
LA26-30 - 1303 - - 579 - 90.2606 74.8469 62.6559 52.9083 
LA31-35 - 3691 - - 1462 - 20.5722 14.0526 10.9419 9.0097 
LA36-40 - 1920 - - 471 - 100.0959 73.7792 62.5793 51.5307 
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When the number of processors increases, the solution 
quality in small-scale cases is fully maintained with a 
reduced CPU time. For large-scale cases, the solution quality 
first rises and then falls. In particular, a sub-population of 
fewer individuals does not necessarily lead to an accuracy 
loss while improving the search performance. For all 
instances, when the processor number is increased from 2 to 
8, the search precision of the PTE improves constantly. 
When the number of processors is further increased to 16, 
the search precision bounces back, but is still well 
maintained. 

In summary, the PTE performs the best when the 
processor number is 4 or 8 on a quad-core PC. As the number 
of islands increases, the transfer scheme automatically come 
into effect. The more processors are allowed, the more 
dynamic the search procedure becomes. However, with a 
fixed population size (i.e., 40) in the experiments, only two 
individuals are left in each island when the processor number 
increases to 16, and, hence, the search capability of each 
sub-population is reduced. 

TABLE 7 COMPARISON OF RING-PEA, PTE/AT, AND THE PTE IN SOLVING THE QAP (20 RUNS) 
 Ring-PEA PTE/AT PTE 

2 4 8 16 2 4 8 16 2 4 8 16 

tai20a 727364 
24.6509 

723784 
9.0214 

718186 
6.2282 

726538 
4.3471 

 710926 
16.4254 

709874 
7.1748 

710878 
4.4127 

714344 
2.7793 

703428 
4.7438 

703428 
4.2874 

703428 
2.8354 

703428 
2.9927 

tai30a 1897942 
22.0127 

1874605 
11.4434 

1873775 
13.8688 

1882734 
8.7986 

1865652 
18.1725 

1855449 
14.2919 

1849745 
11.7346 

1845521 
5.9932 

1829732 
6.3922 

1821056 
4.7536 

1823521 
4.5312 

1825967 
5.3304 

tai40a 3250393 
30.4285 

3249185 
18.2784 

3229880 
14.7997 

3238796 
11.9469 

3245172 
16.1815 

3444240 
14.7448 

3221913 
12.7171 

3231247 
7.9684 

3245517 
6.8449 

3206459 
5.7087 

3218664 
4.9339 

3229871 
5.0891 

tai50a 5105137 
82.4618 

5096802 
53.8743 

5092834 
45.2217 

5121268 
29.7112 

5094182 
72.1527 

5091133 
45.272 

5092607 
38.2201 

5104653 
21.7837 

5054377 
18.8471 

5043459 
12.3823 

5043166 
11.8429 

5046897 
14.4364 

tai60a 7509121 
126.237 

7471640 
81.0541 

7443125 
76.2499 

7490329 
42.2345 

7451748 
101.234 

7418543 
57.4519 

7431658 
44.9596 

7450792 
20.0815 

7401193 
27.1386 

7387519 
23.8925 

7389182 
22.3276 

7390278 
19.2474 

tai80a 13993058 
215.733 

13970413 
103.851 

13821857 
88.2193 

13801963 
79.1816 

13945345 
175.521 

13947566 
77.2492 

13804047 
65.7479 

13804269 
35.1161 

13708571 
89.0165 

13614458 
59.3624 

13632845 
54.4672 

13636457 
29.7950 

tai100a 21866427 
317.507 

21724890 
218.811 

21681753 
223.478 

21658299 
193.671 

21684735 
215.974 

21622438 
156.848 

21652433 
111.855 

21630649 
88.1446 

21623739 
184.399 

21497643 
130.389 

21571329 
114.457 

21595571 
97.1206 

W-test 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 - - - - 
The experimental results of the Ring-PEA, the PTE/AT, and 

the PTE on 7 hard instances of the QAP are shown in Table 7. 
Here the best solutions obtained the twelve experiments and the 
p-values which are less than 0.05 in the statistical tests are 
shown in bold. With only topological transfer, the PTE/AT 
performs much better than the Ring-PEA in both solution 
quality and search time. After implementing the algorithmic 
transfer, the search time and capability of the PTE are further 
enhanced. This is mainly because suitable operators can be 
broadcasted to all sub-populations faster. Better operators are 
able to make the evolution more efficient, accelerate the 
convergence process, and shorten the search time. Further, 
pairwise W-tests are also carried out and illustrated in the last 
two rows of Table 7. The statistical differences between the 
two-PEAs and the PTE are significant, with 95% confidence 
( 0.05α = ). 

 
(a)                                                 (b) 

Fig. 4 Boxplots corresponding to the CPU times (s) of the PTE on two groups of 
QAP instances, (a) tai12a, tai12b, tai15a, tai15b, tai17a, tai20a, tai30a, tai40a, 
and tai50a, and (b) tai64c, tai60a, tai80a, tai100a, wil50, and wil100. 

Because most of the algorithms existing in the literature for 
the QAP are evaluated by using the average percent deviation 
(APD) as a metric [72–75], we also present a list of the APD 
results obtained by the PTE in Table 8. 

As shown in Table 8, the optimum solutions of the small 

instances, tai20a, tai30a, tai40a, and tai50a, are obtained within 
15 s. For the remaining larger-scale instances, sub-optimal 
solutions are obtained in no more than 130.389 s when the 
processor number is two and at most 97.1206 s when the 
processor number reaches 16. The errors between these results 
and the theoretical solution are no more than 0.034. 

TABLE 8 AVERAGE PERCENT DEVIATIONS OF THE QAP BY THE PTE 

QAP BKS PTE 
2 4 8 16 

Tai20a 703428 0.000 0.000 0.000 0.000 
Tai30a 1818146 0.006 0.002 0.003 0.004 
Tai40a 3139370 0.034 0.021 0.025 0.029 
Tai50a 4938796 0.023 0.021 0.021 0.022 
Tai60b 7205962 0.027 0.025 0.025 0.026 
Tai80b 13499184 0.015 0.008 0.010 0.010 
Tai100a 21052466 0.027 0.021 0.025 0.026 

Viewing the experimental results for both the JSP and QAP, 
it can be seen that the PTE maintains a good performance for 
different problems. It requires neither reconfiguration of 
algorithms and the parallel connections nor prior information or 
domain knowledge of the problem. In summary, the PTE has 
offered a high speed, scalable speed-up, good precision, and 
great robustness of optimization in solving the above two 
different complex problems. 

V. VIRTUAL CHANNEL SCHEDULING CASE STUDY 
In this section, we apply the PTE to a practical engineering 

problem, the virtual channel scheduling (VCS) problem, as a 
case study in communication systems. 

A. Virtual channel scheduling problem 
The VCS problem is detailed and modeled in [76], which is a 

complex NP-hard problem. It refers to scheduling various sorts 
of virtual channel (VC) services in different time slots. The 
target of VCS is to maintain stable and fast transmission by 
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maximizing throughput and minimizing delay time, jitter, and 
loss packet rate. Different characteristics of VC services and 
multiple quality of service (QoS) requirements make it much 
more complex than a generic scheduling problem. Assume that 

( )k
in  is the decision variable to denote whether VCi is scheduled 

in the kth time slot, M the number of time slots, l the number of 
VCs, and C the data transmission rate for a downlink. The 
objective function and constraints of VCS can be represented as 
follows: 

1 1

1 2
1 0

Max ( ) ( )
l l

i i
i i i i

i i
w Throughput n w Loss n

− −

= =

⋅ − ⋅∑ ∑       (7) 
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1
1

l
k

i
i
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01
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C n M B
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⋅ =∑ , ( ) ,  if  2,3i i iJitter n Jit i≤ =  

( ) ,  if  0, 2,3i i iDelay n Del i≤ = ( )
1

/ 1.4 ,  if  1, 2M k
i i ik

B C n M B i
=

≤ ⋅ ≤ =∑ . 
 

TABLE 9 COMPARISON BETWEEN VARIOUS IMPLEMENTATIONS OF THE PEAS IN THE VCS APPLICATION 
500  Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT PTE 
2 Best 113.765 116.165 115.176 117.311 114.499 114.929 117.356 
 Avg 110.998 114.659 114.385 115.181 111.445 113.891 117.169 
 Time (s) 27.599 28.1989 18.5247 24.9852 16.7536 14.5672 17.1838 
4 Best 116.896 117.213 115.033 117.439 117.054 117.173 117.489 
 Avg 115.910 116.606 113.49 115.828 115.374 115.73 117.373 
 Time (s) 14.2695 16.8463 15.718 14.0113 14.9735 13.8726 10.8517 
8 Best 116.52 117.114 115.927 116.461 117.252 117.41 117.588 
 Avg 114.891 115.571 115.473 114.07 116.79 116.244 117.335 
 Time (s) 12.7416 15.1329 13.83 8.5304 13.7529 8.4920 8.1612 
16 Best 115.67 117.331 116.303 117.331 116.758 116.798 117.390 
 Avg 115.552 115.769 114.682 115.788 115.849 115.636 117.234 
 Time (s) 10.1887 17.9764 12.4829 8.9190 11.2249 11.2322 7.6419 
1000  Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT PTE 
2 Best 117.853 115.878 117.963 117.811 117.143 118.626 120.277 
 Avg 115.851 114.556 116.282 115.948 116.301 116.45 119.557 
 Time (s) 37.0390 41.5085 35.3106 44.2789 53.0654 37.2425 43.2352 
4 Best 118.655 119.397 118.903 118.189 119.199 118.309 120.413 
 Avg 117.747 117.109 117.205 117.786 118.025 117.568 119.949 
 Time (s) 29.3923 33.6408 26.9667 32.6701 21.7468 21.6442 20.5146 
8 Best 118.685 118.470 119.192 118.29 119.409 118.767 120.524 
 Avg 116.728 115.505 117.319 116.853 117.888 117.644 120.005 
 Time (s) 22.4295 22.7115 16.3728 38.5605 23.7505 21.6442 16.8335 
16 Best 117.643 117.768 117.359 117.815 118.08 118.69 120.193 
 Avg 115.876 115.152 116.291 114.628 116.921 116.472 119.831 
 Time (s) 29.454 28.3161 21.1185 26.5072 25.6297 23.0913 15.9788 
1500  Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT PTE 
2 Best 116.135 113.722 114.754 118.324 118.163 116.878 119.524 
 Avg 113.765 112.785 111.872 115.128 116.351 114.208 118.591 
 Time (s) 90.006 85.7479 92.603 91.8577 91.272 71.7323 46.1519 
4 Best 119.695 118.918 117.930 119.508 119.728 118.838 119.927 
 Avg 118.637 117.301 116.944 113.879 118.641 117.692 119.781 
 Time (s) 50.3336 65.836 77.8648 62.0776 65.644 42.2182 34.6408 
8 Best 116.53 115.976 118.695 118.850 119.53 117.418 120.117 
 Avg 106.474 114.591 116.359 116.641 117.962 116.587 119.627 
 Time (s) 43.6652 58.8007 49.0954 55.4981 60.7339 27.6428 25.8103 
16 Best 117.57 116.003 116.700 117.821 118.805 116.263 119.679 
 Avg 115.585 115.497 112.063 115.205 115.155 115.776 119.306 
 Time (s) 43.2569 40.1273 58.226 46.417 62.9013 34.0557 22.4259 

In the above formulation, iDel , iJit , and iB  are the 
maximum delay time, maximum jitter, and maximum 
bandwidth of VCi, respectively. The delay ( ( )i iDelay n ), jitter 
( ( )i iJitter n ), throughput ( ( )i iThroughput n ), loss packet rate 
( ( )i iLoss n ), and weights ( 1

iw  and 2
iw ) are calculated as in [76]. 

The variables ( )k
in  can be mapped as a permutation within the 

interval [0,l]. Each number in the permutation denotes the 
virtual channel to be scheduled in a current time slot. All the 
initial settings of VCS in our experiments are the same as in 
[76]. For testing the problem in different scales, 500, 1000, and 
1500 time slots are set as three different cases. The more time 
slots that are used, the smaller they are, and hence the higher the 
precision that is expected. 

B. Algorithmic settings 
In this application, the PTE is tested with 5 typical topologies, 

i.e., single-sided ring, double-sided ring, single-sided mesh, 
double-sided mesh, and full mesh topologies. For uniformity, 
the local search operators in accordance with Algorithm 5 are 
applied in all of the PEAs. Without loss of generality, the 
population size of the EAs is set to 40 and the maximum 
number of generations is set to 1000N . Then, a group of tests 
based on three scales of VCS are carried out to compare 
different parallel methods to the PTE. To analyze the influences 
of algorithmic parameters on VCS optimization, the migration 
period and the threshold GMmax are studied in this subsection. 

C. PTE performance and topology comparison 
The results of the 5 classical topologies compared to the 

PTE/AT and the PTE are shown in Tables 9 and 10. With 
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different problem scales and characteristics, the performance of 
these classical topologies change as well, and these changes are 
usually inconsistent. The PTE always finds better solutions and 
takes much shorter search time. It offers a significant speed-up 
without precision loss while the processor number increases, as 

shown in Fig. 5. When the number of processors increases from 
2 to 4, the execution time of the PTE is reduced by almost half. 
When the number of processors continues to increase, the time 
is slightly reduced due to sharing of computing cores among 
different processors. 

TABLE 10 COMPARISON OF THE W-TEST AMONG VARIOUS IMPLEMENTATIONS OF THE PEAS FOR VCS 
PTE vs  Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT 

Time (s) W-test 0 0 0 0 0 0 
W-test 0.008 0.003 0.019 0.002 0.003 0.034 

The best average times for the cases of 500, 1000, and 1500 
time slots are 7.6419, 15.9788, and 22.4259 s, respectively. 
Compared to the other 6 PEAs under the same conditions, the 
PTE is up to 3 times faster. 

Without changing any part of the algorithm, the PTE is seen 
as capable of performing well not only in the benchmark tests, 
but also in solving a practical problem in diverse circumstances. 
Offering a shortened search time in both small-and large-scale 
problems, the search capability of the PTE is well maintained at 
a high level. 

 
Fig. 5 Speed-up of the PTE on solving the VCS with three scales 

D. Parameter tuning of the PTE in VCS 
In this subsection, we discuss the performance of the PTE 

with varied communication periods and different GMmax values. 
First, we vary the communication period from 10 to 300 and 
test the search capability of, and times taken by, the PTE with 2, 
4, 8, and 16 processors. The average fitness values and solution 
times are presented in Fig. 6. 

Regarding the average fitness values, we notice that the 
solution quality ascends during periods 10 to 100 and descends 
as the period continues to increase. With the increase in 
processor number, the peak values move higher, i.e., the PEA 
with more sub-populations requires a shorter communication 
period. In contrast, a long communication period is better for 
the PEA with fewer sub-populations to maintain balanced 
search states. When the processor number of the PTE is altered, 
the performance trend appears to be the same as that in the three 
benchmark tests. 

On the search time, we observe from Fig. 6 that the 
performance of the PTE reaches the best level when the 
communication period is set as 100. The performance trends in 
all three cases for VCS are similar. When the communication 
period is lower than 200, its search time in each case decreases 
with an increasing number of processors. When this number 
grows, exchanges are delayed. As a result, the convergence 
speed lowers, especially for 16 processors, where there are only 
two individuals left in each sub-population. 

In view of both search quality and search time, we observe 
that when the communication period is in the range [50,100], 

the performance of the PTE is in a very good state. While the 
processor number continues to increase, a shorter period may 
help accelerate the exchanges among the sub-populations so as 
to promote those at a slow evolutionary pace. 

 
(a) 500 time slots 

 
(b) 1000 time slots 

 
(c) 1500 time slots 

Fig. 6 Average results and search times of the PTE with different 
communication periods for three VCS cases 

Subsequently, we fix the communication period to 100 and 
change GMmax from 10 to 100 to test the search capability of, 
and the times taken by, the PTE with 2, 4, 8, and 16 processors. 
The average fitness values and average solution times for the 
three instances are illustrated in Fig. 7. 

Because GMmax is one of the stopping criteria, the smaller 
GMmax is, the quicker the program terminates. From Fig. 7, we 
observe that when GMmax is 10, the PTE performs the worst. 
According to Algorithm 1, a small GMmax will bring about 
many randomly selected migrants and make the evolution 
process terminate earlier. If GMmax is set to 50, the search 
performance is markedly improved and acceptable. 
Nevertheless, when it is further increased, the performance 
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slightly degrades. When GMmax is set to 100, for example, 
almost no random migrant is selected for communication, and 
the current best solution will be transformed again and again in 
an early stage. Comparing this to the case GMmax=50, the search 
time becomes prolonged, and a frequent transformation of the 
current best solution is reduced to some extent. 

 
(a) 500 time slots 

 
(b) 1000 time slots 

 
 (c) 1500 time slots 

Fig. 7 Solutions and search times of the PTE with different GMmax values in 
solving three VCS cases 

It is noted that for all of the PEAs in the above experiments 
that, as the number of processors increases from 8 to 16, the 
search time of every PEA does not decrease distinctly. This is 
mainly because of the limited population size (which is set as 
40 in all of the above experiments) and the limited hardware 
resource adopted in the experiments. 8 or 16 processors are 
compressed into 4 cores to execute with resource preemption so 
as to slightly slow down the processing speed that the algorithm 
should have. However, this does not mean that the performance 
of the proposed method is limited to 8 processors in parallel. It 
is fully extendable to larger population size with more hardware 
cores. Theoretically, the increase of individuals in a population 
will only increase the search scope so as to improve the solution 
quality. If more hardware resources can be adopted for more 
sub-populations, the diversity of the entire evolutionary process 
will be largely enhanced. Therefore, more cores and more 
population will only benefit the performance of a PEA, but not 
limit its evolutionary efficiency. 

In short, the PTE is designed as a scheme to expand the 
existing evolutionary operators in a highly flexible parallel way 

and make them faster and more adaptable in solving different 
sorts of combinatorial optimization problems. 

VI. CONCLUSIONS 
The focus of this paper has been to establish a parallel 

transfer scheme to structure parallel evolutionary algorithms 
flexibly to handle a wider range of real-world optimization 
problems. Using a group of classical evolutionary operators and 
local search heuristics, we have demonstrated both the 
communication connection and the evolutionary operator in 
PTE are able to transfer through sub-population pairs and thus 
to improve PEA performance. The PTE enables efficient 
collaboration among sub-populations with minimal 
communication.  

To test the performance of the PTE in solving combinatorial 
optimization problems, comprehensive experiments have been 
carried out on the generic JSP and QAP problems, as well as by 
applying PTE to a practical VCS problem. In most cases, the 
PTE has outperformed other EAs and PEAs, especially in 
search speed and quality. Furthermore, the speed-up on the 
parallelism is approximately linear, while degradation of 
solution accuracy is avoided. 

Both the topological transfer and algorithmic transfer are 
applicable not only to combinatorial optimization problems, 
but also to continuous or non-permutated complex problems. 
Classical evolutionary operators and local search heuristics can 
both be replaced by other subroutines directly to configure and 
form a new algorithm. Therefore, we are motivated to apply the 
PTE scheme to more practical domain following extended 
comparisons between the parallel hyper-heuristic based 
evolutionary algorithms and the PTE. It is expected that this 
scheme is capable of solving not only single-objective, but also 
multi-objective, optimization problems for engineering 
practices and in changing environments. 
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