
 1

Abstract—Parallelization of an evolutionary algorithm takes
the advantage of modular population division and information
exchange among multiple processors. However, existing parallel
evolutionary algorithms (PEAs) are rather ad hoc and lack a
capability of adapting to the problem or platform environments.
To accommodate a wider range of problems and to reduce
algorithm design costs, this paper develops a parallel transfer
evolution (PTE) scheme. This is based on the island-model of
parallel algorithms and, for improving performance, transfers
both the connections and the evolutionary operators from one
sub-population pair to another adaptively. Needing no extra
upper selection strategy, each sub-population becomes
autonomously able to select evolutionary operators and local
search operators as subroutines according to both the
sub-population’s own and the connected neighbor’s ranking
boards dynamically. The PTE scheme is tested on two typical
combinatorial optimization problems in comparison with six
existing ad hoc parallel evolutionary algorithms, and is also
applied to a real-world case study in comparison with five typical
parallel evolutionary algorithms. The tests show that the PTE
scheme and the resultant PEA offer high flexibility in dealing with
a wider range of combinatorial optimization problems without
algorithmic modification or redesign. Both the topological
transfer and the algorithmic transfer are seen applicable not only
to combinatorial optimization problems, but also to continuous or
non-permutated complex problems.1

Index Terms—Evolutionary computation, combinatorial
optimization, parallel algorithm, topological design, algorithmic
adaptation

I. INTRODUCTION
EAL-world non-deterministic polynomial-time hard
(NP-hard) optimization problems are becoming more

complex to solve and are presenting more challenges to
evolutionary algorithms (EAs). An EA mimics natural
evolution with a population in generational iterations to search
for feasible and optimal solutions to NP-hard problems [1]. In
dealing with these problems, parallel evolutionary algorithms
(PEAs) have become increasingly popular [2]. Intuitive
parallelism is to divide the EA population into a number of
sub-populations and map them onto multiple processors that
work concurrently. It partitions the potential solution space,
enhances global search for multi-peak problems, and gives
more room to maneuver for algorithm hybridization. So far,

Yuanjun Laili and Lin Zhang are with the School of Automation Science

and Electrical Engineering, Beihang University, Beijing, 100191, China.
(e-mail: llyj0721@gmail.com, zhanglin@buaa.edu.cn).

Yun Li is with School of Computer Science and Technology, Dongguan
University of Technology, Dongguan, 523828, China, and with Faculty of
Engineering, University of Strathclyde, Glasgow, G1 1XJ, U.K. (e-mail:
Yun.Li@ieee.org).

Lin Zhang and Yun Li are the corresponding authors.

PEAs have seen many successes in solving complex
optimization problems [3,4].

In recent years, three main models of PEAs have been
reported as design bases. These models are the master-slave
model, the island model, and the diffusion model [5].
Meanwhile, hierarchical hybrid models combining one or more
of these models have also been reported for certain special
cases. Owing to the widespread use of multi-core computers
and clusters, the island model [6–8] has become the most
common, in which each sub-population evolves in an
independent processor as an “island.” The “islanders” interact
periodically via individual migration, in accordance with a
pre-defined topology. The resultant communication overheads
are generally lower than in the master-slave and the diffusion
models [9,10].

Owing to the structure of the island model, the migration
policy and island topology are the most critical elements in
determining the efficiency of the PEA.

The migration policy controls the migration frequency, the
migration rate, the number of migrating individuals, the
individual replacement rule, and the synchronization of the
sub-populations [1,11]. Much research and many experiments
have been reported on designing a migration policy in various
scenarios, where certain offline schemes [3,12,13] and online
strategies [14–16] are established not only to set the migration
policy, but also to adaptively adjust key algorithmic parameters
of the sub-populations during the runtime.

The island topology is also an important factor of the PEA in
determining the neighbors of each sub-population for
individual exchanges [17]. The most commonly used ones are
the ring [18], mesh [19], full-mesh [43], and star topologies
[20]. Generally, an island topology of a PEA is not easy to
determine optimally, as communication objects of each
sub-population are difficult to determine during the runtime.
There are two major reasons for this. First, the correlation
between the state of evolution and the topology is difficult to
evaluate quantitatively. Second, the implementation means of a
specific topology in a PEA is normally fixed. To deal with the
above problems, studies on random topologies [21,22] and
graph-based dynamic topologies [23,24] have been carried out.
Those topologies are first randomly changed during the
iteration and then are adapted to the problem structure [25].
However, the neighbors of each island need to be recalculated
and broadcast according to the new structure in every iteration.
This takes a long time, resulting in performance degradation on
the parallel evolution. Today, the design of an efficient PEA
with a low communication overhead remains a challenge.

One attempt to address this issue has been to tailor a PEA to
the characteristics of the problem being tackled [26,27].
Another has been to assign multiple problem-dependent

Parallel transfer evolution algorithm
Yuanjun Laili, Lin Zhang, and Yun Li

R

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195295081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:llyj0721@gmail.com
mailto:zhanglin@buaa.edu.cn
mailto:Yun.Li@ieee.org

 2

heuristics to a sub-population. A third approach has been to
adapt the size of the sub-populations. Nevertheless, the
migration policy and the topology are generally kept
unchanged. The deficiency of these problem-specific PEAs is
that once the characteristics of the problem change, the
algorithm is hard to cope or adapt. This issue is partially
addressed using memetic algorithms and hyper-heuristics with
multiple EAs [28]. The most common design is to allocate a
group of operators or memes (i.e., local search strategies) to
different islands directly and let them interact with one another
via individual migration [26,29–32]. However, it requires an
extra upper-layer algorithm selection process to update
individuals inside the sub-population, which will largely
degrade the parallel efficiency as well. For a
multiple-EA-based PEA, as its operators or upper-layer
adaptation rules inside each sub-population are generally
uniform, the performance of the PEA is lower than those of the
underlying EAs if the islands are not well balanced. Therefore,
research on self-adaptation of the island topology and dynamic
selection of multiple EAs is imperative for PEAs.

To extend the current research, in this paper, we develop a
parallel transfer evolution (PTE) scheme to structure a flexible
PEA. At the topological level, the connection between
sub-population pairs is transferred adaptively during each
period of communication. With only one single connection, the
communication overhead is maintained to be the minimum and
the diversity of the sub-populations are also preserved. At the
algorithmic level, superior operators can be transferred from a
sub-population to its neighbor to enhance the search capability
of the sub-populations. For applications, we focus on
permutation-based combinatorial optimization, where multiple
variables of the problem form a permutation such as in the case
of a scheduling, assignment, or routing problem.

The remainder of the paper is structured as follows. In
Section 2, we review the state-of-the-art PEAs. In Section 3, we
provide a framework of the proposed PTE and detail its
topological and algorithmic transfers. The PTE is then fully
tested with the combination of several classical evolutionary
operators on various benchmarks and on a real-world virtual
channel scheduling problem found in communication systems,
in Sections 4 and 5, respectively, giving comparisons with both
traditional EAs and PEAs. Conclusions are drawn and potential
future work is highlighted in Section 6.

II. STATE OF THE ART OF PEAS
According to the number of evolutionary algorithms adopted

in PEAs, existing research has focused mainly on two aspects to
construct efficient PEAs progressively. These are the design of
PEA with a single EA and the adaptation of PEA with multiple
EAs.

A. The design of PEA with a single EA
The island model reveals that migration policy and

cooperative topology are two crucial factors in the design of a
PEA [2,33].

(1) Migration policy
For relatively simple problems, a linear or near linear

speed-up can be achieved, owing to relatively even divisions of
the population and the solution space [34]. For example, Alba
[4] has summarized and classified performance evaluations on
parallelization, and has given instances to show that a linear
speed-up is possible in a PEA, although the population division
reduces the search capability of each sub-population.
Considering the diversity collapse phenomenon that results
from the introduction of high-fitness individuals [35], Alba and
Trova [36] studied the influence of random emigration on the
population diversity and suggested when to use fitness-based or
random emigration at different states of evolution. Qian et al.
[37] further introduced parallel processors to generate new
individuals for multi-objective optimization and adopted a
merge strategy to accelerate the comparisons in updating a
Pareto archive. With low communication overhead between the
processors, this method was proved to be approximately linear
both in theory and in practice.

(2) Cooperative topology
To obtain higher collaborative capability and search quality

during parallel search, Cantú-Paz [11] introduced the concept
of selection pressure and takeover time to evaluate the diversity
and convergence of the entire population. Given the PEA
topologies reported in [18–20], Matsumura et al. [17]
compared them and concluded that the ring topology would
simultaneously guarantee high population diversity and
information diffusion with a single migration policy. However,
Hijaze and Corne [38] and Wang et al. [39] applied these
topologies to distinct cases and showed that the influence of
each topology varies according to the context. In view of the
performance limitations of a fixed topology, Giacobini et al.
[40] investigated small-world graphs and scale-free graphs as
new candidate topologies for the construction of the
sub-populations. In addition, Li et al. [41] introduced
β-graph-based network topologies and discussed their
construction, complexity, and diversity. Liu et al. [42] have
established an optimal r-regular graph topology for particle
swarm optimization (PSO) and proved its efficiency both
theoretically and practically.

(3) Adaptation in migration policy and cooperative topology
It has become clear that a uniform migration policy and

topology cannot usually offer efficient collaboration among
islands, as the states of the population at different search stages
are different. Therefore, adaptive strategies in both migration
policy and island topology are desirable.

For a migration policy, Noda et al. [14] provided a series of
knowledge-based rules to guide the selection and replacement
of migrants. Lardeux and Goëffon [15] proposed a dynamic
strategy to control the migration probability based on a
complete graph. Following these efforts, Yang and Tinos [43]
provided an elite set, instead of a random or a
high-fitness-based migration strategy, to determine which
individuals to exchange. Further, Araujo and Merelo [16]
applied entropy as a representation of diversity and tested
various adaptive migration policies in accordance with the
distance between the migrant and the target island. In addition,
Zhan et al. [44] proposed a mean-fitness-rank-based approach
to migrate individuals from poor-performing populations to

 3

better-performing populations, so as to maintain the diversity
and a balanced search pace in the entire population. Their
results provide comprehensive insight into the setting of a
migration policy.

In addition, Whitacre et al. [45] attempted to make the
topology co-evolve with the population by locality and
interaction epistasis. Arnaldo et al. [25] placed an emphasis on
the importance of the topology and hence attempted to match
various island topologies to the problem structure by varying
the topology at runtime for the first time. However, a drawback
of this adaptation is that the topology-generating and
co-evolving processes take a relatively long time and a
relatively large amount of memory in a normal parallel
programming environment, such as the message passing
interface (MPI). To be specific, when the topology has changed,
the algorithm needs to recalculate, store, and broadcast the
communicating neighbors for each sub-population in every
iteration. Hence, this method is inefficient and is seldom
applied in practice. To reduce the communication overhead and
improve the exchange dynamics between islands, Tao et al. [46]
developed an adaptive pre-detection mechanism based on a
full-mesh topology. This efficiently reduced the
communication overhead in each iteration and simultaneously
enhanced the search capability of the PEA developed therein.

B. The adaptation of PEA with multiple EAs
As a growing number of EAs have been developed in recent

years, researchers have integrated multiple EAs in concurrent
islands to realize parallel hybridization. The earliest memetic
algorithms were developed based on this idea [47,48].
Subsequent representative parallelization work still follows this
approach, and divides a population into islands in order to apply
adaptive selection of memes to fine-grained individuals
[29,49,50]. Although all of the algorithm (or meme) candidates
act uniformly on each sub-population, tailored PEAs with a
collaborative use of multiple EAs [30] are also developed for
certain problems.

However, the migration policy and the topology are both
static. Although multiple EAs are collected and the algorithm
selection strategy for individuals is pre-designed [51–55], most
of these schemes are unsuitable for a PEA for two reasons. First,
with conventional parallelism the search capability of a PEA is
not well maintained compared to its serial counterpart. Second,
the strategies for both adjusting the action scope of an
algorithm candidate and the sub-population size will result in
load imbalance in different processors. With the increased time
complexity of the PEA, the adjustment of algorithms among the
sub-populations has not been addressed.

So far, studies on how to adapt a topology dynamically to
implement flexible parallel search are very limited. Without a
suitable algorithm adaptation mechanism for a PEA of multiple
EAs, algorithms applied to specific problems will result in a lag
in the search pace and reduce the algorithm efficiency. No
matter how far the dynamics of the migration policy is explored,
the search scope and diversity of the PEA are restricted, as the
efficiency and flexibility of a PEA of multiple algorithms are
far from fully exerted.

III. THE PARALLEL TRANSFER EVOLUTION SCHEME
In this section, we first illustrate a framework of the PTE

being proposed. Dynamic topological transfer and algorithmic
transfer are elaborated following this framework. The
evolutionary states used in the PTE are also analyzed.

A. Main structure of the PTE
The basic structure of the PTE is established as shown in Fig.

1. The execution process consists of three main steps: (1)
sub-population evolution, (2) topological transfer, and (3)
algorithmic transfer.

Groups
communication

End

Initialization

Evolutionary
operations

Local search
operations

Evolutionary
operations

Local search
operations

Evolutionary
state update

Evolutionary
state update

Exchange? No
Yes

Solution
feasible?

No

YesExchange? No
Yes

……

……

……

……

Topological transfer

Algorithmic
transfer

Fig. 1 Main structure of the PTE

(1) Sub-population evolution: This refers to the evolutionary
operations combined with cdertain local search heuristics for
producing a new sub-population in each generation. Inspired by
memetic computing [49][50], the evolutionary operators are
primarily applied for exploration, while the local search
heuristics are adopted to exploit better solutions in a randomly
located local area and therefore enhance the search capability.

(2) Topological transfer: To minimize the communication
overhead in each period of exchange, we restrict the number of
connections among the sub-populations to 1. The topological
transfer then means to delete the existing connection and create
a new one between another sub-population pair according to the
updated evolutionary state.

(3) Algorithmic transfer: Instead of using an upper-layer
algorithm selection mechanism on each sub-population, an
algorithmic transfer is designed to immigrate superior
evolutionary operator from the dynamic connected neighbor
along with the individual to be migrated.

B. Evolutionary states for communication control
Despite parameter tuning in a single EA or the algorithm

adjustment in multiple EAs, evolutionary states are of
significant importance in both performance and evaluation
control. The most commonly used states for a population
include the best fitness ever found in the evolution process (BF),
the number of generations for unchanged best fitness (UN), the
variance of fitness values (VF), the convergence degree (CD),
and the distance between two individuals (D). Assume that the
best, the average and the worst fitness values of a
sub-population for minimization problem in generation t is

min ()f t , ()f t and max ()f t , Fmin and Fmax as the best and the
worst fitness value that have been found ever by the specific

 4

sub-population. Then, the above states can be calculated as
follow:

minmin ()BF f t= , (1)
2 2

max min max min() (() ()) (() ()) / ()VF t f t f t f t f t F F δ= − + − − + , (2)

(1) / ()CD VF t VF t= − , (3)
In Eq. (2), δ is a small number that used to avoid the

‘division by zero’ error when max minF F= . Among the states,
VF reflects the diversity of the current population, while UN
and CD measure the convergence of the search process. The
larger VF is, the higher the diversity.

Correspondingly, 1CD ≥ implies that the population is
gradually converged, and 1CD < implies an increase in
diversity. According to CD, only the states of the recent two
generations are reflected. As a supplement, UN offers another
perspective on the convergence of the entire evolutionary
process. Therefore, we define a generation convergence
measure, GM, as the control state for the following step. It is
calculated as

(1)GM UN CD= + ⋅ . (4)
When BF is updated, 0UN = , and GM represents only the

diversity of the current generation. Conversely, if 0UN > , then
GM reflects a convergence degree of the entire iterative
process.

It should be noted that there are many other metrics that can
be used to evaluate the diversity of a population. Therefore, Eq.
(2) can be replaced by other diversity formula to guide the
following evolution.

For simplifying the evolutionary process and reducing the
communication time, we set only one migrant and apply the
above states to determine whether the best individual or a
random one is to be sent out, as illustrated in Algorithm 1. The
migration policy is that the immigrant is always introduced to
replace the worst individual in the target sub-population.
Algorithm 1: Communication preset:
Step 1 If () 2 / (1 e) 1GMrand −< + −
Step 2 Set the best individual as the migrant
Step 3 Else
Step 4 Randomly select an individual as the migrant

In the step of communication preset, GM is saturation-scaled
by a sigmoid function within the interval (0,1). The smaller GM
is, the greater the probability is in selecting a diverse individual.

C. Topological transfer
Among the typical topologies for PEAs, the ring topology

has been seen as the most efficient, which can simultaneously
guarantee a high population diversity and information diffusion
with the same migration policy [17]. However, it appears that
only the predominant migrant can produce useful impact on a
specific sub-population. Other less competitive migrants
introduced during periodic communication will be replaced
quickly by the locally generated new individuals. Therefore,
certain connections are unnecessary.

Since only the best migrant has a major impact on the search,
this implies that the removal of other connections has almost no

negative impact on the solution quality or convergence, and
still produces a positive impact on acceleration owing to the
decreased load in model communication. This means that we
only need to migrate the predominant migrant in each
communication period to one of the other groups. The
migration destination can be randomly picked or designated
using prior knowledge. Based on this analysis, a connection
transfer mechanism is developed, as illustrated in Fig. 2.

c+3

c-1

m-1

c+2 m

c+1 1

2

c-2 3

……

……

c

c'+3

c'-1

m-1

c'+2 m

c'+1 1

2

c'-2 3

……

……

c'

Fig. 2 Illustration of the connection transfer between sub-population pairs
Assume there are m sub-populations in total and the c-th

sub-population holds the best individual obtained thus far till
the current generation. Borrowing the virtue of ring topology,
we pick the c-th sub-population as the sender at which to
generate a single directed connection to one of the remaining
sub-populations. The receiver is selected in a random ergodic
manner by simply increase the serial number of the remaining
sub-populations.

In the next period of communication, a new sender c’ which
holds the global best individual and a new receiver whose serial
number is near the last one are selected. The connection will be
transferred to the new pair as well. No matter how the position
of the predominant sender changes, each sub-population can
communicate with the global best sequentially during a certain
period of time. The information propagation speed is exactly
the same as in traditional ring topology, which is m times of
communication at most. The additional computational load of
finding the sender to which the most prominent individual
belongs is taken by the root processor, i.e., the first processor.
In finding the global best fitness value from m fitness values
collected from all sub-populations, the additional computation
complexity is only O(m). More importantly, the
communication load in each period is reduced to O(m+n),
where n refers to the dimension of the specific problem. That is,
only m fitness values and a migrant with n dimensions are
passed from the transferred connection in each communication
period. This complexity is much lower than that in
conventional topologies and other dynamic ones. To better
understand the topological transfer process, its pseudo-code is
shown in Algorithm 2.

 5

Algorithm 2: Topological transfer
Step 1 Reduce the fitness value of the best individual xf in
each group x to the root processor;
Step 2 Find the sender ' arg min , [1,]xc f x m= ∈ ;
Step 3 Set the receiver as d’ = (d + 1) mod m;
Step 4 Send the global best individual from the new sender c’
to the new receiver d’;
Step 5 Replace the worst individual by the migrant in d’.

Here, d and d’ represent the receiver of the last
communication period and of the current period, respectively.
It can be initially set as the root processor or a randomly
selected one. In each period of communication, the receiver is
changed one by one, as shown by the dashed lines in Fig. 2.
Algorithm 2 is executed only in the root and the destination
processors. Others will hand over their best individual to start
the next generation independently. For maintaining
synchronization, a communication check in each period of
communication should be set.

D. Algorithmic transfer
Algorithmic transfer is established based on the above

topological transfer. To record the performance of the
under-layer evolutionary operators and find the superior one to
be transferred, we introduce the tabu strategy presented by
Burke et al. [54] for each sub-population. Assume that there are
NE evolutionary operators applied in the PTE scheme. In each
sub-population i, we set a rank list

{ | [1,], [1,]}ik ER i N k N= ∈ ∈iR and a tabu list
{ | [1,], [1,]}ik ET i N k N= ∈ ∈iT to record the ranks and states of

operators in the step of evolutionary state update, as shown in
Algorithm 3. The operator with the highest rank in the sender
will be passed accompanied by the emigrant individual to the
receiver. The receiver can decide autonomously whether to
apply the immigrant operator and individual or not, as
demonstrated in Algorithm 4.
Algorithm 3: Rank record:
Step 1 For each sub-population i
Step 2 If iBF is updated
Step 3 1ik ikR R= +
Step 4 Else
Step 5 1ik ikR R= − and 1ikT =
Step 6 If all operators are tabooed
Step 7 For k = 1 to NE
Step 8 0ikT =
Step 9 Set Ei be the one with the highest rank
 max , [1,]ik ER k N∈

Algorithm 4: Evolutionary operator configuration:
Step 1 For each sub-population i
Step 2 If the fitness value of Ii is better than iBF
Step 3 Adopt Oi for the next generation
Step 4 Else
Step 5 Adopt Ei for the next generation

In the pseudo-code of Algorithms 3 and 4, iBF represents
the best fitness value of the sub-population i and Ii represents

the immigrant of the sub-population i. Here, Ii is an
n-dimensional vector to represent a solution. Oi represents the
operator with the highest rank in the source sub-population that
provided the immigrant Ii.

Different from the strategy in [54], Ei is not directly used in
the next generation, but sent to the neighboring group in the
step of communication as Oi. With such a mechanism, the
sub-populations are capable of exchanging good operators in
each period and quickly eliminating weak operators for
different sorts of problems. The selection of the evolutionary
operators in this way is included in the communication. The
transformation of only one index number will not increase the
communication complexity, but will simplify the selection
process and enhance the search efficiency significantly.

Following the information exchange, the evolution as
designed will configure the operators according to both the
local performance records and the incoming algorithm indices
for the next generation. The pseudo-code is illustrated in
Algorithm 4.

The time complexity of the rank record in steps 1–5 of
Algorithm 3 is O(1). From step 6 to step 9 of Algorithm 3, the
computational complexity is ()EO N due to the parallel nature
of sub-population. Additionally, Algorithm 3 uses two extra
lists with length NE to support the rank. Hence, both the total
computational complexity and the space complexity of the
algorithmic transfer including Algorithms 3 and 4 are ()EO N .

To further improve the search efficiency of sub-population,
local search heuristics are introduced in this paper. Local search
is often used as a complementary component to enhance the
exploitation of an EA. It is able to bring more neighborhood
information for each individual to accelerate the evolutionary
pace of the sub-populations. Without loss of generality, we
assume that NLS local search heuristics are collected after the
evolutionary operation. Then, a random permutation-based
mechanism as displayed in Algorithm 5 is brought to adjust
several local heuristics for each individual in a sub-population.
Algorithm 5: Local search heuristic configuration:
Step 1 For each sub-population i
Step 2 For each individual j
Step 3 Get a random permutation Rperm from 1 to NLS
Step 4 0 , 1T T k= =
Step 5 While endT T>
Step 6 perm[]ijLS R k=
Step 7 Apply the No. LSij operator to individual j
Step 8 old new(,) (,)f i j f i j∆ = −
Step 9 If 0 || () exp(/)rand T∆ > < ∆
Step 10 =ij,old ij,newI I
Step 11 decayT T T= ⋅
Step 12 If LSk N>
Step 13 Regenerate Rperm and set 1k =
Step 14 1k k= +

In the above pseudo-code, Rperm represents a randomly
generated permutation and T, T0, and Tdecay represent the current
annealing temperature, the initial temperature, and the decay

 6

rate, respectively. Further, old (,)f i j and new (,)f i j represent
the old and new fitness values, respectively, of individual j in
sub-population i before and after the local search. ij,oldI and

ij,newI represent the old individual j and the new individual j in
sub-population i before and after the local search. In order to
promote a short local search time, a small initial temperature

0 10T = and fast decay rate decay 0.9T = are set in this paper.
Observably, this is a classical random permutation selection

strategy combined with an annealing rule to control step length.
There are two reasons for applying such a random strategy. For
combinatorial optimization, the shape of the solution space is
usually irregular and even unknown. When we reach a point in
the solution space, we actually do not know which kinds of
local search heuristics should be used to search its near range
without problem-dependent information. More importantly, a
local search heuristic that is suitable for one point in searching
its neighborhood may not adaptable for another point because
they are located in entirely different landscapes. Therefore,
passing the local search heuristic that performs well in a
sub-population to its neighbor as well as the evolutionary
operators seems meaningless.

Following the two-layer operations, i.e., the evolutionary
operation and local search operation, the stopping criterion is
set as either the theoretical optimum is reached or as the
maximum number of generations is reached, or GM is larger
than a predetermined threshold GMmax.

In general, the time complexity of an evolutionary operator is
dynamically varied with different problems. Let

iEg and
jLSg

be the complexity of the i-th evolutionary operator and the j-th
local search heuristic, respectively, the complexity of the
evolutionary operation be max

iNSg , and the complexity of the

local search operation be max
iEg . Furthermore, we set the size

of the sub-populations as Nsub uniformly. The complexity of the
topological communication is ()O m n+ and the evolution is

(max) (max)
i iE E sub LS LSO N g O N N g+ + + . Hence, the PTE is

highly dependent on its operator candidates employed in
generating new populations.

It should be noted that local search is not a necessary part in
the framework of the PTE if the candidate evolutionary
operators are capable of operating a balanced exploration and
exploitation. Likewise, the local search heuristics can also be
replaced by a group of problem-related rules. In short, the PTE
is more likely a parallel pattern that can be used to integrate
multiple evolutionary operators and local search heuristics in a
collaborative form, and that can generate more extendable and
fast hybrid algorithms.

IV. EXPERIMENTAL TESTS ON TWO COMBINATORIAL
OPTIMIZATION PROBLEMS

In this section, we comprehensively test the performance of
the PTE on a generic combinatorial optimization problem, the
job-shop scheduling problem (JSP), which is often seen in the
manufacturing industry [66]. We also test it on a second generic

combinatorial optimization problem, the quadratic assignment
problem (QAP) [72].

The JSP is a problem to search for an effective dispatch
sequence with a minimal machining makespan C. Given n jobs

1 2, , , nJ J J of varying sizes, each job consists of a certain
number of operations, which should be performed by m
identical machines. Assume that (,)O i j is the operation of job
j processed by machine i, ijp is the processing time of (,)O i j ,

ijC is the completion time of (,)O i j , and jM is the set of
machines by which job j is processed.

The objective is
maxMin C (5)

s.t.

max ijC C≥ , ij ij klC p C− ≥ , 0ij ijC p− ≥ ,
 or , , ,j

ij ij kj kj kj ijC p C C p C i k M i k− ≥ − ≥ ∈ ≠ ,
 or , ij ij il il il ijC p C C p C j l− ≥ − ≥ ≠ .

The QAP is a combinational optimization problem in which
n facilities need to be duly located among n locations. Given a
set of facilities P and locations L, 1 2(,)c p p represents the
commodities of a certain flow between facilities 1p and 2p ,
and 1 2(,)d l l represents the distance between locations 1l and

2l . Considering a problem of size N, we define a bijective
function :f P L→ .

The objective is

1 2
1 2 1 2,

 (,) ((), ())
p p P

Min c p p d f p f p
∈

⋅∑ . (6)

A. Experimental settings
To solve a generic, permutation-based combinatorial

optimization problem, we adopt an integer coding scheme to
represent solution phenotypes in evolution. The PTE is capable
of being configured with existing EAs, and 12 such EAs used in
the scheme are listed in Table 1, with explanations of acronyms
used hereafter. The learning operator of PSO, CMPSO, and 5
types of DE algorithms are replaced with the “swap operator”
and “swap sequence” recommended in [64] to ensure that the
new real-coded individual is a complete permutation sequence.
For the same reason, a two-point swapping mechanism is
applied as the basic operation to HS, ILS, and VNS.

TABLE 1 Evolutionary algorithm examples used in the PTE
Abbreviation Evolutionary algorithm
GA Genetic algorithm [56] with swap sequence and swap operator
NGA Genetic algorithm with niched strategy [57]
PSO Particle swarm optimization [58]
CMPSO Particle swarm optimization with Cauchy mutation [59]
DE1 Differential evolution with rand/1 mutation [60]
ILS Iterative local search [61]
DE2 Differential evolution with best/1 mutation [60]
DE3 Differential evolution with rand/2 mutation [60]
HS Harmony search [62]
DE4 Differential evolution with best/2 mutation [60]
DE5 Differential evolution with target-to-best/1 mutation [60]
VNS Variable neighborhood search [63]

The PTE is designed to be able to utilize the 9 local search
heuristics reported in [65], which are listed in Table 2. We
assume that the length of the block in the local search heuristics

 7

is no more than n and is also randomly generated within the
interval [2, n] on every call. The population size in all of these
experiments is set to 40 and the maximum number of
generations is set to 1000N , where N is the number of
variables in the test functions. In comparison, the migration
period is set to 100.

TABLE 2 Local search heuristics [65] used in the PTE
Abbreviation Strategies
Swap select two points and swap them
Pre-insert select a point and insert it in the head of the sequence
Pos-insert select a point and insert it in the tail of the sequence
Swap-block Exchange two selected blocks in a sequence
Pre-block-insert Insert a selected block in the head of the sequence
Pos-block-insert Insert a selected block in the tail of the sequence
Swap-max/min Swap a point with the maximal or the minimal value
Rand-circle Exchange two adjacent points with a given probability

from the beginning to end successively
Inverse Select a piece of sequence and inverse it

All the simulations are coded in C++ and tested in a MAC
OS X environment with a clang and MPI compiler. The
hardware configuration is based on a 2.3-GHz Intel Core i7
CPU with 8 GB of 1.6-GHz DDR3 RAM. There are four cores
in total. All of the tests are run 20 times. The best fitness values,
the average fitness values, and the search times for each
problem are recorded and compared with the best-known
solutions (BKSs).

B. Results and discussions in solving the JSP and the QAP
The results of the PTE for the JSP benchmark instances (i.e.

LA21-LA40) are summarized in the boxplots as shown in Fig. 3.
For the 5 simple instances (LA23, LA31-LA33, and LA35)
shown in Fig. 3(a), the speed-up from 2 processors to 4
processors is significant, although the speed-up from 4

processors to 16 processors is less significant. For the rest 15
harder instances, the speed-up is well observed in Figs. 3(b).
Overall, with the increase of the processor number, the decision
times of the PTE are nearly linearly reduced.

(a) (b)

Fig. 3 Boxplots corresponding to the CPU times (s) of the PTE on two
groups of JSP instances, (a) PTE on LA23, LA31–LA33, and LA35, and (b)
PTE on LA21, LA22, LA24–LA30, LA34, and LA36–LA40.

To compare the efficiency of the topological transfer and
algorithmic transfer, the PEA with a ring topology and a
random algorithm selection mechanism in each sub-population
is tested and termed a Ring-PEA in this paper. The Ring-PEA is
a typical parallel scheme without a topology configuration or an
algorithm configuration. Similarly, the PEA with only
topological transfer and random selection of the evolutionary
operators in sub-population is also tested and termed a
PTE/AT.

TABLE 3 COMPARISON OF THE RING-PEA, PTE/AT, AND PTE IN SOLVING THE JSP (20 RUNS)

Best
Time (s)

Ring-PEA PTE/AT PTE
2 4 8 16 2 4 8 16 2 4 8 16

LA21 1113
95.1284

1111
62.0936

1074
43.2733

1097
50.6899

1087
82.2437

1079
53.0961

1073
18.3006

1070
33.9262

1046
50.8246

1046
42.8212

1046
34.1372

1046
32.5141

LA22 962
64.3132

945
60.0469

942
42.4670

953
45.8086

941
58.3960

932
51.5039

935
41.4189

939
28.1890

935
53.1203

927
45.5661

927
40.2871

932
37.3018

LA23 1038
50.0005

1044
64.1751

1032
17.5194

1051
52.2266

1032
45.4322

1032
17.0080

1032
9.3262

1032
10.8048

1032
11.2068

1032
8.0023

1032
6.8349

1032
5.7106

LA24 998
72.3252

984
55.6767

1006
46.1206

1002
42.1305

967
64.7975

991
49.3416

991
55.2058

985
38.5012

939
59.7715

935
45.7829

935
40.0118

940
34.5910

LA25 1028
78.3462

1053
64.1038

1029
50.9584

991
101.963

1025
68.9161

1022
52.0715

986
54.2061

1004
39.2465

984
66.3077

977
56.0303

977
48.3889

986
38.8948

LA26 1282
136.123

1239
91.8122

1250
82.8408

1218
68.8742

1261
90.2576

1218
81.9801

1221
69.3567

1247
55.4596

1218
96.7305

1218
86.5698

1218
68.1117

1218
55.7823

LA27 1312
207.838

1342
122.413

1286
103.432

1286
88.7586

1313
89.4123

1296
55.5565

1281
53.9323

1292
30.0097

1256
103.781

1249
85.1423

1249
78.8039

1256
66.2894

LA28 1300
133.143

1289
98.4433

1276
74.4165

1285
66.7367

1289
90.9272

1233
79.263

1260
62.9837

1260
29.4939

1232
105.883

1216
86.4273

1222
76.6387

1235
63.9851

LA29 1274
175.0565

1261
138.516

1233
135.700

1250
92.6267

1246
82.0519

1240
62.2127

1233
32.5237

1245
25.9899

1216
86.6730

1210
67.9818

1210
58.7412

1215
54.9975

LA30 1408
87.6503

1391
83.8414

1392
80.4635

1356
56.0052

1391
62.1359

1387
36.0310

1355
37.3242

1367
25.1080

1355
53.6943

1355
45.8109

1355
30.7131

1355
23.4347

LA31 1784
46.4500

1784
39.1031

1784
23.4566

1784
26.8770

1784
22.4226

1784
16.2061

1784
15.9824

1784
9.2351

1784
12.9699

1784
10.5546

1784
7.0003

1784
5.8920

LA32 1850
104.114

1850
45.9913

1850
28.9017

1850
49.4104

1850
38.2363

1850
28.9859

1850
18.4508

1850
12.8825

1850
14.3852

1850
10.6065

1850
8.2136

1850
5.3321

LA33 1719
89.3159

1719
41.9318

1719
33.8317

1719
34.6119

1719
21.9266

1719
18.9948

1719
8.1248

1719
6.3302

1719
12.0076

1719
9.4833

1719
6.7910

1719
4.9963

LA34 1721
175.595

1721
165.773

1721
74.0150

1721
85.3784

1721
54.8783

1721
57.0182

1721
40.6377

1721
29.9956

1721
48.4446

1721
27.3473

1721
25.6408

1721
22.8219

LA35 1888
56.2926

1888
34.5302

1888
35.9220

1888
30.3115

1888
19.5839

1888
20.5997

1888
16.8295

1888
15.7469

1888
15.0536

1888
12.2713

1888
7.0639

1888
6.0064

LA36 1378
139.8962

1349
81.2775

1319
70.2488

1298
64.4265

1315
95.9613

1300
58.4591

1296
45.9586

1316
33.6278

1296
100.983

1268
66.5589

1268
52.2995

1296
41.3735

LA37 1496
103.956

1473
92.1454

1463
64.533

1469
51.6995

1493
65.4058

1471
45.6660

1471
46.9057

1470
40.3616

1434
94.4580

1422
67.6901

1422
60.1195

1434
49.8878

 8

LA38 1311
150.018

1297
93.6981

1297
80.0434

1287
80.0374

1312
93.2303

1289
70.0681

1268
65.9753

1270
43.0126

1237
103.881

1237
77.1148

1222
68.3370

1237
61.8856

LA39 1358
126.519

1311
98.8735

1287
80.7876

1311
67.3212

1267
71.869

1266
44.8561

1256
38.2662

1279
26.4701

1252
98.7793

1248
76.5589

1252
66.3664

1257
53.6549

LA40 1288
105.828

1297
82.0641

1297
91.2737

1287
80.6748

1280
93.2163

1258
71.5151

1259
72.5371

1255
60.2887

1244
102.378

1233
80.9734

1244
65.7741

1244
50.8519

P of W-test 0.000 0.0 00 0.000 0.0 00 0.001 0.015 0.009 0.017 - - - -
In addition, the local search heuristics with a random

selection strategy (shown in Algorithm 5) are applied in both
the Ring-PEA and the PTE/AT to make sure that they are tested
under the same conditions as the PTE. The best results and
average search times of the Ring-PEA, PTE/AT, and PTE on 20
JSP instances (i.e., LA21–LA40) are shown in Table 3. The
boldface in the table indicates that the best known solution is
found within a specific time.
TABLE 5 COMPARISON OF WILCOXON-TEST RESULTS OF THE PTE RELATIVE TO

6 AD HOC EAS IN SOLVING THE JSP

PTE
vs

Nowicki et
al. (1996)

[66]

Goncalves
et al. (2005)

[67]

Aiex et al.
(2003) [68]

Binato et
al. (2002)

[69]

Sha et al.
(2006) [70]

 0.004 0.069 0.415 0 0.003
 0.042 0.563 0.219 0 0.028
 0.021 0.476 0.261 0 0.018
 0.003 0.065 0.374 0 0.003
The performance of the Ring-PEA is seen as the worst. Only

the 6 simplest instances (LA26 and LA31–LA35) are well
solved with the best known solution (i.e. BKS). When the
topological transfer is implemented, the PTE/AT performs

much better than the original Ring-PEA. As observed in Table
3, 9 instances are solved with BKS by the PTE/AT. Its search
times with two parallel processors are decreased to 19.5839 and
95.9613 s. As the number of processors continues to increase,
the CPU times are further reduced to 6.3302 s at most.

When the algorithmic transfer is implemented, the
performance of the PTE is further enhanced. 16 instances are
well solved by the PTE within the BKS. As the number of
processors increases further, the CPU times are reduced to
66.2894 s at least and 4.9963 s at most. To examine the
differences between the other PEAs and the PTE, pair-wise
Wilcoxon-tests (abbreviated as W-tests) are carried out at a
significant level of 0.05α = . The statistical test results of each
kind of PEA are compared in a pairwise manner with those
obtained by the PTE with the same processor number and are
listed in the last two rows of Table 3. With 95% confidence, the
PTE performs better than the Ring-PEA and PTE/AT.

TABLE 4 SOLUTION CONSISTENCY OF THE PTE WITH PARALLEL PROCESSORS COMPARED TO 6 AD HOC EAS IN SOLVING THE JSP (20 RUNS)

 BKS

Nowicki
et al.

(1996)
[66]

Goncalves
et al.

(2005)
[67]

Aiex et al.
(2003)
[68]

Binato et
al. (2002)

[69]

Sha et al.
(2006)
[70]

Zhang et
al. (2013)

[71]

PTE

2 4 8 16

LA21 1046 1047 1046 1057 1091 1046 1049 1046 1046 1046 1046
LA22 927 927 935 927 960 927 - 935 927 927 932
LA23 1032 1032 1032 1032 1032 1032 - 1032 1032 1032 1032
LA24 935 939 953 954 978 935 940 939 935 935 940
LA25 977 977 986 984 1028 977 982 984 977 977 986
LA26 1218 1218 1218 1218 1271 1218 - 1218 1218 1218 1218
LA27 1235 1236 1256 1269 1320 1235 1243 1256 1249 1249 1256
LA28 1216 1216 1232 1225 1293 1216 - 1232 1216 1222 1235
LA29 1157 1160 1196 1203 1293 1163 1180 1216 1210 1210 1215
LA30 1355 1355 1355 1355 1368 1355 - 1355 1355 1355 1355
LA31 1784 1784 1784 1784 1784 1784 - 1784 1784 1784 1784
LA32 1850 1850 1850 1850 1850 1850 - 1850 1850 1850 1850
LA33 1719 1719 1719 1719 1719 1719 - 1719 1719 1719 1719
LA34 1721 1721 1721 1721 1721 1721 - 1721 1721 1721 1721
LA35 1888 1888 1888 1888 1888 1888 - 1888 1888 1888 1888
LA36 1268 1268 1279 1287 1334 1268 1274 1296 1268 1268 1296
LA37 1397 1407 1408 1410 1457 1397 1408 1434 1422 1422 1434
LA38 1196 1196 1219 1218 1267 1196 1196 1237 1237 1222 1237
LA39 1233 1233 1246 1248 1290 1233 1238 1252 1248 1252 1257
LA40 1222 1229 1241 1244 1259 1224 1233 1244 1233 1244 1244
Moreover, the performance of the PTE is further analyzed

and compared with 6 EAs developed elsewhere specifically for
the JSP. The experimental results, pairwise Wilcoxon-tests
carried out on the 6 ad hoc EAs and PTE are shown in Tables
4–6, respectively. When the processors are set to two, the PTE
does not perform well. However, as the number of processors
increases, the solution quality is substantially enhanced. When

the number of processors is 4 or 8, the PTE is better than the
EAs proposed by Nowicki et al. [65] and by Binato et al. [68],
with 95% confidence (0.05α =), similar to the EAs proposed
by Goncalves et al. [66] and by Aiex et al. [67], although not as
good as the EA proposed by Sha et al. [69]. With only a group
of basic operators, the search time of the PTE is 10 times
shorter than the others, as shown in Table 6.

TABLE 6 TIMES (IN S) TAKEN BY THE PTE COMPARED TO 6 AD HOC EAS IN SOLVING THE JSP

Problem
Nowicki et
al. (1996)

[66]

Goncalves et
al. (2005)

[67]

Aiex et al.
(2003)

[68]

Binato et
al. (2002)

[69]

Sha et al.
(2006)

[70]

Zhang et
al. (2013)

[71]

PTE

2 4 8 16

LA21-25 - 602 - - 295 - 49.75 39.4011 33.7274 29.0959
LA26-30 - 1303 - - 579 - 90.2606 74.8469 62.6559 52.9083
LA31-35 - 3691 - - 1462 - 20.5722 14.0526 10.9419 9.0097
LA36-40 - 1920 - - 471 - 100.0959 73.7792 62.5793 51.5307

 9

When the number of processors increases, the solution
quality in small-scale cases is fully maintained with a
reduced CPU time. For large-scale cases, the solution quality
first rises and then falls. In particular, a sub-population of
fewer individuals does not necessarily lead to an accuracy
loss while improving the search performance. For all
instances, when the processor number is increased from 2 to
8, the search precision of the PTE improves constantly.
When the number of processors is further increased to 16,
the search precision bounces back, but is still well
maintained.

In summary, the PTE performs the best when the
processor number is 4 or 8 on a quad-core PC. As the number
of islands increases, the transfer scheme automatically come
into effect. The more processors are allowed, the more
dynamic the search procedure becomes. However, with a
fixed population size (i.e., 40) in the experiments, only two
individuals are left in each island when the processor number
increases to 16, and, hence, the search capability of each
sub-population is reduced.

TABLE 7 COMPARISON OF RING-PEA, PTE/AT, AND THE PTE IN SOLVING THE QAP (20 RUNS)
 Ring-PEA PTE/AT PTE

2 4 8 16 2 4 8 16 2 4 8 16

tai20a 727364
24.6509

723784
9.0214

718186
6.2282

726538
4.3471

 710926
16.4254

709874
7.1748

710878
4.4127

714344
2.7793

703428
4.7438

703428
4.2874

703428
2.8354

703428
2.9927

tai30a 1897942
22.0127

1874605
11.4434

1873775
13.8688

1882734
8.7986

1865652
18.1725

1855449
14.2919

1849745
11.7346

1845521
5.9932

1829732
6.3922

1821056
4.7536

1823521
4.5312

1825967
5.3304

tai40a 3250393
30.4285

3249185
18.2784

3229880
14.7997

3238796
11.9469

3245172
16.1815

3444240
14.7448

3221913
12.7171

3231247
7.9684

3245517
6.8449

3206459
5.7087

3218664
4.9339

3229871
5.0891

tai50a 5105137
82.4618

5096802
53.8743

5092834
45.2217

5121268
29.7112

5094182
72.1527

5091133
45.272

5092607
38.2201

5104653
21.7837

5054377
18.8471

5043459
12.3823

5043166
11.8429

5046897
14.4364

tai60a 7509121
126.237

7471640
81.0541

7443125
76.2499

7490329
42.2345

7451748
101.234

7418543
57.4519

7431658
44.9596

7450792
20.0815

7401193
27.1386

7387519
23.8925

7389182
22.3276

7390278
19.2474

tai80a 13993058
215.733

13970413
103.851

13821857
88.2193

13801963
79.1816

13945345
175.521

13947566
77.2492

13804047
65.7479

13804269
35.1161

13708571
89.0165

13614458
59.3624

13632845
54.4672

13636457
29.7950

tai100a 21866427
317.507

21724890
218.811

21681753
223.478

21658299
193.671

21684735
215.974

21622438
156.848

21652433
111.855

21630649
88.1446

21623739
184.399

21497643
130.389

21571329
114.457

21595571
97.1206

W-test 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 - - - -
The experimental results of the Ring-PEA, the PTE/AT, and

the PTE on 7 hard instances of the QAP are shown in Table 7.
Here the best solutions obtained the twelve experiments and the
p-values which are less than 0.05 in the statistical tests are
shown in bold. With only topological transfer, the PTE/AT
performs much better than the Ring-PEA in both solution
quality and search time. After implementing the algorithmic
transfer, the search time and capability of the PTE are further
enhanced. This is mainly because suitable operators can be
broadcasted to all sub-populations faster. Better operators are
able to make the evolution more efficient, accelerate the
convergence process, and shorten the search time. Further,
pairwise W-tests are also carried out and illustrated in the last
two rows of Table 7. The statistical differences between the
two-PEAs and the PTE are significant, with 95% confidence
(0.05α =).

(a) (b)

Fig. 4 Boxplots corresponding to the CPU times (s) of the PTE on two groups of
QAP instances, (a) tai12a, tai12b, tai15a, tai15b, tai17a, tai20a, tai30a, tai40a,
and tai50a, and (b) tai64c, tai60a, tai80a, tai100a, wil50, and wil100.

Because most of the algorithms existing in the literature for
the QAP are evaluated by using the average percent deviation
(APD) as a metric [72–75], we also present a list of the APD
results obtained by the PTE in Table 8.

As shown in Table 8, the optimum solutions of the small

instances, tai20a, tai30a, tai40a, and tai50a, are obtained within
15 s. For the remaining larger-scale instances, sub-optimal
solutions are obtained in no more than 130.389 s when the
processor number is two and at most 97.1206 s when the
processor number reaches 16. The errors between these results
and the theoretical solution are no more than 0.034.

TABLE 8 AVERAGE PERCENT DEVIATIONS OF THE QAP BY THE PTE

QAP BKS PTE
2 4 8 16

Tai20a 703428 0.000 0.000 0.000 0.000
Tai30a 1818146 0.006 0.002 0.003 0.004
Tai40a 3139370 0.034 0.021 0.025 0.029
Tai50a 4938796 0.023 0.021 0.021 0.022
Tai60b 7205962 0.027 0.025 0.025 0.026
Tai80b 13499184 0.015 0.008 0.010 0.010
Tai100a 21052466 0.027 0.021 0.025 0.026

Viewing the experimental results for both the JSP and QAP,
it can be seen that the PTE maintains a good performance for
different problems. It requires neither reconfiguration of
algorithms and the parallel connections nor prior information or
domain knowledge of the problem. In summary, the PTE has
offered a high speed, scalable speed-up, good precision, and
great robustness of optimization in solving the above two
different complex problems.

V. VIRTUAL CHANNEL SCHEDULING CASE STUDY
In this section, we apply the PTE to a practical engineering

problem, the virtual channel scheduling (VCS) problem, as a
case study in communication systems.

A. Virtual channel scheduling problem
The VCS problem is detailed and modeled in [76], which is a

complex NP-hard problem. It refers to scheduling various sorts
of virtual channel (VC) services in different time slots. The
target of VCS is to maintain stable and fast transmission by

 10

maximizing throughput and minimizing delay time, jitter, and
loss packet rate. Different characteristics of VC services and
multiple quality of service (QoS) requirements make it much
more complex than a generic scheduling problem. Assume that

()k
in is the decision variable to denote whether VCi is scheduled

in the kth time slot, M the number of time slots, l the number of
VCs, and C the data transmission rate for a downlink. The
objective function and constraints of VCS can be represented as
follows:

1 1

1 2
1 0

Max () ()
l l

i i
i i i i

i i
w Throughput n w Loss n

− −

= =

⋅ − ⋅∑ ∑ (7)

s.t.
()

1
1

l
k

i
i

n
=

=∑ , ()
01

/M k
ik

C n M B
=

⋅ =∑ , () , if 2,3i i iJitter n Jit i≤ =

() , if 0, 2,3i i iDelay n Del i≤ = ()
1

/ 1.4 , if 1, 2M k
i i ik

B C n M B i
=

≤ ⋅ ≤ =∑ .

TABLE 9 COMPARISON BETWEEN VARIOUS IMPLEMENTATIONS OF THE PEAS IN THE VCS APPLICATION
500 Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT PTE
2 Best 113.765 116.165 115.176 117.311 114.499 114.929 117.356
 Avg 110.998 114.659 114.385 115.181 111.445 113.891 117.169
 Time (s) 27.599 28.1989 18.5247 24.9852 16.7536 14.5672 17.1838
4 Best 116.896 117.213 115.033 117.439 117.054 117.173 117.489
 Avg 115.910 116.606 113.49 115.828 115.374 115.73 117.373
 Time (s) 14.2695 16.8463 15.718 14.0113 14.9735 13.8726 10.8517
8 Best 116.52 117.114 115.927 116.461 117.252 117.41 117.588
 Avg 114.891 115.571 115.473 114.07 116.79 116.244 117.335
 Time (s) 12.7416 15.1329 13.83 8.5304 13.7529 8.4920 8.1612
16 Best 115.67 117.331 116.303 117.331 116.758 116.798 117.390
 Avg 115.552 115.769 114.682 115.788 115.849 115.636 117.234
 Time (s) 10.1887 17.9764 12.4829 8.9190 11.2249 11.2322 7.6419
1000 Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT PTE
2 Best 117.853 115.878 117.963 117.811 117.143 118.626 120.277
 Avg 115.851 114.556 116.282 115.948 116.301 116.45 119.557
 Time (s) 37.0390 41.5085 35.3106 44.2789 53.0654 37.2425 43.2352
4 Best 118.655 119.397 118.903 118.189 119.199 118.309 120.413
 Avg 117.747 117.109 117.205 117.786 118.025 117.568 119.949
 Time (s) 29.3923 33.6408 26.9667 32.6701 21.7468 21.6442 20.5146
8 Best 118.685 118.470 119.192 118.29 119.409 118.767 120.524
 Avg 116.728 115.505 117.319 116.853 117.888 117.644 120.005
 Time (s) 22.4295 22.7115 16.3728 38.5605 23.7505 21.6442 16.8335
16 Best 117.643 117.768 117.359 117.815 118.08 118.69 120.193
 Avg 115.876 115.152 116.291 114.628 116.921 116.472 119.831
 Time (s) 29.454 28.3161 21.1185 26.5072 25.6297 23.0913 15.9788
1500 Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT PTE
2 Best 116.135 113.722 114.754 118.324 118.163 116.878 119.524
 Avg 113.765 112.785 111.872 115.128 116.351 114.208 118.591
 Time (s) 90.006 85.7479 92.603 91.8577 91.272 71.7323 46.1519
4 Best 119.695 118.918 117.930 119.508 119.728 118.838 119.927
 Avg 118.637 117.301 116.944 113.879 118.641 117.692 119.781
 Time (s) 50.3336 65.836 77.8648 62.0776 65.644 42.2182 34.6408
8 Best 116.53 115.976 118.695 118.850 119.53 117.418 120.117
 Avg 106.474 114.591 116.359 116.641 117.962 116.587 119.627
 Time (s) 43.6652 58.8007 49.0954 55.4981 60.7339 27.6428 25.8103
16 Best 117.57 116.003 116.700 117.821 118.805 116.263 119.679
 Avg 115.585 115.497 112.063 115.205 115.155 115.776 119.306
 Time (s) 43.2569 40.1273 58.226 46.417 62.9013 34.0557 22.4259

In the above formulation, iDel , iJit , and iB are the
maximum delay time, maximum jitter, and maximum
bandwidth of VCi, respectively. The delay (()i iDelay n), jitter
(()i iJitter n), throughput (()i iThroughput n), loss packet rate
(()i iLoss n), and weights (1

iw and 2
iw) are calculated as in [76].

The variables ()k
in can be mapped as a permutation within the

interval [0,l]. Each number in the permutation denotes the
virtual channel to be scheduled in a current time slot. All the
initial settings of VCS in our experiments are the same as in
[76]. For testing the problem in different scales, 500, 1000, and
1500 time slots are set as three different cases. The more time
slots that are used, the smaller they are, and hence the higher the
precision that is expected.

B. Algorithmic settings
In this application, the PTE is tested with 5 typical topologies,

i.e., single-sided ring, double-sided ring, single-sided mesh,
double-sided mesh, and full mesh topologies. For uniformity,
the local search operators in accordance with Algorithm 5 are
applied in all of the PEAs. Without loss of generality, the
population size of the EAs is set to 40 and the maximum
number of generations is set to 1000N . Then, a group of tests
based on three scales of VCS are carried out to compare
different parallel methods to the PTE. To analyze the influences
of algorithmic parameters on VCS optimization, the migration
period and the threshold GMmax are studied in this subsection.

C. PTE performance and topology comparison
The results of the 5 classical topologies compared to the

PTE/AT and the PTE are shown in Tables 9 and 10. With

 11

different problem scales and characteristics, the performance of
these classical topologies change as well, and these changes are
usually inconsistent. The PTE always finds better solutions and
takes much shorter search time. It offers a significant speed-up
without precision loss while the processor number increases, as

shown in Fig. 5. When the number of processors increases from
2 to 4, the execution time of the PTE is reduced by almost half.
When the number of processors continues to increase, the time
is slightly reduced due to sharing of computing cores among
different processors.

TABLE 10 COMPARISON OF THE W-TEST AMONG VARIOUS IMPLEMENTATIONS OF THE PEAS FOR VCS
PTE vs Ring-PEA DRing-PEA Mesh-PEA DMesh-PEA Fullmesh-PEA PTE/AT

Time (s) W-test 0 0 0 0 0 0
W-test 0.008 0.003 0.019 0.002 0.003 0.034

The best average times for the cases of 500, 1000, and 1500
time slots are 7.6419, 15.9788, and 22.4259 s, respectively.
Compared to the other 6 PEAs under the same conditions, the
PTE is up to 3 times faster.

Without changing any part of the algorithm, the PTE is seen
as capable of performing well not only in the benchmark tests,
but also in solving a practical problem in diverse circumstances.
Offering a shortened search time in both small-and large-scale
problems, the search capability of the PTE is well maintained at
a high level.

Fig. 5 Speed-up of the PTE on solving the VCS with three scales

D. Parameter tuning of the PTE in VCS
In this subsection, we discuss the performance of the PTE

with varied communication periods and different GMmax values.
First, we vary the communication period from 10 to 300 and
test the search capability of, and times taken by, the PTE with 2,
4, 8, and 16 processors. The average fitness values and solution
times are presented in Fig. 6.

Regarding the average fitness values, we notice that the
solution quality ascends during periods 10 to 100 and descends
as the period continues to increase. With the increase in
processor number, the peak values move higher, i.e., the PEA
with more sub-populations requires a shorter communication
period. In contrast, a long communication period is better for
the PEA with fewer sub-populations to maintain balanced
search states. When the processor number of the PTE is altered,
the performance trend appears to be the same as that in the three
benchmark tests.

On the search time, we observe from Fig. 6 that the
performance of the PTE reaches the best level when the
communication period is set as 100. The performance trends in
all three cases for VCS are similar. When the communication
period is lower than 200, its search time in each case decreases
with an increasing number of processors. When this number
grows, exchanges are delayed. As a result, the convergence
speed lowers, especially for 16 processors, where there are only
two individuals left in each sub-population.

In view of both search quality and search time, we observe
that when the communication period is in the range [50,100],

the performance of the PTE is in a very good state. While the
processor number continues to increase, a shorter period may
help accelerate the exchanges among the sub-populations so as
to promote those at a slow evolutionary pace.

(a) 500 time slots

(b) 1000 time slots

(c) 1500 time slots

Fig. 6 Average results and search times of the PTE with different
communication periods for three VCS cases

Subsequently, we fix the communication period to 100 and
change GMmax from 10 to 100 to test the search capability of,
and the times taken by, the PTE with 2, 4, 8, and 16 processors.
The average fitness values and average solution times for the
three instances are illustrated in Fig. 7.

Because GMmax is one of the stopping criteria, the smaller
GMmax is, the quicker the program terminates. From Fig. 7, we
observe that when GMmax is 10, the PTE performs the worst.
According to Algorithm 1, a small GMmax will bring about
many randomly selected migrants and make the evolution
process terminate earlier. If GMmax is set to 50, the search
performance is markedly improved and acceptable.
Nevertheless, when it is further increased, the performance

 12

slightly degrades. When GMmax is set to 100, for example,
almost no random migrant is selected for communication, and
the current best solution will be transformed again and again in
an early stage. Comparing this to the case GMmax=50, the search
time becomes prolonged, and a frequent transformation of the
current best solution is reduced to some extent.

(a) 500 time slots

(b) 1000 time slots

 (c) 1500 time slots

Fig. 7 Solutions and search times of the PTE with different GMmax values in
solving three VCS cases

It is noted that for all of the PEAs in the above experiments
that, as the number of processors increases from 8 to 16, the
search time of every PEA does not decrease distinctly. This is
mainly because of the limited population size (which is set as
40 in all of the above experiments) and the limited hardware
resource adopted in the experiments. 8 or 16 processors are
compressed into 4 cores to execute with resource preemption so
as to slightly slow down the processing speed that the algorithm
should have. However, this does not mean that the performance
of the proposed method is limited to 8 processors in parallel. It
is fully extendable to larger population size with more hardware
cores. Theoretically, the increase of individuals in a population
will only increase the search scope so as to improve the solution
quality. If more hardware resources can be adopted for more
sub-populations, the diversity of the entire evolutionary process
will be largely enhanced. Therefore, more cores and more
population will only benefit the performance of a PEA, but not
limit its evolutionary efficiency.

In short, the PTE is designed as a scheme to expand the
existing evolutionary operators in a highly flexible parallel way

and make them faster and more adaptable in solving different
sorts of combinatorial optimization problems.

VI. CONCLUSIONS
The focus of this paper has been to establish a parallel

transfer scheme to structure parallel evolutionary algorithms
flexibly to handle a wider range of real-world optimization
problems. Using a group of classical evolutionary operators and
local search heuristics, we have demonstrated both the
communication connection and the evolutionary operator in
PTE are able to transfer through sub-population pairs and thus
to improve PEA performance. The PTE enables efficient
collaboration among sub-populations with minimal
communication.

To test the performance of the PTE in solving combinatorial
optimization problems, comprehensive experiments have been
carried out on the generic JSP and QAP problems, as well as by
applying PTE to a practical VCS problem. In most cases, the
PTE has outperformed other EAs and PEAs, especially in
search speed and quality. Furthermore, the speed-up on the
parallelism is approximately linear, while degradation of
solution accuracy is avoided.

Both the topological transfer and algorithmic transfer are
applicable not only to combinatorial optimization problems,
but also to continuous or non-permutated complex problems.
Classical evolutionary operators and local search heuristics can
both be replaced by other subroutines directly to configure and
form a new algorithm. Therefore, we are motivated to apply the
PTE scheme to more practical domain following extended
comparisons between the parallel hyper-heuristic based
evolutionary algorithms and the PTE. It is expected that this
scheme is capable of solving not only single-objective, but also
multi-objective, optimization problems for engineering
practices and in changing environments.

ACKNOWLEDGEMENT
This work is partially supported by the “Young Talent Lift

Project” of China Association for Science and Technology, the
Natural Science Foundation of China under Grant 61374199,
the Beijing Natural Science Foundation under Grant 4142031
and the 863 program project in China under Grant
2013AA041302.

REFERENCES
[1] E Alba, M Tomassini. Parallelism and evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 2002, 6(5): 443-462.
[2] E Alba. Parallel metaheuristics: a new class of algorithms. John Wiley &

Sons, 2005.
[3] A Lopez Jaimes, C A Coello Coello. MRMOGA: a new parallel

multi-objective evolutionary algorithm based on the use of multiple
resolutions. Concurrency and Computation-Practice & Experience, 2007,
19(4): 397-441.

[4] E Alba. Parallel evolutionary algorithms can achieve super-linear
performance. Information Processing Letters, 2002, 82(1): 7-13.

[5] D A Van Veldhuizen, J B Zydallis, G B Lamont. Considerations in
engineering parallel multiobjective evolutionary algorithms. IEEE
Transactions on Evolutionary Computations, 2003, 7(2): 144-173.

[6] H R Cheshmehgaz, M I Desa, A Wibowo. Effective local evolutionary
searches distributed on an island model solving bi-objective optimization
problems. Applied Intelligence, 2013, 38(3): 331-356.

 13

[7] L delaOssa, J A Gamez, J A Puerta. Initial approaches to the application
of islands-based parallel EDAs in continuous domains. Journal of Parallel
and Distributed Computing, 2006, 66(8): 991-1001.

[8] S C Lin. Coarse-grain parallel genetic algorithms: categorization and new
approach. The 6th IEEE Symposium on Parallel and Distributed
Processing, 1994: 28-37.

[9] X Y Zhang, J Zhang, Y J Gong, Z H Zhan, W N Chen, Y Li.
Kuhn-Munkres parallel genetic algorithm for the set cover problem and
its application to large-scale wireless sensor networks. IEEE Transactions
on Evolutionary Computation, 2016, 20(5): 695-710.

[10] K E Parsopoulos. Parallel cooperative micro-particle swarm optimization:
a master-slave model. Applied Soft Computing, 2012, 12(11): 3552-3579.

[11] E Cantú-Paz. Migration policies, selection pressure, and parallel
evolutionary algorithms. Journal of heuristics, 2001, 7(4): 311-334.

[12] S Skolicki, K De Jong. The influence of migration sizes and intervals on
island models. Proceedings of the 2005 conference on Genetic and
evolutionary computation. ACM, 2005: 1295-1302.

[13] J Lassig, D Sudholt. Design and analysis of migration in parallel
evolutionary algorithm. Soft Computing, 2013, 17(7): 1121-1144.

[14] E Noda, A L V Coelho, I L M Ricarte I L M, A Yamakami, A A Freitas.
Devising adaptive migration policies for cooperative distributed genetic
algorithms. IEEE International Conference on Systems, Man and
Cybernetics, 2002, 6: 6-pp.

[15] F Lardeux, A Goëffon. A dynamic island-based genetic algorithms
framework. Simulated Evolution and Learning. Springer Berlin
Heidelberg, 2010: 156-165.

[16] L Araujo, J Julian Merelo. Diversity through multiculturality: assessing
migrant choice policies in an island model. IEEE Transactions on
Evolutionary Computation, 2011, 15(4): 456-469.

[17] T Matsumura, M Nakamura, J Okech, K Onaga. A parallel and distributed
genetic algorithm on loosely-coupled multiprocessor system. IEICE
Transactions on Fundamentals of Electronics Communications and
Computer Sciences, 1998, 81(4): 540-546.

[18] M L M Beckers, E P P A Derks, W J Melssen, L M C Buydens. Using
genetic algorithms for conformational analysis of biomacromolecules.
Computers & Chemistry, 1996, 20(4): 449-457.

[19] Y Fukuyama, H D Chiang. A parallel genetic algorithm for generation
expansion planning. IEEE Transactions on Power Systems, 1996, 11(2):
955-961.

[20] H Miyagi, T Tengan, S Mohanmed, M Nakamura. Migration effects on
tree topology of parallel evolutionary computation. IEEE Region 10
Conference on TENCON, 2010: 1601-1606.

[21] F M Defersha, M Chen. A parallel genetic algorithm for dynamic cell
formation in cellular manufacturing systems. International Journal of
Production Research, 2008, 46(22): 6389-6413.

[22] F M Defersha, M Chen. A parallel genetic algorithm for a flexible
job-shop scheduling problem with sequence dependent setups.
International Journal of Advanced Manufacturing Technology, 2010,
49(1-4): 263-279.

[23] L Li, J M Garibaldi, N Krasnogor. Automated self-assembly
programming paradigm: The impact of network topology. International
Journal of Intelligent Systems, 2009, 24(7): 793-817.

[24] J M Whitacre, R A Sarker, Q T Pham. The self-organization of interaction
networks for nature-inspired optimization. IEEE Transactions on
Evolutionary Computation, 2008, 12(2): 220-230.

[25] I Arnaldo, I Contreras, D Millán-Ruiz, J I Hidalgo, N Krasnogor.
Matching island topologies to problem structure in parallel evolutionary
algorithms. Soft Computing, 2013, 17(7): 1209-1225.

[26] C Segura, E Segredo, C Leon. Scalability and robustness of parallel
hyperheuristics applied to a multiobjectivised frequency assignment
problem. Soft Computing, 2013, 17: 1077-1093.

[27] J Jin, T G Crainic, A A Løkketangen. A cooperative parallel metaheuristic
for the capacitated vehicle routing problem. Computers & Operations
Research, 2014, 44: 33-41.

[28] E G Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics,
2002, 8: 541-564.

[29] J Tang, M H Lim, Y S Ong. Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization problems.
Soft Computing, 2007, 11: 873-888.

[30] W Deng, R Chen, J Gao, Y Song, J Xu. A novel parallel hybrid
intelligence optimization algorithm for a function approximation problem.
Computers & Mathematics with Applications, 2012, 63(1): 325-336.

[31] F Tao, Y J Laili, Y Liu, Y Feng, Q Wang, L Zhang, L Xu. Concept,
principle and application of dynamic configuration for intelligent
algorithms. IEEE Systems Journal, 2014, 8(1): 28-42.

[32] F Tao, L Zhang, Y J Laili. Configurable Intelligent Optimization
Algorithms: Theory and Practice in Manufacturing. Springer, 2014.

[33] E Alba, A J Nebro, J M Troya. Heterogeneous computing and parallel
genetic algorithms. Journal of Parallel and Distributed Computing, 2002,
62(9): 1362-1385.

[34] T C Belding. The distributed genetic algorithm revisited. Proceedings of
the 6th International Conference on Genetic Algorithms, 1995: 113-121.

[35] J Denzinger, J Kidney. Improving migration by diversity. Proceedings of
the Congress on Evolutionary Computation, 2003, 1: 700-707.

[36] E Alba, J M Troya. Influence of the migration policy in parallel
distributed GAs with structured and panmictic populations. Applied
Intelligence, 2000, 12(3): 163-181.

[37] C Qian, J C Shi, Y Yu, K Tang, Z H Zhou. Parallel pareto optimization
for subset selection. Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI'16), New York, 2016:
1939-1945.

[38] M Hijaze, D Corne. An investigation of topologies and migration
schemes for asynchronous distributed evolutionary algorithms.
Proceedings of the World Congress on Nature and Biologically Inspired
Computing, IEEE, 2009.

[39] G Wang, D Wu, K Szeto. Quasi-parallel genetic algorithms with different
communication topologies. The IEEE Congress on Evolutionary
Computation (CEC), 2007: 721-727.

[40] M Giacobini, M Preuss, M Tomassini. Effects of scale-free and
small-world topologies on binary coded self-adaptive cea. Lecture Notes
in Computer Science, 2006, 3906: 86-98.

[41] L Li, J M Garibaldi, N Krasnogor. Automated self-assembly
programming paradigm: the impact of network topology. International
Journal of Intelligent Systems, 2009, 24(7): 793-817.

[42] Q Liu, W Wei, H Yuan, Z H Zhan, Y Li. Topology selection for particle
swarm optimization. Information Sciences, 2016, 363: 154-173.

[43] S Yang, R Tinos. A hybrid immigrants scheme for genetic algorithms in
dynamic environments. International Journal of Automation &
Computing, 2007, 4(3): 243-254.

[44] Z H Zhan, Y Lis, J Zhang. Cloudde: a heterogeneous differential
evolution algorithm and its cloud version. IEEE Transactions on Parallel
and Distributed Systems, 2016.

[45] J Whitacre, R Sarker, Q Pham. The self-organization of interaction
networks for nature-inspired optimization. IEEE Transactions on
Evolutionary Computation, 2008, 12(2): 220-230.

[46] F Tao, Y Laili, L Xu, L Zhang. FC-PACO-RM: a parallel method for
service composition optimal-selection in cloud manufacturing system.
IEEE Transactions on Industrial Informatics, 2013, 9(4): 2023-2033.

[47] H Muhlenbein. Evolutionary in time and space: the parallel genetic
algorithm. Foundations of Genetic Algorithms, 1991: 316-337.

[48] P Moscato, M G Norman. A memetic approach for the traveling salesman
problem implementation of a computational ecology for combinatorial
optimization on message-passing systems. Parallel Computing and
Transputer Applications, 1992: 177-186.

[49] J Tang, M H Lim, Y S Ong. Parallel memetic algorithm with selective
local search for large scale quadratic assignment problems. International
Journal of Innovative Computing Information and Control, 2006, 2(6):
1399-1416.

[50] J Tang, M H Lim, Y S Ong. Adaptation for parallel memetic algorithm
based on population entropy. The 8th Annual Genetic and Evolutionary
Computation Conference (GECCO 2006), ACM SIGEVO, 2006, 1-2:
575-582.

[51] J A Vrugt, B A Robinson, J M Hyman. Self-adaptive multimethod search
for global optimization in real-parameter spaces. IEEE Transactions on
Evolutionary Computation, 2009, 13(2): 243-259.

[52] D Hadka, P Reed. Borg: an auto-adaptive many-objective evolutionary
computing framework. Evolutionary Computation, 2013, 21(2): 231-259.

[53] J Grobloer, A P Engelbrecht, G Kendall, V S S Yadavalli. Alternative
hyper-heuristic strategies for multi-method global optimization. IEEE
Congress on Evolutionary Computation, 2010: 1-8.

[54] E K Burke, G Kendall, E Soubeiga. A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics, 2003, 9(6): 451-470.

[55] C Qian, K Tang, Z H Zhou. Selection hyper-heuristics can provably be
helpful in evolutionary multi-objective optimization. In: Proceedings of
the 14th International Conference on Parallel Problem Solving from
Nature (PPSN'16), Edinburgh, Scotland, 2016: 835-846.

[56] J Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, 1975.

[57] K De Jong, An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor, 1975.

 14

[58] J Kennedy, R C Eberhart. Particle swarm optimization. IEEE
International Conference on Neural Networks, 1995.

[59] H Wang, Y Liu, S Zeng. A hybrid particle swarm algorithm with Cauchy
mutation. IEEE Swarm Intelligence Symposium (SIS 2007), 2007:
356-360.

[60] W Gong, Z Cai, C X Ling, H Li. Enhanced differential evolution with
adaptive strategies for numerical optimization. IEEE Transactions on
Systems, Man, and Cybernetics – Part B: Cybernetics, 2011, 41(2):
397-413.

[61] H R Lourenco, O C Martin, T Stutzle. Iterated local search. arXiv preprint
math/0102188, 2001.

[62] Z W Geem, J H Kim, G V Loganathan. A new heuristic optimization
algorithm: harmony search. Simulation, 2001, 76(2): 60-68.

[63] N Mladenovic, P Hansen. Variable neighborhood search. Computers &
Operations Research, 1997, 24(11): 1097-1100.

[64] K P Wang, L Huang, C G Zhou, W Pang. Particle swarm optimization for
travelling salesman problem. Proceedings of The 2nd International
Conference on Machine Learning and Cybernetics, 2003.

[65] P C Ma, F Tao, Y L Liu, L Zhang, H X Lu, Z Ding. A hybrid particle
swarm optimization and simulated annealing algorithm for job shop
scheduling. IEEE International Conference on Automation Science and
Engineering (CASE), 2014.

[66] E Nowicki, C Smutnicki. A fast taboo search algorithm for the job-shop
problem. Management Science, 1996, 42(6): 797-813.

[67] J F Goncalves, J J de Magalhaes, M G C Resende. A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of
Operational Research, 2005, 167: 77-95.

[68] R M Aiex, S Binato, M G C Resende. Parallel GRASP with path-relinking
for job shop scheduling. Parallel Computing, 2003, 29: 393-430.

[69] S Binato, W J Hery, D M Loewenstern, M G C Resende. A GRASP for
job shop scheduling. Essays and Surveys in Metaheuristics, Springer,
2002: 59-79.

[70] D Y Sha, C Y Hsu. A hybrid particle swarm optimization for job shop
scheduling problem. Computers & Industrial Engineering, 2006, 51:
791-808.

[71] R Zhang, S Song, C Wu. A hybrid artificial bee colony algorithm for the
job shop scheduling problem. International Journal of Production
Economics, 2013, 141: 167-178.

[72] T James, C Rego, F Clover. Multistart tabu search and diversification
strategies for the quadratic assignment problem. IEEE Transactions on
Systems, Man and Cybernetics – Part A: Systems and Humans, 2009,
39(3): 579-596.

[73] Y Marinakis, A Migdalas. A hybrid genetic-GRASP algorithm using
lagrangean relaxation for the traveling salesman problem. Journal of
Combinatorial Optimization, 2005, 10: 311-326.

[74] J Yang, C Wu, H P Lee, Y Liang. Solving traveling salesman problems
using generalized chromosome genetic algorithm. Progress in Natural
Science, 2008, 18: 887-892.

[75] T James, C Rego, F Glover. A cooperative parallel tabu search algorithm
for the quadratic assignment problem. European Journal of Operational
Research, 2009, 195: 810-826.

[76] Y Zhu, P Wan, Y Chen, F Tao, L Zhang. Modeling and Solution for
Virtual Channel Scheduling for Downlink Business. Asia Simulation
Conference (AsiaSim 2014), Japan, 2014.

	Parallel transfer evolution algorithm
	I. INTRODUCTION
	II. State of the Art of PEAs
	A. The design of PEA with a single EA
	B. The adaptation of PEA with multiple EAs

	III. The parallel transfer evolution scheme
	A. Main structure of the PTE
	B. Evolutionary states for communication control
	C. Topological transfer
	D. Algorithmic transfer

	IV. Experimental tests on two combinatorial optimization problems
	A. Experimental settings
	B. Results and discussions in solving the JSP and the QAP

	V. Virtual channel scheduling case study
	A. Virtual channel scheduling problem
	B. Algorithmic settings
	C. PTE performance and topology comparison
	D. Parameter tuning of the PTE in VCS

	VI. Conclusions
	Acknowledgement
	References

