12 research outputs found

    Analysis and acceleration of data mining algorithms on high performance reconfigurable computing platforms

    Get PDF
    With the continued development of computation and communication technologies, we are overwhelmed with electronic data. Ubiquitous data in governments, commercial enterprises, universities and various organizations records our decisions, transactions and thoughts. The data collection rate is undergoing tremendous increase. And there is no end in sight. On one hand, as the volume of data explodes, the gap between the human being\u27s understanding of the data and the knowledge hidden in the data will be enlarged. The algorithms and techniques, collectively known as data mining, are emerged to bridge the gap. The data mining algorithms are usually data-compute intensive. On the other hand, the overall computing system performance is not increasing at an equal rate. Consequently, there is strong requirement to design special computing systems to accelerate data mining applications. FPGAs based High Performance Reconfigurable Computing(HPRC) system is to design optimized hardware architecture for a given problem. The increased gate count, arithmetic capability, and other features of modern FPGAs now allow researcher to implement highly complicated reconfigurable computational architecture. In contrast with ASICs, FPGAs have the advantages of low power, low nonrecurring engineering costs, high design flexibility and the ability to update functionality after shipping. In this thesis, we first design the architectures for data intensive and data-compute intensive applications respectively. Then we present a general HPRC framework for data mining applications: Frequent Pattern Mining(FPM) is a data-compute intensive application which is to find commonly occurring itemsets in databases. We use systolic tree architecture in FPGA hardware to mimic the internal memory layout of FP-growth algorithm while achieving higher throughput. The experimental results demonstrate that the proposed hardware architecture is faster than the software approach. Sparse Matrix-Vector Multiplication(SMVM) is a data-intensive application which is an important computing core in many applications. We present a scalable and efficient FPGA-based SMVM architecture which can handle arbitrary matrix sizes without preprocessing or zero padding and can be dynamically expanded based on the available I/O bandwidth. The experimental results using a commercial FPGA-based acceleration system demonstrate that our reconfigurable SMVM engine is more efficient than existing state-of-the-art, with speedups over a highly optimized software implementation of 2.5X to 6.5X, depending on the sparsity of the input benchmark. Accelerating Text Classification Using SMVM is performed in Convey HC-1 HPRC platform. The SMVM engines are deployed into multiple FPGA chips. Text documents are represented as large sparse matrices using Vector Space Model(VSM). The k-nearest neighbor algorithm uses SMVM to perform classification simultaneously on multiple FPGAs. Our experiment shows that the classification in Convey HC-1 is several times faster compared with the traditional computing architecture. MapReduce Reconfigurable Framework for Data Mining Applications is a pipelined and high performance framework for FPGA design based on the MapReduce model. Our goal is to lessen the FPGA programmer burden while minimizing performance degradation. The designer only need focus on the mapper and reducer modules design. We redesigned the SMVM architecture using the MapReduce Framework. The manual VHDL code is only 15 percent of that used in the customized architecture

    DiffNodesets: An Efficient Structure for Fast Mining Frequent Itemsets

    Full text link
    Mining frequent itemsets is an essential problem in data mining and plays an important role in many data mining applications. In recent years, some itemset representations based on node sets have been proposed, which have shown to be very efficient for mining frequent itemsets. In this paper, we propose DiffNodeset, a novel and more efficient itemset representation, for mining frequent itemsets. Based on the DiffNodeset structure, we present an efficient algorithm, named dFIN, to mining frequent itemsets. To achieve high efficiency, dFIN finds frequent itemsets using a set-enumeration tree with a hybrid search strategy and directly enumerates frequent itemsets without candidate generation under some case. For evaluating the performance of dFIN, we have conduct extensive experiments to compare it against with existing leading algorithms on a variety of real and synthetic datasets. The experimental results show that dFIN is significantly faster than these leading algorithms.Comment: 22 pages, 13 figure

    Dynamic partial reconfiguration management for high performance and reliability in FPGAs

    Get PDF
    Modern Field-Programmable Gate Arrays (FPGAs) are no longer used to implement small “glue logic” circuitries. The high-density of reconfigurable logic resources in today’s FPGAs enable the implementation of large systems in a single chip. FPGAs are highly flexible devices; their functionality can be altered by simply loading a new binary file in their configuration memory. While the flexibility of FPGAs is comparable to General-Purpose Processors (GPPs), in the sense that different functions can be performed using the same hardware, the performance gain that can be achieved using FPGAs can be orders of magnitudes higher as FPGAs offer the ability for customisation of parallel computational architectures. Dynamic Partial Reconfiguration (DPR) allows for changing the functionality of certain blocks on the chip while the rest of the FPGA is operational. DPR has sparked the interest of researchers to explore new computational platforms where computational tasks are off-loaded from a main CPU to be executed using dedicated reconfigurable hardware accelerators configured on demand at run-time. By having a battery of custom accelerators which can be swapped in and out of the FPGA at runtime, a higher computational density can be achieved compared to static systems where the accelerators are bound to fixed locations within the chip. Furthermore, the ability of relocating these accelerators across several locations on the chip allows for the implementation of adaptive systems which can mitigate emerging faults in the FPGA chip when operating in harsh environments. By porting the appropriate fault mitigation techniques in such computational platforms, the advantages of FPGAs can be harnessed in different applications in space and military electronics where FPGAs are usually seen as unreliable devices due to their sensitivity to radiation and extreme environmental conditions. In light of the above, this thesis investigates the deployment of DPR as: 1) a method for enhancing performance by efficient exploitation of the FPGA resources, and 2) a method for enhancing the reliability of systems intended to operate in harsh environments. Achieving optimal performance in such systems requires an efficient internal configuration management system to manage the reconfiguration and execution of the reconfigurable modules in the FPGA. In addition, the system needs to support “fault-resilience” features by integrating parameterisable fault detection and recovery capabilities to meet the reliability standard of fault-tolerant applications. This thesis addresses all the design and implementation aspects of an Internal Configuration Manger (ICM) which supports a novel bitstream relocation model to enable the placement of relocatable accelerators across several locations on the FPGA chip. In addition to supporting all the configuration capabilities required to implement a Reconfigurable Operating System (ROS), the proposed ICM also supports the novel multiple-clone configuration technique which allows for cloning several instances of the same hardware accelerator at the same time resulting in much shorter configuration time compared to traditional configuration techniques. A faulttolerant (FT) version of the proposed ICM which supports a comprehensive faultrecovery scheme is also introduced in this thesis. The proposed FT-ICM is designed with a much smaller area footprint compared to Triple Modular Redundancy (TMR) hardening techniques while keeping a comparable level of fault-resilience. The capabilities of the proposed ICM system are demonstrated with two novel applications. The first application demonstrates a proof-of-concept reliable FPGA server solution used for executing encryption/decryption queries. The proposed server deploys bitstream relocation and modular redundancy to mitigate both permanent and transient faults in the device. It also deploys a novel Built-In Self- Test (BIST) diagnosis scheme, specifically designed to detect emerging permanent faults in the system at run-time. The second application is a data mining application where DPR is used to increase the computational density of a system used to implement the Frequent Itemset Mining (FIM) problem

    Database Streaming Compression on Memory-Limited Machines

    Get PDF
    Dynamic Huffman compression algorithms operate on data-streams with a bounded symbol list. With these algorithms, the complete list of symbols must be contained in main memory or secondary storage. A horizontal format transaction database that is streaming can have a very large item list. Many nodes tax both the processing hardware primary memory size, and the processing time to dynamically maintain the tree. This research investigated Huffman compression of a transaction-streaming database with a very large symbol list, where each item in the transaction database schema’s item list is a symbol to compress. The constraint of a large symbol list is, in this research, equivalent to the constraint of a memory-limited machine. A large symbol set will result if each item in a large database item list is a symbol to compress in a database stream. In addition, database streams may have some temporal component spanning months or years. Finally, the horizontal format is the format most suited to a streaming transaction database because the transaction IDs are not known beforehand This research prototypes an algorithm that will compresses a transaction database stream. There are several advantages to the memory limited dynamic Huffman algorithm. Dynamic Huffman algorithms are single pass algorithms. In many instances a second pass over the data is not possible, such as with streaming databases. Previous dynamic Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the number of distinct item IDs. Memory is required to grow to fit the n items. The improvement of the new memory limited Dynamic Huffman algorithm is that it would have an O(k) asymptotic memory requirement; where k is the maximum number of nodes in the Huffman tree, k \u3c n, and k is a user chosen constant. The new memory limited Dynamic Huffman algorithm compresses horizontally encoded transaction databases that do not contain long runs of 0’s or 1’s

    Unobtrusive Mattress-Based Identification of Hypertension by Integrating Classification and Association Rule Mining

    Get PDF
    Hypertension is one of the most common cardiovascular diseases, which will cause severe complications if not treated in a timely way. Early and accurate identification of hypertension is essential to prevent the condition from deteriorating further. As a kind of complex physiological state, hypertension is hard to characterize accurately. However, most existing hypertension identification methods usually extract features only from limited aspects such as the time-frequency domain or non-linear domain. It is difficult for them to characterize hypertension patterns comprehensively, which results in limited identification performance. Furthermore, existing methods can only determine whether the subjects suffer from hypertension, but they cannot give additional useful information about the patients’ condition. For example, their classification results cannot explain why the subjects are hypertensive, which is not conducive to further analyzing the patient’s condition. To this end, this paper proposes a novel hypertension identification method by integrating classification and association rule mining. Its core idea is to exploit the association relationship among multi-dimension features to distinguish hypertensive patients from normotensive subjects. In particular, the proposed method can not only identify hypertension accurately, but also generate a set of class association rules (CARs). The CARs are proved to be able to reflect the subject’s physiological status. Experimental results based on a real dataset indicate that the proposed method outperforms two state-of-the-art methods and three common classifiers, and achieves 84.4%, 82.5% and 85.3% in terms of accuracy, precision and recall, respectively

    Data Mining

    Get PDF
    Data mining is a branch of computer science that is used to automatically extract meaningful, useful knowledge and previously unknown, hidden, interesting patterns from a large amount of data to support the decision-making process. This book presents recent theoretical and practical advances in the field of data mining. It discusses a number of data mining methods, including classification, clustering, and association rule mining. This book brings together many different successful data mining studies in various areas such as health, banking, education, software engineering, animal science, and the environment

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Attribute Relationship Analysis in Outlier Mining and Stream Processing

    Get PDF
    The main theme of this thesis is to unite two important fields of data analysis, outlier mining and attribute relationship analysis. In this work we establish the connection between these two fields. We present techniques which exploit this connection, allowing to improve outlier detection in high dimensional data. In the second part of the thesis we extend our work to the emerging topic of data streams
    corecore