34,922 research outputs found

    The Penetration of a Finger into a Viscous Fluid in a Channel and Tube

    Get PDF
    The steady-state shape of a finger penetrating into a region filled with a viscous fluid is examined. The two-dimensional and axisymmetric problems are solved using Stokes equations for low Reynolds number flow. To solve the equations, an assumption for the shape of the finger is made and the normal-stress boundary condition is dropped. The remaining equations are solved numerically by covering the domain with a composite mesh composed of a curvilinear grid which follows the curved interface, and a rectilinear grid parallel to the straight boundaries. The shape of the finger is then altered to satisfy the normal-stress boundary condition by using a nonlinear least squares iteration method. The results are compared with the singular perturbation solution of Bretherton (J. Fluid Mech., 10 (1961), pp. 166–188). When the axisymmetric finger moves through a tube, a fraction mm of the viscous fluid is left behind on the walls of the tube. The fraction mm was measured experimentally by Taylor (J. Fluid Mech., 10 (1961), pp. 161–165) as a function of the dimensionless parameter ”U/T. The numerical results are compared with the experimental results of Taylor

    A Quasi-Random Approach to Matrix Spectral Analysis

    Get PDF
    Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log⁥2n)O(\log^2 n) parallel time with a total cost of O(nω+1)O(n^{\omega+1}) Boolean operations. This Boolean complexity matches the best known rigorous O(log⁥2n)O(\log^2 n) parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases (mod  (2π))(\mod (2\pi)) is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in O(log⁥2n)O(\log^2 n) parallel time and O(nω)O(n^\omega) Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total complexity nω+1n^{\omega+1} and not nωn^{\omega}. However, the depth of the implementing circuit is log⁥2(n)\log^2(n): hence comparable to fastest eigen-decomposition algorithms know

    Degenerate anisotropic elliptic problems and magnetized plasma simulations

    Get PDF
    This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem. The numerical method is designed for arbitrary space-dependent anisotropy directions and does not require any specially adapted coordinate system. It is also designed to be equally accurate in the strongly and the mildly anisotropic cases. The method is applied to the Euler-Lorentz system, in the drift-fluid limit. This system provides a model for magnetized plasmas

    An asymptotic preserving scheme for strongly anisotropic elliptic problems

    Get PDF
    In this article we introduce an asymptotic preserving scheme designed to compute the solution of a two dimensional elliptic equation presenting large anisotropies. We focus on an anisotropy aligned with one direction, the dominant part of the elliptic operator being supplemented with Neumann boundary conditions. A new scheme is introduced which allows an accurate resolution of this elliptic equation for an arbitrary anisotropy ratio.Comment: 21 page
    • 

    corecore