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Abstract
Inspired by quantum computing algorithms for Linear Algebra problems [6, 14] we study how
simulation on a classical computer of this type of “Phase Estimation algorithms” performs when
we apply it to the Eigen-Problem of Hermitian matrices. The result is a completely new, effi-
cient and stable, parallel algorithm to compute an approximate spectral decomposition of any
Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log2n) parallel
time with a total cost of O(nω+1) Boolean operations. This Boolean complexity matches the best
known O(log2n) parallel time algorithms, but unlike those algorithms our algorithm is (logarith-
mically) stable, so it may lead to actual implementations, allowing fast parallel computation of
eigenvectors and eigenvalues in practice.

Previous approaches to solve the Eigen-Problem generally use randomization to avoid bad
conditions - as we do. Our algorithm makes further use of randomization in a completely new way,
taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving
that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost
pairwise independence of the phases (mod 2π) is the main technical contribution of this work. It
relies on the theory of low-discrepancy or quasi-random sequences - a theory, which to the best
of our knowledge, has not been connected thus far to linear algebra problems. Hence, we believe
that further study of this new connection will lead to additional improvements.
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1 Introduction

1.1 General
The eigen-problem of Hermitian matrices is the problem of computing the eigenvalues and
eigenvectors of a Hermitian matrix. This problem is ubiquitous in computer science and
engineering, and because of its relatively high computational complexity imposes a high
computational load on most modern information processing systems.
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6:2 A Quasi-Random Approach to Matrix Spectral Analysis

Eigenvalues and eigenvectors of an input Hermitian matrix, even specified to finite
precision, can be irrational numbers. Hence, when computing them, one inherently needs to
approximate them. This gives rise to a host of problems: spectral decomposition algorithms
are often hard to analyze rigorously, and turn out to be unstable, and difficult to parallelize.

Thus, given a matrix A, we are usually interested not in its exact eigenvalues and
eigenvectors, which may be very hard to compute, (and possibly very long to describe once
computed), but rather in an approximate decomposition:

I Definition 1 (Approximate Spectral Decomposition - ASD(A, δ)). Let A be some n × n
Hermitian matrix. An approximate spectral decomposition of A, with accuracy parameter
δ = 1/poly(n) is a set of vectors {vi}ni=1, ‖vi‖ = 1 such that there exists a complete set of
eigenvectors {wi}ni=1 of a matrix A′, ‖A′ −A‖ ≤ δ that satisfy:

∀i ‖vi − wi‖ ≤ δ.

For a general n× n matrix A one can consider the Hermitian matrix AHA, in which case
ASD(AHA, δ) is an approximation of the singular vectors (and singular values) of A.

We note that the definition of ASD then corresponds to a “smooth analysis” of matrices:
namely given input A, we do not find a spectral decomposition of A, but rather the
decomposition of a matrix A′, such that ‖A−A′‖ ≤ δ. We also point out, that the definition
of ASD holds just as well in the case of nearly degenerate matrices: we do not require
a one-to-one correspondence with the eigenvectors of A, which can be extremely hard to
achieve, but rather to find some set of approximate eigenvectors, such that the corresponding
weighted sum of rank-1 projections form an approximation of A.

When one considers an algorithm A for the ASD problem, one can examine its arithmetic
complexity or boolean complexity. The arithmetic complexity is the minimal size arithmetic
circuit C (namely each node computes addition, multiplication or division to unbounded
accuracy) that implements A, whereas the boolean complexity counts the number of boolean
AND/OR gates of fan-in 2 required to implement A.

Given the definition above, and following Demmel et al. [4] we consider an algorithm A to
be log-stable (or stable for short), if there exists an arithmetic circuit C that implements A
on n× n matrices, and a number t = O(log(n)), such that each arithmetic computation in C
uses at most t bits of precision, and the output of the circuit deviates from the output of the
arithmetic circuit by at most 1/poly(n). We note that when an algorithm is stable then its
boolean complexity is equal to its arithmetic complexity up to a factor O(log(n)). If, however,
an algorithm is unstable then its boolean complexity could be larger by a factor of up to n. In
the study of practical numerical linear algebra algorithms, one usually identifies algorithms
that are stable with “practical”, and algorithms that are not stable to be impractical. This
usually, because the computing machines are restricted to representing numbers with a
number of bits that is a small fraction of the size of the input.

In terms of parallelism, we will refer to the complexity class NC(k) (see Definition 8)
which is the set of all computational problems that can be solved by uniform Boolean circuits
of size poly(n) in time O(logk(n)). Often, we will refer to the class RNC(k), in which the
parallel NC(k) circuit is also allowed to accept uniform random bits. One would like an ASD
algorithm to have minimal arithmetic or boolean complexity, and minimal parallel time.
Ideally, one would also like this algorithm to be stable.

1.2 Main Contribution
Inspired by recent quantum computing algorithms [6, 14], we introduce a new perspective on
the problem of computing the ASD that is based on low-discrepancy sequences. Roughly
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speaking, low-discrepancy sequences are deterministic sequences which appear to be random,
because they “visit” each small sub-cube the same number of times that a completely random
sequence would, up to a small additive error.

I Definition 2 (Multi-dimensional Discrepancy). For integer s, put Is = [0, 1)s. Given a
sequence x = (xn)Nn=1, with xn ∈ Is the discrepancy DN (x) is defined as:

DN (x) = sup
B∈B

{∣∣∣∣∣ 1
N

N∑
n=1

χB(xn)− vol(B)

∣∣∣∣∣
}
,

where χB(xn) is an indicator function which is 1 if xn ∈ B and B is the set of all s-products
of intervals

∏s
i=1[ui, vi], with [ui, vi](mod1) ⊆ [0, 1).

We recast the ASD problem as a question about the discrepancy of a certain sequence
related to the input matrix. Specifically, given a Hermitian matrix A with n unique eigenvalues
{λi}i∈[n] the central object of interest is the sequence comprised of n-dimensional vectors of
eigenvalue residuals:

S(A) = ({λ1 · 1}, . . . , {λn · 1}) , ({λ1 · 2}, . . . , {λn · 2}) , . . . ({λ1 ·M}, . . . , {λn ·M}) ,

where {x} is the fractional part of x ∈ R, and M = poly(n) is some large integer. S(A) is
hence a sequence of length M in [0, 1)n. We would like S(A) to have as small discrepancy
as possible. Hence, in sharp contrast to previous algorithms, instead of the computational
effort being concentrated on revealing “structure” in the matrix, our algorithm is actually
focused on producing random-behaving dynamics.

The main application of our approach presented in this paper is a new stable and parallel
algorithm for computing the ASD of any Hermitian matrix. We assume w.l.o.g. that the
input matrix is positive-semidefinite (otherwise it can be scaled and shifted by appropriate
multiple of identity) and claim:

I Theorem 3. Let A be some n × n Hermitian matrix such that 0 � A � 0.9I. Let
δ = 1/poly(n). Then ASD(A, δ) ∈ RNC(2), with circuit size Õ(nω+1). The algorithm is
log-stable.

The boolean complexity of our algorithm is O(nω+1). If however, one is interested in sampling
a uniformly random eigenvector, it can be achieved in complexity O(nω). 1

1.3 Prior Art

There are numerous algorithms for computing the ASD of a matrix, relying most prominently
on the QR decomposition [15]. For specific types of matrices, like tridiagonal matrices much
faster algorithms are known [11], but here we consider the most general Hermitian case. We
summarize the state of the art algorithms for this problems in terms of their complexity
(boolean / arithmetic, serial / parallel) and compare them to our own:

1 ω signifies the infimum over all constants c such that one can multiply two matrices in at most nc

arithmetic operations, and O(log(n)) time.
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6:4 A Quasi-Random Approach to Matrix Spectral Analysis

Arithmetic
Complexity

Boolean Com-
plexity

Parallel Time Log-Stable Comments

Csanky [7] Õ(nω+1) Õ(nω+2) log2(n) NO
Demmel et al.
[4]

Õ(nω) Õ(nω)(∗) N/A YES ∗ Conjectured for
a variant of the al-
gorithm.

Bini et al.,
Reif [3, 11]

Õ(nω) Õ(nω+1) O(log2(n)) NO Working with
Ω(n) bit Integers

New Õ(nω+1) Õ(nω+1) log2(n) YES

Comparing our algorithm to the best known NC(2) algorithms, it is more efficient by
a factor of n compared with Csanky’s algorithm [7]. Notably, our algorithm is completely
disjoint from Csanky’s techniques - which rely on computing explicitly high powers of the
input matrix, and computes the characteristic polynomial of the matrix using the Newton
identities on the traces of those powers. This is an inherently unstable algorithm as it
finds the eigenvalues by approximating the roots of the characteristic polynomial and small
perturbation to the coefficients of the polynomial may lead to large deviations of the roots.

The algorithms of Demmel et al., Bini et al. and Reif, rely on efficient implementation
of variants of the QR algorithm. Our asymptotic bounds are worse then Demmel et al. in
terms of total arithmetic/boolean complexity, though we conjecture that this is an artifact of
our proof strategy, and not an inherent problem (see the section on open problems), and in
fact, we conjecture that a certain variant of the algorithm could probably achieve a boolean
complexity of O(nω). We note that the QR algorithm is not known to be parallelizable in
a stable way, and hence the fast parallel algorithms of Bini et al. and Reif are not stable
and probably impractical. In fact the QR decomposition has been shown, for standard
implementations like the Given’s or Householder method, to be P -complete [8] assuming the
real-RAM model. Thus, it is unlikely to be stably-parallelizable unless P = NC. 2

Thus, to the best our knowledge, our algorithm is the first parallel algorithm for the ASD
of general Hermitian matrices that is both parallel and stable. In particular it achieves the
smallest bit-complexity of any RNC(2) algorithm to date. We conjecture that our approach
may present a practical and parallel alternative to computing the ASD.

1.4 Overview of the Algorithm
To compute the ASD of a given matrix A, we first consider a similar problem of sampling
uniformly an approximate eigenvector of A, where the eigenvalues of A are assumed to be
well-separated. Clearly, if one can sample from this distribution in RNC2, then by the coupon
collector’s bound concatenating O(nlog(n)) many parallel copies of this routine, one can
sample all eigenvectors quickly with high probability. To do this, we require a definition of a
Hermitian matrix that is δ-separated:

I Definition 4 (δ-separated). Let A be an n × n PSD matrix with eigenvalues λ1 > λ2 >

. . . > λn ≥ 0. We say that A is δ-separated if λj−λj+1 ≥ δ for all j < n, and λ1 ≤ 1/(2π)−δ.

Next, we introduce the notion of a separating integer w.r.t. a sequence of real numbers:

2 We point out that the algorithm of Reif [11] achieves a QR factorization in parallel time O(log2(n))
in the arithmetic model, thus showing that QR is indeed parallelizable, but it relies on computations
modulo large integers and therefore not stable and not practical.
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I Definition 5 (Separating Integer). Let λ̄ = (λ1, . . . , λn) ∈ [0, 1)n. For α > 4 define
Bin ⊆ Bout ⊆ [0, 1) as:

Bout = [−1/(4n), 1/(4n)](mod1) and Bin(α) = [−1/(αn), 1/(αn)](mod 1),

A positive integer m is said to separate the k-th element of λ̄ w.r.t. Bin, Bout if it satisfies:
{mλk} ∈ Bin(α)
∀j 6= k {mλj} /∈ Bout

and finally define the notion of a separating integer w.r.t. a δ-separated matrix.

I Definition 6. Let A be a δ-separated matrix with eigenvalues λ̄ = (λ1, . . . , λn). A positive
integer m is said to separate k in A w.r.t. Bin, Bout, if m separates the k-th element of λ̄
(namely, the k-th eigenvalue of A) w.r.t. Bin, Bout.

Following is a sketch of the main sampling routine. For complete details see Section 5.
The routine accepts a separating integer m of the i-th eigenvalue of a δ-separated matrix A,
a precision parameter δ and returns a δ approximation of the i-th eigenvector of A:

Algorithm 1 Filter(A,m, δ)

Input: n× n Hermitian matrix A � 0, integer m, δ = 1/poly(n). A is δ-separated.

1. Compute parameters:

p = 2n2dln(1/δ)e, ζ = δ2/(2pm).

2. Sample random unit vector:
Sample a standard complex Gaussian vector v, set w0 = v/‖v‖.

3. Approximate matrix exponent:
Compute a ζ Taylor approximation of e2πiA, denoted by Ũ .

4. Raise to power:
Compute Ũm by repeated squaring.

5. Generate matrix polynomial:
Compute B =

(
I+Ũm

2

)p
by repeated squaring.

6. Filter:
Compute w = B·w0

‖B·w0‖ .

7. Decide:
Set z = A · w, i0 = arg maxi∈[n] |wi| and compute c = zi0/wi0 . If

‖A · w − c · w‖ ≤ 3δ
√
n

return w, and otherwise reject.

In words - the algorithm samples a random vector and then multiplies it essentially by
the matrix B = ((I + e2πiAm)/2)p. After this “filtering” step, it evaluates whether or not
the resulting vector is close to being an eigenvector of A, and keeps this vector if it is. To
understand the behavior of the algorithm, it is insightful to consider the behavior in the
eigenbasis of A.

w =
∑
i

αiwi,

ITCS 2018



6:6 A Quasi-Random Approach to Matrix Spectral Analysis

where {wi}i∈[n] is an orthonormal basis for A corresponding to eigenvalues {λi}i∈[n]. If
{mλi}, i.e. - the fractional part of mλi, is very close to 0 (i.e. inside Bin) and {mλj} is
∼ 2 lnn/p far from 0 (i.e. outside Bout) for all j 6= i, then after multiplication by B and
normalization, all eigenvectors wj for j 6= i are attenuated by factor 1/n2 relative to wi, and
hence the resulting vector is 1/n close to an eigenvector of λi.

Hence, a sufficient condition on the number m that would imply that w = Filter(A,m, δ)
is an approximation of the i-th eigenvector is the following property: {mλi} is very close
to 0, and for all j 6= i {mλj} is bounded away from 0. This corresponds to the fact that m
separates i in A, as assumed.

So to sample uniformly an approximate eigenvector, we would like to call Filter(A,m, δ)
for m ∼ U [M ] for M = poly(n) and prove that m separates i where i ∼ U [n]. The main
observation here, is that this property holds if the sequence of residuals of integer multiples
of the eigenvalues S(A) defined above has the aforementioned low discrepancy property.

Most of the work in this study is devoted to achieving this property. Computationally, we
achieve low-discrepancy of S(A) simply by additive Gaussian perturbation prior to calling the
sampling routine. We show that if we perturb a matrix using a Gaussian matrix E of variance
1/poly(n), then S(A+ E) has discrepancy which is 1/poly(n). Showing this is non-trivial
because arbitrary vectors of eigenvalues λ1, . . . , λn do not generate low-discrepancy sequences
in general, and on the other hand we are also severely limited in our ability to perturb the
eigenvalues without deviating too much from the original matrix. This is the subject of our
main technical theorem 34, which may be of independent interest:

I Theorem (Informal). Let A be an n× n Hermitian matrix, and E be a standard Gaussian
matrix. For any a > 0, b > 0 there exists M = M(a, b) = poly(n) such that w.p. at least
1 − n−b the sequence of residuals of eigenvalue multiples of A + n−a · E of length M has
discrepancy at most n−b.

Perturbing the input matrix has the additional benefit of making sure that A has a exactly
n unique eigenvalues with high probability. This follows from a breakthrough theorem by
Nguyen, Tao and Vu [9] which has provided a resolution of this long-standing open problem,
which was considered unproven folklore until that point. This theorem allows us to handle
general Hermitian matrices without extra conditions on the conditioning number of A or its
eigenvalue spacing.

1.4.1 Comparison to the power method / QR algorithm
A natural benchmark by which to test the novelty of the proposed algorithm is the iterative
power-method for computing the eigenvalues of a Hermitian matrix. In this method, one
starts from some random vector b0, and at each iteration k sets:

bk+1 = Abk
‖Abk‖

.

Both the power method and our proposed scheme are similar in the sense that they
attempt to extract the eigenvectors of the input matrix directly. Also, if two eigenvalues are
ε-close in magnitude, for some ε > 0, then they require essentially the same exponent of A
in the power method, and of eiA in our scheme to distinguish between them. However, the
similarity stops here. We maintain, that the power method is both conceptually different,
and for general Hermitian matrices performs much worse, in terms of running time, compared
with our proposed algorithm.
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Conceptually, in the power method, we seek to leverage the difference in magnitude
between adjacent eigenvalues in order to extract the eigenvectors. On the other hand, in our
proposed scheme we recast the problem on the unit sphere S(1), where we are interested in
the spacing of the residuals of integer multiples of the eigenvalues. Worded differently, our
setting exploits the additive group structure of the eigenvalues modulo 1, whereas the power
method distinguishes between them multiplicatively.

In the additive group setting, the advantage is that we can consider the discrepancy
of the sequence of residuals, and analyze how quickly these residuals mimic a completely
independent random distribution. Furthermore, in the additive setting there is inherent
symmetry between the eigenvalues, as no eigenvalue is more likely to be sampled than
another. This allows for a natural parallelization of the algorithm to extract simultaneously
approximation of all eigenvectors.

The well-known QR algorithm for eigendecomposition [5] is the de-facto standard for
computing the ASD, and is considered by some as a parallel version of the power-method.
That algorithm applies an iterated sequence of of QR decompositions: At each step k we
compute (where A1 = A - the input matrix)

Ak = QkRk,

and then set

Ak+1 = RkQk.

The algorithm runs in time Õ(n3), by applying several pre-processing steps [5], and the fast
variant of Demmel et al. in time O(nω). However, as stated above, the QR decomposition
which is at the core of these methods is not known to be stably parallel.

1.5 Open Questions
We outline several open questions that may be interesting to research following this work:
1. Is it possible to attain a serial run-time of O(nω) for this algorithm? We conjecture that

this is possible based on numerical evidence for a variant of this algorithm, yet we do not
have a proof of this fact.

2. What other linear-algebra algorithms can be designed using our methods ? We would
like these algorithms to improve on previous algorithms in either the stability, boolean
complexity, parallel run-time, or all these parameters simultaneously.

3. Could one reduce the number of random bits required by the algorithm? Currently -
we show that using Õ(n2) random bits - i.e. applying additive Gaussian perturbation
results in a matrix whose eigenvalues seed a low-discrepancy sequence. However, can one
do away with only Õ(n) random bits - by applying a tri-diagonal perturbation to the
matrix?

2 Preliminaries

2.1 Notation
A random variable x distributed according to distribution D is denoted by x ∼ D. We will
use the letter D to denote the discrepancy of a sequence, and the calligraphy letter D to
denote a distribution. For a matrix X, ‖X‖ signifies the operator norm of X. For a set S,
U [S] is the uniform distribution on S. For integer M > 0 the set [M ] is the set of integers

ITCS 2018



6:8 A Quasi-Random Approach to Matrix Spectral Analysis

{0, 1, . . . ,M−1}. For real number x, {x} denotes the fractional part of x: {x} = x−bxc. For
real number x, dxc ∈ [−1/2, 1/2) denotes the rounding error of x - i.e. min{x−dxe, x−bxc}.
N,Z,C signify the natural, integer, and complex numbers, respectively. For a matrix A,
AH is the Hermitian conjugate-transpose of A. For number n > 0 lnn denotes the natural
logarithm, and logn denotes the binary logarithm. µ(η, σ2) is the Gaussian measure with
mean η and variance σ2. An n-dimensional vector is σ-normal if its components are i.i.d.
µ(0, σ2). U(n) is the set of n× n unitary matrices. For a Hermitian n× n matrix A, with
eigenvalues {λi}ni=1, λ1 ≥ λ2 ≥ . . . ≥ λn L(A) = (λ1, . . . , λn) ∈ Rn denotes the vector of
sorted eigenvalues of A. For a measurable subset S ⊆ Rn vol(S) denotes the volume of
S. ∅ is the empty set. GUE is the global unitary ensemble of random matrices: these are
Hermitian matrices whose upper-triangular entries are independently sampled as µ(0, 1).

2.2 Definitions
2.2.1 Complexity
I Definition 7. Let ω denote the infimum over all t such that any two n× n matrices can
be multiplied using a number of products at most nt, and time O(log(n)).

The current best upper-bound on ω is 2.372 due to Williams [16].

I Definition 8 (Class NC). The class NC(k) is the set of problems computed by uniform
boolean circuits, with a polynomial number of gates, and depth at most O(logkn).

Additionally, we will require the following fact:

I Fact 9 ([1]). There exists an algorithm for sorting n numbers in time O(log(n)), using n
processors.

I Definition 10 (Class RNC). The class RNC(k) is the set of problems that can be computed
by uniform boolean circuits, with a polynomial number of gates, accepting a polynomial
number of random bits, and depth at most O(logkn).

For simplicity, we shall assume in this work that RNC circuits are allowed to accept t-bit
numbers, sampled from a suitably truncated Gaussian distribution, and discretized to t-bits
of precision.

2.2.2 Stable Computation
Following Demmel et al. [4] we define the notion of log-stability as one where truncating
each binary arithmetic operation to O(log(n)) bits of precision doesn’t change the result by
much:

I Definition 11 ((t, δ)-stable randomized computation). Let C denote a randomized arithmetic
circuit, and D be its output distribution supported on Rn. Let D denote the discretization
of C to t bits as follows: each infinite-precision arithmetic operation is followed by rounding
to t bits. Let D′ denote the output distribution of D. C is said to be (t, δ)-stable if

∀x ∃y, D(x) = D′(y) and ‖x− y‖ ≤ δ.

I Definition 12 (Log-stable computation). Let C be a randomized arithmetic circuit that
accepts n input numbers. C is said to be log-stable if for any δ = 1/poly(n) it is (t, δ)-stable
for some t = O(log(1/δ)).
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3 Additive Perturbation

Matrix perturbation is a well-developed theory [13, 5] examining the behavior of eigen-values
and eigen-vectors under additive perturbation, usually much smaller compared to the norm
of the original matrix. While general eigenvalue problems are usually unstable against
perturbation, for Hermitian matrices the situation is much better: the Bauer-Fike theorem
[2] states that the perturbed eigenvalues can only deviate from the original eigenvalues by an
amount corresponding to the relative strength of the perturbation. This holds regardless of
whether the perturbation itself is Hermitian.

In particular, when the perturbed matrix A is δ-separated and the perturbation itself is
Hermitian (GUE, for example) one can compute an explicit estimate for the behavior of the
perturbed eigenvalues. We use here a quantitative estimate by [12]:

I Fact 13 (Stability of well-separated eigenvalues under perturbation). Let A be a δ-separated
n×n Hermitian matrix with eigenvalues λ1 > λ2 > . . . > λn, and corresponding orthonormal
basis {vi}∈[n]. Let E be an additive perturbation of A satisfying |Ei,j | ≤ ε for all i, j. Let λ̃i
denote the i-th eigenvalue of A+ E. There exists a constant c > 0 satisfying:

∀i ∈ [n] λ̃i = λi + vHi Evi + ζi, |ζi| ≤ cε2/δ.

In fact, if the perturbation E is GUE a stronger characterization is readily available:

I Corollary 14. Let A be a δ-separated n× n Hermitian matrix with eigenvalues {λi}i∈[n],
and corresponding orthonormal basis {vi}∈[n]. Let E be GUE. There exists c > 0 independent
of n such that the eigenvalues {λ′i}i∈[n] of the perturbed matrix A′ = A+ ε · E are distributed
as follows: they are sampled from µ(λi, ε2), and added a number ζi satisfying w.p. 1−2−Ω(n):

|ζi| ≤ cn · ε2/δ

Proof. By Fact 13 the eigenvalues λ′i behave as

λ′i = λi + vHi Evi + ζi, |ζi| ≤ cε2 max
i,j
|Ei,j |2/δ,

for some constant c > 0. The random matrix E is invariant under unitary conjugation so in
particular, for the unitary matrix V whose columns are the vi’s we have:

V HEV ∼ E

which implies

λ′i = λi + Ei,i + ζi,

where

|ζi| ≤ cmax
i,j

∣∣(V HEV )i,j
∣∣2 /δ ∼ cε2 max

i,j
|Ei,j |2/δ.

The standard Gaussian satisfies:

Pµ
(
|x| ≥ 4

√
n
)
≤ 2−2n.

Thus, by the union bound we have that |Ei,j | ≤ 4
√
n for all i, j w.p. at least 1− 2−n. Hence,

w.p. at least 1− 2−n we have:

∀i ∈ [n] |ζi| ≤ cmax
i,j
|Ei,j |2/δ ≤ 16cn · ε2/δ, J

ITCS 2018



6:10 A Quasi-Random Approach to Matrix Spectral Analysis

Our interest in additive perturbation, however, is not confined just to “stability” arguments.
In fact, our main reason for using perturbation is to cause a scattering of the eigenvalues.
The first step of our algorithm in fact applies additive perturbation to provide a minimal
spacing between eigenvalues. Recently Nguyen et al. [9] have shown that applying additive
perturbation to any Hermitian matrix using a the well-known Wigner ensemble, an ensemble
of random matrices that generalize GUE, in fact causes the eigenvalues of the perturbed
matrix to achieve a minimal inverse polynomial separation. We state their result:

I Lemma 15 ([9], Theorem 2.6. Minimal eigenvalue spacing). Let Mn = Fn + ε ·Xn, where
Fn is a real symmetric matrix, ‖Fn‖2 ≤ 1, ε = n−γ for some constant γ > 0, and Xn is
GUE - namely a random Hermitian matrix (see Section 2). Let λ1 ≥ λ2 ≥ . . . ≥ λn denote
the eigenvalues of Mn, and put αi = λi − λi+1 for all i < n. Then for any fixed A > 0 there
exists B = B(A, γ) > 0, such that

max
1≤i<n

P
(
αi ≤ n−B

)
= O(n−A).

In particular 3 for any A > 0 there exists B > 0 such that P
(
min1≤i<n αi ≥ n−B

)
=

1−O(n−A).

Using the lemma above we define the number B∗ = B∗(δ) as follows:

I Definition 16. For any δ = 1/poly(n), let B∗(δ) denote the smallest number B > 0 such
that for every Fn the matrix Mn = Fn + δXn satisfies:

P
(

min
1≤i<n

αi ≥ n−B
)
≥ 0.99

4 Low-Discrepancy Sequences

4.1 Basic Introduction
Low discrepancy sequences (or “quasi-random” sequences) are a powerful tool in random
sampling methods. Roughly speaking, these are deterministic sequences that visit any
measurable subset B a number of times that is roughly proportional to the volume of B, up
to some small additive error, called the discrepancy. See definition 2.

The definition of discrepancy naturally admits an interpretation in terms of probability:

I Definition 17 (Discrepancy of a random variable). Let x be a random variable on [0, 1)s.
We define the discrepancy of x, D(x) as follows:

D(x) = max
S∈B
|Pz(z ∈ S)− vol(S)| .

By definition, if x is a sequence of length N of discrepancy DN (x), and z is a uniformly
random element from x, then D(z) = DN (x).

Low-discrepancy sequences have much in common with random sampling, or the Monte-
Carlo method, in the sense that they visit each cube a number of time that is roughly
proportional to its volume, up to a small additive error. Yet, contrary to the Monte-Carlo
method, such sequences are not random, but only appear to be random in the sense above.

3 applying the union bound over all eigenvalues
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There are deterministic s-dimensional sequences x = {xi}Ni=1 with discrepancy as low as

DN (x) ≤ C · logsN
N

,

and matching lower-bounds (up to constant factors) on the smallest possible discrepancy
are known for s = 1 [10]. Hence, usually one considers low-discrepancy sequences that are
very long (N) compared to the dimension (s). In particular, in this work we will focus on
attaining low-discrepancy sequences for dimension s = 2. 2-dimensional low-discrepancy
sequences can be viewed as an approximation to pairwise independent uniform random
variables on the interval [0, 1). This property will be crucial in proving that we are able
to isolate and “filter-out” single eigenvectors, and do so in a way that does not favor any
particular eigenvector (see for example Lemma 36).

We mention, in passing, that the discrepancy upper-bound decays asymptotically almost
as O(1/N) (assuming small dimension s) whereas for a sequence x = {xn}n where the xn’s
are uniform independent samples (Monte-Carlo method) the discrepancy typically decays
more slowly, behaving as O(1/

√
N) - and hence quasi-random sequences are often preferred

as a method of numerical integration.

4.2 Some basic facts
We require a Lemma [2.5] due to Niederreiter [10].

I Lemma 18 ([10]. Small point-wise distance implies similar discrepancy). Let x1, . . . , xN ,
y1, . . . , yN denote two s-dimensional sequences for which |xn,i− yn,i| ≤ ε, for all n ∈ [N ], i ∈
[s]. Then the discrepancies of these sequences are related by:

|DN (x1, . . . , xN )−DN (y1, . . . , yN )| ≤ s · ε. (1)

We prove an additional fact:

I Fact 19 (Monotonicity of discrepancy under addition of independent random variables). Let
x be a random variable on [0, 1)s of discrepancy at most D(x), and let y denote the random
variable

y = x+ z(mod1),

where z supported on [0, 1)s is a random variable independent of x. Then D(y) ≤ D(x).

The proof appears in the full version of the paper.

4.3 The Good Seed Problem
We will be interested in sequences x = {xn}Nn=1 where each xn is an s-dimensional vector
comprised of residuals of numbers as follows:

xn = {g · n} ,

where g ∈ [0, 1)s is some s-dimensional vector, called the seed of the sequence. Specifically,
in our context, the vector g will represent the vector of eigenvalues of an n× n Hermitian
matrix A whose spectrum we would like to analyze. Since it is unreasonable to assume that
the input matrix has a spectrum that is a good seed, we will find a perturbation of the
matrix A′ = A + E such that g′ = L(A′) has a corresponding sequence, defined as above,
with low-discrepancy.

Niederreiter has shown [10] that if g is sampled uniformly on [N ]s then it is a good seed
with high probability:
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6:12 A Quasi-Random Approach to Matrix Spectral Analysis

I Lemma 20. Let s,N be an integers and g ∼ U([N ]s), and let x = {xn}n denote the
sequence whose n-th element is given by: xn = {gn/N}. Then

P
(
DN (x) ≤ logsN

N

)
≥ 1− 1/N.

For our application we require that N = poly(n), and s = 2, in which case the above
discrepancy is sufficiently low for our purposes. Yet, since it requires the normalized seed
g/N to be essentially uniform on [0, 1)n, it implies that the corresponding matrix perturbation
E added to A must be very strong - thereby loosing all connection to the input matrix.

4.4 Finding Reasonably-Good Seeds Locally
To bridge the gap between weak-perturbation and low-discrepancy we show a new lemma,
which may be of independent interest: it allows to trade-off the extent to which g is random,
and the discrepancy of the sequence generated by g. Specifically, we will show that if g/N is
uniform on cubes of much smaller side-length, i.e. at least 1/

√
N , then the resulting sequence

has discrepancy O(logsN/
√
N). This is the subject of the following lemma:

I Lemma 21. We are given integer N , with prime divisor M and an integer s. Let
g = (g1, . . . , gs) ∈ Ns, such that each coordinate gi is independently chosen uniformly on
some interval Ii ⊆ [N ] of size M . Let x = x(g) = {xn}Nn=1 be the following s-dimensional
sequence of length N corresponding to residuals of g:

xn =
{g · n
N

}
.

Then Pg
(
DN (x) ≤ 2logs(M)/

√
M
)
≥ 1− 1/

√
M .

The proof appears in the full version of the paper.

4.5 Low-Discrepancy from Gaussian vectors
In the previous section we showed that sampling a vector of integers uniformly from an
s-dimensional cube formed by the s-th fold product of an interval M ⊆ [N ] yields w.h.p. a
sequences of discrepancy at most 1/

√
M . In this section we adapt these theorems about good

seeds for low-discrepancy sequences to the Gaussian measure: we show that sampling a vector
g = (g1, . . . , gs) according to the Gaussian measure (e.g. “normal vector”) with variance N−a
yields w.h.p. a sequence of discrepancy at most N−b for some positive constants a, b. The
proof of this is rather technical, and hinges on an approximation of the Gaussian measure of
variance σ2 by a convex combination of uniform distributions on intervals of size σ/poly(N).

I Theorem 22 (Approximating a Gaussian by a convex sum of uniform distributions). Let
g = (g1, . . . , gn) be a vector g ∈ Rn sampled from the standard Gaussian measure. Then g
is a convex combination of two distributions DU ,DV as follows: (1− p)DU + p · DV , where
DU is the n-fold distribution of independent variables z1, . . . , zn, and p ≤ 2n2/m. Each zi is
itself a convex combination of m ≥ 2n2 i.i.d. variables {wj}mj=1, with wj ∼ U [Ij ], where Ij
is some interval of the real line of size |Ij | = 1/m.

The proof of this theorem is somewhat technical and appears in the full version of the paper.
We now define a vector to be “almost” normal - in the sense that it is a small perturbation
of a normal vector:
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I Definition 23 ((σ, ε)-normal vector). A random vector v is (σ, ε)-normal if it is sampled as
a σ-normal vector x to which we add a vector e = e(x) of length at most σε.

We now state our main lemma of this section - that almost normal vectors yield seeds for
low-discrepancy sequences:

I Lemma 24 (Low-discrepancy sequence from almost normal vectors). Let B > 0, and
v = (v1, . . . , vn) be some (σ, ε)-normal vector, for σ = n−B , ε ≤ n−0.9B. There exists
M ≤ n1.6B such that for any S = {i1, . . . , is} ⊆ [n] , |S| = s the distribution on s-dimensional
sequence of length M :

Vs ≡ {({m · vi1} , . . . , {m · vis})}m∈[M ]

satisfies DM (Vs) ≤ 4logs(n) · n−0.1B .

Proof. Let P be the minimal prime which is at least n0.3B , and put M = P 5. By Bertrand’s
postulate, for sufficiently large n we have that M = P 5 ≤ n1.51B ≤ n1.6B . For any z ∈ [0, 1)
let zM be the number closest to z in the grid m/M , m ∈ [M ].

Removal of non-independent component

Since v is (σ, ε)-normal then vi = Xi + Yi, where Xi ∼ (ηi, σ2), |Yi| ≤ εσ, and the Xi’s are
independent. Let V XS denote the sequence generated by taking only the X component of the
seed vector v, i.e.:

V XS ≡ {({m ·Xi1} , . . . , {m ·Xis})}m∈[M ] (2)

I Fact 25.

DM (VS) ≤ DM (V XS ) + s · n−0.2B

Proof. Consider the r.v.’s Xi, Yi. By our assumption

∀i ∈ [n] |Yi| ≤ σε = n−1.9B . (3)

Thus the difference between the residuals of vi and Xi are small modulo 1:

∀m ∈ [M ], i ∈ [n] |d{mvi} − {mXi}c| ≤ m · n−1.9B ≤Mn−1.9B ≤ n−0.3B (4)

By Lemma 18, we can conclude that the discrepancy of our target sequence VS follows tightly
the discrepancy of V XS :

DM (VS) ≤ DM (V XS ) + s · n−0.3B (5)

J

Reducing Gaussian measure to uniform measure

Consider the vector derived by truncating each coordinate of the vector (Xi1 , . . . , Xis) to
the nearest point on the M -grid:

XM = (XM
i1 , . . . , X

M
is ) = (bMXi1e/M, . . . , bMXise/M).

Consider the discrepancy of the distribution on s-dimensional sequences formed by taking
integer multiples of XM . We claim:

ITCS 2018



6:14 A Quasi-Random Approach to Matrix Spectral Analysis

I Fact 26.

Pv
(
DM (V X,MS ) ≤ logs(n) · n−0.1B

)
≥ 1− 3n−0.1B ,

Proof. In Fact 22 choose as parameter m = n0.2B+2. We get that w.p. at least 1− 2n2/m =
1− 2n−0.2B each Xi samples a convex mixture of variables {wj}j∈[m] where

wj ∼ U(Ij), |Ij | = σ/m = n−1.2B−2 (6)

Hence, w.p. at least 1− 2n−0.2B for all i ∈ [n], the variable M · {XM
i } is a convex mixture

of uniform random variables on intervals M · Ij ⊆ [M ], where

|M · Ij | ≥
σM

m
≥ n1.5B · n−1.2B−2 ≥M0.2. (7)

We apply Lemma 21 to the sequence of residuals of integer multiples, with the seed XM :

V X,MS ≡
({
mXM

1
}
, . . . ,

{
mXM

s

})
m∈[M ] . (8)

The lemma requires that each variable be distributed as: MXM
i ∼ U [I], where I is some

interval of [M ], for integer M > 1 satisfying: |I| ≥ P, P prime , P |N . By our choice
of parameters M has a prime divisor P equal to M0.2 = P . Hence, by Equation 7 we
can satisfy the assumption of the lemma by choosing the parameters for Lemma 21 as
follows: N = M,M = P . Hence, by Lemma 21, and accounting for the Gaussian-to-uniform
approximation error we get:

Pv
(
DM (V X,MS ) ≤ 2logs(n) · n−0.1B

)
≥ 1− n−0.1B − 2n−0.2B ≥ 1− 3n−0.1B . (9)

J

Treating the residual w.r.t. the M -grid

Define: the truncation error

∀i ∈ [s] ri := Xi −XM
i .

In Fact 25 we analyzed the error Yi whose magnitude is negligible even w.r.t. 1/M , and
can thus be disregarded for any element of the sequence VS . Unlike this, the residual error
ri cannot be disregarded because when multiplied by integers uniformly in [M ] it assumes
magnitude Ω(1). Thus, it requires a different treatment.

I Corollary 27.

Pv
(
DM (V XS ) ≤ 2logs(n) · n−0.1B) ≥ 1− 4n−0.1B

Proof. Express the i-th element of the sequence using ri:

∀i ∈ [s] {Xi ·m} =
{

(XM
i + ri) ·m

}
= {{mXM

i }+ {mri}} (10)

The variable V X,MS is the distribution on s-dimensional vectors formed by sampling the
initial seed {XM

i }i∈[s], a uniform random m and returning ({mXM
1 }, . . . , {mXM

s }) ∈ [0, 1)s.
Hence, the variable y ∼ V XS can be written as

y = x+ z(mod1)
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where x ∼ V X,MS and z ∼ {(mr1, . . . ,mrs)}, where m ∼ U [M ].
Let E denote the event in which Xi is sampled according to wj ∼ U [Ij ] where wj is at

distance at least 1/M from either one of the edges of Ij . Conditioned on E, the random
variables ri and XM

i are independent for all i ∈ [s]. By the above, x and z are independent
conditioned on E. Hence, we can invoke Fact 19 w.r.t. y. By this fact we have:

DM (V XS |E) ≤ DM (V X,MS )

and so by Fact 26

Pv
(
DM (V XS |E) ≤ logs(n) · n−0.1B) ≥ 1− 3n−0.1B , (11)

By Equation 7 the probability of E is at least:

Pv(E) ≥ 1− |Ij |/(2M) ≥ 1−M0.2/(2M) ≥ 1− n−B .

Thus: Pv
(
DM (V XS ) ≤ logs(n) · n−0.1B) ≥ 1− 3n−0.1B − P(E) ≥ 1− 4n−0.1B . J

Conclusion of proof: By Corollary 27 we have

Pv
(
DM (V XS ) ≤ 2logs(n) · n−0.1B) ≥ 1− 4n−0.1B

and by Fact 25 we have

DM (VS) ≤ DM (V XS ) + s · n−0.2B

Thus by the union bound:

Pv
(
DM (VS) ≤ 2logs(n) · n−0.1B + s · n−0.2B) ≥ 1− 4n−0.1B

thus:

Pv
(
DM (VS) ≤ 3logs(n) · n−0.1B) ≥ 1− 4n−0.1B

Hence for all but a measure 4n−0.1B of sampled vectors v, the resulting sequence has
discrepancy at most 3logs(n)n−0.1B . Since the discrepancy measures the worst-case additive
error for any set this implies that:

DM (VS) ≤ 3logs(n)n−0.1B + 4n−0.1B ≤ 4logs(n)n−0.1B J

5 A Filtering Algorithm

In this section we provide the specification of the filtering algorithm, which is the main
computational black box of our algorithm. This algorithm accepts an integer m that separates
the i-th eigenvalue of a Hermitian matrix A and computes an approximation for the i-th
eigenvector, with high probability:
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6:16 A Quasi-Random Approach to Matrix Spectral Analysis

Algorithm 2 Filter(A,m, δ)

1. Compute parameters: p = 2n2dln(1/δ)e, ζ = δ2/(2pm).
2. Sample random unit vector:

Sample a standard complex Gaussian vector v, set w0 = v/‖v‖.
3. Approximate matrix exponent:

Compute a ζ Taylor-series approximation of e2πiA, denoted by Ũ .
4. Raise to power:

Compute Ũm by repeated squaring.
5. Generate matrix polynomial:

Compute B =
(
I+Ũm

2

)p
by repeated squaring.

6. Filter:
Compute w = B·w0

‖B·w0‖ .

7. Decide:
Set z = A · w, i0 = arg maxi∈[n] |wi| and compute c = zi0/wi0 . If

‖A · w − c · w‖ ≤ 3δ
√
n

return w, and otherwise reject.

We now show that if the algorithm is provided with an integer m that separates the k-th
eigenvalue of A in the sense defined in Definition 6, then the output is close to the k-th
eigenvector of A.

I Theorem 28. Let n be some integer, δ ≤ n−10 and α = 3
√

ln(1/δ). We are given an
n × n Hermitian matrix A with eigenvalues {λi}i∈[n]. Additionally, we are provided an
integer m that separates k in A, w.r.t. Bin(α), Bout, in the sense of Definition 5. Let
w = Filter(A,m, δ). Then

P (‖w − vk‖ ≤ δ) ≥ 1− 3n−3,

for some unit eigenvector vk of λk, and sufficiently large n. The algorithm has boolean
complexity O(nω · log(2p2m2/δ2)), and runs in parallel time O(log2(n)).

Proof. Let {τ`}`∈[n] denote the set of eigenvalues of Ũ . Since Ũ is a polynomial in A

(truncated Taylor series) then {v`}`∈[n] is also an orthonormal basis for Ũ . Since in addition
‖Ũ − e2πiA‖ ≤ ζ then

∀` ∈ [n]
∣∣τ` − e2πiλ`

∣∣ ≤ ζ. (12)

Let w′ = B · w0 and denote w0 =
∑
`∈[n] β`v`, and w′ =

∑
`∈[n] α`v`. Since A, Ũ share

the same basis of eigenvectors, then by the definition of the matrix B the coefficients α`, β`
are related by:

|α`|2 = |β`|2 ·
∣∣∣∣1 + τ`

m

2

∣∣∣∣2p .
So by Equation 12

|α`|2

|β`|2
≥
∣∣∣∣1 + e2πimλ`

2

∣∣∣∣2p − 2pmζ = |cos(2πmλ`/2)|2p − 2pmζ
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Since m separates k then {mλk} ∈ Bin, and for all ` 6= k we have {mλ`} /∈ Bout. Thus, for
` = k:

|αk|2

|βk|2
≥
∣∣∣cos(2π/6n

√
ln(1/δ))

∣∣∣2p − 2pmζ

Using Claim 32

≥
(

1− 1
n2 ln(1/δ)

)2p
− 2pmζ ≥ 1

2e4 . (13)

On the other hand, for all ` 6= k we have:

|α`|2

|β`|2
≤
∣∣∣∣1 + e2πimλ`

2

∣∣∣∣2p + 2pmζ.

so since m separates k then the above is at most:

≤ |cos(2π/2n)|2p + 2pmζ

which by Claim 32 is at most:

≤ (1− π2/(3n2))2n2 ln(1/δ) + 2pmζ ≤ e−2 ln(1/δ) + 2pmζ ≤ 2δ2. (14)

By Fact 31 for any ε = 1/poly(n) there exists a constant c > 0 such that

P(∀i, j |βj | ≤ c|βi|
√

ln(1/ε)/ε) ≥ 1− 3nε.

Choose ε = n−4. Then by Equations 13 and 14:

P
(
∀` 6= k

|α`|2

|αk|2
≤ c2(2δ2) · (4e8) · 4 lnn · n8

)
≥ 1− 3n−3.

and so for δ ≤ n−10 there exists η ∈ C, |η| = 1 such that∥∥∥∥ w′

‖w′‖
− η · vk

∥∥∥∥2
≤ 1
|αk|2

∑
j 6=k
|αj |2 ≤ 32c2n9 lnnδ2e8 < δ.

for sufficiently large n. Using Claim 30 we conclude that w.p. at least 1− 3n−3 over choices
w0, the criterion is met and the algorithm returns a vector w = w′/‖w′‖ satisfying the
equation above.

Arithmetic run-time: The approximation of e2πiA by Ũ requires, using Fact 33 a time at
most

O(nωlog(1/ζ)) = O(nω · log(2pm/δ2)).

Next, the repeated powering of Ũ to a power m requires time at most: O(nωdlog(m)e) and
the repeated powering of B to the power p requires time at most: O(nωdlog(p)e) Hence the
total complexity is : O(nω · log(pm/δ2)).
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Depth complexity: Each matrix product can be carried out in depth log(n). Each of steps
3 to 6 involves at most log(m) + log(p) sequential matrix multiplications. Hence the depth
complexity of the entire circuit is at most log(n) · (log(m) + log(p)) +O(log(n)) = O(log2(n)).

We conclude the proof of the theorem by showing stability:

I Claim 29. Under the assumption of Theorem 28 the algorithm is log-stable.

Proof. Consider the arithmetic operations involved in computing the filtering algorithm:
1. Generating an approximation Ũ of e2πiAm as a truncated Taylor series.
2. Raising Ũ to a power m ∈ [M ].
3. Computing ((I + Ũ)/2)p.
4. Normalizing Bw0/‖Bw0‖.

Consider an arithmetic circuit C implementing the above, and the circuit D = D(C, t) -
the discretization of C to t bits of precision modeled as follows: after each arithmetic step,
the result is rounded to the nearest value of 2−t. Consider all steps except division. A is
δ-separated so in particular ‖A‖ ≤ 1. Thus, whenever we multiply two matrices at any of the
steps above both have norm at most 1. Hence, at each rounding step the error is increased by
at most

√
n2−t. Finally, considering the final division step, we observe that since m separates

k, then by Equation 13 we have ‖Bw0‖ ≥ 1/(2e6). This implies that the total error is at
most

√
n(p+M) · 2−t · 2e6. Since M,p are both polynomial in n then for any δ = 1/poly(n)

the error is at most δ for some t = O(log(1/δ)). J

J

5.1 Supporting Claims
We now state the important supporting claims. Their proofs appear in the full version of the
paper.

I Claim 30. Let A be some n×n Hermitian matrix, ‖A‖ ≤ 1. Suppose that ‖w − v‖ ≤ δ for
some unit eigenvector v of A, and δ ≤ 1/4. Let z = A·w, and i0 denote i0 = arg maxi∈[n] |wi|.
Let c = zi0/wi0 . Then

‖A · w − c · w‖ ≤ 3δ
√
n.

I Fact 31 (Random unit vectors have well-balanced entries). Let {vi}i∈[n] be some orthonormal
basis of Cn, 0 < ε = 1/poly(n), and v ∈ Cn a uniformly random complex unit vector. For
any i ∈ [n] let αi = |〈v, vi〉|. For any ε = 1/poly(n) there exists a number c1 > 0 independent
of n, such that

P
(
∀i, j |αi|/|αj | ≤ c1

√
ln(1/ε)/ε

)
≥ 1− 3nε.

I Claim 32. ∀θ ∈ [−0.01, 0.01] 1− θ2

2 ≤
1+cos(θ)

2 ≤ 1− θ2

3 .

I Fact 33 (Efficient approximation of exponentiated matrix). Given a Hermitian n× n matrix
A, ‖A‖ ≤ 1/(2π), and error parameter ε > 0, a Taylor approximation of e2πiA, denoted by
ŨA can be computed in time O(nωlog(1/ε)) and satisfies

∥∥e2πiA − ŨA
∥∥ ≤ ε.



M. Ben-Or and L. Eldar 6:19

6 Sampling Separating Integers

In this section we show our main technical tool: which is that perturbing a δ-separated
Hermitian matrix A by a Gaussian matrix of a carefully calibrated variance, results in a
corresponding sequence of residuals S(A) having low-discrepancy, at least for 2-dimensional
sequences - i.e. pairs of variables. This, in turn, implies that we can separate each eigenvalue
of A almost uniformly:

I Theorem 34. Let A be a δ-separated n×n PSD matrix, E GUE, ζ ≤ min{δ13, n−50}, and
α > 4. For any M ≥ ζ−1.6 we have:

∀k ∈ [n] PE,m∼U [M ] ( m separates k in A+ ζ · E w.r.t. Bin(α), Bout ) ≥ 1/(5αn)

6.1 Additive Perturbation
By our definitions above, Gaussian perturbation of a matrix with well-separated eigenvalues
results in a (σ, ε)-normal vector as follows:

I Fact 35 (Perturbation of well-separated matrices). Let A be an n×n ε-separated Hermitian
matrix with eigenvalues λ1 ≥ λ2 . . . ≥ λn. Let E be GUE, and A′ = A + εL · E, where
L ≥ 2. Then w.p. at least 1 − n · 2−n the vector of eigenvalues of A′ (λ′1, . . . , λ′n) is
(εL, cnεL−1)-normal, for some constant c > 0.

Proof. Invoke Corollary 14 choosing ε as εL and δ as ε, and take the union bound over all
i ∈ [n]. J

6.2 Approximate Pairwise Independence
I Lemma 36. Let λ̄ = (λ1, . . . , λn) ∈ [0, 1)n and M a positive integer that satisfy:

∀i 6= j DM

(
{(mλi,mλj)}m∈[M ]

)
≤ ζ, ζ ≤ n−4

Let α > 4. For each k ∈ [n] w.p. at least 1/(5αn) over choices of m ∼ U [M ] the sampled
sequence m separates k w.r.t. Bin(α), Bout.

Proof. Fix xi = {mλi} and let Ei denote the following event:

Ei := (xi ∈ Bin) ∧ (∀j 6= i xj /∈ Bout)

We want to show that

∀i ∈ [n] P(Ei) ≥
1

5αn.

Let t denote the number of xj ’s in Bout:

t = |{j j 6= i xj ∈ Bout}|

Then under this notation we have:

P(Ei) = P(t = 0 ∧ xi ∈ Bin). (15)

Consider the conditional expectation: E [t|xi ∈ Bin] By linearity of expectation:

E [t|xi ∈ Bin] =
∑
j 6=i

P [xj ∈ Bout|xi ∈ Bin] . (16)
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Considering each summand separately:

P(xj ∈ Bout|xi ∈ Bin) = P(xj ∈ Bout ∧ xi ∈ Bin)
P(xi ∈ Bin)

Using the pairwise discrepancy assumption, the above is at most:

|Bout| · |Bin|+ ζ

|Bin| − ζ
≤ |Bout|+ 2ζαn = 1

2n + 2αζn ≤ 0.51
n

and so by Equation 16

E [t|xi ∈ Bin] = (n− 1) · P [xj ∈ Bout|xi ∈ Bin] ≤ 0.51.

The variable t|xi ∈ Bin accepts only integral values, and by Markov’s inequality:

P(t ≥ 1|xi ∈ Bin) ≤ 0.51

Therefore P(t = 0|xi ∈ Bin) ≥ 0.49. Using again the 1-dimensional discrepancy we have

P(xi ∈ Bin) ≥ 1
αn
− ζ ≥ 1

2αn.

Substituting the last two inequalities into Equation 15 yields: P(Ei) ≥ 0.49 · 1
2αn ≥

1
5αn . J

6.3 Proof of Theorem 34

Proof. By assumption A is δ-separated and ζ ≤ min{n−50, δ13}. Consider the perturbed
matrix A′ = A+ ζE . Choose L = 13 and ε = ζ1/13. By Fact 35 there exists some constant
c > 0 such that w.p. at least 1− n2−n the vector L(A′) is (ζ, ε)-normal with parameters

ζ ≤ n−50, ε ≤ cnζ12/13 ≤ ζ0.9

where the last inequality follows because ζ ≤ n−50. We assume that this is the case and
account for the negligible error at the end. Set now B = logn(1/ζ). Then the eigenvalues of
A′ are (σ, ε)-normal for σ = n−B an ε ≤ n−0.9B . Since in addition α > 4 then by Lemma 24
there exists an integer M ≤ n1.6B satisfying:

∀S ⊆ [n], |S| = s DM ({mλS}) ≤ 4logs(n)n−5 ≤ n−4, (17)

for sufficiently large n. Hence, by Lemma 36 a random m ∼ U [M ] separates the k-th
eigenvalue of A+ E w.r.t. Bin(α), Bout w.p at least 1/(5αn). J

7 Parallel Algorithm for ASD

The algorithm Filter(A,m, δ) described in Section 5 is given an integer m that separates the
i-th eigenvalue, and returns an approximation for the i-th eigenvector. In this section, we
use this algorithm in a black-box fashion and design a Las-Vegas algorithm for computing
the full ASD of a matrix. Essentially, it amounts to running sufficiently many copies of the
filtering algorithm in parallel so that all eigenvectors are collected as “coupons” with high
probability.
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Algorithm 3

Input: n× n Hermitian matrix A, parameter δ.

1. Initialize:
a. Recall the definition of B∗ in Definition 16 and compute parameters: δ =

min{δ, n−10}, B = min{δ,B∗(δ/(3
√
n))}, δ′ = (min{δ,B})13/4, α =

√
ln(1/δ′),

M = (max{B−12, n−50})1.6, T = 60nαlog(n).
b. Perturb A with GUE matrix E1: A0 := A+ E1 · δ/(3n)

2. Collect all eigenvectors:
Run T parallel processes of the following procedure
a. Perturb A0: A1 = A0 + δ′ · E2, for GUE matrix E2.
b. Sample m ∼ U [M ]
c. Run Filter (A1,m, δ

′) and store output w.
3. Generate database:

a. For vector w = wk sampled at process i ∈ [T ], compute z = A·w, i0 = arg maxi∈[n] |wi|
and λ̃k = zi0/wi0 .

b. Sort the values λ̃i: assume λ̃1 ≤ . . . ≤ λ̃T . Initialize: γ = λ̃1, D = ∅. Iterate over all
i = 1, . . . , T . At each step i: if |γ− λ̃i| ≥ B/4 then add D → D∪{wi}, and set γ = λ̃i.

Overview:

The first step of the algorithm adds a “coarse” perturbation to A to make sure that it has n
unique eigenvalues that are well-separated. The second step is essentially a parallel execution
of the Filter() procedure where each call to this sub-routine uses independent random bits
to add a “fine” perturbation to A. This implies that each process samples independently
and uniformly an approximation of the k-th eigenvector of A, for each k ∈ [n]. The final
step merely builds up a database of approximate eigenvectors so that all eigenvectors are
represented exactly once.

We now state our main theorem the proof of which appears in the full version of the
paper:

I Theorem 37. For any n × n Hermitian matrix 0 � A � 0.9I, and δ = 1/poly(n) there
exists an RNC(2) algorithm computing ASD(A, δ), in boolean complexity Õ(nω+1). The
algorithm is log-stable.
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