34,082 research outputs found

    Computing with Membranes and Picture Arrays

    Get PDF
    Splicing systems were introduced by Tom Head [3] on biological considerations to model certain recombinant behaviour of DNA molecules. An effective extension of this operation to images was introduced by Helen Chandra et al. [5] and H array splicing systems were considered. A new method of applying the splicing operation on images of hexagonal arrays was introduced by Thomas et al. [12] and generated a new class of hexagonal array languages HASSL. On the other hand, P systems, introduced by Paun [6] generating rectangular arrays and hexagonal arrays have been studied in the literature, bringing together the two areas of theoretical computer science namely membrane computing and picture languages. P system with array objects and parallel splicing operation on arrays is introduced as a simple and effective extension of P system with operation of splicing on strings and this new class of array languages is compared with the existing families of array languages. Also we propose another P system with hexagonal array objects and parallel splicing operation on hexagonal arrays is introduced and this new class of hexagonal array languages is compared with the existing families of hexagonal array languages

    An SO(3)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants

    Full text link
    We prove an analogue of the Kotschick-Morgan conjecture in the context of SO(3) monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten invariants of smooth four-manifolds using the SO(3)-monopole cobordism. The main technical difficulty in the SO(3)-monopole program relating the Seiberg-Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible SO(3) monopoles, namely the moduli spaces of Seiberg-Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the moduli space of SO(3) monopoles [arXiv:dg-ga/9710032]. In this monograph, we prove --- modulo a gluing theorem which is an extension of our earlier work in [arXiv:math/9907107] --- that these intersection pairings can be expressed in terms of topological data and Seiberg-Witten invariants of the four-manifold. This conclusion is analogous to the Kotschick-Morgan conjecture concerning the wall-crossing formula for Donaldson invariants of a four-manifold with b2+=1b_2^+=1; that wall-crossing formula and the resulting structure of Donaldson invariants for four-manifolds with b2+=1b_2^+=1 were established, assuming the Kotschick-Morgan conjecture, by Goettsche [arXiv:alg-geom/9506018] and Goettsche and Zagier [arXiv:alg-geom/9612020]. In this monograph, we reduce the proof of the Kotschick-Morgan conjecture to an extension of previously established gluing theorems for anti-self-dual SO(3) connections (see [arXiv:math/9812060] and references therein). Since the first version of our monograph was circulated, applications of our results have appeared in the proof of Property P for knots by Kronheimer and Mrowka [arXiv:math/0311489] and work of Sivek on Donaldson invariants for symplectic four-manifolds [arXiv:1301.0377].Comment: x + 229 page

    MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    Get PDF
    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protei

    Optimizing Splicing Junction Detection in Next Generation Sequencing Data on a Virtual-GRID Infrastructure

    Get PDF
    The new protocol for sequencing the messenger RNA in a cell, named RNA-seq produce millions of short sequence fragments. Next Generation Sequencing technology allows more accurate analysis but increase needs in term of computational resources. This paper describes the optimization of a RNA-seq analysis pipeline devoted to splicing variants detection, aimed at reducing computation time and providing a multi-user/multisample environment. This work brings two main contributions. First, we optimized a well-known algorithm called TopHat by parallelizing some sequential mapping steps. Second, we designed and implemented a hybrid virtual GRID infrastructure allowing to efficiently execute multiple instances of TopHat running on different samples or on behalf of different users, thus optimizing the overall execution time and enabling a flexible multi-user environmen

    Accelerating Deep Learning with Shrinkage and Recall

    Full text link
    Deep Learning is a very powerful machine learning model. Deep Learning trains a large number of parameters for multiple layers and is very slow when data is in large scale and the architecture size is large. Inspired from the shrinking technique used in accelerating computation of Support Vector Machines (SVM) algorithm and screening technique used in LASSO, we propose a shrinking Deep Learning with recall (sDLr) approach to speed up deep learning computation. We experiment shrinking Deep Learning with recall (sDLr) using Deep Neural Network (DNN), Deep Belief Network (DBN) and Convolution Neural Network (CNN) on 4 data sets. Results show that the speedup using shrinking Deep Learning with recall (sDLr) can reach more than 2.0 while still giving competitive classification performance.Comment: The 22nd IEEE International Conference on Parallel and Distributed Systems (ICPADS 2016

    Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins

    Get PDF
    Background Mutations in pre-mRNA splicing factor PRPF31 can lead to retinitis pigmentosa (RP). Although the exact disease mechanism remains unknown, it has been hypothesized that haploinsufficiency might be involved in the pathophysiology of the disease. Methods In this study, we have analyzed a mouse model containing the p.A216P mutation in Prpf31 gene. Results We found that mutant Prpf31 protein produces cytoplasmic aggregates in the retinal pigment epithelium and decreasing the protein levels of this splicing factor in the nucleus. Additionally, normal protein was recruited in insoluble aggregates when the mutant protein was overexpressed in vitro. In response to protein aggregation, Hspa4l is overexpressed. This member of the HSP70 family of chaperones might contribute to the correct folding and solubilization of the mutant protein, allowing its translocation to the nucleus. Conclusions Our data suggests that a mechanism haploinsufficiency and dominant-negative is involved in retinal degeneration due to mutations in PRPF31. HSP70 over-expression might be a new therapeutic target for the treatment of retinal degeneration due to PRPF31 mutations.This project has been financed through a) The ISCIII (Miguel Servet-I, 2015), co-financed by the European Regional Development Fund (ERDF), No CP15/00071. b) The European Union’s Horizon 2020 research and innovation program, under grant agreement No 634479. c) Regional Ministry of Economy, Innovation and Science of the Junta de Andalucía, No P09-CTS-04967.info:eu-repo/semantics/publishedVersio

    In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles

    Get PDF
    The NHPX protein is a nucleolar factor that binds directly to a conserved RNA target sequence found in nucleolar box C/D snoRNAs and in U4 snRNA. Using enhanced yellow fluorescent protein (EYFP)– and enhanced cyan fluorescent protein–NHPX fusions, we show here that NHPX is specifically accumulated in both nucleoli and Cajal bodies (CBs) in vivo. The fusion proteins display identical localization patterns and RNA binding specificities to the endogenous NHPX. Analysis of a HeLa cell line stably expressing EYFP–NHPX showed that the nucleolar accumulation of NHPX was preceded by its transient accumulation in splicing speckles. Only newly expressed NHPX accumulated in speckles, and the nucleolar pool of NHPX did not interchange with the pool in speckles, consistent with a unidirectional pathway. The transient accumulation of NHPX in speckles prior to nucleoli was observed in multiple cell lines, including primary cells that lack CBs. Inhibitor studies indicated that progression of newly expressed NHPX from speckles to nucleoli was dependent on RNA polymerase II transcription, but not on RNA polymerase I activity. The data show a specific temporal pathway involving the sequential and directed accumulation of NHPX in distinct subnuclear compartments, and define a novel mechanism for nucleolar localization

    Camera-based Image Forgery Localization using Convolutional Neural Networks

    Full text link
    Camera fingerprints are precious tools for a number of image forensics tasks. A well-known example is the photo response non-uniformity (PRNU) noise pattern, a powerful device fingerprint. Here, to address the image forgery localization problem, we rely on noiseprint, a recently proposed CNN-based camera model fingerprint. The CNN is trained to minimize the distance between same-model patches, and maximize the distance otherwise. As a result, the noiseprint accounts for model-related artifacts just like the PRNU accounts for device-related non-uniformities. However, unlike the PRNU, it is only mildly affected by residuals of high-level scene content. The experiments show that the proposed noiseprint-based forgery localization method improves over the PRNU-based reference

    Exploring RNA-targeted gene therapy approaches for hypertrophic cardiomyopathy

    Get PDF
    Relatório de projeto no âmbito do Programa de Bolsas Universidade de Lisboa/Fundação Amadeu Dias (2011/2012). Universidade de Lisboa. Faculdade de Medicin
    corecore