
© <2015>. This manuscript

version is made available under

the CC-BY-NC-ND 4.0

licensehttp://creativecommons.org/licenses/by-

nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hope's Institutional Research Archive

https://core.ac.uk/display/46601385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computing with Membranes and Picture Arrays

A.S. Prasanna Venkatesana, D.G. Thomasb, T. Robinsonb, Atulya K Nagarc

aDepartment of Mathematics, B.S. Abdur Rahman University

Chennai - 600 048, India
bDepartment of Mathematics, Madras Christian College

Tambaram, Chennai - 600 059, India
cDepartment of Computer Science, Liverpool Hope University

Hope Park, Liverpool, L16 9JD, United Kingdom

Abstract

Splicing systems were introduced by Tom Head [3] on biological considera-
tions to model certain recombinant behaviour of DNA molecules. An effective
extension of this operation to images was introduced by Helen Chandra et al.
[5] and H array splicing systems were considered. A new method of apply-
ing the splicing operation on images of hexagonal arrays was introduced by
Thomas et al. [12] and generated a new class of hexagonal array languages
HASSL. On the other hand, P systems, introduced by Paun [6] generating
rectangular arrays and hexagonal arrays have been studied in the literature,
bringing together the two areas of theoretical computer science namely mem-
brane computing and picture languages. P system with array objects and
parallel splicing operation on arrays is introduced as a simple and effective
extension of P system with operation of splicing on strings and this new
class of array languages is compared with the existing families of array lan-
guages. Also we propose another P system with hexagonal array objects and
parallel splicing operation on hexagonal arrays is introduced and this new
class of hexagonal array languages is compared with the existing families of
hexagonal array languages.

Keywords: Membrane Computing, P system, Rectangular arrays,
Hexagonal arrays, Parallel splicing.

Email addresses: prasannaram@bsauniv.ac.in (A.S. Prasanna Venkatesan),
dgthomasmcc@yahoo.com (D.G. Thomas), robin.mcc@gmail.com (T. Robinson),
nagara@hope.ac.uk (Atulya K Nagar)

Preprint submitted to Discrete Algorithms January 30, 2014

1. Introduction

Models based on biological phenomena that were introduced in the lit-
erature enriched both formal language theory and life science with major
developments. Splicing system is one such model introduced by Head [3]
based on biological considerations. The splicing systems make use of a new
operation, called splicing on strings of symbols. Helen Chandra et al. [5]
extended this operation and introduced a new method of splicing on images
of rectangular arrays.

On the other hand, P systems introduced by Paun [6] are a class of
distributed parallel computing devices of biochemical inspiration. These sys-
tems are based on a structure of finitely many cell membranes which are
hierarchically arranged. All cell membranes are embedded in a main mem-
brane called skin membrane. The membranes delimit regions where objects,
elements of a finite alphabet, and evolution rules present. Evolution rules
may contain target indicators; here indicates that the resulting object re-
mains in the same membrane where it is produced; out indicates that the
resulting object is sent to the region surrounding the membrane in which
it is produced; in indicates that the resulting object is sent to a membrane
which is contained in that membrane. Many variants of P systems have been
introduced and extensively studied which can be seen in [7].

Also, in the study of picture generation, several grammars were intro-
duced in the literature to generate various classes of pictures. One such
grammar is the hexagonal kolam array grammar (HKAG) introduced by
Siromoneys [10], generating a class of hexagonal arrays (HKAL). A new
method of applying the parallel splicing operation on images of hexagonal ar-
rays that involve 2×1 or 1×2 dominoes along x or y directions are introduced
in [12].

In this paper, we introduce a new P system called array splicing P system
where the objects are rectangular arrays and the evolution rules are parallel
splicing rules as introduced in [5]. We compare the family of languages
generated by this system with existing families of array languages like local
two-dimensional array languages. Also we propose another P system called
parallel splicing Hexagonal Array P System where the objects are hexagonal
arrays and the evolution rules are parallel splicing rules as introduced in
[12]. We compare the family of hexagonal array languages generated by this
system with existing families of hexagonal array languages like hexagonal
local picture languages.

2

2. Basic Definitions

In this section, we recall the basic definition of array languages, hexagonal
picture languages and parallel splicing rules over array and hexagonal pictures
as in [5, 12]. For the basic definition of P system and its variants, we refer
to [6, 7].

Definition 2.1. Let V be a finite alphabet. A picture A over V is a rectan-
gular m× n array of elements of the form

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

= [aij]m×n

The set of all pictures or arrays over V is denoted by V ∗∗. A picture or an
array language over V is a subset of V ∗∗.

Definition 2.2. Let V be an alphabet, # and $ are two symbols that are not

in V . A vertical domino is of the form
a
b

, and a row domino is of the form

a b , where a, b ∈ V ∪ {λ}.
A domino column splicing rule over V is of the form p : y1#y2$y3#y4,

where yi =
a
b

or
λ
λ
, 1 ≤ i ≤ 4.

A domino row splicing rule over V is of the form q : x1#x2$x3#x4, where
xi = a b or xi = λ λ , 1 ≤ i ≤ 4.

Let X =

a11 . . . a1,j a1,j+1 . . . a1p
a21 . . . a2,j a2,j+1 . . . a2p
.
am1 . . . am,j am,j+1 . . . amp

and Y =

b11 . . . b1,k b1,k+1 . . . b1q
b21 . . . b2,k b2,k+1 . . . b2q
.
bm1 . . . bm,k bm,k+1 . . . bmq

We write (X, Y) ⊢c Z if there exist column splicing rules p1, p2, . . . , pm−1,
not all necessarily different, such that

pi =
ai,j
ai+1,j

#
ai,j+1

ai+1,j+1
$

bi,k
bi+1,k

#
bi,k+1

bi+1,k+1

3

for all i, (1 ≤ i ≤ m− 1), and for some j, k (1 ≤ j ≤ p− 1, 1 ≤ k ≤ q − 1),
and

Z =

a11 . . . a1,j b1,k+1 . . . b1q
a21 . . . a2,j b2,k+1 . . . b2q
.
am1 . . . am,j bm,k+1 . . . bmq

In a similar way, row splicing operation of two images U and V of sizes
p × n and q × n using row splicing rules will produce an image W as given
below:

Let U =

a11 a12 . . . a1n
.
ai,1 ai,2 . . . ai,n
ai+1,1 ai+1,2 . . . ai+1,n

.
ap1 ap2 . . . apn

and V =

b11 b12 . . . b1n
.
bk,1 bk,2 . . . bk,n
bk+1,1 bk+1,2 . . . bk+1,n

.
bq1 bq2 . . . bqn

.

We write (U, V) ⊢r W if there exist row splicing rules q1, q2, . . . , qn−1, not
all necessarily different, such that

qj = ai,j ai,j+1 # ai+1,j ai+1,j+1 $ bk,j bk,j+1 # bk+1,j bk+1,j+1

for all j, (1 ≤ j ≤ n − 1), and for some i, k (1 ≤ i ≤ p − 1, 1 ≤ k ≤ q − 1),
and

W =

a11 a12 . . . a1n
.
ai,1 ai,2 . . . ai,n
bk+1,1 bk+1,2 . . . bk+1,n

.
bq1 bq2 . . . bqn

Example 2.1. Let X =





a a a
b b b
a a a



, Y =





a a a
a a a
a a a



,

4

P1 =
a
a

#
a
a

$
a
b

#
a
b

P2 =
a
a

#
a
a

$
b
a

#
b
a

P3 =
a
λ

#
a
λ

$
a
λ

#
a
λ

then applying the parallel splicing rules P1, P2, P3 we get

Z =





a a a a
b b a a
a a a a





Definition 2.3. Let V be a finite alphabet of symbols. A hexagonal picture
p over V is a hexagonal array of symbols of V . For example, a hexagonal
picture over the alphabet {a, b} is :

a a
a b b

b a

The set of all hexagonal arrays over the alphabet V is denoted by V ∗∗H . A
hexagonal picture language L over V is a subset of V ∗∗H .

We consider hexagons of the type :

left most vertex

upper left vertex upper right vertex

right most vertex

lower right vertexlower left vertex

With respect to a triad
x y

z

of triangular axes x, y, z, the coordinates
of each element of a hexagonal picture can be fixed.

Definition 2.4. Given a picture p ∈ V ∗∗H , let l1(p) denote the number of
elements in the border of p from upper left vertex to left most vertex in the
direction ւ called x direction, l2(p) denote the number of elements in the

5

border of p from upper right vertex to right most vertex in the direction ց
called y direction and l3(p) denote the number of elements in the border of
p from upper left vertex to upper right vertex in the direction → called z
direction.

The directions are fixed with origin of reference as the upper left vertex,
having coordinates (1, 1, 1). The triple (l1(p), l2(p), l3(p)) is called the size of
the picture p.

Given a hexagonal picture p of size (l,m, n), for g ≤ l, h ≤ m and k ≤ n,
we denote by Bg,h,k(p) the set of all hexagonal subpictures (called hexagonal
blocks) of p of size (g, h, k). Each member of B2,2,2(p) is called a hexagonal
tile.

Definition 2.5. Let V be an alphabet. Let C| , $ be two special symbols, not
in V . A domino over V is of the form

b

a a

bor a bor for a, b ∈ V ∪ {λ}.

A domino x direction splicing rule over V is of the form
r = α1C| α2$α3C| α4 where each

α =iα =i
a

b
λ

λ
or for some a, b ∈ V ∪ {λ}

where λ is the empty word (1 ≤ i ≤ 4).
A domino y direction splicing rule over V is of the form
r = β1C| β2$β3C| β4 where each

d
c

β =iβ =i

λ
λor for some a, b ∈ V ∪ {λ}, (1 ≤ i ≤ 4).

Definition 2.6. Given two hexagonal arrays X and Y of sizes (l,m, n) and
(l,m, n′) respectively, i.e., X = 〈aijk〉, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n;
Y = 〈bi′j′k′〉, 1 ≤ i′ ≤ l, 1 ≤ j′ ≤ m, 1 ≤ k′ ≤ n′, we write (X, Y) ⊢

x
W if

there exist x direction splicing rules r1, r2, . . . , rp (not all different) such that
each ri is of the form

i
a

b
λ

λ $
λ

λ C c

d
r = C

and W = 〈cijk′〉, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k′ ≤ n′′, n′′ ≥ n′ and n.

6

We now say that W is obtained from X and Y by domino x direction splicing
in parallel.

We can similarly define domino y direction splicing in parallel.
Let Rz

x and Rz
y denote the finite set of domino x direction splicing rules

and domino y direction splicing rules respectively. By applying x direction
splicing rules and y direction splicing rules we can generate the language of
hexagonal arrays p of sizes (ℓ1(p), ℓ2(p), ℓ3(p)) where ℓ1(p) and ℓ2(p) are fixed
and ℓ3(p) varies.

3. Array Splicing P System

In this section, we define an array splicing P system and examine the
power of this system.

Definition 3.1. An array splicing P system (of degree m, m ≥ 1) is a con-
struct Π = (V ∪ {#, $}, µ, L1, L2, . . . , Lm, (R1, ρ1), (R2, ρ2), . . . , (Rm, ρm), i0)
where

(i) V is an alphabet; #, $ are special symbols not in V .

(ii) µ is a membrane structure consisting of m membranes (labeled with
1, 2, . . . ,m).

(iii) Li ⊆ V ∗∗, (1 ≤ i ≤ m) are finite arrays called axiom arrays over V
associated with the regions 1, 2, . . . ,m of µ.

(iv) Ri, 1 ≤ i ≤ m are finite sets of evolution rules associated with the
regions 1, 2, . . . ,m of µ given in the following form: ({r}, tar) where
{r = α1#α2$α3#α4} is a set of domino column splicing rules or a
domino row splicing rules as given in Definition 2.2 and tar ∈ {here, out}∪
{inj/1 ≤ j ≤ m}. ρi is a partial order relation over Ri, 1 ≤ i ≤ m
specifying a priority relation among rules of Ri.

(v) i0 is the output membrane.

When an object is present in a region of the system, it is assumed to
appear in arbitrarily many copies.

Any m-tuple (M1,M2, . . . ,Mm) of array languages over V is called a con-
figuration of Π. For any two configurations (M1,M2, . . . ,Mm) and (M∗

1 , M
∗

2 ,
. . . , M∗

m), we write (M1,M2, . . . ,Mm) ⊢
∗ (M∗

1 ,M
∗

2 , . . . ,M
∗

m) if we can pass
from (M1,M2, . . . ,Mm) to (M∗

1 ,M
∗

2 , . . . ,M
∗

m) by applying the splicing rules
from each region of µ in parallel to all possible arrays of the corresponding
regions and the target indications associated with the rules. More precisely, if

7

x, y ∈Mi ⊂ V ∗∗ and {{r = α1#α2$α3#α4}, tar} ∈ Ri such that we can have
(x, y) ⊢r w, then w will go to the region indicated by tar. If (i) tar = here,
then the generated array remains in ith membrane, (ii) tar = out, then the
generated array is moved to the region immediately outside the membrane i,
(iii) tar = inj, then the generated array is moved to membrane j, provided
that this is immediately inside ith membrane; if not, the rule cannot be ap-
plied. We note that the generated arrays x and y are still available in the
region i, but if the generated array w is sent out of region i, then no copy of
it remains here.

A sequence of transitions between configurations of a given P system Π,
starting from the initial configuration (L1, L2, . . . , Lm) is called a computation
with respect to Π. The result of a computation consists of all arrays over V
which are sent to the membrane i0 (output membrane) at any time during
the computation. Instead of output membrane we can also collect the output
which are sent out of the skin membrane. We denote by L(Π), the language
of all of this type. We say that L(Π) is generated by Π.

We denote by SPLHA, the family of languages generated by array splic-
ing P systems as above.

Example 3.1. Consider the array splicing P system

Π = (V ∪ {#, $}, µ, L1, L2, L3, (R1, ρ1), (R2, ρ2), (R3, ρ3), 3)

where
V = {a, b, c, x}, µ = [3[2[1]1]2]3

L1 =







I1 =





a x b
a x b
a x b



 , I2 =





b x c
b x c
b x c











R1 =

{(

r1 :

{

p1 :
λ
x

#
λ
b

$
λ
a

#
λ
x

; p2 :
x
x

#
b
b

$
a
a

#
x
x

;

p3 :
x
λ

#
b
λ

$
a
λ

#
x
λ

}

, {here, out}

)

,

(

r2 :

{

p4 :
λ
x

#
λ
c

$
λ
b

#
λ
x

; p5 :
x
x

#
c
c

$
b
b

#
x
x

;

8

p6 :
x
λ

#
c
λ

$
b
λ

#
x
λ

}

, {here, out}

)}

ρ1 = φ
L2 = φ

R2 =

{

r1 :

{

p7 :
λ
b

#
λ
λ

$
λ
λ

#
λ
b

; p8 :
b
b

#
λ
λ

$
λ
λ

#
b
b

;

p9 :
b
λ

#
λ
λ

$
λ
λ

#
b
λ

}

, {here, out}

}

ρ2 = φ, L3 = φ
R3 = φ, ρ3 = φ.

In membrane 1, the two axiom arrays I1 and I2 are present in multiple
copies. By applying the domino column splicing rules of r1 in parallel on the

axiom array I1 with itself we get a new array





a x x b
a x x b
a x x b



.

Similarly by applying the domino column splicing rules of r2 in parallel on

the axiom array I2 with itself we get another new array





b x x c
b x x c
b x x c



. Now

the new array generated can be sent out of the membrane to the membrane 2.
In membrane 2, by applying the domino column splicing rules in parallel

to the arrays got from membrane 1, we get a new array




a x x b b x x c
a x x b b x x c
a x x b b x x c



 which can be represented as (a13x
2
3b

2
3x

2
3c

1
3) where

subscript represents the number of rows and superscript represents the num-
ber of columns in which that element appears. This will be sent to the outer
membrane 3.

If we apply the rules in membrane 1, iteratively we get two arrays of the
form (a13x

m
3 b

1
3) and (b13x

n
3c

1
3), m,n ≥ 1.

At any step, these 2 arrays can be sent to membrane 2 and applying the
splicing rules in membrane 2, we get an array (a13x

m
3 b

2
3x

n
3c

1
3).

Hence the language generated by the system Π consists of arrays with
three rows and any number of columns with left border of a’s, right border
of c’s and middle part with bb and inner part with x’s.

9

i.e., L(Π) = {a13x
m
3 b

2
3x

n
3c

1
3|m,n ≥ 1}.

Example 3.2. Consider the array splicing P system

Π = (V ∪ {#, $}, µ, L1, L2, (R1, ρ1), (R2, ρ2), 2)

where
V = {a, b},

µ = [2[1]1]2

L1 =

{[

a b
a a

]}

R1 =















































r1 :































q1 : λ a # λ a $ λ λ # λ a ;

q2 : a b # a a $ λ λ # a b ;

q3 : b b # a a $ λ λ # b b ;

q4 : b λ # a λ $ λ λ # a λ ;































, {here, out}

















,































r2 :



























































p1 :
λ
b

#
λ
λ

$
λ
a

#
λ
b

;

p2 :
b
b

#
λ
λ

$
a
a

#
b
b

;

p3 :
b
a

#
λ
λ

$
a
a

#
b
a

;

p4 :
a
λ

#
λ
λ

$
a
λ

#
a
λ



























































, {here, out}

























































































ρ1 = φ
L2 = φ
R2 = φ
ρ2 = φ.

In membrane 1, the initial array

[

a b
a a

]

will be present in multiple

number of copies. By applying the parallel row splicing rules r1 once, we

10

get a new array





a b
a b
a a



. This new array will be sent out the membrane if

tar = out and it will remain in the same membrane if we use tar = here.
On the other hand, if we apply the parallel column splicing rules r2 first,

we get a new array

[

a b b
a a a

]

. This will be sent out of the membrane if

tar = out and it will remain in the same membrane if tar = here.
In this way, by applying the parallel row splicing rules r1 iteratively, the

row size can be increased and by applying the parallel column splicing rules
r2 iteratively, the column size of the array can be increased.

Hence the above system Π generates the picture language of all m × n
arrays (m ≥ 2, n ≥ 2) describing the token L of a’s (where b’s are interpreted
as blanks) as shown in Figure 1.

a b b b b
a b b b b
a b b b b
a a a a a

Figure 1: Array describing token L

Definition 3.2. For p ∈ V ∗∗, let p# be the rectangular array obtained by
surrounding p with a special boundary symbol # 6∈ V .

For example if p =
a a a
a a a
a a a

, then

p# =

#
a a a
a a a
a a a
#

.

Theorem 3.1. The family SPLHA and the classes LOC of local array lan-
guages are incomparable but not disjoint.

Proof. The picture language consisting of all m × n arrays (m ≥ 2, n ≥ 2)
describing the token L of a’s as in Example 3.2 is a local array language [2].

11

The picture language L of all images over an alphabet V = {a} with
three columns (as shown in Figure 2) is not in LOC.

But this can be generated by a splicing array P system given by

Π = (V ∪ {#, $), µ, L1, L2, (R1, ρ1), (R2, ρ2), 2)

where
V = {a}, µ = [2[1]1]2
L1 = {[a a a]}

R1 =















r1 :















q1 : λ a # λ λ $ λ λ # λ a ;

q2 : a a # λ λ $ λ λ # a a ;

q3 : a λ # λ λ $ λ λ # a λ















, {here, out}















ρ1 = φ, L2 = φ
R2 = φ, ρ2 = φ.

In membrane 1, by applying the parallel row splicing rules r1 iteratively,
we get the picture language L of all images over the singleton {a} with three
columns.

a a a
a a a
a a a

Figure 2: An image over {a} with three columns

It is known that the picture language of square images in which diagonal
positions carry the symbol a but the remaining positions carry the symbol
b (as shown in Figure 3) is in LOC [2]. But this array language cannot be
generated by a splicing array P system since it is clear that the equality
in the number of rows and columns cannot be maintained as the row and
column splicing are independently done.

Definition 3.3. [5] A parallel internal contextual array grammar is a system
G = (V,B,C,R, ϕc, ϕr) where V is an alphabet, B is a finite subset of V ∗∗

called the base of G, C is a finite subset of V ∗∗$cV
∗∗ called column array

12

a b b b
b a b b
b b a b
b b b a

Figure 3:

contexts, R is a finite subset of V ∗∗$cV
∗∗ called row array contexts, ϕc :

V ∗∗ → 2C and ϕr : V ∗∗ → 2R are the choice mappings which perform the
parallel internal column and row contextual operations. When ϕc and ϕr are
omitted, we call G as a parallel internal contextual array grammar without
choice.

The direct derivation with respect to G is a binary relation ⇒ on V ∗∗ and
is defined as X ⇒in Y , where X, Y ∈ V ∗∗ if and only if X = X1©| X2©| X3,
Y = X1©| W©| X2©| Z©| X3 or X = X1©−X2©−X3, Y = X1©−W©−X2©−Z©−X3

for some X1, X2, X3 ∈ V ∗∗, and W,Z are contexts obtained by the parallel
internal column or row contextual operations according to the choice map-
pings. ⇒∗

in is the reflexive and transitive closure of the relation ⇒in. Let
G = (V,B,C,R, ϕc, ϕr) be a parallel internal contextual array grammar. The
language generated by G, denoted by L(G) is defined as

L(G) = {Y ∈ V ∗∗/ there exists X ∈ B such that X ⇒∗

in Y }

We write X
$c⇒ Y (respectively X

$c⇒ Y) when column (respectively row)
operations are performed on X to yield Y .

The family of all parallel internal contextual array languages is denoted
by PIAC.

Theorem 3.2. The family SPLHA intersects the family PIAC.

Proof. Consider the splicing array P system

Π = (V ∪ {#, $}, µ, L1, L2, (R1, ρ1), (R2, ρ2), 2)

where
V = {a, x, b}
µ = [2[1]1]2

13

L1 =









b a b
a x a
a x a
b a b









R1 =
{(

r1 :
{

p1 :
λ
a

#
λ
b

$
λ
b

#
λ
a

;

p2 :
a
x

#
b
a

$
b
a

#
a
x

;

p3 :
x
x

#
a
a

$
a
a

#
x
x

;

p4 :
x
a

#
a
b

$
a
b

#
x
a

;

p5 :
a
λ

#
b
λ

$
b
λ

#
a
λ

}

, {here, out}
)

,

(

r2 :
{

p6 :
λ
a

#
λ
a

$
λ
b

#
λ
a

;

p7 :
a
x

#
a
x

$
b
a

#
a
x

;

p8 :
x
x

#
x
x

$
a
a

#
x
x

;

p9 :
x
a

#
x
a

$
a
b

#
x
a

;

p10 :
a
λ

#
a
λ

$
b
λ

#
a
λ

}

, {here, out}
)}

ρ1 = {r1 < r2}
L2 = φ,
R2 = φ,
ρ2 = φ.

In membrane 1, by applying the parallel splicing rules given in r1 once, we

get a rectangular picture

b a a b
a x x a
a x x a
b a a b

. This will be sent out of the membrane

14

if tar = out or it will remain in the same membrane if tar = here. Now we
can apply rules in r1 or r2. Since we have a priority relation, we must use
the splicing rules given in r2 which increases the column size. By applying
the rules in r2 iteratively, we get a family of rectangular pictures with x’s,
the four sides of x’s are surrounded by a’s and the remaining by b’s. We note
that this language is also generated by PIAC grammar [5].

4. Parallel Splicing Hexagonal Array P System

In this section, we introduce a new array P system with hexagonal arrays
as objects and parallel splicing rules as evolution rules and compare the new
class of hexagonal array languages generated by this proposed system with
the existing families of hexagonal array languages.

Definition 4.1. A hexagonal array splicing P system (of degree m,m ≥ 1)
is a construct

Π = (V ∪ {λ, $, C| }, µ, L1, L2, . . . , Lm, (R1, ρ1), (R2, ρ2), . . . , (Rm, ρm), i0)

where

(i) V is a finite alphabet; λ, $, C| are special symbols not in V .

(ii) µ is a membrane structure consisting of m membranes (labeled with
1, 2, . . . ,m).

(iii) Li ⊆ V ∗∗H , (1 ≤ i ≤ m) are finite sets of hexagonal arrays called axiom
arrays over V associated with regions 1, 2, . . . ,m of µ.

(iv) Ri, 1 ≤ i ≤ m are finite sets of evolution rules associated with the
regions 1, 2, . . . ,m of µ given in the following form: ({r}, tar) where
{r = α1C| α2$α3C| α4} is a set of domino x direction splicing rules
or domino y direction splicing rules as given in Definition 2.5 and
tar ∈ {here, out}∪ {inj|1 ≤ j ≤ m}. ρi is a partial order relation over
Ri, 1 ≤ i ≤ m specifying a priority relation among rules of Ri.

(v) i0 is the output membrane.

When an object is present in a region of the system, it is assumed to appear
in arbitrarily many copies.

Any m-tuple (H1, H2, . . . , Hm) of hexagonal array language over V is
called a configuration of Π. For any two configurations (H1, H2, . . . , Hm)
and (H ′

1, H
′

2, . . . , H
′

m), we write (H1, H2, . . . , Hm) ⊢
∗ (H ′

1, H
′

2, . . . , H
′

m) if we

15

can pass from (H1, H2, . . . , Hm) to (H ′

1, H
′

2, . . . , H
′

m) by applying the paral-
lel domino x direction splicing rules or y direction splicing rules from each
region of µ, in parallel to all possible hexagonal arrays of the corresponding
regions, and following the target indications associated with the rules. More
precisely, if a, b ∈ Hi ⊆ V ∗∗H and {{r = α1C| α2$α3C| α4}, tar} ⊆ Ri such that
(a, b) ⊢r w, then w is moved to the region indicated by tar. If tar = here, then
the generated array remains in the same ith membrane where it is generated,
if tar = out, then the generated array is moved to the region immediately
outside the membrane i and if tar = inj, then the generated array is moved
to jth membrane if j is immediately inside the membrane i. If not, the rule
cannot be applied.

A sequence of transitions between configurations of a given P system Π,
starting from the initial configuration (L1, L2, . . . , Lm) is called a computation
with respect to Π. The result of a computation consists of all hexagonal arrays
over V which are sent to the output membrane i0 at any time during the
computation.

The set of all hexagonal arrays computed by a Parallel Splicing Hexagonal
Array P System (PSHAPS) Π is denoted by HASPL(Π). The family of all
hexagonal array languages HASPL(Π) generated by such systems Π, with at
most m membranes, is denoted by PSHAPm.

Example 4.1. Consider the hexagonal array splicing P system

Π = (V ∪ {λ,C| , $}, [2[1]1]2, L1, φ, (R1, ρ1), (φ, φ), 2)

where V = {a},

L1 =







a a
a a a

a a







1
a

a
C λ

λ $
λ

λ C a

a
}. {here, out}}R = {{ r :1

ρ1 = φ.
Initially, in membrane 1, the axiom hexagonal array given by L1 is present

in arbitrarily many copies. Two copies of them will be spliced using the
parallel domino x-direction splicing rule r1 as follows:




a a λ
a a λ a

a λ a

/

,
a λ a

a λ a a
λ a a

/



⊢
a a a

a a a a
a a a

16

The generated hexagonal array is sent to membrane 2 by using tar = out.
It remains in the same membrane if tar = here. By applying the rule r1
iteratively and sending the generated arrays to output membrane we get a
language of hexagonal arrays given by

L(Π) =







a a
a a a

a a
,

a a a
a a a a

a a a
, . . .







.

Hence the system Π generates the language of hexagonal arrays of sizes
(2, 2, n), n ≥ 2.

Definition 4.2. For p ∈ V ∗∗H , let p# be the hexagonal array obtained by
surrounding p with a special boundary symbol # 6∈ V .

For example if
a a

a b b
b a

, then

p# =

#
a a

a b b
b a

#

.

Definition 4.3. A hexagonal picture language L ⊆ V ∗∗H is called local
if there exists a finite set ∆ of hexagonal tiles over V ∪ {#} such that
L = {p ∈ V ∗∗H/B2,2,2(p

#) ⊆ ∆}. L is denoted by L(∆).
The family of local hexagonal picture languages is denoted by HLOC.

Theorem 4.1. The classes of HLOC and PSHAPm are incomparable but
not disjoint.

Proof. Consider the hexagonal local array language L given in [1]. A member
of L is given below:

1 0 0
0 0 1 0

0 1 0 0 1
0 0 1 0

1 0 0

17

The above hexagonal array cannot be generated by a parallel splicing
hexagonal array P system since the evolution rules are x direction splicing
or y direction splicing rules and by definition they cannot generate only
hexagonal arrays of sizes (ℓ,m, n) with ℓ = m = n.

Hence L ∈ HLOC, but L 6∈ PSHAPm.
The language given in Example 4.1 is in PSHAPm, but is not in HLOC

[12].
Now we give a parallel splicing hexagonal array P system that generates

a member of HLOC.

Π = (V ∪ {λ,C| , $}, [2[1]1]2, L1, φ, (R1, ρ1), (φ, φ), 2)

where V = {1, 2, 3}

L1 =







1 1
2 2 2

3 3







1
1

2
C λ

λ $
λ

λ C 1

2 2
2

3
C λ

λ $
λ

λ C 2

3
}. {here, out}}, r :R = {{ r :1

ρ1 = φ.
In membrane 1, by applying the domino x-direction splicing rules r1 and

r2 parallely and using the target indicator out we generate the family of
hexagonal arrays of sizes (2, 2, n), n ≥ 2. Hence

L(Π) =







1 1
2 2 2

3 3
,

1 1 1
2 2 2 2

3 3 3
, . . .







which is in HLOC.

Definition 4.4. [10] A hexagonal kolam array grammar G is a 5-tuple
G = (V, I, P, S,L) where V = V1 ∪ V2, V1 is a finite set of non-terminals
and V2 is a finite set of intermediates; I is a finite set of terminal letters;
P = P1 ∪ P2 where P1 is a finite set of non-terminals rules of the form
S → S1 ⊙ր a (upper right catenation),
S → S1 ⊙ց b (lower right catenation),
S → S1 ⊙← c (left most catenation)
where S, S1 ∈ V1, a, b, c ∈ V2 and ⊙ր is upper right arrow head catenation, ⊙ց is

18

lower right arrow head catenation and ⊙← is leftmost arrow head catenation.
P2 is a terminal rule of the form S → H where S ∈ V1 and H is a hexago-
nal array over I. S is a start symbol; L is a set of intermediate languages
corresponding to each one of the k intermediates in V2. These intermedi-
ate languages are regular or context-free or context-sensitive string languages
written in the appropriate arrow head form. An arrow head is written in the
form {· · ·〈v〉 · · ·} where 〈v〉 denotes the vertex and arrow head is written in
the clockwise direction. A hexagonal kolam array grammar is called (R : R),
(R : CF), (R : CS) accordingly as all the members of L are regular, or at
least one of L is context-free or at least one of L is context-sensitive.

Derivations proceed as follows: For the first stage of derivation, rules in
P1 and P2 are applied sequentially (introducing parentheses along with the ar-
row head direction) until all the non-terminals are replaced. For the second
stage of derivation, starting from the innermost parentheses, each interme-
diate is replaced in parallel by an arrow head of the intermediate language.

Theorem 4.2. The classes of HKAGL and PSHAPm are incomparable but
not disjoint.

Proof. Consider the following two hexagonal arrays

G G G
G G G G

G G G G G
G G G G

G G G

,

G G G

G

Y

G

G

Y

Y

G G G Y G

G G G G Y

YGGGG

Y G G G Y

G

G

G

G Y G G G GY

G Y Y Y Y

Y Y Y Y GG

G

G G G G G

G G G G G

There exists a hexagonal kolam array grammar which generates a lan-
guage consisting of the above two hexagonal arrays [10]. But this language

19

cannot be generated by a parallel splicing hexagonal array P system since
the splicing rules cannot maintain the positions of G and Y .

The language given in Example 4.1 can be generated by a hexagonal
kolam array grammar G = (V, I, P, L, S) where V = V1 ∪ V2 with V1 =
{S}, V2 = {x}, I = {a}, P = P1 ∪ P2 with P1 = {S → S ⊙→ x}, P2 =






S →
a a

a a a
a a







, L = {Lx} where Lx = {an < a > an}, n = 1.

Then

L(G) =







a a
a a a

a a
,

a a a
a a a a

a a a
, . . .







.

Hence the classes HKAGL and PSHAPm are not disjoint. Consider the
parallel splicing hexagonal array P system given by

Π = (V ∪ {λ,C| , $}, [2[1]1]2, L1, φ, (R1, ρ1), (φ, φ), 2)

where V = {1, 2, 3},

L1 =







1 1
1 2 1

3 3







1
1

2
C λ

λ $
λ

λ C 1

2 2
2

3
C λ

λ $
λ

λ C 2

3
}. {here, out}}, r :R = {{ r :1

and ρ1 = φ.
By applying the splicing rules r1 ad r2 in parallel, the above system generates
the hexagonal array language given by

L(Π) =







1 1
1 2 1

3 3
,

1 1 1
1 2 2 1

3 3 3
,

1 1 1 1
1 2 2 2 1

3 3 3 3
, . . .







The above language cannot be generated by a HKAG since if we apply the

rule S →
1 1

1 2 1
3 3

in P2, other elements of the language of HKAG

20

are constructed either through the west arrow catenation or east arrow cate-
nation and hence the first element of the language must be either a prefix or a
suffix hexagonal array of the second element of the language. In general, the
nth element of the language must be a prefix or a suffix array of the (n+1)th

element which is not in L.

Definition 4.5. [10] A controlled table 0L hexagonal array model is a 4-tuple
(V,P , H0, C) where V is a finite alphabet; P is a finite set of right up ր,
right down ց, left ← tables {P1, P2, . . . , Pk}, each table consisting of a finite
set of rules of the form a→ bc, a, b, c ∈ V . H0 is the axiom; C is the control
language which may be either regular or context-free or context-sensitive and
the model is called regular or CF or CS controlled according as C is regular
or context-free or context-sensitive.

The tables bear the appropriate arrow head sign to show the application
in the proper direction. Derivations proceed in parallel along any one of the
three pairs of edges of an arrow head by applying the rules in the appropriate
table. Tables are applied sequentially according to control words in the control
language C.

Theorem 4.3. The classes of regular controlled table 0L hexagonal array
languages (regular CT0LHAL) and PSHAPm are incomparable but not dis-
joint.

Proof. Consider the language

L =























a a
a a a

a a
,

a a a
a a a a

a a a a a
a a a a

a a a

, . . .























which is a regular controlled table 0L hexagonal array language [12]. This
cannot be generated by a parallel splicing hexagonal array P system since
from the definition of domino x-direction and y-direction splicing rules, it is
clear that hexagonal arrays of sizes (ℓ,m, n) with ℓ = m (ℓ ≥ 2,m ≥ 2, n ≥ 2)
only can be generated.

The language given in Example 4.1 can be generated by a regular con-
trolled table 0L hexagonal array grammar [11].

Also L(Π) given in Theorem 4.2 cannot be generated by any regular
controlled table 0L hexagonal array grammar, since if we allow any of the
rule 11← 1 or 12← 1, we get a different language.

21

5. Conclusion

In this paper, a new P system on pictures with arrays as objects and
parallel splicing rules as evolution rules has been proposed. The new class
of array languages generated by the proposed system has been compared
with the existing families of array languages like local two-dimensional ar-
ray languages. Another variant on pictures with hexagonal arrays as objects
and parallel splicing rules on hexagonal arrays as evolution rules has been
proposed. The new class of hexagonal array languages generated by the pro-
posed system has been compared with the existing families of hexagonal array
languages like local hexagonal array languages, hexagonal kolam array lan-
guages, etc. Further studies like generative power, descriptional complexity,
other comparison results and universality results can be done. A preliminary
version of this paper can be seen in [9].

References

[1] Dersanambika, K.S., Krithivasan, K., Martin-Vide, C. and Subrama-
nian, K.G.: Hexagonal Pattern Languages. Lecture Notes in Computer
Science. 3322. (2004) 52–64.

[2] Giammarresi, D. and Restivo, A.: Two-dimensional languages. in Hand-
book of Formal Languages, (G. Rozenberg and A. Salomaa, editors),
Springer-Verlag, 3 (1997) 215–267.

[3] Head, T.: Formal language theory and DNA: an analysis of the gener-
ative capacity of specific recombinant behaviours. Bull. Math. Biology.
49 (1987) 735–759.

[4] Head, T., Paun, Gh. and Pixton, D.: Language theory and molecu-
lar genetics: Generative mechanisms suggested by DNA recombination.
Handbook of Formal Languages. 2. Ch. 7. Eds. Rozenberg, G. and Sa-
lomaa, A. Springer-Verlag, (1997) 295–358.

[5] Helen Chandra, P., Subramanian, K.G. and Thomas, D.G.: Parallel
splicing on images. Int. J. Pattern Recognition and Artificial Intelligence.
World Scientific Publishing Company. 18(6) (2004) 1071–1091.

[6] Paun, Gh.: Computing with membranes. Journal of Computer System
Sciences. 61(1) (1998) 108–143.

22

[7] Paun, Gh., Rozenberg, G. and Salomaa, A. (Eds.): The Oxford Hand-
book of Membrane Computing. Oxford Univ. Press. (2010).

[8] Prasanna Venkatesan, A.S. and Thomas, D.G.: Array Splicing P sys-
tem. Proceedings of the National Conference on Recent Developments in
Mathematics and its Applications. Excel India Publishers. (2011) 157–
164.

[9] Prasanna Venkatesan, A.S. and Thomas, D.G: Computing with mem-
branes and hexagonal arrays, Proceedings of the International Confer-
ence on Mathematics in Engineering and Business Management (ICMEB
2012), T.R. Publications Pvt. Ltd., 2 (2012), 5–8.

[10] Siromoney, G. and Siromoney, R.: Hexagonal Arrays and Rectangular
Blocks. Computer Graphics and Image Processing. 5 (1976) 353–381.

[11] Subramanian, K.G.: Hexagonal Array Grammars. Computer Graphics
and Image Processing. 10(4) (1979) 388–394.

[12] Thomas, D.G., Begam, M.H. and David, N.G.: Hexagonal Array Splic-
ing Systems. Ramanujan Mathematical Society. Lecture Notes Series, 3,
Eds. Krithivasan, K., Rama.R., (2007) 197–207.

23

