846 research outputs found

    Parallel Space-Mapping Based Yield-Driven em Optimization Incorporating Trust Region Algorithm and Polynomial Chaos Expansion

    Get PDF
    Space mapping (SM) methodology has been recognized as a powerful tool for accelerating electromagnetic (EM)-based yield optimization. This paper proposes a novel parallel space-mapping based yield-driven EM optimization technique incorporating trust region algorithm and polynomial chaos expansion (PCE). In this technique, a novel trust region algorithm is proposed to increase the robustness of the SM surrogate in each iteration during yield optimization. The proposed algorithm updates the trust radius of each design parameter based on the effectiveness of minimizing the l1l_{1} objective function using the surrogate, thereby increasing the robustness of the SM surrogate. Moreover, for the first time, parallel computation method is incorporated into SM-based yield-driven design to accelerate the overall yield optimization process of microwave structures. The use of parallel computation allows the surrogate developed in the proposed technique to be valid in a larger neighborhood than that in standard SM, consequently increasing the speed of finding the optimal yield solution in SM-based yield-driven design. Lastly, the PCE approach is incorporated into the proposed technique to further speed up yield verification on the fine model. Compared with the standard SM-based yield optimization technique with sequential computation, the propose

    Design centering of compact microwave components using response features and trust regions

    Get PDF
    Funding Information: Funding: This work was supported in part by the Icelandic Centre for Research (RANNIS) Grant 217771, and by National Science Centre of Poland Grant 2018/31/B/ST7/02369. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Fabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material parameters or operating conditions, are detrimental to the performance of microwave circuits. Mit-igating their impact requires accounting for possible parameter deviations already at the design stage. This involves optimization of appropriately defined statistical figures of merit such as yield. Although important, robust (or tolerance-aware) design is an intricate endeavor because manufacturing inaccuracies are normally described using probability distributions, and their quantification has to be based on statistical analysis. The major bottleneck here is high computational cost: for reliability reasons, miniaturized microwave components are evaluated using full-wave electromagnetic (EM) models, whereas conventionally utilized analysis methods (e.g., Monte Carlo simulation) are associated with massive circuit evaluations. A practical approach that allows for circumventing the aforementioned obstacles offers surrogate modeling techniques, which have been a dominant trend over the recent years. Notwithstanding, a construction of accurate metamodels may require considerable computational investments, especially for higher-dimensional cases. This paper brings in a novel design-centering approach, which assembles forward surrogates founded at the level of response features and trust-region framework for direct optimization of the system yield. Formu-lating the problem with the use of characteristic points of the system response alleviates the issues related to response nonlinearities. At the same time, as the surrogate is a linear regression model, a rapid yield estimation is possible through numerical integration of the input probability distributions. As a result, expenditures related to design centering equal merely few dozens of EM analyses. The introduced technique is demonstrated using three microstrip couplers. It is compared to recently reported techniques, and its reliability is corroborated using EM-based Monte Carlo analysis.Peer reviewe

    Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates

    Get PDF
    Publisher's version (útgefin grein)Uncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to frequency shifts of the operating bands. Quantifying these effects is imperative to adequately assess the design quality, either in terms of the statistical moments of the performance parameters or the yield. Reducing the antenna sensitivity to parameter deviations is even more essential when increasing the probability of the system satisfying the prescribed requirements is of concern. The prerequisite of such procedures is statistical analysis, normally carried out at the level of full-wave electromagnetic (EM) analysis. While necessary to ensure reliability, it entails considerable computational expenses, often prohibitive. Following the recently fostered concept of constrained modeling, this paper proposes a simple technique for rapid surrogate-assisted yield optimization of narrow- and multi-band antennas. The keystone of the approach is an appropriate definition of the optimization domain. This is realized by considering a few pre-optimized designs that represent the directions of the major changes of the antenna resonant frequencies and operating bands. Due to a small volume of such a domain, an accurate replacement model can be established therein using a small number of training samples, and employed to improve the antenna yield. Verification results obtained for a ring-slot antenna, a dual-band and a triple-band uniplanar dipoles indicate that the optimization process can be accomplished at low cost of a few dozen of EM simulations: 62, 74 and 132 EM simulations, respectively. Result reliability is validated through comparisons with EM-based Monte Carlo simulations.This work was supported in part by the Icelandic Centre for Research (RANNIS) under Grant 206606051, in part by the National Science Centre of Poland under Grant 2017/27/B/ST7/00563, and in part by the Abu-Dhabi Department of Education and Knowledge (ADEK) Award for Research Excellence, in 2019, under Grant AARE19-245."Peer Reviewed

    State-of-the-art: AI-assisted surrogate modeling and optimization for microwave filters

    Get PDF
    Microwave filters are indispensable passive devices for modern wireless communication systems. Nowadays, electromagnetic (EM) simulation-based design process is a norm for filter designs. Many EM-based design methodologies for microwave filter design have emerged in recent years to achieve efficiency, automation, and customizability. The majority of EM-based design methods exploit low-cost models (i.e., surrogates) in various forms, and artificial intelligence techniques assist the surrogate modeling and optimization processes. Focusing on surrogate-assisted microwave filter designs, this article first analyzes the characteristic of filter design based on different design objective functions. Then, the state-of-the-art filter design methodologies are reviewed, including surrogate modeling (machine learning) methods and advanced optimization algorithms. Three essential techniques in filter designs are included: 1) smart data sampling techniques; 2) advanced surrogate modeling techniques; and 3) advanced optimization methods and frameworks. To achieve success and stability, they have to be tailored or combined together to achieve the specific characteristics of the microwave filters. Finally, new emerging design applications and future trends in the filter design are discussed

    An Early History of Optimization Technology for Automated Design of Microwave Circuits

    Get PDF
    This paper outlines the early history of optimization technology for the design of microwave circuits—a personal journey filled with aspirations, academic contributions, and commercial innovations. Microwave engineers have evolved from being consumers of mathematical optimization algorithms to originators of exciting concepts and technologies that have spread far beyond the boundaries of microwaves. From the early days of simple direct search algorithms based on heuristic methods through gradient-based electromagnetic optimization to space mapping technology we arrive at today’s surrogate methodologies. Our path finally connects to today’s multi-physics, system-level, and measurement-based optimization challenges exploiting confined and feature-based surrogates, cognition-driven space mapping, Bayesian approaches, and more. Our story recognizes visionaries such as William J. Getsinger of the 1960s and Robert Pucel of the 1980s, and highlights a seminal decades-long collaboration with mathematician Kaj Madsen. We address not only academic contributions that provide proof of concept, but also indicate early formative milestones in the development of commercially competitive software specifically featuring optimization technology.ITESO, A.C

    A microwave filter yield optimization method based on off-line surrogate model-assisted evolutionary algorithm

    Get PDF
    Most existing microwave filter yield optimization methods target a small number of sensitive design variables (e.g., around 5). However, for many real-world cases, more than ten sensitive design variables need to be considered. Due to the complexity, yield optimization quality and efficiency become challenges. Hence, a new method, called yield optimization for filters based on the surrogate model-assisted evolutionary algorithm (YSMA), is proposed. The fundamental idea of YSMA is to construct a single high-accuracy surrogate model offline, which fully replaces electromagnetic (EM) simulations in the entire yield optimization process. Global optimization is then enabled to find designs with substantial yield improvement efficiently using the surrogate model. To reduce the number of necessary samples (i.e., EM simulations) while obtaining the required prediction accuracy, a customized machine learning technique is proposed. The performance of YSMA is demonstrated by two real-world examples with 11 and 14 design variables, respectively. Experimental results show the advantages of YSMA compared to the current dominant sequential online surrogate model-based local optimization methods

    Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits With Dimensionality Reduction

    Get PDF
    Publisher's version (útgefin grein)Contemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include parametric optimization and uncertainty quantification. These can be accelerated using fast replacement models, among which the data-driven surrogates are the most popular. Notwithstanding, a construction of approximation models for microwave components is hindered by the dimensionality issues as well as high nonlinearity of system characteristics. A partial alleviation of the mentioned difficulties can be achieved with the recently reported performance-driven modeling methods, including the nested kriging framework. Therein, the computational benefits are obtained by appropriate confinement of the surrogate model domain, spanned by a set of pre-optimized reference designs, and by focusing on the parameter space region that contains high quality designs with respect to the considered performance figures. This paper presents a methodology that incorporates the concept of nested kriging and enhances it by explicit dimensionality reduction based on spectral decomposition of the reference design set. Extensive verification studies conducted for a compact rat-race coupler and a three-section impedance matching transformer demonstrate superiority of the presented approach over both the conventional techniques and the nested kriging in terms of modeling accuracy. Design utility of our surrogates is corroborated through application cases studies.The Icelandic Centre for Research (RANNIS) under Grant 206606051, in part by the National Science Centre of Poland under Grant 2018/31/B/ST7/02369, and in part by the Abu-Dhabi Department of Education and Knowledge (ADEK) Award for Research Excellence, in 2019, under Grant AARE19-245."Peer Reviewed

    EM-driven miniaturization of high-frequency structures through constrained optimization

    Get PDF
    The trends afoot for miniaturization of high-frequency electronic devices require integration of active and passive high-frequency circuit elements within a single system. This high level of accomplishment not only calls for a cutting-edge integration technology but also necessitates accommodation of the corresponding circuit components within a restricted space in applications such as implantable devices, internet of things (IoT), or 5G communication systems. At the same time, size reduction does not remain the only demand. The performance requirements of the abovementioned systems form a conjugate demand to that of the size reduction, yet with a contrasting nature. A compromise can be achieved through constrained numerical optimization, in which two kinds of constrains may exist: equality and inequality ones. Still, the high cost of electromagnetic-based (EM-based) constraint evaluations remains an obstruction. This issue can be partly mitigated by implicit constraint handling using the penalty function approach. Nevertheless, securing its performance requires expensive guess-work-based identification of the optimum setup of the penalty coefficients. An additional challenge lies in allocating the design within or in the vicinity of a thin feasible region corresponding to equality constraints. Furthermore, multimodal nature of constrained miniaturization problems leads to initial design dependency of the optimization results. Regardless of the constraint type and the corresponding treatment techniques, the computational expenses of the optimization-based size reduction persist as a main challenge. This thesis attempts to address the abovementioned issues specifically pertaining to optimization-driven miniaturization of high frequency structures by developing relevant algorithms in a proper sequence. The first proposed approach with automated adjustment of the penalty functions is based on the concept of sufficient constraint violation improvement, thereby eliminating the costly initial trial-and-error stage for the identification of the optimum setup of the penalty factors. Another introduced approach, i.e., correction-based treatment of the equality constraints alleviates the difficulty of allocating the design within a thin feasible region where designs satisfying the equality constraints reside. The next developed technique allows for global size reduction of high-frequency components. This approach not only eliminates the aforementioned multimodality issues, but also accelerates the overall global optimization process by constructing a dimensionality-reduced surrogate model over a pre-identified feasible region as compared to the complete parameter search space. Further to the latter, an optimization framework employing multi-resolution EM-model management has been proposed to address the high cost issue. The said technique provides nearly 50 percent average acceleration of the optimization-based miniaturization process. The proposed technique pivots upon a newly-defined concept of model-fidelity control based on a combination of algorithmic metrics, namely convergence status and constraint violation level. Numerical validation of the abovementioned algorithms has also been provided using an extensive set of high-frequency benchmark structures. To the best of the author´s knowledge, the presented study is the first investigation of this kind in the literature and can be considered a contribution to the state of the art of automated high-frequency design and miniaturization

    Design specification management with automated decision-making for reliable optimization of miniaturized microwave components

    Get PDF
    Funding Information: The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available. This work is partially supported by the Icelandic Centre for Research (RANNIS) Grant 217771 and National Science Centre of Poland Grant 2020/37/B/ST7/01448. Publisher Copyright: © 2022, The Author(s). © 2022. The Author(s).The employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning imperative to achieve the optimum performance. The process is even more challenging due to a typically large number of geometry parameters, and the lack of reasonable initial designs. The latter often encourages the use of global search procedures, which may be prohibitively expensive. In this paper, a novel automated framework for reliable optimization of miniaturized microwave components is proposed. Our methodology is based on design specification management, where the performance requirements imposed on the system are temporarily relaxed if the current design is unlikely to be improved (e.g., due to being away from the target operating frequency). The specifications are re-adjusted at each iteration of the algorithm, and eventually converge to their original values. Using two examples of compact microstrip couplers and a power divider, the presented technique is demonstrated to significantly improve the efficacy of local search routines under challenging design scenarios.Peer reviewe

    An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients

    Get PDF
    Using derivative based numerical optimization routines to solve optimization problems governed by partial differential equations (PDEs) with uncertain coefficients is computationally expensive due to the large number of PDE solves required at each iteration. In this thesis, I present an adaptive stochastic collocation framework for the discretization and numerical solution of these PDE constrained optimization problems. This adaptive approach is based on dimension adaptive sparse grid interpolation and employs trust regions to manage the adapted stochastic collocation models. Furthermore, I prove the convergence of sparse grid collocation methods applied to these optimization problems as well as the global convergence of the retrospective trust region algorithm under weakened assumptions on gradient inexactness. In fact, if one can bound the error between actual and modeled gradients using reliable and efficient a posteriori error estimators, then the global convergence of the proposed algorithm follows. Moreover, I describe a high performance implementation of my adaptive collocation and trust region framework using the C++ programming language with the Message Passing interface (MPI). Many PDE solves are required to accurately quantify the uncertainty in such optimization problems, therefore it is essential to appropriately choose inexpensive approximate models and large-scale nonlinear programming techniques throughout the optimization routine. Numerical results for the adaptive solution of these optimization problems are presented
    corecore