
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3006708, IEEE
Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Design-Oriented Two-Stage Surrogate  
Modeling of Miniaturized Microstrip Circuits  
with Dimensionality Reduction 
Slawomir Koziel1,2, Senior Member, IEEE, Anna Pietrenko-Dabrowska2, Senior Member, 
IEEE, Muath Al-Hasan3, Senior Member, IEEE 
1Engineering Optimization & Modeling Center, Department of Technology, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland  
2Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk Poland  
3Networks and Communication Engineering Department, Al Ain University, Abu Dhabi, United Arab Emirates 

Corresponding author: Anna Pietrenko-Dabrowska (e-mail: anna.dabrowska@pg.edu.pl). 

The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available. This work is partially supported 
by the Icelandic Centre for Research (RANNIS) Grant 206606051, by National Science Centre of Poland Grant 2018/31/B/ST7/02369, 
and by the Abu-Dhabi Department of Education and Knowledge (ADEK) Award for Research Excellence 
2019 under Grant AARE19-245. 

ABSTRACT Contemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation 
tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be 
adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable 
computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common 
simulation-based design tasks include parametric optimization and uncertainty quantification. These can be 
accelerated using fast replacement models, among which the data-driven surrogates are the most popular. 
Notwithstanding, a construction of approximation models for microwave components is hindered by the 
dimensionality issues as well as high nonlinearity of system characteristics. A partial alleviation of the 
mentioned difficulties can be achieved with the recently reported performance-driven modeling methods, 
including the nested kriging framework. Therein, the computational benefits are obtained by appropriate 
confinement of the surrogate model domain, spanned by a set of pre-optimized reference designs, and by 
focusing on the parameter space region that contains high quality designs with respect to the considered 
performance figures. This paper presents a methodology that incorporates the concept of nested kriging and 
enhances it by explicit dimensionality reduction based on spectral decomposition of the reference design set. 
Extensive verification studies conducted for a compact rat-race coupler and a three-section impedance 
matching transformer demonstrate superiority of the presented approach over both the conventional 
techniques and the nested kriging in terms of modeling accuracy. Design utility of our surrogates is 
corroborated through application cases studies.  

INDEX TERMS Microwave design; compact circuits; surrogate modeling; domain confinement; principal 
component analysis; dimensionality reduction. 

I. INTRODUCTION 

Full-wave electromagnetic (EM) analysis is one of the most 
important tools in the design of contemporary microwave 
components. As a matter of fact, EM-simulation-driven design 
has become imperative for a considerable number of 
components and circuits [1]-[4]. On the one hand, the reason 
is reliability: analytical or network-equivalent models are 
unable to describe adequately systems of increasing 
complexity. On the other hand, for some circuits, 

parameterized network models may not be available 
whatsoever. Miniaturized microstrip components constitute a 
representative class of structures for which the aforementioned 
issues are especially pertinent. This is primarily due to 
considerable EM-cross couplings present in tightly arranged 
layouts of compact circuits, being a result of transmission line 
(TL) folding [5], the employment of compact microwave 
resonant cells (CMRCs) [6], or multi-layer implementation 
(e.g., LTCC circuits [7], [8]). 
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Perhaps the most annoying inconvenience of EM-driven 
design is its high computational cost, which manifests itself 
especially in tasks that require a large number of system 
simulations. These include parametric optimization (also 
referred to as design closure) [9], multi-objective design [10], 
global optimization [11], as well as uncertainty quantification 
(statistical analysis [12], tolerance-aware design [13]). High 
cost often prompts the researchers to employ simplified design 
procedures, largely based on parameter sweeping, or to 
consider special cases (e.g., worst-case analysis instead of 
proper statistical analysis [14]), which are manageable in 
terms of the entailed computational expenses but grossly 
inaccurate. Apart from strictly algorithmic methods (e.g., 
gradient-based procedures with sparse sensitivity updates 
[15], [16]), fast surrogate models offer a way of expediting 
simulation-based design procedures [17]-[19]. A number of 
surrogate-assisted methods have been developed for local 
tuning purposes, where the model is only constructed along 
the optimization path and enhanced using the EM-simulation 
data acquired on the way [20]-[26]. A sufficient generalization 
capability of such models may be ensured by rendering them 
based on underlying lower-fidelity models (e.g., network 
equivalents) [20]. Space mapping [17] is probably the best 
know technique of this kind in high-frequency electronics, 
whereas others include various response correction techniques 
[23], [24], and the feature-based technology [27]. For global 
optimization, a popular approach is an iterative construction 
of the surrogate involving sequential sampling methods [28], 
e.g., efficient global optimization (EGO) methods [29], 
machine learning techniques [30], or surrogate-assisted 
population-based metaheuristics [31], [32]. 

Owing to their attractive features (versatility and easy 
access through various third-party toolboxes, e.g., [33], [34]), 
data-driven models constitute the most popular class of 
surrogates. Furthermore, as approximation models are 
exclusively based on sampled high-fidelity model data, it is 
straightforward to apply them in different engineering 
disciplines. Among many available modeling methods, the 
following ones are particularly popular: polynomial regression 
[35], artificial neural networks [36], radial basis function 
interpolation [37], kriging [38], support-vector regression 
[39], [40], polynomial chaos expansion [41]-[43], and, 
recently, PC kriging [44]. Unfortunately, data-driven 
surrogates exhibit an important disadvantage, which is a rapid 
increase of the number of training data samples required to 
ensure usable accuracy of the model as a function of the 
number of independent parameters and their ranges (a so-
called curse of dimensionality). In the case of microwave 
components, additional challenge is high nonlinearity of the 
system responses as well as the necessity of modeling several 
characteristics simultaneously over broad frequency spectrum. 
In some cases, these issues can be addressed to a certain extent 
using techniques such as high-dimensional model 
representation (HDMR) [45], and orthogonal matching pursuit 
(OMP) [46]. Another option is the employment of variable-

fidelity models (e.g., co-kriging [47], two-stage Gaussian 
process regression [48], or Bayesian model fusion [49]). 

Recently, an alternative way of alleviating the difficulties 
pertinent to parameter ranges and dimensionality has been 
proposed through domain confinement [50]. The 
performance-driven modeling methods [50]-[53] explore the 
fact that the parameter sets being optimum with respect to the 
performance specifications pertinent to a design task at hand 
normally occupy small regions of the traditional box-
constrained parameter spaces. This is due to considerable 
correlations between the parameters that need to be tuned in a 
synchronized manner when, for example, re-designing a 
device for different operating frequency, bandwidth, or 
different substrate parameters [51]. From the point of view of 
design utility, allocating training samples outside such high-
quality regions would be a waste of computational resources. 
Based on this idea, surrogate modeling by domain 
confinement has been proposed in [50], where the 
approximation of the optimum design regions is obtained 
using a set of pre-optimized reference points. This initial 
method was only capable of handling one or two figures of 
interest and did not provide mechanisms for uniform data 
sampling. The nested kriging framework presented in [52] 
effectively resolved these issues by defining the surrogate 
model domain using the first-level model acting on the 
objective space of the component under considerations. 
Performance-driven modeling methods [50]-[53] have been 
shown superior over conventional techniques by rendering 
reliable models at low computational costs and alleviating the 
issue of dimensionality and parameter ranges. 

Although nested kriging brings in some important benefits, 
among others, a simple procedure for uniform design of 
experiments and easy surrogate model optimization [52], the 
model domain dimensionality is intact as compared to the 
original parameter space. This has a negative effect on the 
model scalability but also predictive power for higher-
dimensional problems (e.g., multi-section CMRC-based 
compact circuits [53]). In this paper, the nested kriging 
framework [52] is enhanced by explicit reduction of the model 
domain dimensionality. This is implemented at the level of 
orthogonal extension of the objective space image through the 
first-level model, which, in [52] has been carried out using the 
entire set of normal vectors. In the presented approach, it is 
realized using only the most dominant directions extracted 
from the principal components of the reference design set. 
Comprehensive numerical validation conducted for a 
miniaturized rat-race coupler and a compact three-section 
impedance matching transformer indicate that the proposed 
modeling methods leads to a further improvement of the 
surrogate predictive power (as compared to the nested kriging 
framework). At the same time, the models retain their design 
utility, which is corroborated by the application case studies. 
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II.  METHODOLOGY: PERFORMANCE-DRIVEN 
MODELING WITH DIMENSIONALITY REDUCTION 
The purpose of this section is to formulate the modelling 
methodology discussed in this work. One of its components is 
nested kriging [52], the recent performance-driven approach, 
in which the domain of the surrogate model is confined to the 
region containing high-quality designs (w.r.t. the selected 
figures of interest). Implementation-wise, the domain is 
determined using the so-called first-level model identified 
using the set of pre-optimized reference designs. The major 
enhancement introduced in this work is that the orthogonal 
extension of the objective space image through the first-level 
model is only conducted along a small subset of normal 
vectors calculated based on the principal components of the 
reference set. This allows for explicit reduction of the model 
domain and is in contrast to the nested kriging framework 
where the extension was conducted using all normal vectors. 
As demonstrated in Section III, the result is further 
improvement of the predictive power of the surrogate (as 
compared to nested kriging) and enhanced model scalability. 

A.  FUNDAMENTAL COMPONENTS OF MODELLING 
PROCESS 
The modelling process is conducted with respect to the 
adjustable parameters of the structure at hand, denoted as x 
= [x1 … xn]T. The standard (box constrained) parameter space 
X is defined using the lower and upper bounds on these 
parameters, l = [l1 …, ln]T and u = [u1 …, un]T, so that xk  [lk 
uk] for k = 1, …, n. The modeling process also assumed a 
certain number of figures of interest, denoted as f = [f1 … 
fN]T, which form the objective space F. The objective space 
is delimited using the ranges of interest, fk.min and fk.max, so 
that fk.min  fk  fk.max, for k = 1, …, N. Some examples of the 
figures of interest include an operating frequency of the 
circuit, power split ratio (in the case of couplers), fractional 
bandwidth (e.g., in the case of filters), etc. The performance 
figures may be also related to material parameters, e.g., the 
height and relative permittivity of a dielectric substrate used 
to implement the structure on. 

The ranges fk.min and fk.max define the region of validity of 
the surrogate model that is to be rendered, i.e., we are 
interested in constructing the model that will be an accurate 
representation of the circuit in the parameter space areas that 
contains designs that are optimum or nearly optimum for all 
f  F. The design optimality is understood as follows. We 
define a scalar merit function U(x,f), which assesses the 
quality of the design represented by the parameter vector x 
in regards to the objective vector f. Minimizing this function 
yields the design x* that is optimum with respect to f as 

 
* ( ) arg min ( , )FU U 

x
x f x f                  (1) 

 
The set of all designs UF(f), denoted as UF(F) = {UF(f) : f  
F } form a subset of the parameter space X, which is, in 
general an N-dimensional object (e.g., a surface in the case 
of two-objective space F).  

The following example illustrates the aforementioned 
concepts. Let us consider a microwave coupler that is 
supposed to operate at a frequency f0. The optimum design is 
understood in the sense of maximizing the bandwidth B 
(symmetric w.r.t. f0); at the same time, the power split at f0, 
|S21| – |S31| [dB], should attain the target value KP. Given 
these specifications, the figures of interest, according to the 
notation introduced earlier, would be f1 = f0 and f2 = KP, 
whereas the cost function U may be defined as follows 
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           (2) 

 
In (2), the frequencies fB1 and fB2 mark the lower and the 
upper edge of the –20 dB bandwidth, which is understood 
here as the range of frequencies where max{|S11(x)|, |S41(x)|} 
 –20 dB. The function U also contains a penalty term. The 
latter serves as a regularization factor enforcing the condition 
KP = |S21| – |S31| at f0 (here,  is a penalty coefficient). 

As mentioned before, within the performance-driven 
modeling methods [50]-[53], the modeling process is 
restricted to the vicinity of the optimum design set UF(F). A 
particular implementation of this restriction is method-
dependent but in all cases, the region UF(F) is approximated 
using a set of reference designs x(j) = [x1

(j) … xn
(j)]T j = 1, …, 

p, which are obtained as UF(f(j)), with f(j) = [f1
(j) … fN

(j)] being 
the target vectors allocated within the objective space F. The 
origin of the reference points may be twofold: (i) designs 
rendered specifically for the sake of constructing the 
surrogate model, and (ii) designs available as a result of prior 
optimization of a microwave structure at hand for various 
performance specifications.  

Spectral decomposition of the reference design set can be 
used to yield important insight into correlations between the 
design objective and the optimum parameter sets. We will 
utilize this information later (Section II.B) in the definition 
of the surrogate model domain. Let  

 

( )

1

1 p
k

m
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 x x                                  (3) 

 
be a reference design set center. We define the covariance 
matrix Sp of {x(k)} as 
 

( ) ( )

1

1
( )( )

1 
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 

p
k k T

p m m
kp

S x x x x                   (4) 

 
Let ak, k = 1, …, n be the eigenvectors of Sp, and k be the 
corresponding eigenvalues [54]. Without loss of generality, 
we can assume that the eigenvalues are arranged in a 
descending order, i.e., we have 1  2  …  n  0. The 
eigenvectors ak are the principal components of the reference 
design set and they establish the directions of the most 
important correlations between the structure parameters at 
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the locations of the optimum designs within the objective 
space F. The eigenvalues k represent the variance of the 
reference set in the eigenspace. Using these, we also define 
the matrices 
 

  1 ...k kA a a                                    (5) 

 
which contain the first k eigenvectors as columns. The matrix 
constructed using all eigenvectors will be denoted as A = An. 

B.  SURROGATE MODEL DOMAIN DEFINITION: FIRST-
LEVEL MODEL AND ORTHOGONAL EXTENSION 
The basis for constructing the surrogate model domain is the 
initial step of the procedure employed by the nested kriging 
framework [52], i.e., the first-level surrogate sI(f) : F  X, 
rendered using the set of reference points and the associated 
objective vectors {f(j),x(j)}, j = 1, …, p. The model itself is a 
kriging interpolation surrogate, and it is, in fact, an inverse 
model because of mapping the figures of interest (space F) 
into the parameter space X of the structure at hand.  

The initial approximation of the optimum design set 
UF(F) is obtained as the image of the objective space through 
the first-level model, i.e., sI(F). The two sets agree perfectly 
for all f(j) associated with the reference designs. 
Notwithstanding, as the number of reference designs is 
normally small, sI(F) generally does not coincide with UF(F). 
In the nested kriging framework, these discrepancies are 
accommodated by extending sI(F) in all directions {vn

(k)(f)}, 
k = 1, …, n – N, that are normal to sI(F) at f  F [52]. The 
scope of extension is determined by a so-called thickness 
coefficient D. The rule of thumb is to ensure that the lateral 
size of the domain is five to ten percent of the tangential size 
(the latter can be inferred from the span of the reference 
designs), which normally allows for the majority of UF(F) to 
become a subset of the model domain. It should be noted that 
within the aforementioned setup, the dimensionality of the 
domain is the same as the dimensionality of the parameter 
space X. 

The purpose of this work is to employ the spectral 
analysis of the reference set (cf. (3)-(5)) in order to provide 
explicit reduction of the domain dimensionality. Towards 
this end, the orthogonal extension of the first-level model 
image will be conducted only with respect to a few normal 
vectors corresponding to the most significant directions as 
determined by the eigenvectors ak (cf. Section II.A). We will 
denote the number of such directions as K  n. It should be 
observed that K has to be larger than the dimensionality of 
the objective space N to ensure that the extension is non-
trivial.  

Having K, the task is to obtain the extension vectors using 
the eigenvectors ak, k = 1, …, K. To this end, we denote as tj(f), 
j = 1, …, N, the vectors tangent to sI(F) at the objective vector 
f. The first step is to represent {tj(f)}j=1,…,N  with respect to the 
eigenvectors {ak}k=1,…,K, which can be obtained as 

 

   1 1( ) ... ( ) ( ) ... ( )T
N K Nt f t f A t f t f                   (6) 

In (6), the matrix AK is defined according to (5). The size of 
vectors ( )jt f is K  1, in other words, we want to restrict our 

considerations (in particular, the surrogate model domain) to 
the K-dimensional subspace spanned by the columns of AK. 

The next step is to find a set of vectors normal to sI(F) 
but within the subspace spanned by AK. Towards this end, 
consider the matrix T(f)  

 

1 1 2( ) ( ) ... ( ) ...N N N K    T f t f t f e e e           (7) 

 

which is a complement of 1( ) ... ( )N  t f t f  to a square K  K 

matrix, where ej = [0 … 0 1 0 … 0]T with 1 at the jth position. 
At this point, we apply a Gram-Schmidt procedure [55] to 
T(f) in order to render an orthonormal basis of K vectors TGS 
of the form 
 

1 1( ) ( ) ... ( ) ( ) ... ( )GS N K N   T f t f t f w f w f           (8) 

 
The matrix (8) has two parts, the second consisting of the 
vectors wj(f), j = 1, …, K – N, which will be used to carry out 
the orthogonal extension of sI(F). It can be observed that 
because the tangent vectors tj(f) are generally well aligned 
with the eigenvectors aj, j = 1, …, N, the vectors ( )jt f  are 

close to ( )jt f . Also, it has to be emphasized that the vectors 

wj(f) are functions of the objective vector f, so that they have 
to be computed separately for each f  F. Selecting an 
appropriate dimensionality K is an important consideration, 
which can be facilitated by means of analyzing the 
eigenvalues k. Typically, K = N + 1 or N + 2 is sufficient. 
An extended discussion of this issue will be provided in 
Section III. 

The final step is to define the surrogate model domain 
itself, here, denoted at XS, which involves both the first-level 
model sI() and the vectors wj. We have 
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It should be noted that XS consists of all points of the form

( )

1
( ) ( )

K N k
I k nk

T 


  x s f w f , which are generated for all f 

 F and all combinations of coefficients k with –1  k  1 
for k = 1, …, K – N. The parameter T used in (9) plays a role 
similar to that of the thickness parameter D of nested kriging. 
In general, it is possible to employ separate coefficients for all 
expansion directions (i.e., Tk, k = 1, …, K – N, instead of a 
common T), which would allow to distinguish between the 
relative importance of particular directions (e.g., based on the 
corresponding eigenvalues). However, in the verification 
experiments presented in Section III, a joint parameter T is 
utilized for the sake of simplicity. It is set to a few percent of 
the reference set size towards the most dominant eigenvector 
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a1; furthermore, it is adjusted to account for the relationships 
between the eigenvalues k.  

The surrogate model domain dimensionality is controlled 
by the parameter K (the number of principal components ak 
used in the domain definition). In particular, setting K = n 
(the maximum number of components, equal to the 
dimensionality of the parameter space) is almost equivalent 
to going back to the original nested kriging. As a matter of 
fact, the latter is used later in the work (Section III) as one of 
the benchmark techniques, in order to demonstrate the 
benefits of dimensionality reduction. 

f2

f1

f2.max

f2.min

f1.maxf1.min

F
f (j)

 
(a) 
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x2
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(j) t2

(j)

w1
(j)

XS
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FIGURE 1. Performance-driven modeling with explicit dimensionality 
reduction: basic components. For clarity, the concepts are shown using 
a two-dimensional objective space and the three-dimensional parameter 
space: (a) objective space F, (b) parameter space X, the reference 
designs, the optimum design set UF(F), and the first-level model image 
sI(F) (gray-shaded surface). The picture also shows two exemplary points 
sI(f) along with their corresponding tangent vectors t1 and t2, and the 
normal vector w1 obtained as in (8). In general, the target dimensionality 
K of the domain XS is smaller than the dimensionality n of X. However, as 
shown in the picture, K = n to enable a graphical representation. 
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a3
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Principal components 
of the reference set

a1

a3

a2

t1

t2
w1

t1 t2

t1

t2

w1

sI(F)  
 
FIGURE 2. Construction of the extension basis {wi(f)} of (8) – graphical 
illustration. The visualization is provided assuming three-dimensional 
parameter space and two-dimensional objective space (cf. Fig. 1), as well 
K = n (the number of domain-defining principal components equal to the 
dimensionality of the parameter space) to make the illustration possible. 
Shown are: the set sI(F) along with a selected reference design, its 
corresponding tangent vectors {tj}, and zoom onto the construction 

procedure shown in the inset. The projected vectors ( )jt f  are obtained 

as in (6). The extension vectors wi are obtained using the Gram-Schmidt 
procedure (cf. (7) and (8)). 

The fundamental components of the presented modeling 
procedure have been illustrated in Fig. 1. A graphical 
illustration of constructing the extension vectors {wi(f)} can 
be found in Fig. 2. 

C.  CONSTRUCTING THE SURROGATE. DOMAIN 
SAMPLING AND SURROGATE OPTIMIZATION 

Having the domain XS defined as in Section II.C, the 
actual surrogate model s(x) is constructed in a conventional 
manner, here, using kriging interpolation [56]. The training 
data pairs will be denoted as {xB

(k),R(xB
(k))}k = 1, …, NB, where 

xB
(k)  XS are the samples, whereas R(xB

(k)) are the 
evaluations of the full-wave EM-simulation model of the 
structure being modeled. The flow diagram of the modeling 
process has been shown in Fig. 3. 

There are two direct benefits of constraining the 
surrogate model domain. On the one hand, because the 
volume of XS is significantly smaller than that of the original 
parameter space X, the modeling accuracy is expected to be 
considerably improved (assuming the same training data set 
sizes) [52]. On the other hand, the accuracy improvement is 
achieved without formally restricting neither the ranges of 
geometry nor operating parameters of the structure. These 
advantages are even more noticeable in higher-dimensional 
cases where conventional modeling (i.e., within the domain 
X) is infeasible, whereas reliable performance-driven 
surrogates can still be rendered. Reduction of the domain 
dimensionality as proposed in this work is a supplementary 
advantage. As demonstrated in Section III, it leads to a 
further improvement of the model predictive power but also 
modeling error scalability with respect to the training data set 
size. 

A few comments should be made at this point about the 
design of experiments (DoE). Space-filling DoE in XS is not 
straightforward due to the complex geometry of the domain. 
In this work, we follow the approach presented in [52], 
directly based on the domain definition, and adopted for our 
needs. More specifically, we employ a surjective mapping 
between the unit interval [0,1]K and the domain XS. Let us 
assume that {z(k)}, k = 1, …, NB, is a training data set, with 
the samples uniformly distributed in [0,1]K by means of, e.g., 
Latin Hypercube Sampling [57]. A transformation H : [0,1]K 
 XS is defined as 
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in which 
 

1.min 1 1.max 1.min

.min .max .min

( )

( )
z

N N N N

f z f f

f z f f

  
   
   

f                         (11) 

 
The uniformly distributed sample set {xB

(k)} in XS is then 
obtained using the transformation H as  
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( ) ( )( )k k
B Hx z ,        k = 1, …, NB                     (12) 

 
It is important to mention that the sample set is uniform 

with respect to the objective space F, i.e., the points fz(z(k)), k 
= 1, …, NB, obtained using (11) are uniformly filling F. This 
means, in particular, that if f1 represents, e.g., the operating 
frequency of a coupler, the sample set uniformity refers to 
equal representation of the coupler designs corresponding to 
the different operating frequencies ranging from f1.min to f1.max 

The mapping H can also be used to facilitate applications 
of the surrogate model to solving design tasks such as 
parametric optimization. Let us consider the design problem 
(1) featuring the merit function U and the target vector ft. The 
problem can be formulated as follows 

 
*

[0,1]
arg min ( ( ), )

K tU H



x

x z f                      (13) 

 
and solved over the normalized interval [0,1]K. The first-
level surrogate sI can be then used to identify a good initial 
design as (cf. [52]) 
 

(0) ( )I tx s f                                 (14) 

 
The vector x(0) is the best possible approximation of the 

design x* = UF(ft) one can extract from the data contained in 
the reference designs. 

 

Set of 
reference points 

x(j)  Uf (F)

Create 
covariance 

matrix Sp and 
find principal 
components aj

Construct first-
level model 
sI (f) : F  X

Establish confined surrogate domain XS

Collect training data {R(xB
(j))}j=1,…,NB

DoE: Distribute training data samples 
{xB

(j)}j=1,…,NB

Identify surrogate model s

Ultimate surrogate 
s(x) set within XS 

EM 
solver

{aj}j=1,…,K sI()

{x(j)}j=1,…,p
K K

XS

{xB
(j)}j=1,…,NB

{xB
(j),R(xB

(j))}j=1,…,NB

Optimization
performed
for selected 

target 
vectors f (j) 

Dimensionality K 
of surrogate 

model domain 

 
FIGURE 3. Performance-driven modeling with dimensionality reduction: 
flow diagram. 

III.  VERIFICATION STUDIES 
The purpose of this section is to provide numerical 
verification of the modelling procedure presented in 
Section II. It is based on two miniaturized microwave 
components, a rat-race coupler and a three-section impedance 
matching transformer. For the sake of benchmarking, the 
section also includes comparisons with conventional 
modelling approaches and the nested kriging of [52]. 
Application case studies are also discussed in order to 
demonstrate the design utility of the proposed approach. 
Here, we assume that the designer already establishes the 
topology of the device at hand during the early stages of the 
design process and through the initial parametric studies. That 
includes the structure parameterization, which is therefore 
assumed to be fixed.  

A.  CASE 1: THREE-SECTION CMRC-BASED 
IMPEDANCE MATCHING TRANSFORMER 

Consider a compact three-section 50-to-100 Ohm 
impedance matching transformer of [58]. The circuit 
geometry has been shown in Fig. 4(a). The fundamental 
building blocks of the transformer are compact microstrip 
resonant cells (CMRCs) shown in Fig. 4(b). Their purpose is 
to reduce the overall length of the structure as compared to 
the implementation based on conventional transmission 
lines. The circuit is implemented on RF-35 substrate (εr = 3.5, 
h = 0.762 mm, tanδ = 0.018). Its geometry is described by 
fifteen parameters x = [l1.1 l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 
w2.0 l3.1 l3.2 w3.1 w3.2 w3.0]T. The computational model is 
simulated in CST Microwave Studio using its transient 
solver (~280,000 mesh cells, simulation time 2.5 min). The 
frequency simulation range is from 0.5 GHz to 7.5 GHz. 

The modeling goals are the following. We aim at 
constructing the surrogate that is valid for the operating bands 
[f1 f2] defined by the requirement |S11|  –20 dB, with 1.5 GHz 
≤ f1 ≤ 3.5 GHz, and 4.5 GHz ≤ f2 ≤ 6.5 GHz. The conventional 
parameter space X is defined using the lower and upper bounds 
l = [2.0 0.15 0.65 0.35 0.30 2.70 0.15 0.44 0.15 0.30 3.2 0.15 
0.30 0.15 0.30]T, and u = [3.4 0.50 0.80 0.55 1.90 4.00 0.50 
0.67 0.50 1.55 4.5 0.26 0.46 0.27 1.75]T. The first-level model 
is constructed using nine reference points, optimized for all 
combinations of f1  {1.5, 2.5, 3.5} GHz and f2  {4.5, 5.5, 
6.5} GHz.  

The verification experiments have been set up as described 
below. The proposed surrogate is constructed using several 
training sets of sizes 50, 100, 200, 400, and 800 samples. The 
split sample method [56] based on 100 random test points is 
employed to estimate the modeling error. The assumed 
metric is the average value of the relative RMS error, defined 
as ||Rf(x) – Rs(x)||/||Rf(x)||, where Rf and Rs stand for the EM-
simulated and surrogate model outputs, respectively. The 
benchmark methods include conventional kriging and radial 
basis function (RBF, [37]) models (both within the interval 
[l, u]), as well as the nested kriging model of [52] constructed 
for the thickness parameter D = 0.05. In addition to that, the 
proposed model was considered in several variants, 
corresponding to the following numbers of principal 
directions: K = 3, 4, and 5. For all cases, the extension 
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parameter T was set to 0.25 mm, which was set up as follows. 
The overall span of the conventional domain X calculated as 
||u – l|| is about 3.5 mm, whereas the fourth eigenvalue 4 is 
about four percent of the largest one 1. Thus, T = 0.25 mm 
(i.e., orthogonal span of the domain XS) corresponds to about 
seven percent of the overall span, which is comparable to the 
amount of information carried by the fourth principal 
component (here, for the sake of example, the second one 
that contributes to the orthogonal extension of sI(F)). 

Table 1 provides the numerical results for the proposed and 
the benchmark modeling techniques. The surrogate and EM-
simulated transformer responses at the selected test locations 
have been shown in Fig. 5. The results of Table 1 clearly 
indicate superiority of both the nested kriging and the 
proposed approach over the conventional methods. Both 
conventional kriging and RBF surrogates exhibit poor 
performance even for the largest considered data sets of 800 
samples. The proposed surrogate is considerably better than 
the nested kriging model for K = 3 and 4, and comparable for 
K = 5; however, for all considered values of K, it is more 
reliable for small training data set sizes of 50 to 200 samples 
(around twice as accurate for K = 3). The question arises 
whether going beyond K = 4 is justified at all. The first six 
normalized eigenvalues of the reference set for this problem 
are 1 = 1.00, 2 = 0.76, 3 = 0.15, 4 = 0.041, 5 = 0.008, 6 = 
0.003. This indicates that using more than three or four 
eigenvectors is not necessary as the information brought by 
including subsequent dimensions becomes negligible. 
 

 

              
(a)                                                                       

 
lk.1

lk.2

wk.1
wk.2

wk.0  
(b) 

FIGURE 4. Verification case study 1: compact CMRC-based 3-section 
impedance matching transformer: (a) circuit topology, (b) parameterized 
geometry of the compact microstrip resonant cell (CMRC). 

 

FIGURE 5. Verification case 1: reflection characteristics of the impedance 
matching transformer of Fig. 4(a) at the selected test designs: EM model 
(—), proposed surrogate set up for K = 4 and N = 200 training data samples 
(o). 

In order to verify the design utility of the proposed 
modeling procedure, the model obtained with K = 4 and N = 
400 has been optimized for several target bandwidths, and 
compared to the results obtained by means of the nested 
kriging model (for the same objectives). The results have 
been visualized in Fig. 6, clearly demonstrating that 
dimensionality reduction does not negatively affect the 
design quality. Table 2 contains the values of the geometry 
parameters at the optimized designs. 

B.  CASE 2: MINIATURIZED RAT-RACE COUPLER 
The second verification case is a miniaturized microstrip 

rat-race coupler (RRC) [59], also implemented on RF-35 
substrate (εr = 3.5, h = 0.762 mm, tan δ = 0.0018). The circuit 
geometry, shown in Fig. 7, is parametrized by the variable 
vector x = [l1 l2 l3 d w w1]T; the remaining dimensions are d1 
= d + |w – w1|, d = 1.0, w0 = 1.7, and l0 = 15 fixed (all in mm).  
The computational model is simulated in CST Microwave 
Studio using its frequency solver (~120,000 mesh cells, 
simulation time 2.5 min) within the simulation range from 
0.5 GHz to 2.5 GHz. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 6. Application cases studies (design optimization) for impedance 
matching transformer of Fig. 4(a): proposed surrogate (o), nested kriging 
model [44] (), and EM simulation at the design produced by the proposed 
model (—). The vertical lines denote the target operating frequency range: 
(a) f1 = 2.0 GHz, f2 = 5.0 GHz, (b) f1 = 1.8 GHz, f2 = 6.4 GHz, (c) f1 = 1.8 GHz, f2 
= 5.8 GHz, (d) f1 = 3.2 GHz, f2 = 6.5 GHz. 
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Table 1. Verification case 1: modeling results for the impedance 
matching transformer 

 

Number 
of 

training 
samples 

Relative RMS Error 

Conventional 
Models 

Nested 
Kriging 

Model [52] 

Proposed Model  
(Nested Kriging with PCA) 

Kriging RBF K = 3  K = 4  K = 5 

50 49.1 % 56.2 % 17.3 % 10.0 % 13.8 % 15.7 % 

100 31.1 % 33.0 % 13.9 % 6.1 % 8.7 % 11.3 % 

200 25.9 % 27.5 % 10.3 % 5.7 % 7.6 % 8.5 % 

400 20.4 % 23.1 % 7.4 % 5.4 % 6.8 % 7.7 % 

800 15.7 % 16.8 % 6.1 % 4.9 % 5.2 % 6.3 % 

 
Table 2. Application case studies: optimization of the impedance 

transformer of Fig. 4(a) 
 

Target 
operating 
conditions 

Geometry parameter values [mm] 

f1 
[GHz] 

f2 
[GHz] 

l1.1 l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0 

2.0 5.0 3.08 0.31 0.76 0.50 1.20 3.83 0.27 0.54 0.23 0.73 4.14 0.17 0.34 0.18 1.00 

1.8 6.4 2.74 0.21 0.80 0.40 0.54 3.28 0.16 0.65 0.16 0.41 3.54 0.16 0.42 0.16 0.69 

1.8 5.8 3.14 0.18 0.79 0.39 0.55 3.61 0.18 0.63 0.15 0.34 3.84 0.16 0.41 0.16 1.19 

3.2 6.5 2.20 0.33 0.80 0.50 0.92 3.22 0.15 0.66 0.14 0.51 3.31 0.15 0.36 0.15 0.29 

 

 
FIGURE 7. Verification case study 2: miniaturized microstrip rat-race 
coupler (RRC) [59]. 

 
Here, the purpose is to construct the surrogate model 

covering the range of operating frequencies f0 between 1 
GHz and 2 GHz, as well as the power split ratio KP from –6 
dB to 0 dB. The optimum design of the coupler is understood 
in the sense of (i) maintaining the required power split at the 
operating frequency, i.e., |S21| – |S31| = KP, and (ii) 
minimization of the matching |S11| and isolation |S41|, also at 
f0. The cost function quantifying the aforementioned 
requirements takes the form of 

 

 
11 0 41 0

2

21 0 31 0

( , ) max{| ( , ) |,| ( , ) |}

| ( , ) | | ( , ) |P

U S f S f

K S f S f

 

    

x f x x

x x
            (15) 

 
where the primary objective is minimization of the 
matching/isolation responses at f0, whereas the penalty term 
is to ensure that KP = |S21| – |S31| at f0 (cf. (2), Section II.A). 

The reference designs are optimized for the following 
pairs of the operating frequency and power split ratio {f0,K}: 
{1.0,0.0}, {1.0,–2.0}, {1.0,–6.0}, {1.2,–4.0}, {1.3,0.0}, 
{1.5,–5.0}, {1.5,–2.0}, {1.7,–6.0}, {1.7,0.0}, {1.8,–3.0}, 
{2.0,0.0}, {2.0,–6.0} (frequency in GHz, power split in dB). 
Based on these designs, the parameter space X is established 
and delimited by the lower bounds l = [2.0 7.0 12.5 0.2 0.7 
0.2]T, and the upper bounds u = [4.5 12.5 22.0 0.65 1.5 0.9]T.  

 

 
FIGURE 8. Verification case 2: responses |S11|, |S21|, |S31| and |S41| of the rat-
race coupler of Fig. 7 at the selected test designs: EM simulated response 
(—), proposed surrogate set up with K = 3 and N = 400 training samples (o). 
 
 

Table 3. Verification case 2: modeling results for the rat-race coupler 

Number 
of 

training 
samples 

Relative RMS Error 

Conventional Models Nested 
Kriging 

Model [52] 

Proposed Model  

(Nested Kriging with 
PCA) 

Kriging RBF K = 3  K = 4 

50 25.7 % 28.3 % 6.9 % 5.4 % 7.1 % 

100 17.9 % 19.1 % 5.7 % 3.4 % 5.4 % 

200 13.5 % 13.9 % 3.8 % 3.1 % 4.1 % 

400 9.9 % 10.3 % 3.5 % 2.3 % 3.4 % 

800 8.0 % 8.9 % 3.1 % 1.9 % 2.9 % 

 
Table 4. Application case studies: optimization of the rat-race coupler  

of Fig. 7 
 

Target operating 
conditions 

Geometry parameter values [mm] 

f0 
[GHz] 

KP      
[dB] 

l1 l2 l3 d w w1 

1.2 –2 4.06 10.73 19.04 0.33 1.04 0.56 

1.5 –3 3.89 10.74 16.12 0.30 0.98 0.48 

1.5 0 4.34 11.21 15.98 0.22 0.72 0.72 

1.7 –4 3.73 9.91 14.11 0.27 0.93 0.35 

 
The verification experiments have been set up similarly as 

in Section III.A. The proposed surrogate is constructed using 
the training sets of sizes from 50 to 800 samples, and, in each 
case, for the following two domain dimensionalities, K = 3 
and K = 4. Using K = 5 as for the previous example was not 
quite relevant due to the parameter space dimensionality 
being n = 6. The extension parameter T was set to 0.25 mm, 
based on similar considerations as presented for the previous 
example. The overall span of the conventional domain X, ||u 
– l|| is about 11.3 mm, whereas already the third eigenvalue 
3 is about three percent of the largest one 1. Thus, T = 0.25 
mm (i.e., orthogonal span of the domain XS) corresponds to 

1 2

3 4

l1
l2 l3

dw1 ww
d1

|S
11

| [
dB

]

|S
21

| [
dB

]

|S
31

| [
dB

]

|S
41

| [
dB

]



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3006708, IEEE
Access

 

VOLUME XX, 2017 5 

less than four percent of the overall span, which is 
comparable to the amount of information carried by the third 
principal component. 

The model accuracy (average relative RMS error) has 
been assessed using the split sample approach. The 
benchmark includes kriging and radial basis function (RBF) 
models established over the domain X, as well as the nested 
kriging model of [52] constructed for the thickness 
parameter D = 0.05.  

The numerical results for the proposed and the benchmark 
modeling techniques have been gathered in Table 3. Figure 8 
visualizes the coupler characteristics for the proposed 
surrogate and EM simulation model; the agreement between 
these two data sets is excellent. Similarly as for the previous 
example, both the nested kriging and the proposed modeling 
technique are significantly better than the surrogates 
constructed using conventional methods. Furthermore, the 
presented approach exhibits the predictive power better than 
the nested kriging for K = 3. For K = 4, the accuracy of both 
the nested kriging and the proposed surrogate are comparable 
but one needs to consider that the model domain volume is 
much larger for the proposed technique with K = 4 than for 
the nested kriging. Overall, the benefits are not as pronounced 
as for the transformer of Section III.A because dimensionality 
reduction for the coupler is limited (with respect to the 
original parameter space dimensionality of six). 

Similarly as for the previous case, the eigenvalue analysis 
clearly indicate that the right choice of the parameter K is 
three. The normalized eigenvalues of the reference set for this 
problem are 1 = 1.00, 2 = 0.12, 3 = 0.035, 4 = 0.0036, 5 = 
0.0009, 6 = 0.0001. Thus, the third eigenvalue is less than 
four percent of the first one, whereas the fourth one is an order 
of magnitude smaller than the third. Hence, involving another 
dimension (K = 4) would not bring meaningful information. 

Verification of the design utility of the proposed modeling 
procedure was carried out the same way as in Section III.A, 
i.e., by optimizing the surrogate (here, obtained with K = 3 and 
N = 400) for several target operating frequencies and power 
split ratios. The results were compared to those obtained with 
the nested kriging model, cf. Fig. 9. It can be observed that that 
dimensionality reduction does not lead to design quality 
degradation. The geometry parameter values at the optimized 
designs can be found in Table 4. 

IV.  CONCLUSION 
This work discussed a new approach to computationally-

efficient and accurate surrogate modelling of compact 
microwave components. Our methodology employs two 
major components: a recently proposed nested kriging 
framework, and spectral decomposition of the reference 
design set. The knowledge of the correlations between the 
figures of interest pertinent to the structure at hand and the 
reference points permits reduction of the surrogate model 
domain dimensionality as compared to the nested kriging. This 
leads to a further improvement of the model predictive power. 
The analytical formulation of the presented method includes 
procedures for convenient design of experiments (uniform 

data sampling), optimization of the surrogate model, as well 
as generation of a good initial design for a given target vector 
of performance specifications.  

Our modelling technique has been validated using two 
miniaturized microstrip components, an impedance matching 
transformer described by fifteen geometry parameters, and a 
rat-race coupler described by six parameters. In both cases, the 
surrogates were rendered over broad ranges of parameters and 
operating conditions. Furthermore, comparisons with 
conventional modelling techniques (kriging and radial basis 
function interpolation, both over unconstrained domain) as 
well as the nested kriging have been included. The results 
demonstrate superiority of our approach in terms of the 
surrogate model reliability across the considered training data 
sets of various sizes. The method of selecting the model 
domain dimensionality based on the eigenvalue analysis was 
discussed as well.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 9. Application case studies (design optimization) for the rat-race 
coupler of Fig. 7: proposed surrogate (o), nested kriging model [44] (gray 
solid lines) and EM simulation at the design produced by the proposed 
model (—). The vertical lines denote the target operating frequencies: (a) 
f0 = 1.2 GHz, KP = –2 dB, (b) f0 = 1.5 GHz, KP = –3 dB, (c) f0 = 1.5 GHz, KP = 0 
dB, (d) f0 = 1.7 GHz, KP = –4 dB. 
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Finally, the paper presented applications of the models for 
design optimization (parameter tuning), as a way of 
demonstrating the design utility of the proposed technique. 
The conclusion from these experiments is that neither domain 
confinement nor dimensionality reduction have negative 
effects on the quality of the designs obtained using our 
approach.  
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