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Abstract—Microwave filters are indispensable passive devices 

for modern wireless communication systems. Nowadays, 

electromagnetic (EM) simulation-based design process is a norm 

for filter designs. Many EM-based design methodologies for 

microwave filter design have emerged in recent years to achieve 

efficiency, automation, and customizability. The majority of 

EM-based design methods exploit low-cost models (i.e., surrogates) 

in various forms and artificial intelligence techniques assist the 

surrogate modeling and optimization processes. Focusing on 

surrogate assisted microwave filters designs, this paper firstly 

analyzes the characteristic of filter design based on different 

design objective functions. Then, the state-of-the-art filter design 

methodologies are reviewed, including surrogate modeling 

(machine learning) methods and advanced optimization 

algorithms. Three essential techniques in filter designs are 

included:  1) Smart data sampling techniques; 2) Advanced 

surrogate modeling techniques. 3) Advanced optimization 

methods and frameworks. To achieve success and stability, they 

have to be tailored or combined together to achieve the specific 

characteristics of the microwave filters. Finally, new emerging 

design applications and future trends in filter design are 

discussed. 

 
Index Terms—AI, computer-aided design, coupling matrix, 

design knowledge, EM-simulation based design, machine learning, 

microwave filters, optimization, sampling, surrogate modeling. 

 

I. INTRODUCTION 

ASSIVE microwave components and devices are the 

essential elements (accounted for over 75%) in any 

microwave circuits and systems [1]. Among them, filtering 

devices are the most important ones since they have specific 

functionalities to transmit and attenuate signals operating at 
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specific frequency ranges [2]-[3]. Growing requirements in 

developing communication technologies, e.g., 5G system and 

beyond [4]-[5], stimulate advanced emerging fabrication 

techniques and design theories demanding faster and more 

accuracy in simulation, modeling, and fabrication of these 

devices with better performance.  

Rapid developments of electronic design automation (EDA) 

software and computing power over the past decades make 

microwave filter designs much easier than ever before [6]. Both 

efficient equivalent circuit-based simulation and accurate 

full-wave electromagnetic (EM) simulation can be 

implemented [7]. Especially, the EM simulation results are 

almost the same as the fabricated ones nowadays. These 

commercial software tools enable more diverse and 

complicated filter designs customizing various manufacturing 

techniques with inherent constraints. Note that the EM 

simulation cost is usually related to the complexity of the filter 

design [7]. The simulation time might range from several 

minutes, hours, or even being prohibited for the most 

complicated and electrical large full-wave design problem, e.g., 

a multiplexer with a dozen channel filters.  

According to the application requirements and 

circumstances, filter design requires multiple steps with several 

concerns, e.g., loss, bandwidth, operating frequency, stopband 

rejection, wideband performance, physical size, weight, 

operating power, stability, etc. [2]. Fabrication techniques and 

basic transmission elements have to be first determined before 

to the formal design process [8]. With essential electrical 

parameters of design material and fabrication constraints, 

designers investigate the basic principle of the microwave 

elements and their coupling structures using the essential 

electrical parameters of design material and fabrication 

constraints. EM simulation-based parameter sweeping, or 

scaling is manipulated with designers to learn basic EM trends 

of resonator modes and coupling structures. Traditionally, the 
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Fig. 1. A general traditional design flow for microwave filters.  
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filter is designed in the process shown in Fig. 1. In this process, 

the filter specifications are converted into concrete goals which 

are realized by a designer supervised process. Two most 

important steps are implemented: synthesis and 

EM-simulation-based design/optimization. 

The synthesis works at the circuit level for accessing a 

suitable filter topology is based on the design specifications and 

corresponding element values of the theoretical low-pass 

prototype [2]-[3], e.g., equivalent circuit or coupling matrix. 

Therefore, it usually serves as “knowledge” for all following 

filter designs. In the next stage, designers then tune and scale 

the physical EM-simulation models using the “knowledge” 

gained via synthesis. Designers have to make efforts to ensure 

that the filter’s EM performance matches with the “knowledge” 

(synthesis results).  

Conventionally, there have been several analytical EM 

design methods for filters [9]-[12]. They are, however, only 

suitable for a limited number of filters with specific structures 

or junctions [13]. To be more general, EM simulation-based 

simulation is required which causes the electrical performance 

of the microwave filters to achieve a desired performance by 

altering design parameters. Iterative optimization is frequently 

used in the EM simulation-based design process. This step 

converts the design specifications into appropriate objective 

functions and employs specified optimization methods to find 

filter designs that fulfill the optimization goals. An iterative 

brute-force optimization is often prohibitive, especially when 

the filter structure grows more complicated, e.g., higher-order, 

cross-couplings, multiple bands, and multiple channels 

(diplexers and multiplexers). On the other hand, the computer is 

not yet smart and user-friendly enough to liberate designers 

from supervision and intervention. In fact, more often than not, 

designers have to “teach computers” (e.g., manually adjusting) 

step by step to realize their design goals. Typically, this is a 

time-consuming, unreliable, or even unsuccessful procedure.  

Automation of filter design has long been explored in order 

to enhance the design efficiency, customizability and reduce 

the human interaction [2]. A rising number of computational 

intelligence approaches also known as artificial intelligent (AI) 

method are incorporated in the filter design process in recent 

years. Recent decade publications related to the topics of 

“Microwave filter design”, AI method including “machine 

learning”, “neural network”, “Gaussian process”, “support 

vector machine”, “heuristic optimization”, etc.” and “AI + 

Microwave filter design” in IEEE Microwave and Wireless 

Components Letters and IEEE Transactions on Microwave 

Theory and Techniques are counted and compared using the 

“IEEE explore” as shown in Fig. 2. It is worth noting that the 

topic of “Microwave filter design” has remained heated over 

recent years. The topic of AI has recently received a great deal 

of attention, especially in the last five years, and the number of 

papers has started to rise dramatically. “AI + filter” accounts 

for a small portion of all articles, but it has a great increasing 

trend. When compared to “microwave filter design”, the 

number of publications on “AI + filter” has increased by 

roughly 10%. 

Microwave filter design automation have been investigated 

around for a long time [14]. It was referred to as a 

computer-aided design (CAD) technique. The space mapping 

(SM) technique [15] is likely the most prevalent one for those 

components. Rather than direct optimization of the filter EM 

models, many evaluations of a coarse model with low-fidelity 

and a few evaluations of a fine model with high-fidelity are 

employed in the SM methods [15]. Drawing on the overall 

notion of SM [16], Fig. 3 depicts a filter design process 

employing SM's coarse and fine models. Computationally 

efficient coarse models, such as equivalent circuits, are not very 

accurate, whereas computationally expensive fine models, such 

as full-wave EM simulation models, are sufficiently accurate. 

The same design parameters in two models should exhibit 

different but correlated behaviors, indicating that the design 

parameters play two correlated roles in two spaces. A 

relationship or discrepancy can be discovered between two 

spaces through “Matching (M)” and “Prediction (P)”. The 

coarse model is then combined with the discrepancy to produce 

a surrogate. “P” generates the design candidate and send it to 

the fine model for validation, if the design specification is 

unsatisfied, the design parameters are sent back (“M”) to the 

coarse model for further optimization. Following an iterative 

optimization of the coarse model, the surrogate is updated. The 

mapping elements (“intuition”) that align the coarse model as a 

 
Fig. 2. Statistics of the number of publications in IEEE Microwave and 
Wireless Components Letters and IEEE Transactions on Microwave Theory 

and Techniques related to the “Microwave filter design”, “Artificial 
intelligence method” and “AI + microwave filter design”. 
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surrogate model of the fine model are denoted by the difference 

between the coarse and fine models. When satisfied accuracy 

can be achieved, the surrogate will combine the fine model’s 

accuracy with the coarse model’s efficiency. Many advanced 

SM concepts have been proposed, e.g., aggressive SM [17], 

implicit SM [18], neural SM [19]-[21], cognition-driven SM 

[22]-[25], and tuning SM [26]-[33], etc. Impressive examples 

include a 10-channel dielectric multiplexer [34] with up to 140 

variables and a SIW multiplexer [35] with 63 variables that 

have been successfully designed based on aggressive SM.  

Most surrogate assisted filter design techniques have so far 

been built on the concept of SM techniques [36], in which "M" 

and "P" processes are frequently used. They are known as a 

surrogate-assisted optimization (SAO) framework [36] and are 

distinguished from direct EM optimization on the fine model 

[37]-[38]. Physical SAO and data-driven SAO approaches are 

two types of SAO. Clearly, the original SM approaches are part 

of a normal physical SAO method, in which the surrogate is 

modeled using the natural coarse (theoretical) filtering models, 

e.g., equivalent circuits or coupling matrices [2]-[3]. In some 

circumstances, the prediction from the physical models has a 

lower correlation with the fine model. Note that the theoretical 

models can only represent the basic theoretical filtering 

responses based on the design specification rather than 

describing all the practical filter behaviors [6], e.g., dispersion, 

radiation, power handling, thermal stability, losses, parasitic 

coupling, spurious wideband performance, etc. This attributes 

that obtaining a high-quality surrogate model is difficult. The 

data-driven SAO approaches, on the other hand, learned the 

filter EM characteristics using a data set derived from 

simulation or measurement data. Machine learning techniques 

are frequently used in the data-driven SAO. They can 

effectively model fine models’ nonlinear EM behavior. 

Therefore, the data-driven SAO techniques with more 

generality have become more popular in recent years. This 

work is mostly concerned with them. 

In recent years, a growing number of unique and advanced 

AI-assisted surrogate modeling and optimization methods are 

developed for filter designs, but seldom of them can 

systematically explain why these methods are effective. To 

solve this problem, the problem characteristics of filter design 

are investigated in this paper. Characteristics landscapes of four 

different objective functions are investigated on the basis of 

parameter sampling on a directly coupled resonator filter. This 

also benefits for selection of suitable SAO framework for a 

given challenging problem. Then, some advanced EM 

optimization methods with selected applications in microwave 

filter designs are reviewed in the aspects of smart sampling 

methods, advanced surrogate modeling methods, and effective 

optimization algorithms and frameworks, respectively. Finally, 

future expectations are explored based on the emerging 

important applications. 

The organization of this paper is as follows. Section II 

overviews the design flow for microwave filters and 

investigates their characteristics using a case study. Section III 

reviews the state-of-the-art AI assisted surrogate modeling and 

optimization approaches for microwave filter design problems 

with the selected applications. Section IV discusses some 

emerging techniques for designing microwave filters and 

outlooks on the future research. Section V concludes this paper 

and reinforces the important aspect of SAO techniques playing 

in microwave filter design. 

II. AN OVERVIEW OF MICROWAVE FILTER DESIGN 

A. Filter design process 

It is usually not straightforward to design a usable filter from 

a design specification [2]-[3]. Synthesis, physical dimensioning 

and EM optimization are the most important processes in a 

typical microwave filters design routine. Fig. 4 illustrates the 

detailed procedures incorporated with different of automation 

levels (Section II(B)) for them. The filter design processes are 

briefly introduced in the following: 

Synthesis. This step aims to generate theoretical element 

values for a specific topology related to the filter design 

specifications, i.e., a coupling matrix or equivalent circuit [2]. 

To begin with, the filtering specifications are transferred to the 

normalized frequency ranges. According to the preassigned 

requirements, ideal filtering responses are represented by using 

mathematical polynomials in the normalized frequency range 

[2]. Then, a filter topology is chosen for synthesis where the 

relationship between low-pass prototype elements and 

theoretical filter responses are constructed. Analytical methods 

have been employed to obtain the element values for specific 

topologies [39]-[40]. To be more general, optimization-based 

synthesis methods is employed for most topologies, especially 

when analytical synthesis is unattainable [41]-[42]. The 

optimization-based synthesis is more straightforward as the 

polynomial synthesis can be omitted since there is a direct 

relationship between the low-pass prototype and filter 

responses. The “distance (error function)” between them can be 

calculated. When the error function is minimized through local 

or global optimization, the desired low-pass prototype can be 

achieved. Examples includes gradient-based local optimization 

method [41], global optimization method [42]-[43], and 

memetic optimization method [44]. The synthesis result (filter 

topology and coupling matrix) is used as the “knowledge” to 

guide the subsequent design process at this point. 

Electromagnetic (EM) element design and physical 

dimensioning. The obtained synthesis results are denormalized 

into the real frequency range and element values are converted 

into physical structures in this step. Based on the EM behavior 

of the selected resonators and coupling structure, the operation 

ranges and configurations of the filter are built. Then, the 

physical initial dimensions for each element are predicted, 

including resonator dimensions and coupling structures 

dimensions [2]-[3].  

The most widely used method is the curve fitting method 

[2]-[3]. Two design curves describe the mutual couplings 

between resonator pairs and the external quality factor between 

the resonator and I/O ports. The mutual coupling values and 

external quality factor values are calculated from either 

frequency-domain simulation or eigenmode simulation results 

by sweeping the dimension parameters with discrete samples. 
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When changing parameters, the center frequency of the 

simulation results must be held at a specific frequency point, 

i.e., the center frequency of the filter. Then, the curves are fitted 

as a function to produce the geometrical dimensions 

corresponding to expected coupling values. However, 

experience-based estimation is often required in the original 

method [2]-[3], e.g., order of fitting curve and number of 

samples. When it comes to the filter with complex structures 

(e.g., cross-couplings and junctions), this method will become 

inaccurate.  

To increase the accuracy, some research studies used more 

complex curve fitting techniques or modeling methods to 

develop an inverse model, such as quadratic polynomials [45], 

sparse grid interpolation [46], multi-valued polynomials 

[47]-[48], and artificial neural network [49]. The relationships 

between each coupling value and multiple adjacent dimensions 

are learned by this model where the input is a set of coupling 

coefficients, and the output is the dimensions corresponding to 

the set of coupling coefficients. The ensuing problem is that 

more EM simulations are required for complex curve fitting 

and modeling. As the initial design is predicted based on the 

theoretical values, the extracted filter dimensions usually do not 

satisfy the design specifications, but only can they provide a 

good initial design for the final optimization [2], [6]. 

3-D EM optimization. The filter is finally realized in this 

step. The obtained initial dimensions are optimized or refined 

to satisfy the specified requirements guided by synthesis results. 

This is more complex than the first two procedures. In this 

process, the optimization region, design objective function, and 

also optimization methods work together to obtain the optimal 

results. In recent years, SAO approaches are used to automate 

the entire procedure and accelerate the optimization assisted by 

using AI techniques. Smart sampling, advanced surrogate 

modeling and effective optimization should be concerned and 

they should be carefully adjusted based on the characteristics of 

the filter design problems.  

B. Automation levels of the microwave filter design 

As shown in Fig. 4, there can be three levels of automation in 

filter design, where the different levels are marked out using 

different line styles. Also, some of the computational intelligent 

(i.e., AI) methods that have been used are listed in the bottom 

and marked out with a blue AI logo. The different levels are 

explained in the following. 

⚫ Level 1 automation: Designer supervised design. They are 

marked out using red dash lines. It can be noticed that one or 

some steps can be realized by using simple AI techniques, but 

links between them, realizing direction and decisions are 

mainly determined by designer interaction. 

⚫ Level 2 automation: Partial automated design. They are 

denoted by blue dot-dash lines. This level is mainly focused 

by current research works. Key intermediates are obtained 

partially automated using advanced AI techniques, e.g., 

optimal design employing surrogate assisted EM design 

methods. Human experience and design knowledge are 

frequently incorporated into these procedures to automate the 

links between level 1 automation blocks. However, the 

methods can be ad-hoc since settings in utilized algorithm 

necessitate human judgement based on the problem 

characteristics. Due to different tools utilized, the data 

transfer, conversion and modeling have to be realized by 

designers, which are hard to be finished automated without 

human interactions. For example, the 3D filter model has to 

be design and modeled by designers before of the initial 

design assignment.  

⚫ Level 3 automation: Fully automated design. It is denoted by 

the black dash line with an arrow. This can be seen as an 

ultimate goal for our filter design automation. Optimal filter 

design can be automated derived from specification using AI 

techniques without human intervention.  

This paper mainly focuses on the 3-D EM optimization for 

microwave filter design with level 2 automation, where 

AI-assisted surrogate modeling and optimization are mainly 

applied. In the following two subsections, the “knowledge” in 

filter design and the characteristics of microwave filter design 

are investigated. Then, the popular SAO techniques in filter 

design are reviewed and discussed in Section III. 

C. “Knowledge” in the filter design 

As previously stated, the synthesis results including the 

equivalent circuit and coupling matrix, serve as “knowledge” 

for optimization. The equivalent circuit and coupling matrix are 

used as surrogates in SM framework to begin with. Moreover, 

they also create initial designs for the EM simulation-based 

optimization. Further, the synthesized ideal filtering responses 

can be also employed as optimization “knowledge” goals 

(objective function).  

The microwave filter is a typical two-port network. The most 
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important description for those passive devices is the S-

parameters performance in dB which are normally adopted and 

formulated in the optimization objective function [2]-[3]. Take 

a practical case study to illustrate the “knowledge” in the filter 

responses. A design specification requires the passband 

operates at 3450 - 3550 MHz and the stopband rejection are 

S21< −50 dB (3200 - 3350 MHz), S21 < −30dB (3350 - 3420 

MHz) and S21 < −50 dB (3600 – 3800 MHz). The design 

specifications are straightforward knowledge that can be 

formulated as magnitude values in objective function guiding 

the optimization. 

To synthesis a filter with Chebyshev responses satisfying the 

design specification, the specifications are first normalized into 

a low-pass band [13]. Then, four transmission zeros are 

assigned at − j3.5, − j1.5, j2, and j3. The transmission zeros can 

suppress the stopband rejection but also sharpen the two 

roll-offs of S21 in the stopbands. The optimal filter polynomial 

can be obtained [2] as shown in Fig. 5. This is the target of the 

low-pass prototype synthesis and physical realization of the 

filter. Besides the magnitude of the S-parameter responses, 

some important feature frequency points in the filtering 

responses can also be considered, including reflection zeros 

(RZs), reflection poles (RPs), band edges (BEs), and 

transmission zeros (TZs) [38]. For the detuned filter 

(un-optimal) responses, the passband bandwidth is hard to be 

extracted. 3-dB bandwidth is an alternative bandwidth indicator 

to characterize the filter.  

As said that an equivalent circuit is difficult to obtain, EM 

simulation models using coarse mesh and their responses’ 

derivatives to the design parameters are employed as the 

“knowledge” to construct surrogate [50]. This is because the 

less-accurate coarse mesh EM model is computationally faster 

than the fine mesh EM model, but it maintains high-correlation 

to the fine EM model's behavior. 

All the above-mentioned knowledge and their functions in 

the EM optimization are summarized as shown in Table 1. 

D. Characteristics of microwave filter design 

The challenges of microwave filters mainly come from the 

characteristics of the design landscape represented by the 

objective function varying with respect to the design 

parameters [51]. It is worth investigating the characteristics of 

different forms of the objective function, which benefits 

appropriate implementing optimization. As discussed, the 

objective function for microwave filters always employs 

S-parameter responses with different manipulations in one or 

several specific frequency ranges and it is minimized in 

optimization. A fourth-order direct-coupled waveguide filter is 

taken as an example in the investigation as shown in Fig. 6. The 

filter contains 9 variables: x = [W1, …, W3, L1, …, L4, Q1, Q2] 

(mm) which are mutual coupling irises, resonator lengths and 

I/O port couplings. The passband of the filter is operating at 

9.95-10.05GHz and return loss is 20 dB. The optimal design 

values for this design specification are: W1 = 5.35217, W2 = 

4.96432, W3 = 5.35217, L1 = 17.7731, L2 = 19.0648, L3 = 

19.0648, L4 = 17.7731, Q1 = 9.46258, Q2 = 9.46258 (mm). The 

optimal simulated S-parameter responses are shown in Fig. 7(a). 

The characteristic landscapes based on different objective 

functions are investigated based on parameter sweeping. The 

parameter for this filter can be divided into two categories: 

couplings parameters (coupling iris widths) and resonance 

parameters (resonator lengths). Three pairs of parameters are 

selected and combined in parameter sweeping, respectively, as 

listed in Table II. The dimensions are evenly sampled in the 

corresponding ranges. There are 900 samples in each 

combination. The S-parameter variations for each combination 

are shown in Fig. 7(b)-(d). It can be noticed that 1) Variation W1 

and W2 have more effect on the magnitude of return loss and 

less effect on the frequency shift. 2) Variation L1 and L2 have 

more effect on the frequency shift. As the frequency shift, the 

return loss performance is correspondingly getting worse. 3) 

Variation W1 and L1 have an effect on the center frequency and 

magnitude of return loss. 

 
Fig. 5. The critical performance and features in a filter with Chebyshev 

responses.  

 

TABLE I 

THE KNOWLEDGE AND ITS FUNCTIONS IN EM OPTIMIZATION 

Knowledge Functions in EM optimization 

Equivalent circuit Provide initial design, surrogate 

Coupling matrix Provide initial design, surrogate 

Synthesized S-parameter responses Construct the objective function 

The magnitude of the S-parameters Construct the objective function 

Feature zeros and poles of 

S-parameters 
Construct the objective function 

Coarse mesh model and its 

derivatives 
Surrogate 
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Fig. 6. A 4th order waveguide filter. L1, …, L4 are the lengths of the 

resonators. W1, …, W3 are the iris widths of inter-resonator couplings. Q1 
and Q2 are the iris widths of the external port couplings. The thickness of all 

the irises is equal to 2 mm.  
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Four different types of widely used objective functions are 

investigated. To simplify the investigation, only the return loss 

performance (S11) is considered. They are respectively 

introduced in the following. 

1) Maximum S11 within the passband:  

 ( ) ( )( ) 1 11.dB: Minimize max max 20 ,0F S PB − −   (1) 

where maxS11.dB means the maximum magnitude of S11 in dB. 

PB = (9.95, 10.05) denotes the passband range. This objective 

function is mostly used in the filter design. When the maximum 

value of S11 within 9.95-10.05 is lower than −20, the F1 will be 

zero. 

2) Sum of S11 magnitude values at sampled frequencies 

within the passbands:  

 ( ) ( )( )( )
2

2 11.dB1
: Minimize max 20 ,0

N

ii
F S f

=

 
− − 

 
   (2) 

where N is the number of sampled frequency points, fi ∈ (9.95, 

10.05) is the sampled frequency point. This objective function 

aims to evenly minimize the magnitude of the return loss within 

the passband. To decrease the computational burden, the 

response within the passband is uniformly sampled. N = 50 for 

this example. When the sampled S11 values are lower than −20, 

F2 will be zero. 

3) The magnitude of poles of the S11:  

( ) ( )( )3 11.dB1
: Minimize 20RPN

ii
F S RP

=
− −  

                                      ( ) ( )( )2

11.dB1
20jj

S BE
=

+ − −   (3) 

where RPi is the ith theoretical reflection poles of S11 within the 

passband. NRP denotes the number of the RP. The desired poles 

for this filter example are 9.9646, 10.0353 and 10. (GHz). BEi 

denotes the ith band-edge of the desired S11. 9.95, and 10.05 are 

band-edges in this example. This objective function is another 

type of objective function based on sampled S11, but the 

selected frequencies are key features in desired S11 response.  

4) Feature-assisted objective function: This objective 

function is proposed in cognition-driven space mapping 

technique [22]-[25]. The objective function is formulated with 

the assistance of the reflection zeros in the candidate responses 

during optimization. Firstly, the reflection zeros can be 

extracted based on the response fitting by using the vector 

fitting technique [52]. Then, two items are considered in the 

objective function: the magnitude of the S11 and reflection zero 

positions. The objective function can be formulated as 

( ) ( )
1

4 1 11.dB , , 1

1

: Minimize max max , 20 ,0
N

z i z i

i

F a S f f
−

+

=

  
 − − 

  


                         ( )2 )1
max 2,0

N

z ii
a f CF BW

=
+  − − （  (4) 

where max S11.dB(fz(i), fz(i+1)) is the maximum S11 values between 

each two reflection zeros. fz(i) (i = 1, …, N) denotes the extracted 

reflection zeros in the simulated S11 during optimization. CF = 

10 (GHz) is the desired center frequency of the filter, BW = 0.1 

(GHz) is the desired bandwidth of the filter. The first item aims 

to minimize the magnitude of the S11 to desired value while the 

second one is to move the reflection zeros into the specified 

passband. a1 and a2 are weights to make the values of two items 

comparable. In this case, the weights are set as a1 = 1 and a2 = 

1000.  

The characteristic landscapes of four different types of 

objective functions are shown in Fig. 8-11. For all of the 

objective functions, the first combination depicts a highly 

multimodal landscape resulting in a rough landscape with 

multiple local optima around the global optimum while the 

second one depicts landscapes with a relatively narrow valley, 

especially for the first three. The peaks of some pictures, i.e., 

Fig. 8(b) and Fig. 10. (b) cannot be clearly seen because the 

valley is too narrow to be recognized by the sampled mesh data. 

The characteristics of the first two combinations, namely 

multimodal and narrow, are combined in the third combination 

for each objective function. We can conclude that microwave 

filter’s distinctive design characteristics is highly multi-modal 

and the global optimal results is located in a very narrow valley. 

The roughness of the landscape is affected by the coupling 

dimensions while the narrowness is affected by the resonator 

lengths. Further, we can imagine that the landscape is likely to 

worsen when the filer has a higher-order, narrower bandwidth, 

and more complex configurations, e.g., cross couplings, 

multiple modes, multiple bands, and multiple channels. 

Surprisingly, the 4th objective function (Equ. (4)) smooths the 

design landscape in a great deal. Hence, reasonable employing 

features of the filtering response in the objective function can 

make the design landscape smoother benefiting the 

convergency in the optimization.  

  
(a) (b) 

   
(c) (d) 

Fig. 7. Simulated S-parameter responses compared with the optimal 

S-parameter responses (a) based on the parameter sweeping with (b)-(d) the 

three sweeping combinations. 
 

TABLE II 
PARAMETER SWEEP PLAN FOR THE 4TH

 ORDER BANDPASS WAVEGUIDE 

FILTER 

x1 x2 Sampling number  

5.1<W1<5.6 4.7<W2<5.2 30×30 

17.2<L1<18.2 18.4<L2<19.4 30×30 
5.1<W1<5.6 17.2<L1<18.2 30×30 
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According to the characteristics of the microwave filter 

design, it is not all of the available SAO techniques that are 

employed to make the filter design satisfy specifications. The 

following challenges, but not limit to, should be taken into 

account when developing an SAO method for microwave 

filters: 1) Obtain high quality initial designs or close-to-optimal 

data set via smart sampling strategies. This can help to narrow 

the search range and getting close-to-optimal modal. 2) Using 

filter design knowledge, decompose the entire optimization 

problem into sub-problems as different types of variables have 

distinct focuses and sensitivity, e.g., coupling values and 

resonator lengths. 3) Incorporate “knowledge” (feature zeros) 

in the objective function or surrogate modeling process. The 

design landscape will be smoother. 4) Select suitable 

   
(a) (b) (c) 

Fig. 8. Characteristic landscape of the objective function F1 for the three parameter sweeping combinations of (a) W1 and W2, (b) L1 and  L2 and (c) W1 and L1. 

 

   
(a) (b) (c) 

Fig. 9. Characteristic landscape of the objective function F2 for the three parameter sweeping combinations of (a) W1 and W2, (b) L1 and  L2 and (c) W1 and L1. 
 

   
(a) (b) (c) 

Fig. 10. Characteristic landscape of the objective function F3 for the three parameter sweeping combinations of (a) W1 and W2, (b) L1 and L2 and (c) W1 and L1. 

 

   
(a) (b) (c) 

Fig. 11. Characteristic landscape of the objective function F4 for the three parameter sweeping combinations of (a) W1 and W2, (b) L1 and L2 and (c) W1 and L1. 
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optimization methods or frameworks to avoid the optimization 

trapping into local optima and improve exploitability for 

narrow valley. 

III. AI-ASSISTED SURROGATE MODELING AND OPTIMIZATION 

TECHNIQUES FOR MICROWAVE FILTER DESIGN 

A. Basic concept of surrogate modeling and optimization 

The microwave filter design is formulated as an optimization 

problem as [53] 

 
( )( )

 

arg min

. .  ,LB UB

U

s t 

x
x* = R x

x x x
 (5) 

where x = [x1, x2, …, xn] denotes the design variables, where 

n is the number of the design variables. x* is the optimal 

design. U(·) is a form of objection function, R(x) is the filter 

responses. [xLB, xUB] is the design search range. Equation (5) 

describes directly using a full-wave EM simulation model to 

solve the optimal solution, which is quite time-consuming. 

Surrogate-assisted optimization (SAO) is a strategy for 

reducing the cost of direct optimization. It is formulated as 

 ( )( )( )arg min S U
x

x* = R R x  (6) 

where RS(·) is the responses value of constructed surrogate 

model. The fundamental concept is to optimize a 

continuously updated surrogate model (low fidelity and fast 

evaluation) instead of direct optimizing an EM full-wave 

simulation model (high fidelity and slow evaluation). 

Theoretically, filters have nature physical surrogates, e.g., 

polynomial representation, equivalent circuit, coupling 

matrix. Note that the surrogate should preferably behave in a 

linear or correlated behavior to the fine model. However, for 

some complex cases, e.g., dual-mode resonators, 

cross-couplings, the relationship between the surrogate and 

fine model will become more complex (nonlinear), it will 

make the surrogate and its optimization less efficient. To 

overcome the lack of a physical surrogate model in filter 

design, machine learning techniques, known as data-driven 

surrogate models [53], are used to establish the relationship 

between design variables and design objectives. As 

demonstrated in Fig. 12, the data-driven surrogate model 

establishes low-cost mathematical models using a few EM 

simulation samples. In this process, all of the sampling 

methods, surrogate modeling methods and optimization 

frameworks are critical.  

Generally, the SAO frameworks can be separated into global 

SAO framework and local SAO framework. Their flowcharts 

are given in Fig. 13. The global SAO algorithm [Fig. 13(a)] 

completes the surrogate model construction and optimization 

processes separately, maintaining the accuracy of the surrogate 

model throughout the process. It is expected that once the 

surrogate model is constructed, it can fully replace the EM 

simulation model in the design interval to perform the 

optimization procedure. This method is normally appropriate 

for filter optimization problems with a small design space, such 

as when a decent initial design is obtained. The correctness of 

the surrogate model, demonstrated in Fig. 13 (a), is the most 

important issue in this approach. The following is a summary of 

the general procedure of the global SAO framework: 

Step G1: Create training samples using relevant experimental 

approaches; 

Step G2: Obtain training data by replicating simulating the 

proposed high-fidelity model chosen in step 1; 

 Step G3: Develop surrogate models using selected modeling 

approaches; 

Step G4: Refine the surrogate model; 

Step G5: If the target accuracy is met, run the optimizer (local 

 
Fig. 12. An illustrative workflow of data-driven surrogate modeling. 
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(a) 

Define design variables

Construct surrogate model 

Optimize surrogate

Meet the design 
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Sampling around the 

current optimal 

design
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Start 
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No

Yes 

EM model 

Gradient-based 
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• Trust-region method
• Newton method
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Machine learning methods

• ANN

• Gaussian process (Kriging)

• ...

Optimal design

 
(b) 

Fig. 13. Illustration of the AI-assisted surrogate modeling and optimization 

frameworks. (a) The global SAO framework, (b) The local SAO framework. 
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optimizer or global optimizer) and verify the best 

solution. If not, infill samples and proceed to step G3; 

As an opposite of the global SAO framework, local SAO 

framework is performed as shown in Fig. 13 (b). The following 

is a summary of the general procedure of the local SAO 

framework: 

Step L1: Design training samples using appropriate experiment 

methodologies;  

Step L2: Obtain training data by simulating the chosen high-

fidelity model pre-selected in Step 1; 

Step L3: Create surrogate models using modeling techniques 

(ANN, GPR, etc.); 

Step L4: Determine the best surrogate model for optimization 

and evaluate it. 

Step L5: If the target accuracy is met, run the optimization 

algorithm. Obtain an optimization solution to the 

current surrogate.  

Step L6: Evaluate the obtained solution. If design specification 

is met, the optimization solution will be saved as the 

optimal design. If not, then resample around the 

optimization solution and reconstruct a new surrogate 

to execute optimization. 

It can be noticed that the global SAO framework establishes 

a global surrogate model prior to optimization to ensure the 

optimization stability. Therefore, the accuracy requirement of 

the surrogate model with respect to the entire design variables 

is relatively high. On the other hand, the local surrogate is built 

near each design candidate during the optimization phase. The 

number of sample points in a single local surrogate is obviously 

less than the one for a global surrogate. However, since the 

local surrogate is required at each iteration of the optimization 

process, the local surrogate is updated with the optimization 

results after each iteration. It also means that the optimizing 

multiple iterations is challenging.  

In the following, the SAO techniques that have been 

developed in recent years, including smart sampling 

methods, advanced surrogate modeling methods and 

effective optimization algorithms and frameworks, are 

reviewed with their applications. 

B. Smart sampling methods 

Conventional (static) sampling methods widely used for 

surrogate-assisted microwave component modeling and 

optimization include full factor sampling (FFS) [54], Monte 

Carlo sampling (MCS) [55], and Latin hypercube sampling 

(LHS) [56], etc. These sampling methods focus on improving 

the uniformity of distributed samples in the design space. Fig. 

14 (a)-(c) illustrates these uniform sampling methods in 

two-dimensional space. In order to evaluate the performance of 

sampling method, an indicator u called uniformity for sampling 

method has been proposed [57]. It is defined as the smallest 

distance between any two samples in the data set: 

 
2

( ) ( )

1 , 1
max i j

i N i j N
u

  +  

 
= − 

 
x x  (7) 

where N is the sampling number. x(i) and x(j) are the two 

samples. With a same sampling number and dimension, a larger 

u denotes better sampling uniformity. Here, we compare these 

popular uniform sampling methods shown in Fig. 14, including 

FFS, MCS and LHS. In the comparison, three sampling method 

are evaluated in the design space of [−1, …, −1]d  × [1, …, 1]d
 , 

where d is the dimensions of the design spaces. The 

uniformities of these sampling methods are compared in Table 

III. It can be notice that all classic method can obtain a 

comparable sampling uniformity, where the commonly used 

MCS and LHS have better performance. They are all suitable 

for surrogate modeling. 

For microwave components, in certain regions of the design 

space, the performance with respect to design parameters may 

be very sensitive. Therefore, “good” samples (close-optimal) 

nearly satisfying the design specifications may be located in 

small regions in the design space. If uniform sampling methods 

are applied, the good samples and the poor samples (which are 

far from optimal) become unbalanced. Surrogate models based 

on these unbalanced samples may lead to inefficient 

optimization. To improve the sampling efficiency, high-quality 

adaptive sampling methods (ADSs) are sought for surrogate 

modeling and optimization to improve the sampling efficiency 

  
(a) (b) 

  
(c) (d) 

Fig. 14. Illustration of different methods in two-dimensional space, (a) FFS 

[54], (b) MCS [55], (c) LHS [56] and (d) ADS [57] 

 

TABLE III 

UNIFORMITY COMPARISON OF THE SAMPLING METHOD 

Sampling 

method 
10 samples 20 samples 50 samples 100 samples 

FFS 0.33 (9)* 0.25 (25)* 0.14 (49)* 0.2 

MCS 0.30 0.28 0.25 0.25 

LHS 0.28 0.27 0.24 0.23 

* FFS only has the form of d by d. Therefore, FFS uses close samples to 

compare another two methods as shown in the brackets. 

 

 
Fig. 15. Illustration of parallel parameter sampling strategy. 
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[58]-[59]. An illustrative sampling example is shown in Fig. 

14(d). The methods combine local sampling and global 

sampling to construct more accurate data-driven surrogate 

model for microwave filters [58]. Clearly, ADSs cover whole 

design space but also focuses on area with “good” samples. For 

another, the design space can be divided into multiple 

subspaces according to the characteristics of design variables as 

shown in Fig. 15. Then, sampling process is implemented in 

parallel by multiple EM solvers with same configuration, which 

can improve the sampling efficiency [60]-[61] and facilitate the 

following modeling process. Parallel local sampling strategy 

can increase the exploitation ability near the potential optimal 

solution in each optimization process [61]. The microwave 

filter optimization will avoid local minimum and keep a high 

convergence rate. 

C. Advanced surrogate modeling methods 

Various surrogate modeling techniques are implemented to 

reduce the computational cost of microwave filter modeling 

and the SAO process, e.g., polynomial regression [62], support 

vector machine [63]-[64], artificial neural networks (ANN) [65] 

and Gaussian process regression (GPR) [51]. Various surrogate 

modeling (machine learning) techniques with their application 

in microwave filters are summarized in Table IV. Some key 

features of some classic modeling methods are discussed in the 

following. 

1) Artificial neural networks (ANN):  

MLP is a basic artificial neural network (ANN) method used 

in microwave filter parametric modeling [66]-[75]. It is 

effective at modeling nonlinear functions [76]. The MLP is a 

fully connected ANN model and its basic element is a neuron 

shown in Fig. 16(a), where wi, i=1, 2, …, N are weights, β is a 

bias, and f(η) is an activation function. Then, MLP is 

constructed by connections of artificial neurons with different 

weights as shown in Fig. 16 (b), the structure of the network has 

three parts: input, output and hidden layers, and can be either 

forward or backward. In the forward mode, data will be 

transferred through the network layer by layer until it reaches 

the output layer. Finally, the weight sum is transferred by the 

activation function to the output. Backward mode 

(backpropagation of MLP) optimizes the weights and bias to 

minimize the error between desired and predicted outputs. This 

process is also known as the training process. The surrogate 

will be successful defined when the discrepancy is lowered to 

an acceptable threshold. Then, based on MLP, more advanced 

NN methods are developed as new machine learning methods 

for parametric modeling of microwave filter. Extreme learning 

machine (ELM) is a single-hidden layer feed-forward neural 

network (SLFNN) which is much simpler than the MLP [77]. 

ELM transform the output from SLFNN into a matrix 

calculation and this speed up the training process [77]. 

However, its accuracy is not as good as the MLP training. 

Radial basis function (RBF) neural network utilizes the Radial 

basis function as the activation function [78]-[79]  

 

2

2
( ) exp

2




 −
 = −
 
 

x c
x  (8) 

where c are radial basis centers. Deep neural network is the 

MLP with more than 2 hidden layers [80]. 

2) Support vector machines (SVM): 

SVM is mainly applied in classification [81]. It can predict 

the microwave filter designs satisfying or dissatisfying 

specified goals. As a binary classifier, the SVM aims to search a 

hyperplane to separate two categories. The criteria for the best 

hyperplane are: 1) The objects belong to correct categories and 

2) the margin (the distance between nearest data point (two 

category) and the hyperplane) is maximized. By solving this 

constrained optimization, a hyperplane can be obtained and it 

will be used as classifier for new objects. The above 

 
Fig. 16. The Structure of the MLP. 

 

TABLE IV 

MACHINE LEARNING TECHNIQUES FOR SURROGATE MODELING OF 

MICROWAVE FILTERS 

Machine Learning Methods Application 

Multilayer perceptron neural 
network (MLP) 

Parametric modeling and optimization 
[65]; Inverse modeling [67]-[68]. 

Knowledge-based neural network 

(filter responses “knowledge” + 
MLP),  

Parametric modeling and optimization 

[69]-[70]; 
Yield optimization [71]; Yield 

estimation [72];  
Multiphysics modeling and 

optimization [73]-[75]. 

Extreme learning machine (ELM) Filters optimization [77]. 

Support vector machine (SVM) 

Filter Tuning [63], [83] 

Inverse modeling [64] 
Parametric modeling and optimization 

[82]. 

Gaussian process regression （also 

called Kriging） 

Filters optimization [51]; 
Yield optimization [83]; 

Diplexer optimization [85]. 

Radial basis function neural 
network (RBFNN) 

Parametric modeling [78]; 
Yield optimization [79] 

Deep neural network (DNN) 
Parameter extraction [80] 

Filter tuning [89] 

Graph neural network (GNN) Automatic design [86] 

Deep belief network (DBN)  Inverse modeling [87] 

Convolutional Neural Network 

(CNN) 
Filter tuning [88]-[89] 
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constrained optimization problem is given as follows: 

( )( )

1
min

2

. .  1

T
i

TT
i i s is t l b

   

  

+

+  −



h

 

0i    (9) 

where  is the normal vector to the hyperplane. 0  is a 

penalty coefficient of the error term. The slack variables i  

refer to the degree of classification error of sample ih . For 

more details can be found in [81]. 

3) Gaussian process regression (GPR):  

The GPR, also known as kriging method [53], establishes a 

surrogate for N samples X = (x1, …, xN) and their corresponding 

responses Y = (y1, …, yN). The GPR assumes that the random 

variables satisfy a multivariate Gaussian distribution with mean 

μ and variance σ2. The Gaussian correlation function calculate 

the correlation between two samples (x(i) and x(j)) in the form: 

 ( )
2

( ) ( )( ) ( )

1

, exp
d

i ji j
l l l

l=

 
= − − 

 
Z x x x x  (10) 

where d is the dimension of x, θl is the so-called scale 

parameters which determines how fast the correlation decreases 

when x(i) moves in the l-direction and l is the index of vectors. 

The optimal values ̂ and 2̂  can be determined by maximized 

likelihood estimation, they can be solved by  

 ( )
1

1 1ˆ T T
−

− −= I Z Y I Z Y  (11) 

 ( ) ( )2 1ˆ
1

ˆ ˆ
T

N
  −= − −Y Z Y IΙ  (12) 

where I is a unit row vector and ( ) ( )( , )i j

ij =Z Z x x  is the 

correlation matrix. Based on the GP model, the predicted 

value ( )ˆ *y x is  

 ( ) ( )* 1

0
ˆ ˆ ˆTy + −= −x Y Iz Z  (13) 

And the mean square error ( )2ˆ *s x  is expressed as 

 ( ) ( ) ( )
2 1

2 * 2 1 1 1

0 0 0 0
ˆ ˆ 1 1T T Ts

−
− − − = − + −

  
x σ z Z z z Z z I Z I  (14) 

where z0 = [Z(x*, x1), …, Z(x*, xN)]T. An infill method is 

utilized to improve the accuracy of the GP model. New sample 

xnew is obtained by 

 ( ) ( )( )ˆargmin ˆnew y w s= − 
x

x x x  (15) 

where w is responsible for balancing the exploitation (w → 0) 

and exploration (w → ∞).  

MLP, RBF and GPR are classic modeling methods for 

regressing the relationship between the design variables and S-

parameters. Here, we employ an X-band four-pole waveguide 

filter shown in Fig. 17 to evaluate the different surrogate 

modeling methods. The filter structure is symmetric and the 

design variables are x = [h1, h2, h3, hc1, hc2] (mm). The 

thickness for all the coupling window is set to 2mm. The design 

objective is to minimize the return loss within the passband 

10.85-11.15GHz. The sampling is performed using MCS 

around a design candidate x0 = [3.335, 4.044, 3.588, 3.299, 

2.971] and sampling range is [x0 −0.1, x0 +0.1].  

Three modeling methods, MLP, RBFNN and GPR are 

compared. Both MLP and RBFNN have one hidden layer with 

15 neurons. 150 samples are used for modeling and 50 for 

testing. Predicted responses S11.pre and S21.pre from three 

surrogate and responses of testing samples S11.test and S21.test are 

used to evaluate the modeling accuracy. The modeling errors of 

S11 and S21 are calculated by  

 ( ) , ,
11 11. 11.

1 1

1 1
   

N M
n m n m

pre test

n m

error S
N M = =

= − S S  (16) 

 ( ) , ,
21 21. 21.

1 1

1 1
   

N M
n m n m

pre test

n m

error S
N M = =

= − S S  (17) 

where M is the sampled frequency points on S-parameter 

responses. N is the number of testing samples. The modeling 

errors for three modeling methods are compared in Table V and 

the predicted responses by using different modeling methods 

compared with the true responses are shown in Fig. 18. 

According to the comparison, we can notice that these 

modeling methods with a default setting have a certain ability 

 
Fig. 17. The geometry of the four-pole filter example. 

 

TABLE V 

PERFORMANCE COMPARISON OF DIFFERENT SURROGATE MODELING 

METHODS 

 Modeling Error Time Cost (minute) 

 MLP RBFNN GPR MLP RBFNN GPR 

S11 2.976 2.755 2.309 1.055 0.108 0.278 

S21 0.453 0.270 0.276 1.064 0.182 0.683 

 

 
Fig. 18. Comparison of the predicted responses by different surrogates and the 

true simulated responses. 
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in parametric modeling. To increase the modeling accuracy, we 

should consider narrowing the sampling range and increasing 

the number of samples. RBFNN has a fast speed than the MLP 

and GPR has better performance in both speed and accuracy. 

This is mainly because its uncertainty analysis ability. The 

characteristics of the above modeling methods are listed in 

Table VI. 

The state-of-the-art surrogate modelling method for 

microwave filters is the multiple features assisted surrogate, 

e.g., neuro-transfer function surrogate [89]-[94]. This method 

first extract feature zeros and poles from EM simulation 

response. Then, the extracted feature zeros are employed in the 

surrogate modeling. The feature-based EM optimization can 

move the simulated passband into the range of design 

specifications. As proofed in section II (c), the surrogate model 

based on feature-based objective function will smooth the 

design landscape which avoid the optimization trapping into 

local optima. Not only in EM optimization, the feature-assisted 

surrogate can also be utilized in filter tuning [82], yield 

estimation [72]-[73], diplexer optimization [84], etc. 

Other than directly implementing one surrogate, 

multi-fidelity strategy is often employed based on multiple 

fidelity modelling framework [62], [90], co-kriging method [95] 

and also SM techniques. In the multi-fidelity surrogate 

modeling strategy, the surrogate is constructed and optimized 

based on the multiple cascaded low-fidelity models and then 

the optimization results of low-fidelity model are calibrated to 

high-fidelity model. This aims to increase the correlation 

between multiple fidelity models. The model correction can be 

formulated as  

 ( ) ( , )S c i= R x A R x   (18) 

where RS (x) is the corrected surrogate model and A denotes a 

diagonal correction matrix. Rc(x(i)) is the ith low-fidelity model. 

It can be assumed that the surrogate model established using 

low-fidelity samples is time-saving and the high-fidelity model 

provides extra information to save the accuracy. For a surrogate 

built on EM simulations at a certain fidelity, the output SM 

method may be used to improve the performance of the 

surrogate [95]. These methods usually only correct the linear 

error between the surrogate model and the EM simulation 

model. When one low-fidelity model has a non-linear relation 

to the high-fidelity model, more continuous fidelity models 

should be required [62]. The correction matrix can be obtained 

by 

 

2

( ) ( )

1

arg min ( ) ( )
n

i i
f c

A
i=

− A* = R x A R x   (19) 

where Rf(x(i)) is the fine model using x(i). Therefore, the 

corrected surrogate can be obtained by 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )i i i i
S c f c

 + −
 

R x = R x R x R x   (20) 

The correction term Rf(x(i)) − Rc(x(i)) has to be a zero-order 

consistency between the two fidelity models. 

D. Surrogate optimization  

Besides the learning EM-behavior of microwave filters in 

surrogate modeling, the optimization frameworks are also 

important part of the SAO filter design method. Either local 

optimizers or heuristic global optimizers are implemented. The 

widely used local optimizers include trust region algorithm 

[96]-[98], newton and quasi-newton methods [99], 

Nelder-Mead simplex algorithm [106], and Homotopy 

optimization [101]. The global optimizers for microwave filters 

include Harris Hawks algorithm [102]-[103], genetic algorithm 

(GA) [104], particle swarm optimizer (PSO) [105], and 

self-adaptive differential evolution (DE) [51], [84]. Local 

optimizer and global optimizer have different features in 

searching optimal values. Both of the optimizers have to work 

with surrogate in the optimization frameworks. 

The optimizer in SAO should be selected based on the 

characteristics of the design landscape, namely according to our 

analysis in Section II-D. Generally speaking, the local 

optimizer depends on good starting point and is more suitable 

for the design space with narrow and smooth landscape. 

Otherwise, local optimizer is easily trapped into local optima. 

On the other, global optimizer should be used when the starting 

point is unclear and suitable for the design landscape is 

multimodal. It is worth to note that they require appropriate 

adjustments to adapt to the characteristics of the microwave 

designs 

Many strategies in surrogate modeling are employed 

facilitating the following optimization process. For example, 

the local optimizer, e.g., trust region algorithm, is widely 

investigated in many microwave filter design examples 

[96]-[98]. To avoid being trapped in local optima, the local 

optimizers are assisted by “knowledge” in the surrogate 

modeling and start from a good initial design. To explore the 

filter optimization with a large design space (optimization with 

a large number of design variables or starting point is far from 

optimal), such a problem is solved by decomposition using trust 

region optimization method [96]. Some work employs a 

heuristic global optimizer to explore the filter design with a 

large search space [100]-[103]. The state-of-the-art SAO 

method is multiple feature-assisted SAO based on trust region 

optimization [89]-[94]. As proofed in Section II-D and III-C, 

knowledge learned from transfer function of microwave filters 

can guide the trust region optimization to efficiently design 

microwave filters. 

The existed optimizers and their applications are listed and 

compared in Table VII. 

Table VI 

CHARACTERISTICS OF DIFFERENT CLASSIC SURROGATE MODELING 

METHODS 

 MLP RBFNN GPR 

Learning mode 
Supervised 

learning 

Semi-Supervised 

learning 

Supervised 

learning 

Approximation 

mode 

Global 

approximation 

Local 

approximation 

Global 

approximation 

Features 

Simple structure, 

Unsensitivity to 

noise data 

 

Low-cost 

modeling 

Sensitivity to 

noise data 

Provide 

uncertainty 

analysis 
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IV. APPLICATIONS AND EMERGING TRENDS OF MICROWAVE 

FILTER DESIGN 

The proposed SAO filter design methods aim to deal with the 

existing resource intensive problems in the microwave filter 

designs and also drive new type of microwave filter structures. 

They are discussed in the following.  

A. Problem-oriented SAO EM design methods 

Using advanced methods, the existing problems in the 

microwave filter design are addressed in an efficient and 

reliable way. For example, with the requirement of 5G and 

mmWave applications, the fabricated microwave filter with 

good performance is desired. However, the filter responses are 

very sensitivity to the fabrication errors. High qualified 

fabricated filters improved by yield (ratio of the number of 

qualified fabricated filters to the total number of fabricated 

filters) optimization are concerned. The challenges mainly 

come from the yield estimation which requires a large amount 

of EM simulation which is computationally expensive. 

Therefore, machine learning methods are widely employed 

such as ANN [72], [98] and polynomial chaos [109]-[112]. 

Recently, a new method called surrogate model-assisted 

evolution algorithm for filter optimization (Y-SMEAFO) has 

been proposed for filter design with high dimensional 

parameters [79]. Quadratic support vector machine-based 

classification and radio basis function neural network -based 

regression using extracted features are designed to realize 

high-accurate surrogate models. With global optimization, the 

Y-SMEAFO realized filter yield optimization with more than 

10 sensitivity design variables and signification yield 

improvement (30%-40%) for a direct coupled filter with 11 

variables and a cross-coupled filter with 14 variables.  

In this case, we can notice that despite that various EM 

optimization techniques have been proposed, efficient SAO 

frameworks are still necessary to address the increasingly 

emerging problems in microwave filter designs. The challenges 

can be found in the accurate modeling the filter design with 

higher dimensional variables (the number of design variables 

larger than 20), complex structures, i.e., cross-couplings, 

multiple modes, multiple bands and multiple channels and 

integrated filtering components, i.e., filter antenna [117], 

filtering amplifier [118]-[119] and so on. 

B. SAO techniques for novel design applications 

Combining new simulation techniques and fabrication 

techniques, SAO techniques drive novel filter design routines 

and structures. The work in [85] proposes a graph neural 

network (GNN) that learns how to simulate electromagnetic 

properties of the distributed circuits of microwave filters. The 

GNN model is trained based on the capture pictures of various 

planar filters with different topology and size. Then the trained 

GNN can replace the EM simulators and automated microwave 

filter design process can be achieved. The automated generated 

circuits are intrinsically different from regular standard 

topology of microwave filters, which expand the design 

capability [85]. Another example is shape deformation 

technique for geometry optimization of microwave filter 

[113]-[114]. The method is performed based on computer 

graphics applications which is used for object manipulation. 

Firstly, a set of control points are defined around the cavity 

resonator with regular shape, e.g., rectangular resonator. Then 

the coordinates of the points are controlled and shifted. 

Accordingly, the regular shape will be deformed based on the 

performance optimization of the resonator, e.g., Q factor and 

spurious performance. Finally, assisted with 3D EM 

simulation-based optimization, the filters are designed based on 

the deformed resonators following the process introduced in 

Section II. This method offers a greater freedom than the 

conventional resonator. Based on 3D printing fabrication 

technique, the filters with higher performance can be realized. 

Also, some other techniques, e.g., topology optimization [115], 

model order reduction [116] and Multiphysics 

simulation-based optimization [73]-[75], have been 

investigated for filter design with new design routine and novel 

structures.  

TABLE VII 

OPTIMIZERS IN SAO FRAMEWORKS FOR MICROWAVE FILTER DESIGN 

Optimization 

Method 
Reference Application 

Local 
algorithms 

Trust-region algorithm 

[92]-[94],[97]-[98] 

4th order waveguide filter 
(5 variables) 

4th order waveguide filter 
using the piezo actuator 

multiphysics optimization 

(6 variables) 
5th order waveguide filter 

yield optimization (3 
variables) 

5th order waveguide filter 

(9 variables) 

Gradient-based 

Quasi-Newton algorithm 

[99] 

5th order waveguide filter 
(9 variables) 

Homotopy optimization 

[101] 

5th order waveguide filter 

with 6 variables; 

5th order filter with one 
frequency dependent 

coupling with 12 variables 

Global 
algorithms 

Harris Hawks algorithm 

[102]-[103] 

4th-order dielectric filter 

(7 variables) 

4th-order cross-coupled 
filter (6 variables) 

GA [104] 
3rd order LC filter (6 

variables) 

PSO [105] 
8th order dielectric filter (8 

variables) 

Self-adaptive DE [51], [84] 

6th order waveguide filter 
(5 variables). 

8th order microstrip filter 

(12 variables). 10th order 
waveguide diplexer (22 

variables); 8th order 

waveguide diplexer (23 

variables) 

Hybrid 

algorithm 

GA algorithm + 

Nelder-Mead simplex 
algorithm [106], [107] 

4th order ridged waveguide 
filter (9 variables) 

4th order dielectric filter (7 
variables) 

Gradient Particle Swarm 

[108] 

4th order waveguide filter 

(6 variables) 
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V.  CONCLUSION 

Focusing on EM design methodologies for microwave filter 

designs, this paper illustrates the AI-based design flow for 

microwave filter designs in detail. Three levels of AI-based EM 

design techniques for microwave filters are first defined and 

explained in this paper. To better understand the challenges in 

microwave filter design and proper application of AI 

techniques, design “knowledge” and characteristics landscape 

are investigated and summarized using study cases. Based on 

the analysis of filter characteristics, the reasons for adjustments 

in AI techniques are clearer recommended. Then, the present 

state-of-the-art AI techniques in current EM-simulation based 

design for microwave filters are reviewed with a focus on smart 

sampling techniques, advanced surrogate modeling techniques 

and effective optimization algorithms and frameworks, as well 

as their applications. Moreover, an outlook for the future study 

direction is proposed based on the discussion of some recent 

emerging research works. In a nutshell, AI-based design 

techniques have been evolved into a general design procedure 

rather than an optimization tool in microwave filter designs. 

More useful and powerful AI design techniques will be 

investigated in the future as we move closer to a full design 

automation. The authors expect that the discussions in this 

manuscript would be helpful to both CAD researchers and 

microwave filter designers. 
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