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ABSTRACT This paper outlines the early history of optimization technology for the design of microwave
circuits—a personal journey filled with aspirations, academic contributions, and commercial innovations.
Microwave engineers have evolved from being consumers of mathematical optimization algorithms to
originators of exciting concepts and technologies that have spread far beyond the boundaries of microwaves.
From the early days of simple direct search algorithms based on heuristic methods through gradient-based
electromagnetic optimization to space mapping technology we arrive at today’s surrogate methodologies. Our
path finally connects to today’s multi-physics, system-level, and measurement-based optimization challenges
exploiting confined and feature-based surrogates, cognition-driven space mapping, Bayesian approaches, and
more. Our story recognizes visionaries such as William J. Getsinger of the 1960s and Robert Pucel of the
1980s, and highlights a seminal decades-long collaboration with mathematician Kaj Madsen. We address not
only academic contributions that provide proof of concept, but also indicate early formative milestones in the
development of commercially competitive software specifically featuring optimization technology.

INDEX TERMS Adjoint sensitivities, Bayesian, Broyden, CAD, cognition-driven design, design centering,
electromagnetics-based design, empipe, FDTD, FEM, Huber, least pth, microwave design, MIMIC, minimax,
MTT 70th Anniversary Special Issue, neural networks, nonlinear modeling, optimization, space mapping,
surrogate modeling, TLM, tolerance optimization, tuning, waveguide filters, yield-driven design.

I. INTRODUCTION
The first numerical optimization techniques for circuit design
emerged in the 1960s [1], [2], [3], [4], including pioneering
optimization methods for RF and microwave passive filter
design. A key visionary, W. J. Getsinger, founded in 1968 the
IEEE MTT-S Technical Committee on Computer-Aided De-
sign of Microwave Circuits, known as “MTT-1” (see Fig. 1).
In 1969, Getsinger (see Fig. 2) also edited the special is-
sue of IEEE Trans. Microwave Theory and Techniques on
Computer-Oriented Microwave Practices [3], featuring the
first microwave paper to review optimization [4]. This paper
opens with “Fully automated design and optimization is surely
one of the ultimate goals of computer-aided design.” After

more than five decades, has this goal been achieved yet? It
depends on what is meant by “fully automated” [5].

In those early days, experts in circuit theory and elec-
tromagnetics were convinced that a “feel” for a problem
surpassed any advantage offered by the emerging use of
digital computers. The wisdom was that an expert’s “feel”
defied automation [5]. Both academics and practitioners even
objected to the use of digital computers for algorithmic cir-
cuit design, as did John Roberts, Bandler’s Ph.D. advisor
at Imperial College London in 1963. Some influential elec-
trical engineers judged computer-aided design (CAD) and
optimization as “not engineering” and unsuited for engineer-
ing education [5]. Still, pioneering optimization contributions
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FIGURE 1. Initial part of a letter sent in 1968 by Getsinger to the founding
members of the MTT-S Technical Committee on CAD of Microwave Circuits,
in the year of its creation.

FIGURE 2. William J. Getsinger in 1969, guest editor of the special issue
on Computer-Oriented Microwave Practices of the IEEE Transactions on
Microwave Theory and Techniques [3].

FIGURE 3. Mathematician Kaj Madsen in 1973; Technical University of
Denmark, Copenhagen, collaborator for over 4 decades and architect of
optimization algorithms and software.

were already in progress in the 1960s [1], [4], mostly based on
heuristic search methods with no derivative information [5].

The first gradient-based optimization methods, mostly
quasi-Newton approaches, were rapidly adopted in the 1970s
[4]. By that time, automatic optimization was already seen as
the most significant advance in microwave CAD [6].

During the 1970s and 1980s, mathematician Kaj Mad-
sen (see Fig. 3) and his research group at the Technical
University of Denmark [7] developed powerful minimax
and related mathematically rigorous algorithms, consolidating

quasi-Newton gradient methods for circuit design optimiza-
tion. Co-author Bandler was fortunate to establish a decades-
long relationship with Madsen and his team.

Nominal, worst-case, statistical, and multi-objective cir-
cuit optimization was already in place [8], [9]. Microwave
statistical design and worst-case tolerance optimization also
started in the 1970s [10]. Initial optimization cases in high-
dimensional design spaces were developed in the 1980s for
satellite waveguide multiplexers [11]. The first gradient-based
direct electromagnetic design optimization method, tailored to
microwave filters, appeared in the early 1990s [12].

In 1993, recognizing the urgent need for effective electro-
magnetic optimization, while puzzling over the mystery of the
so-called engineer’s “feel” for a problem and the cognitive
concept of “model,” and after visiting Madsen in Denmark,
Bandler invented space mapping [13], [14], [15], [16].

Driven also by the need for optimizing expensive-to-
compute functions, mathematicians developed their own sur-
rogate approaches in the same decade [17]. On a separate track
but in those same years, artificial neural networks (ANN) for
RF and microwave design optimization emerged [18], [19].
Prominent applications to microwave design optimization of
space mapping [20], surrogate modeling [21], ANN [22], [23],
and combinations of them [24], [25], [26], [27], [28], [29]
flourished in the 2000s and 2010s.

The last two decades have confirmed the prediction made in
2001 [30], that knowledge-based techniques would dominate
in addressing current and future microwave design optimiza-
tion challenges [31]. Today’s thinking about current and future
trends in microwave design automation are summarized in
[32].

This paper briefly tracks the early history of optimiza-
tion methods and techniques for RF and microwave design.
It highlights the main milestones in several overlapping
chronological stages of microwave design optimization: 1)
circuit-oriented optimization methods; 2) direct electromag-
netic optimization techniques; 3) space mapping optimization
and surrogate approaches; 4) surrogate methodologies and
Bayesian approaches; and 5) cognition-driven design.

We also highlight the impact of the MIMIC
(Microwave/Millimeter-Wave Monolithic Integrated
Circuits) Program and a vibrant decade—mid 1980s to
mid 1990s—during which intense theoretical contributions
and commercial software innovations became widely
accepted by microwave engineers. Co-author Bandler’s
optimization-focused company, Optimization Systems
Associates, founded in 1983, acquired by Hewlett-Packard
in 1997 [33], flourished center stage during that formative
period in the history of microwave optimization technology.

II. CIRCUIT-ORIENTED MICROWAVE OPTIMIZATION
Successful numerical optimization methods for microwave
design were first applied to equivalent lumped and distributed
circuit models [4]. Multidimensional direct search strategies
relying exclusively on objective function values, such as pat-
tern search [4], Nelder-Mead’s simplex [34], and razor search

320 VOLUME 3, NO. 1, JANUARY 2023



[35], were initially adopted. These were soon replaced by
gradient-based methods when accurate and computationally
efficient derivatives became available.

A. GRADIENT-BASED OPTIMIZATION WITH ADJOINT
SENSITIVITIES
The breakthrough adjoint sensitivity technique allows the
calculation of accurate response derivatives with respect to
design parameters at a low computational cost. Director and
Rohrer’s milestone [36] for lumped circuit adjoint sensitivities
in 1969 was extended in the 1970s to distributed circuits [37],
and to first- and second-order sensitivities for wave variables
[38]. The adjoint sensitivity technique requires at most two
full circuit simulations, one of the original circuit and one
of an appropriately excited adjoint circuit, regardless of the
number of design parameters.

CAD vendors paid little attention to adjoint sensitivities
in the subsequent two decades, mainly due to complications
of implementation and unclear market interest [5]. In con-
trast, response surface modeling and interpolation were easier
to implement. Nevertheless, powerful circuit-oriented ad-
joint network gradient-based nonlinear optimization methods
were already available in the 1980s [40]. Renewed inter-
est in adjoint sensitivities emerged as CAD moved towards
electromagnetics-oriented design optimization [41], as de-
scribed in Section III.

B. LEAST PTH AND MINIMAX OBJECTIVES AND
ALGORITHMS
Another breakthrough during the 1970s and 1980s was the
emergence of effective least pth and minimax algorithms for
design optimization [39]. The generalized least pth objective
(Hp) that played a significant role in microwave design [40],
[42], and later paved the way to design centering as well as to
active device modeling and parameter extraction [5] is given
by

Hp(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H+
p =

[∑
j∈J

|e j |p

]1/p

if J is not empty

H−
p =

[
m∑

j=1
(−e j )−p

]−1/p

otherwise

(1)

where J = {j | ej ≥ 0} defines the set of indices for which
the response error functions violate the specifications. In other
words, if at least one error ej is nonnegative (at least one spec
violation), H+

p is used; if all specs are satisfied, H−
p is used.

These optimization methodologies found application in
commercial software in the 1980s, 1990s and beyond.

C. YIELD-DRIVEN MICROWAVE DESIGN
Pioneering work on yield-driven design—also called statis-
tical design, design-centering, or design with tolerances and
uncertainties—emerged in the 1970s [8], [43], [44], includ-
ing uncertainties not only in models but also in parasitic

FIGURE 4. Two regions of design parameter values statistically generated
around a maximum yield design and a minimum cost design, respectively;
the region of acceptable designs is enclosed by the thin curved lines [40].
The corresponding nominal designs could be anywhere within those
regions, depending on the constraints, tolerances, and probability
distribution function of each individual design variable.

effects and basic environmental conditions [45]. The funda-
mental concept is illustrated in Fig. 4 [40], where we see
a parameter space of design variables with a region of ac-
ceptable designs, and statistically generated outcomes around
two nominal designs. The aim is to “center” a design with its
possible outcomes to maximize yield or minimize cost.

Throughout the 1980s and 1990s, industrially imple-
mentable optimization algorithms were developed for yield-
driven design using one-sided L1 [40], [46], one-sided Huber
formulations [47], and a family of advanced L1, L2, and min-
imax optimizers, with both exact and approximate gradients
[48]. L2 (least squares or Euclidean norm, p = 2) is very
sensitive to gross errors (outliers affect its performance sig-
nificantly), while L1 (L1-norm, 1-norm, or Manhattan norm, p
= 1) is more robust against “wild” data but is biased by small
errors [46]. Huber is a hybrid of these two [49], treating large
errors in the L1 sense and small errors in the L2 sense. Given
its properties to deal with bad starting points, robustness and
consistency in the presence of large and small errors, Huber
proved extremely effective for statistical device modeling,
analog fault location, and design centering [47], [50].

D. MINIMAX OPTIMIZATION
Based on prior work by mathematician Kaj Madsen [7],
[51], [52], [53] and his team at the Technical University of
Denmark, minimax (equal-ripple) optimization of microwave
equivalent circuits [54] was successfully applied during the
1980s to diverse design application cases.

Representative minimax design optimization examples in-
clude: impedance transformers, interdigital filters, and mi-
crowave reflection amplifiers [51]; waveguide manifold mul-
tiplexers with up to 240 optimization variables following an
automatic decomposition algorithm (see Fig. 5 [11]); and
five-channel multiplexers optimized by weighted updates for
gradient approximations (see Fig. 6 [55]).
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FIGURE 5. Optimized 16-channel waveguide multiplexer using 240
optimization variables. From [11].

FIGURE 6. Optimized 5-channel noncontiguous waveguide multiplexer
using 75 optimization variables. From [55].

In essence, a (so-called one-sided) minimax formulation to
design optimization consists of solving

x∗ = arg min
x

U (x) = arg min
x

max
k

{. . . ek (x) . . .} (2)

where x∗ is the optimal design and U is the objective function
consisting of the maximum error in a set of errors. For each
response of interest (S-parameters, output power, etc.) and
independent variable sample (frequency, time, temperature,
etc.), an error function is defined such that a negative value
in the kth error function, ek(x), implies that the corresponding
design specification is satisfied, otherwise it is violated. If
U(x∗) < 0, the optimal design satisfies all the specifications.
if U(x∗) ≥ 0, at least one of the design specifications is being
violated at the optimal design found.

E. NONLINEAR CIRCUIT DESIGN OPTIMIZATION
The 1980s saw significant progress in nonlinear microwave
circuit simulation, intermodulation, frequency conversion,
stability, noise analysis, sensitivity analysis, and optimization,
exploiting the harmonic balance technique [56]. A fruitful
Bandler-Rizzoli scientific synergy [57] was established for
developing CAD tools with nonlinear design automation ca-
pabilities [58], [59].

FIGURE 7. Rautio (right) with Bandler (left) during the IMS-2019, where
Rautio was honored by the Microwave Career Award.

Linking state-of-the-art optimization and efficient harmonic
balance simulation was key to developing powerful nonlinear
microwave circuit design optimization approaches in the early
1990s. The formidable problem of yield-driven optimization
of nonlinear microwave circuits operating in the steady state
under large signal periodic excitations was tackled by uni-
fying FAST (Feasible Adjoint Sensitivity Technique: exact
adjoints combined with perturbations) and DC, small-signal,
and large-signal simulations [60]. Yield-driven microwave ac-
tive device modeling and circuit design was achieved [61]
by integrating physics-based MESFET models with harmonic
balance simulation and optimization. Commercial CAD tools
were developed for robust FET model measurement-based pa-
rameter extraction exploiting L1, L2, and minimax optimizers
[62], later generalized to a nonlinear device characterization
by statistical modeling enhanced by FAST and Huber opti-
mizers [63].

III. DIRECT ELECTROMAGNETIC MICROWAVE
OPTIMIZATION
Putting full-wave electromagnetic simulators into optimiza-
tion loops was infeasible—laughable to many—in the 1980s
and early 1990s given the computational cost implied. It
simply seemed absurd to electromagnetics simulation experts
[5], both academic and industrially oriented. They could not
envisage HP’s HFSS [64] and Ansoft’s Maxwell Eminence
[65] as ever being suited to direct optimization. Their vision
proved wrong. The first direct, gradient-based electromag-
netic optimization process applied to microwave filter design
was published in 1993 [12]. It exploited response surface
modeling, smooth gradient estimation, and data-base updates
to overcome the computational challenges [66].

OSA’s methodology for automated capture of structural,
geometrical and material parameters in “external” simula-
tors was key to enable direct electromagnetic optimization.
In 1992, after a cordial meeting with Sonnet founder and
CAD visionary Jim Rautio (see Fig. 7), Sonnet Software
becomes the first commercial electromagnetic simulator ven-
dor to offer its flagship software emTM to OSA specifically
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FIGURE 8. A 1996 EmpipeTM Geometry Capture user interface setup for
direct electromagnetic optimization of a double folded stub microstrip
filter in Sonnet Software’s emTM [69].

for design optimization purposes. Developed in 1992, OSA’s
EmpipeTM [67] was the first commercially available software
for such automated parameterization through its exclusive
Datapipe [68] and Geometry Capture [69] technologies. Em-
pipe empowered industrial optimization algorithms [59] with
parametric encapsulation and control of Sonnet Software’s
planar tool emTM [70] in iterative optimization loops (see
Fig. 8). For the first time also it became possible, using
OSA90/hope with its one-sided L1 algorithm [40], [46], to
perform direct gradient-based yield optimization of circuits
with components or subcircuits simulated by an electromag-
netic simulator [71].

A parameterization scheme of 3D structures specifically
tailored to Hoefer’s TLM electromagnetic field simulation and
optimization was achieved in 1993 [72], [73].

Later, in 1996, after Hewlett-Packard and Ansoft finally
granted OSA access to their flagship electromagnetic sim-
ulators, OSA released Empipe3DTM [74], [75]. Empipe3D
enabled automated parametric design encapsulation of ar-
bitrary 3D structures by processing the HFSS project files
in HP’s HFSSTM [76] and Ansoft Corporation’s Maxwell
EminenceTM [77], allowing direct 3D electromagnetic op-
timization [78]. Once a structure was captured, Empipe3D
automatically generated the appropriate projects for HFSS,
invoked the field solver and processed the solution files to
display and optimize various responses.

A method for unrestricted shape optimization tailored to 3D
FDTD EM simulation became available in 1998 [79].

Subsequent developments for direct electromagnetic opti-
mization include gradient-based methods using adjoint sen-
sitivities. Initial “exact” sensitivities based on analytical
derivatives of relevant FEM system matrices to compute
S-parameter sensitivities [80] were implemented in a commer-
cial FEM solver [81], [82]. Specific adjoint-style approaches
are now commercially implemented [83], [84]. Promising
exact analytical expressions for field-based sensitivities, not
specific to any particular electromagnetic analysis technique
or meshing strategy, are now available [85].

A more recent strategy to accelerate direct electromagnetic
optimization consists of internally modifying the analysis
method (FEM) to incorporate the optimization algorithm as
part of the simulation execution [86], such that both, the elec-
tromagnetic simulation and design optimization, are finished
at the same time [87], [88].

IV. COMMERCIAL OPTIMIZATION TOOLS: THE DECADE
OF ACCEPTANCE
Until the early 1980’s, iterative computer-oriented methods
for microwave circuit optimization were regarded as curiosi-
ties, not taken seriously by either influential circuit theory
“synthesis” purists or “nuts-and-bolts” engineers [16]. More-
over, because the then optimization test examples were often
simple, frequency-domain, linear circuits with just a handful
of optimization variables, proposed algorithms were looked
upon as impractical, lacking in mathematical rigor, and in-
capable of solving industrially meaningful design problems.
However, the use of digital computers to analyze complex cir-
cuits, linear and nonlinear, and to validate structures through
electromagnetic simulation was never questioned no matter
how daunting. In essence, computers were typically thought
of as ultrafast electronic calculators. The prospect that a com-
puter could somehow “create” an optimal design by repeated
analysis driven by a simplistic, seemingly trial-and-error algo-
rithm must have been frightening and, in the electromagnetics
realm, quite unthinkable. The decade from the mid 1980s to
the mid 1990s was a major turning point in design optimiza-
tion technologies for RF and microwave engineering.

A. THE IMPACT OF THE MIMIC PROGRAM ON
COMMERCIAL MICROWAVE CAD TOOLS
A key catalyzer for the accelerated evolution of commercial
EDA tools for microwave optimization, and their wide accep-
tance in industry, was the 7-year, $0.5-billion U.S. Department
of Defense MIMIC (Microwave/Millimeter-Wave Monolithic
Integrated Circuits) Program, initiated in 1986 [89]. To reach
its goals, the MIMIC program aimed at “substantially improv-
ing computer-aided design models and tools” [89], providing
resources and structure to make possible the transition from
design automation research to efficient and affordable MIMIC
manufacturable production in gallium arsenide technology for
a wide variety of applications [90], both military and commer-
cial [91].

Key players in the MIMIC program participating in the
industry consortia focused on CAD problems included Com-
pact Software (in association with OSA [16], [92]), EEsof,
and Sonnet Software, headed by joint ventures between the
major contractors: Raytheon and Texas Instruments, and ITT
and Martin Marietta [90], [91].

The MIMIC Program detonated fast developments for
wafer/chip yield prediction and optimization, including state-
of-the-art device statistics, measurement uncertainties, worst
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FIGURE 9. A timeline of major commercial events in RF and microwave
optimization technology (early 1980s to late 1990s).

case design, design centering, and tolerance assignment for
linear and nonlinear circuits.

B. TIMELINE OF MAJOR COMMERCIAL MICROWAVE
OPTIMIZATION-ORIENTED EVENTS: EARLY 1980’S TO LATE
1990’S
The following is a brief, personal timeline of major com-
mercial advances focusing on optimization technology in the
microwave arena. Contributors in important, related areas of
design automation are omitted in this brief sketch that specif-
ically emphasizes optimization (see Fig. 9).

The period from the early 1980s to the late 1990s is marked
by setbacks, surmounting barriers of disbelief, triumphs,
corporate acquisitions, and the movement of experts and ex-
pertise between vendors, all ultimately benefitting advances in
RF and microwave design and manufacturing technology.

CAD visionary Les Besser comes onto the scene early,
puts his experience into practice, founds Compact Software in
1973 [93], and his commercial circuit design offering COM-
PACT features optimization algorithms.

The next generation of COMPACT (Computerized
Optimization of Microwave Passive and Active CircuiTs) is
named SuperCompact (1981).

Optimization Systems Associates Inc. (OSA) is founded
(1983). Canadian satellite telecommunications company

ComDev commissions OSA (1983) to introduce advanced
optimization technology to its in-house flagship waveguide
manifold multiplexer design portfolio.

Former Compact Software developer Bill Childs co-founds
EEsof in 1983 and creates Touchstone (1983) to compete with
Compact Software’s SuperCompact. Touchstone runs from
the outset on the PC.

HP releases MDS (Microwave Design System) in 1985
[94].

OSA contributes advanced optimization capabilities to
EEsof’s Touchstone (1985). But EEsof rejects Bandler’s pitch
for yield-driven design as a follow-up to OSA’s upgrade of
Touchstone’s optimization options based on EEsof’s convic-
tion that their customers would never ask for such capability.
Of course, after OSA later delivers this capability to Compact
Software, EEsof scrambles to follow suit.

The imminent MIMIC program motivates Bob Pucel of
Raytheon Research Division in 1985 to champion yield-driven
design and brings Bandler and OSA together with Compact
Software.

EEsof’s Libra, featuring harmonic balance simulation,
competes with Compact Software’s corresponding product
Microwave Harmonica (1987).

OSA is commissioned to re-engineer SuperCompact and
introduces advanced optimization and yield-driven design
(1986–1988), also entirely new documentation to Compact
Software’s premier products, and then re-builds Microwave
Harmonica (1987–1988).

OSA creates active device parameter extraction software
RoMPE (1988) and HarPE (1989), and general purpose CAD
software OSA90 (1990) and OSA90/hope (1991).

OSA creates Datapipe technology (1990) to drive external
simulators such as Zuberek’s SPICE-PAC (1992) [95], Son-
net’s em (1992) [70], and Hoefer’s TLM (1993) [72].

Sonnet Software starts shipping em in 1989 [96].
Ansoft creates 3D electromagnetic simulator HFSS for HP;

HP starts shipping HFSS in 1990; Ansoft markets its own
competing product Maxwell Eminence in 1992.

OSA creates Empipe (1992), EmpipeExpress [97] (1996)
and empath [98] (1996).

HP acquires EEsof (1993), hence the name HP EEsof.
OSA demonstrates space mapping (1993), aggressive space

mapping (1995).
OSA unsuccessfully proposes an ambitious optimization-

oriented project (1995) for the DARPA MAFET Program
[99], [100].

HP and Ansoft finally make their 3D simulators available to
OSA and OSA creates Empipe3D (1996) to drive HP HFSS
and Ansoft’s Maxwell Eminence. Some backstory: after Dan
Swanson (see Fig. 10) spoke highly of the Empipe technology
during a meeting, a key member of Ansoft vowed to have
Maxwell Eminence on OSA’s doorstep (“Within two weeks
or I’ll eat my business card”).

HP EEsof (later HP spinoff Agilent Technologies, now
Keysight Technologies) acquires OSA [101] (1997) and the

324 VOLUME 3, NO. 1, JANUARY 2023



FIGURE 10. Dan Swanson (right) and Radek Biernacki (left) at the OSA
exhibition booth during the IMS-1994 in San Diego, CA.

FIGURE 11. Steve Chen at the OSA exhibition booth during the IMS-1995
in Orlando, FL.

Empipe family becomes the foundation of Agilent HFSS De-
signer and Momentum Optimization.

Ansoft acquires Compact Software (1997). In 2001, Ansoft
buys HP’s HFSS product line. Ansys acquires Ansoft (2008).

C. OPTIMIZATION SYSTEMS ASSOCIATES
The longest in-person professional associations with Bandler
are those by Steve Chen (see Fig. 11) and Radek Biernacki
(see Fig. 10). They were key creative members of Optimiza-
tion Systems Associates until HP’s acquisition and OSA’s
products were absorbed into HP EEsof in 1997. Biernacki and
Chen relocated to HP EEsof in 1997 [102].

When faced with OSA’s collapse in relations with Com-
pact Software, Raytheon, Texas Instruments, and the MIMIC
Program in 1989, Chen and Biernacki vowed to continue
working with Bandler and OSA “to the bitter end.” Without
their creativity, dedication, initiative and intellectual skillset,
the optimization-centric products, RoMPE, HarPE, OSA90,

FIGURE 12. Example of Geometry Capture for parameterizing a microstrip
step structure. From [105].

OSA90/hope, Empipe, Empipe3D, EmpipeExpress and em-
path would surely never exist. And successful commercial
electromagnetic optimization and the space mapping concept
itself might at best have been delayed by several years. None
of the RF/microwave software vendors nor any practitioners
in electromagnetic simulation had any thoughts or vision for
electromagnetic optimization until OSA produced results.

Why did HP acquire OSA? Importantly, OSA had suc-
cessfully leveraged the premier electromagnetic simulators of
HP’s competitors in addition to its own HFSS. “ ‘Integrating
OSA’s technology into our electromagnetic product line will
effect a paradigm shift in how these tools are used,’ [Jake]
Egbert said. ‘Our electromagnetic tools will move from being
analysis tools to design tools.”’ [101].

But there may be a deeper reason. OSA’s customers
appreciated the full range of OSA optimization offerings.
By 1997, OSA90 [68] included state-of-the-art optimization
algorithms, both gradient-based (minimax, L1, L2, Huber,
quasi-Newton, conjugate-gradient, yield-driven) and direct
search-based (simplex, random, simulated annealing). Indeed,
at the IEEE International Microwave Symposium Exhibitions,
Bandler recalls the annual excitement of “what’s new?” from
academics and practitioners alike. Expectations were high.
Competition stiff. Microwave Engineering Europe proposed
CAD challenges regularly that OSA and other vendors rose
to and OSA performed commendably, for example [103],
[104]. The class B frequency doubler example [104] later
demonstrated Geometry Capture with simultaneous electro-
magnetic/harmonic balance optimization [105]. See Fig. 12
(Geometry Capture) and Fig. 13 (doubler circuit).

Bandler recalls a visit with British Telecom in the U.K. and
asked why OSA hadn’t heard from them since British Tele-
com acquired OSA software. Their response, “We compare
OSA device models with those of HP.” “What do you do when
the models disagree?” “Of course, we complain to HP.”
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FIGURE 13. Circuit structure of a class B frequency doubler with ten
geometrical optimization variables [105]. The circuit is derived from a
Microwave Engineering Europe challenge [104].

V. SPACE MAPPING OPTIMIZATION AND SURROGATE
APPROACHES
In 1994, space mapping [13], [14], [15] surprised the RF and
microwave community. Space mapping is deeply rooted in
engineering expertise and intuition [16]. In fact, as published
everyday examples of space mapping demonstrate [20], [106],
[107], it turns out that space mapping, in particular, aggressive
space mapping, manifests itself as a mathematical expression
of the engineer’s mysterious “feel” or expertise [16].

A. INITIAL REACTIONS TO SPACE MAPPING
What was the immediate reaction of Bill Childs, EEsof Vice
President, in 1994 during a poster presentation at the In-
ternational Microwave Symposium in San Diego [111] to
Bandler’s first-ever public presentation of space mapping?
Notable disbelief at its deceptive simplicity. Even outrage.
On the other hand, at the same conference, when presented
verbally with the gist of space mapping, filter synthesis giant
Ralph Levy (early skeptic in the 1960’s and 1970’s of the
utility of optimization and/or design with tolerances) grasped
the significance of space mapping right away. “Yes,” he said.
“I did that the other day when I needed HFSS just to calibrate a
single point.” His excitement was palpable. As had been Vit-
torio Rizzoli’s when, prepublication, Bander outlined space
mapping through hand waving gestures in Rizzoli’s office in
Bologna, Italy, months earlier [16], [112].

Right from the start Bandler saw space mapping in action
everywhere. He recalls a seminar by Wolfgang Hoefer during
which Bandler suggested that Hoefer’s design procedure con-
stituted an example of space mapping. Hoefer, horrified, said,
“Everything isn’t space mapping, John.” Hoefer’s technique
was intuitive, iterative, and yielded good results in a handful
of steps, the hallmark of space mapping.

Experienced filter designers, for example, often arrived at
good design solutions seemingly without a formal, widely

FIGURE 14. The space mapping concept discovered by Bandler in 1993,
published in 1994 [13], [14], [15], [16].

understood procedure. How did they do it? Fast but approx-
imate circuit models existed. High-fidelity electromagnetic
validations were possible. But how to align the two simulation
processes so that a designer could exploit the speed of the
circuit model while frugally harnessing the accuracy of the
electromagnetic model?

Until Bandler pioneered space mapping in the context
of electromagnetic optimization, the microwave community
largely adopted algorithms from outside, from mathemati-
cians such Fletcher and Powell [113] and later Kaj Madsen,
for example, [54], [55]. (At a conference on optimization circa
1970, Fletcher remarked to Bandler, perhaps facetiously, that
he never read anyone else’s papers.) From 1993 onward we
began to reverse the trend, delving deeper and deeper into
space mapping approaches, for example, [14], [15], [20], [24].

Bandler had struggled for 30 years to understand the
so-called engineer’s “feel” for a design problem until he
discovered that it was not as mysterious as claimed by practi-
tioners. Space mapping embodies this “feel”—its simplicity
and effectiveness shocked both the microwave engineering
and mathematical optimization communities.

Such a simple mathematical technique covered such a wide
range of design optimization problems. This led to Bandler’s
conviction that the idea had been in widespread use already.
Indeed, those with “expert” knowledge, like Hoefer and Levy,
knowingly or unknowingly, harness the space mapping con-
cept in activities ranging from everyday human experiences
to expert tuning and design of complex systems with electro-
magnetic accuracy.

B. THE ESSENCE OF SPACE MAPPING
To avoid performing the direct optimization of computation-
ally expensive models (also known as fine models, or high-
fidelity models), space mapping iteratively enhances or maps
a coarse model (idealized or low-fidelity model) to the accu-
racy of the corresponding fine model. In space mapping, this
coarse model is typically a physics-based quasi-global model
(see Fig. 14). Space mapping mimics an expert’s intuition
exploiting available, fast, parameterized, and physics-based
simplified models. Plain space mapping can fail (intuition
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often fails); remedies are widely discussed in the literature
[20], [30], [107], [114].

Aggressive space mapping (ASM) arose from Madsen’s
realization that optimizing a fine model using a corresponding
coarse model as a valid quasi-global approximation is equiva-
lent to solving a system of nonlinear equations, and nonlinear
equations benefit from Broyden’s method of updating the
Jacobian [14], [15], [107]. In essence, the ASM algorithm
iteratively finds a solution to the following system of nonlinear
equations:

f (xf ) = 0 = p(xf ) − x∗
c (3)

where P(xf) represents the mapping from the fine model de-
sign space xf to the coarse model design space xc, and x∗

c
is the optimal coarse model design. Any root of the above
system of equations, xSM

f , also known as a space mapped solu-
tion, implies that the fine model response Rf (xSM

f ) sufficiently
matches the coarse model optimal response Rc(x∗

c ), which is
used as the target response [107]. The potential multiplicity in
space-mapped solutions [107] as well as in coarse model local
alignments is addressed in [20], [115], [116].

C. SPACE MAPPING GETS EXPANDED
Not surprisingly, in the early years following his announce-
ment of space mapping, Bandler was frequently asked why his
group seemed to be the only group applying space mapping.
That trend was soon to revert by an explosion of diverse users
with space mapping variations going well beyond the initial
aggressive space mapping formulation.

In 1998, Q. J. Zhang from Carleton University, long-time
collaborator and early contributor to the success of OSA’s
harmonic balance simulation and parameter extraction capa-
bilities, visited McMaster University to deliver some seminars
on his emerging work on artificial neural networks for mod-
eling microwave components [117], [118], [119], [120]. Pre-
viously intrigued by the relationship between the coarse and
fine models in space mapping, Rayas-Sánchez was inspired by
that visit to pioneer the productive connection between space
mapping and artificial neural networks for RF and microwave
modeling and design optimization [23], [27], [121], [122],
[123]. Fruitful collaboration with Q. J. Zhang’s group at Car-
leton University was key for the wide development of neural
space mapping approaches, well-beyond Bandler’s research
group [29], [124], [125], [126], [127], [128], [129], [130],
[131], [132], [133], [134], [135].

Another key event that contributed to the wide spread
of space mapping was the workshop entitled “Microwave
Component Design Using Space Mapping Methodologies,”
organized by Bandler as part of the 2002 IEEE MTT-S In-
ternational Microwave Symposium (IMS), in Seattle, WA.
Vicente Boria, from the Polytechnical University of Valen-
cia, Spain, an attendee of that workshop, immediately found
innovative applications of space mapping to waveguide filter
design [136], [137], [138], established a fruitful collaboration
with Rayas-Sánchez [139], including reciprocal visits in 2006
in Guadalajara, Mexico (see Fig. 15), and Valencia, Spain,

FIGURE 15. Vicente Boria (right) visiting ITESO – The Jesuit University of
Guadalajara, Mexico, in 2006. Luis Roglá (center), Ph.D. candidate from the
Polytechnical University of Valencia, Spain, during internship at ITESO. José
Rayas-Sánchez (left).

FIGURE 16. Tuning ports: Example using Agilent ADS to tune coupling
between resonators. Most of the filter is EM analyzed in Sonnet. Tuning is
done in ADS [159]. Courtesy of Jim Rautio.

and later contributed to an even wider dissemination of space
mapping [140], [141], [142], [143], [144], [145], [146].

Logical enhancements of space mapping emerged organ-
ically [16]. Among the many variations on space mapping
formulations [20], [31], [147], the three most closely related to
common engineering practice are the aggressive, implicit, and
tuning space mapping algorithms. The first one is by far the
most popular [31], [107]. Implicit space mapping [148], [149],
[150], [151], [152], [188] naturally exploits coarse model
preassigned parameters not used as optimization variables to
iteratively enhance the mapped coarse model whose direct
optimization yields the next iterate. Tuning space mapping
[153], [154], [155] exploits tuning ports, tunable lumped el-
ements, and fixed electromagnetic models to construct fast
tuning models for direct optimization with electromagnetic
accuracy (see Fig. 16)—a smart engineering approach to filter
design [156], [157], [158], [159], [160]. This approach was
foreshadowed in 1997 [115].

VOLUME 3, NO. 1, JANUARY 2023 327



BANDLER AND RAYAS-SÁNCHEZ: EARLY HISTORY OF OPTIMIZATION TECHNOLOGY FOR AUTOMATED DESIGN

FIGURE 17. Significant contributors to the evolution of space mapping at
the IMS-2017 in Honolulu. From left to right: Bandler, Yu, Boria, Nikolova,
Rayas-Sánchez, Zhang, and Biernacki.

Output space mapping [162], [163] follows a more math-
ematically rather than engineering inspired approach [164],
[165], [166], [167] by directly correcting the coarse model
responses for a better match to those of the fine model.

Synthesis or inverse modeling space mapping approaches
have also been successfully employed for RF and microwave
design. Here, an inverse mapping (from the coarse model to
the fine model design space) is developed, either by a neural
[168], [169] or linear [170], [171], [172], [173], [174] map-
ping, allowing the prediction of the next iterate by simply
evaluating the current inverse mapping at the optimal coarse
model design.

Even though space mapping emerged as an efficient solu-
tion for optimizing high-fidelity models, it was soon extended
to develop space-mapped models for accurate and inexpensive
statistical analysis and yield optimization [28,] [171], [175],
[176], [178], [179], [180], [181].

Fig. 17 shows a photo of some of the main contributors to
the utilization and expansion of space mapping.

D. SPACE MAPPING IS APPLIED BEYOND RF AND
MICROWAVES
Although it started in the microwave engineering arena, space
mapping optimization has found applications in a plethora
of diverse disciplines. For instance, simple linear input as
well as aggressive space mapping have been applied in ar-
eas such as materials design, environmental sciences, medical
instrumentation, magnetic circuits, electric motors, chemi-
cal, civil, mechanical, biomedical, aerodynamic, aeronautical,
and aerospace engineering, for example, [107], [108], [109],
[110].

E. MEASUREMENT-BASED SPACE MAPPING
Diverse commercially available EDA systems have been used
to implement fine models of the optimized structures, and
more recently, measurement-based physical platforms have
also been exploited as “fine models”, both in classical mi-
crowave design challenges [182], [183], [184], [185], [186],
[187], [188], [189], [190], [191], [192], as well as in other

FIGURE 18. Space mapping applied to physically tune, in a few
“iterations,” a 4-pole inductively coupled rectangular waveguide filter with
tuning screws in cavities and coupling windows [186]. Courtesy of Vicente
Boria and Marco Guglielmi.

FIGURE 19. The SMSMEO logo designed by Bandler, inspired by waveguide
filter design [201]. Coarse models are represented by the rectangles with
right-angle (ideal) corners, while fine models are represented by the
rectangles with the rounded (manufactured) corners. Complementary links
between them represent the mappings. The set forms an “S” (space).

related fields, such as high-speed digital design [193], [194],
[195], [196] , opening new challenges and opportunities [197].
Fig. 18 illustrates an example of a waveguide filter physically
tuned by space mapping in a few “iterations” [186].

F. SPACE MAPPING MEETS SURROGATE MODELING
A key historical meeting organized by Madsen and Bandler
brought together the mathematical optimization community
with the engineering community working on microwave de-
sign optimization. This was the first International Workshop
on Surrogate Modeling and Space Mapping for Engineering
Optimization (SMSMEO), celebrated in 2000 at the Techni-
cal University of Denmark, in Lyngby, outside Copenhagen
[198]. The second and third edition of this workshop took
place in 2006 in Lyngby, Denmark [199], and 2012 in Reyk-
javik, Iceland [200], respectively. These events established a
fruitful dialog bridge between the mathematics and engineer-
ing communities interested in optimizing computationally
expensive functions.

Indeed, the first SMSMEO (see Fig. 19) in 2000 brought
Bandler’s and Madsen’s groups (space mapping) into dis-
cussion with that of mathematician John Dennis of Rice
University (surrogate modeling). Notably, Madsen initially
hesitated in using “space mapping” as part of the name
of the International Workshop on Surrogate Modelling and
Space Mapping. He anticipated controversy, and he was right.
The debate in Lyngby proved lively. The bottom line is
that mathematicians then used Taylor-based (linear and/or
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FIGURE 20. Slawomir Koziel (right) and John Bandler (left) at the
IMS-2018 in Philadelphia, PA.

quadratic) nonphysical localized coarse models as their under-
lying “surrogates” while space-mapping-oriented engineers
underpinned their algorithms with quasi-global physics-based
models based on engineering knowledge.

Direct electromagnetic optimization algorithms using ab-
stract mathematical models is dramatically at odds with what
a skilled engineer can achieve via an experience-tested “feel”
for the problem. In hindsight, the effectiveness of space map-
ping utilizing relevant physics-based surrogates should not
have been surprising.

VI. SURROGATE METHODOLOGIES AND BAYESIAN
APPROACHES
Slawek Koziel (see Fig. 20) was with Bandler’s Simula-
tion Optimization Systems Research Laboratory at McMaster
University from 2004 to 2007. He applied his background
in mathematics, making ground-breaking advances in the
effective use of mathematically-based surrogate-based opti-
mization techniques [21], [202], [203], as well as in the
theoretical foundations of space mapping [204], [205], [206],
[207], [208]. Now with Reykjavik University, Iceland, he
is surely the most identifiable researcher in our community
with respect to all aspects of surrogate methodologies and
their applications. Koziel and his team spearheaded innova-
tive electromagnetic simulation-driven and surrogate-based
optimization procedures for microwave circuits and antenna
design, including variable-fidelity optimization frameworks
[209], [210], [211]; surrogate-assisted tuning [191], [212],
[213], yield estimation [214], [215], and multi-objective opti-
mization [216], [217], [218], [219], [220]; methodologies for
rapid re-design by inverse surrogates [221], [222]; microwave
component miniaturization [223], [224]; dimensionally re-
duced and domain confined surrogates [225], [226], [227];
response feature-based nominal design [228], [229], [230],
[231], [232], yield optimization [233], [234], [235], [236],
[237], and robust design by tolerance maximization [238],
[239], [240].

Bayesian approaches [241] are suitable for dealing with
computationally expensive models, especially those with
noise-corrupted responses, including high-fidelity models
based on physical measurements subject to statistical uncer-
tainty and varying operating or environmental conditions [31].

Bayesian optimization has been successfully applied to the
design of microwave power amplifiers [242], [243], signal
integrity and high-speed channels [244], [245], [246], [247],
RF high-dimensional global optimization [248], parallel elec-
tromagnetic optimization of microstrip filters [249], and RF
circuit synthesis via ANN-enhanced Gaussian process [250],
among other areas.

VII. COGNITION-DRIVEN DESIGN
There are clear parallels between space mapping and human
cognition (the engineer’s traditional but mysterious “feel” for
a problem): (1) the simple, intuitive examples of space map-
ping like the cheese-cutting problem [20]; (2) the popularity of
aggressive space mapping as shown by Rayas-Sánchez, (3) the
parallels with space mapping found in Kahneman [251]: his
System 1, fast and intuitive, and his System 2 that is slow and
effortful; (4) advances in space-mapping-based design using
cognition-style markers like response features [233], [252].

Bandler created several simple illustrations of the space
mapping concept in action [20]. They started with the so-
called “cheese-cutting” illustration, then came the “wedge
problem,” “cake-cutting,” “shoe-selection,” [16] “parachute
landing game” [5], [253], and other illustrations or games.
These manifestations of aggressive space mapping date back
to Bandler’s shock the night before he was scheduled to
address mathematician and collaborator Kaj Madsen’s un-
dergraduate optimization class at the Technical University of
Denmark. Madsen abruptly questioned his own understand-
ing of space mapping and indeed the concept of “model” as
understood by engineers. Bandler scrambled overnight to find
a common sense illustration suitable for engineer and mathe-
matician alike and came up with the cheese-cutting illustration
in time for Madsen’s class the next day.

Similarly, Rayas-Sánchez was confused when Bandler pre-
sented him privately with the “parachute landing game”
[253] during the IMS-2015 in Phoenix. What did this one-
dimensional task have to do with microwave design optimiza-
tion? It was not until Rayas-Sánchez tried out the game on
Bandler’s laptop that he identified the relationship (calibra-
tion) between the inherent “fine model” and his own evolving
mental “coarse model” of the game. There appeared to be
three overlapping phases to the task required, (1) a familiar-
ization phase (building knowledge and confirming a mental
model), (2) a refinement phase (learning to trust the mental
model while replaying the game on each reset), and (3) a
mapping update phase (realizing that a “best” guess at the next
iterate requires information from more than the immediately
preceding iterate).

Bandler writes [16], “Aggressive space mapping efficiently
invokes inner loops of conventional optimization—common
sense at work—often yielding excellent results in a few itera-
tions. The aggressive space mapping update/execution process
is itself optimization on a higher level—meta-optimization?—
a process that uncannily mimics both common sense and the
expert’s ‘feel’.”
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Needless to say, Madsen was shocked, as many people
within and outside our community still are, that space map-
ping can be reduced to common sense, like not too hot, not
too cold, just right.

If we consider cognition-driven design methodologies—
along with machine learning and artificial intelligence—in
terms of common sense, human experience, space mapping,
etc., we might look for new avenues of mutual collaboration
and dialogue with psychologists, neuroscientists, game de-
velopers, linguists, playwrights, etc., and work with human
subjects and explore the emotional element. See, for example,
[254].

VIII. CONCLUSION
The year 2023 marks 30 elapsed years since 1993 that engi-
neering optimization, particularly microwave electromagnetic
optimization, has exploited space mapping technology and
related surrogate methodologies. It took 30 years of research
in microwaves, computer-aided design, and optimization of
circuits and systems for Bandler to reach that half-way
milestone, 30 years during which the engineer’s mysterious
feel proved elusive, decades populated by visionaries and
champions of numerical and iterative techniques to design
optimization, and some inevitable skeptics, industrial and aca-
demic, many of whom would eventually be won over.

We touched on circuit-oriented optimization, adjoint sen-
sitivities, yield-driven design, nonlinear circuit design, and
gradient-based optimization algorithms such as Madsen’s
minimax and related formulations that have stood the test of
time. We emphasized the origins and subsequent evolution of
microwave electromagnetic optimization.

We devoted much attention to what we believe is a decade
of acceptance, final acceptance by academia and industry, of
iterative numerical optimization tools and corresponding com-
mercial software offerings. We provided a timeline of major
commercial optimization-oriented solutions and events, and
noted the impact of the MIMIC Program.

We outlined the backstory to space mapping: reactions
to it by the scientific and engineering communities, some
success stories, some failures, and its ongoing reinvention
as “cognition-driven design.” We suggested the essence of
space mapping [255], the expansion of space mapping into
variations such as implicit and tuning space mapping, applica-
tions beyond RF and microwaves, measurement-based space
mapping, and a synergistic period when engineers and math-
ematicians met to discuss space mapping vis-à-vis surrogate
modeling. Finally, we touched on ever expanding surrogate
methodologies.

A brief section sketched what Bandler has termed
“cognition-driven design.” We indicated its roots in space
mapping, named simple illustrations and suggested a link of
the concept to common sense.

We indicate but do not elaborate in our paper on the current
state of the art of advanced surrogate technologies and their
myriad applications, nor elaborate on our vision of the future.

Such details, we believe, are dealt with by Rayas-Sánchez
et al. [31]. Instead, we provided a selected backstory and
the likely early cornerstones of optimization technology in
microwaves and RF.

In Bandler’s words [5]: “Finally, the engineer’s mysterious
“feel” will most likely be automated, with accurate predictions
of successes rather than explanations of failures being the
ultimate goal.”

Returning to the first paragraph in our introduction: “Fully
automated design and optimization is surely one of the ulti-
mate goals of computer-aided design.” After more than five
decades, it remains one of our ultimate goals: we still have
much to do!
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