983 research outputs found

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    CA-BIST for asynchronous circuits: a case study on the RAPPID asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper presents a case study in low-cost noninvasive Built-In Self Test (BIST) for RAPPID, a largescale 120,000-transistor asynchronous version of the Pentium® Pro Instruction Length Decoder, which runs at 3.6 GHz. RAPPID uses a synchronous 0.25 micron CMOS library for static and domino logic, and has no Design-for-Test hooks other than some debug features. We explore the use of Cellular Automata (CA) for on-chip test pattern generation and response evaluation. More specifically, we look for fast ways to tune the CA-BIST to the RAPPID design, rather than using pseudo-random testing. The metric for tuning the CA-BIST pattern generation is based on an abstract hardware description model of the instruction length decoder, which is independent of implementation details, and hence also independent of the asynchronous circuit style. Our CA-BI ST solution uses a novel bootstrap procedure for generating the test patterns, which give complete coverage for this metric, and cover 94% of the testable stuck-at faults for the actual design at switch level. Analysis of the undetected and untestable faults shows that the same fault effects can be expected for a similar clocked circuit. This is encouraging evidence that testability is no excuse to avoid asynchronous design techniques in addition to high-performance synchronous solutions

    CA-BIST for asynchronous circuits: a case study on the RAPPID asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper presents a case study in low-cost noninvasive Built-In Self Test (BIST) for RAPPID, a largescale 120,000-transistor asynchronous version of the Pentium® Pro Instruction Length Decoder, which runs at 3.6 GHz. RAPPID uses a synchronous 0.25 micron CMOS library for static and domino logic, and has no Design-for-Test hooks other than some debug features. We explore the use of Cellular Automata (CA) for on-chip test pattern generation and response evaluation. More specifically, we look for fast ways to tune the CA-BIST to the RAPPID design, rather than using pseudo-random testing. The metric for tuning the CA-BIST pattern generation is based on an abstract hardware description model of the instruction length decoder, which is independent of implementation details, and hence also independent of the asynchronous circuit style. Our CA-BI ST solution uses a novel bootstrap procedure for generating the test patterns, which give complete coverage for this metric, and cover 94% of the testable stuck-at faults for the actual design at switch level. Analysis of the undetected and untestable faults shows that the same fault effects can be expected for a similar clocked circuit. This is encouraging evidence that testability is no excuse to avoid asynchronous design techniques in addition to high-performance synchronous solutions
    • …
    corecore