1,523 research outputs found

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400

    Parallel Construction of Irreducible Polynomials

    Get PDF
    Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) belongs to pseudo-NC^2.5. We prove that the problem of constructing an irreducible polynomial of specified degree over GF(p) whose roots are guaranteed to form a normal basis for the corresponding field extension pseudo-NC^2 -reduces to the problem of factor refinement. We show that factor refinement of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p

    A Generic Approach to Searching for Jacobians

    Full text link
    We consider the problem of finding cryptographically suitable Jacobians. By applying a probabilistic generic algorithm to compute the zeta functions of low genus curves drawn from an arbitrary family, we can search for Jacobians containing a large subgroup of prime order. For a suitable distribution of curves, the complexity is subexponential in genus 2, and O(N^{1/12}) in genus 3. We give examples of genus 2 and genus 3 hyperelliptic curves over prime fields with group orders over 180 bits in size, improving previous results. Our approach is particularly effective over low-degree extension fields, where in genus 2 we find Jacobians over F_{p^2) and trace zero varieties over F_{p^3} with near-prime orders up to 372 bits in size. For p = 2^{61}-1, the average time to find a group with 244-bit near-prime order is under an hour on a PC.Comment: 22 pages, to appear in Mathematics of Computatio

    An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

    Full text link
    In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature
    • …
    corecore