Lehigh University
Lehigh Preserve

Theses and Dissertations

Parallel algorithms for algebraic and numerical
problems :

Iyad A. Ajwa
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Ajwa, Iyad A., "Parallel algorithms for algebraic and numerical problems :" (1991). Theses and Dissertations. S367.
https://preservelehigh.edu/etd/5367

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5367?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

PARALLEL ALGORITHMS FOR
ALGEBRAIC AND NUMERICAL PROBLEMS: A SURVEY

by

IYAD A. AJWA

Thesis
Presented to the Graduate Committee
of Lehigh Uni?ersity
in candidacy for the degree of
Master of Science
in Computer Science
Leiligh Univers_it;y

1990

This thesis is accepted in partial fulfillment of the requirement; for

the degree of Master of Science in Computer Science.

__MAY (’14- , 1990

ate

Professor Meég c agh
Advisor in charge

Professor Donald J. Hillman
Computer Science Division Head

Professor Lawfence J. Varnerin
CSEE Department Chairperson

1i

In The Name of Allah, The Most Gracious, The Most Merciful

{
This thesis is dedicated with affection and respect to my parents:

Abdel- Rahim
and

Misa’deh

1il

S ACKNOWLEDGMENTS

I would like to- express mY greatest appreciation to my thesis advisor
Professor Meghanad Wagh for sharing his experience, consistent support and

encouragement. It is an honor for me to have him as my advisor.

High on my list of acknowledgements for financial support must be the
Arab Student Aid Intertna,tional. In addition, I would like to express my
gratitude to the staff of the Lehigh University L-\ib'raries. In particular Mrs.
Stengel, Gail, Terry the boss, Sherilyn, Jan, Evelyn the chief, Marge, and Carol

the farmer for their continued support.

I am gi‘eatly indebted to my friends especially dmar Mohame'd,.A
Mohammad Al Tuwaim; a,nd' Khaldoun Tahboub for their continued support;
Moustafa Yousef (Uncle Abu-Ramie), Aly Jaber, and Adel Ali for their support
and for guiding me towards such a satisfying c‘a‘reer. I oﬁfe special th:a,nks to all

of my brothers in the Muslim Student Association at Lehigh University.

Last, but by no Imea,ns Jeast, and most. irhportantly, my parents Abdel
Rahim and Misa’deh to whom I dedicate this}: work, for their continual love,
support, motiva,tion,‘enCouragement,' unde-fs’t'anding; patience which knew no
bounds, and their willingness to endui'e_so rr;uch for what seemed éo little. I owe

this to the inspiration of my brothers Yousef, Emad, and Ziad, and to my sisters

Raghdah and Rana. -,

1v

Table of Contents

ACKNOWLEDGEMENTS ‘ iv
ABSTRACT . L 1
1. INTRODUCTION . 3
, 1.1. What is a Parallel Algorithm? - 3
1.2. Parallel Architecture Models | 15

1.2.1. Piﬁeline and Array Processors 6 -
1.2.2. SIMD/MIMD Models | 7

1.2.3. Loosely Coul;led and Tightly Coupled ' | - =12 -
1.2.4. Nétwork Configuration ’ 13
\ 1.3. Characterization of Parallel Algorithms 18
1.4. Organization of the Thesis - 20
. 2. PARALLEL ALGORITHMS FOR MATRIX COMPUTATION 22
2.1. Introduction | | ’ 22
2.2. Determinants » | | | " 23

- 2.3. Linear Systems 29
2.3.1. Matrix Inversion | - - 29
2.3.2. Algorithm's“ fér Structured Matfices - 33
2.3.2.1. Triangular Syst«;ms - | 33
2.3.2.2. Tridiagon‘al. Systems o 38

2.3.3. General Systems . | : | 40 -

2.4. The Characteristic Polynomial of Matrices - 45

3 PARALLEL ALGORITHMS FOR POLYNOMIAL COMPUTATIONS 49

3.1. Introduction -49
3.2. GCD and LCM | 50

3.3. Factoring Polynomiais 7 |
3.3.1. Factoring Univariate P?lynomials | o7
3.3.2. Factoring Multivariate Polynomials 68
3.4. Evaluation of Polynomials 77
4. PARALLEL ALGORITHMS FOR INTEGER ARITHMETICS 83
4.1. The Greatest Common Divisor , 83
4.2. The Evaluation of a Straight-Line Code 90
4.3. Computing Péwers in Parallel . ‘ | 97
| 5. SUMMARY AND CONCLUSIONS _ 100
References 102
Vita | ' | ‘ 110

vl

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
_ Figure 1-6
FiguAre 1-7
Figure 1-8

Figure 4-1
Figure 4-2

Figure 4-3

List of Figures

Fl};nn’s Classification of Computers
SIMD Computer Model

MIMD Computer Model

Linear Array and Cyclic Configurations

Two—Dinfénsional Array and Lattice Mesh)

—

Tree Connection
Perfect Shuffle ‘
A Cube Network of Dimension 3

An Arnithmetic Circuit Before and After an

Application of procedure MM

An Arithmetic Circuit Before and After an’

Application of procedure Eval,

An Arithmetic Circuit After Successive Application

of Procedures: MM, Eval 4 and Evaly

i

11

15
15
16
17

17

94

94

96

P‘,a/—-

" Algorithm 2.1
Algorithm 2.2
Algorithm 2.3
Algorithm 2.4
Algorithm 2.5
Algorithm 2.6
Algorithm 2.7
Algorithm 2.8
Algorithm 2.9
Algorithm 2.10
Algorithm 2.11
Algorithm 2.12
Algorithm 2.13
Algorithm 2.14
Algorithm 3.1
Algorithm 3.2
Algorithm 3.3
Algorithm 3.4
Algorithm 3.5
Algorithm 3.6
Algorithm 3.7

<

List of Algorithms

Determinants over finite fields ’of characteristic 0

Determinants over arbitrary fields
Determinants using fewer processors =
Triangular matrix inversion

Matrix inversion

Triangular systems solver I

' Triangular systems solver 11

Unit diagonal systems solver
Column sweep

Odd-even elimination

Odd-even reduction

Gauss-Jordan elimination I
Gauss-Jordan elimination II
General systems solver

Univariate gcd of two polynomials
Univariate gcd of many polynomials
Univariate lcm of mariy polynomials
Bivariate gcd of two polynomials
Univariate factorization over finite fileds I

Univariate factorization over finite fields II

Univariate factorization over Q

viil

- RO—

25
27
29
30
32
33
35
35
36
39
40
41
41
44
52
54
55
56
58
62
64

Algorithm 3.8
“Algorithm 3.9
Aigorithm 3.10
Algorithm 3.11
Algorithm 3.12
Algorithm 3.13
Algorithm 3.14
Algorithm 3.15
Algorithm 4.1
Algorithm 4.2
| Algorithm 4.3
Algorithm 4.4

Univariate factorization over finite fields III

Quick. factoring -
Bivariate factorization over finite fields I
Bivariate factorizatién over finite fields II
Roots

Multivariate polynomial computation I
Multivariate polynomial computation II

Multivariate polynomial computation III

Euclid’s algorithm for integer GCD

Integer GCD

Evaluation of straight-line programs

Integer power modulo a prime power

1X

66
69
70

3

76
78

79
- 81

84
86

92

98

ABSTRACT

The need for high computational throughput has always driven research

in algorithm design. The recent advances in technology have made parallel
machines a reality within reach of a large portion of scientific and engineering
community.. The parallel algorithms have, therefore, assumed increasing

importance in numerical, algebraic, and number theoretic techniques.

This thesis presents a survey of parallel algorithms suitable for
engineering and other applications requiring high computational throughput. In
particular, we have presented algorithms for integer problems, polynomial
computations, and matrix operations. Polynomial computation is important
because polynomials are often used to represent transcendental functions and
many diverse problems may be modeled through polynomials. We have
presented algorithms for polynomial evsluation, for univariate and multivariate
factoring, and for computing greatest common divisor polynomial. . Matrix
representation is used in almost all the engineering systems. Analysis of these
systems then requires capability to manipulate matrices ra,ther quickly. We have
presented algorithms for matrix inversion, solving of linear systems, computing
the characteristic polynomials, and determinan}ts. We have also presented

=

algoritllms to deal with structured matrices such as triangular and tridiagonal.

]

The- integer algorithms deal mainly with the determination of the greatest

common divisor.- We have also presented gmeneral ‘algorithms that | convert

e

sequential in-line code to parallel code.

Ps

4 | Chapter 1
| .|NTRODUCT|0N~

The ever increasing need for impraved computational power has forced
researchers to search for better computing environment. Tl;e recent stricﬁas in
integrated circuit technology have made parallel computers a reality. Pa,rallél
computers allow éoncurrent processing of several parts of the problem thus
speeding the overall’ solution. = Many different parallel machines are now
commercially available. = However, the performance and usage of parallel

computers is constrained by the availability of parallel algorithms. This thesis

surveys the status research in parallel algorithms.

1. WHAT IS A PARALLEL ALGORITHM? o

An algorithm can be defined in several ways. . For the purposes of this

thesis, it will be defined as a- solution method. It is the primary ingredient in

solving a computational problem on any computer. A parallel algorithm is a

solution method for a given problem destined to be performed on a parallel

computer.

Despite the admirable development in the computer industry, the

majority of the existing computers have the same basic design principles

formulated more than forty years ago: a memory unit, a control unit, and a
processing unit. The control unit fetches én instruction from the memory unit to
the processing unit. It sends back the‘?;result from the processing unit to the
memory unit. These computers are usually refered to as uniprocessor computers.
They contain only one unit of each kind, and hence only o'ne instr.uction can be
executed at a time. However, the past twenty ﬁ\}e years have wittnessed the
creation of new kinds of computers, namely the parallel computers. A parallel
computer is one that consists of a collection of processing units, or processors,
that cooperate to solve a problem by working simultaneously on different parts
of that problem. The presence of many processors (the number of processors

may reach several millioné) significantly reduces the time required to solve the

problem by a uniprocessor computer.

A person who is familiar with the computational problems noticeé that
many of the solutions to these problems are of parallel nature, i.e., they have
independent computations (a set of computations is called independent if each
result variable appears in only one computation).' This is one of the reasons
which made parallel computing attractive. A second reason is‘ the feasibility of
the cost of parallel computers with large number of processors. Finally, parallel
processing or computing makes it possible to choose a 'parallel computer

architecture that is best suited to solve the problem under consideration.

Algorithms designed to work on uniprocessor computers are called
sequential or serial algorithms, and algorithms designed to use parallel computing

are ca,lled“ 'p/a,rallel algorithms. These are designed to exploit both the parallelism

inherent in the problem and that availa,ble on the goinputer. Parallel algorithms
depend on a simple yet crucial observation: independent computations may be
executed simultaneously. For example, two n-vectors may be added in a single
step using n parallel processors. The i-th processor performs the-addition of the.

i-th components of the two vectors. This result is independent of the other

computations. Therefore, it is said that vector addition exhibits inherent

parallelism.

There are two basic approaches to the design of fast parallel algorithms.
One is to start by recognizing the inherent parallelism of a good sequential
algorithm, and to try to parallelize it. The second approach is £5 attempt to
make the parallel time as small as possible, allowing an arbitrary number of

Processors. This approach is known as the asymptotic approach.

For a proper understanding of parallel algorithms, one needs to study the
model of computation underlying the architecture of the parallel computers.
Except for Section 4, the rest of this chapter is dedicated to this purpose.

0

Section 4 briefly describes the organization of this survey.

d

2. PARALLEL ARCHITECTURE MODELS

In this section, a ,n‘umber of architecture models used in parallel

computing are discussed. In Subsection 2.2.1., a description of characteristic

features of pa,ra,llel and pipeline computers is givén. In 1966, Flynn [27] classified

computers into four types: Single Instruction stream, Single Data stream (SISD);

Single Instruction stream, Multiple Data stream (SIMD); Multiple fInstruction ~

stream, Single Data stream (MISD); and Multiple Instruction strea.,m,(Multiple

Data stream (MIMD). Only SIMD and MIMD models are of significant

|
importance for this research. They will be discussed in Subsection 2.2.2. Loosely

coupled and tightly coupled methods are explained in Subsection 2.2.3. In order

)

to exchange data between different processing elements, some means of

< &

communication are necessary. Various network configurations are discussed in

Subsection 2.2.4.

2.1. Pipeline and Array Processors

Pipeline and Array processors are dedicated parallel processors that are
very good to solvel certain .kinds of problems. The idea behind pipeline
| computers is essentially that of an assembly line: if the sar;qe arithmetic
6peration 1S gbing to be repeated.many times, throughput can be greatly
increased by dividing the operation into a sequence of subtasks and maintaining

a flow of operands in various stages of completion.

Array processors generally incorporate a large number of identical
processing elements connected in d particular topology. These act sypchronously
under the control of a single unit issuing a set of identical instructions. Each of
the processing elements may operate on a word (word-organized system), or on
single—bit opefands (bit-organized array proces’s?rs). The speed of any ‘éiven

,_ élgorithm on an-array processor 1s inﬂuenced by the rdﬁﬁng netWork, whi’ch 18

P

discussed in Section 1.2.4.

Pipelining is used in- many advanced microprocesors in the form of

_ instruction lookahead or for specialized numerical operations. . For examiple, by

partitionning floating point operations into more basic suboperations, an

assembly line structure or pipeline can be set up for repetitive calculations such

as componentwise vector operations and inner products. Successive completed

results leave the pipeline at a rate determined by the memory transfer rate and
the internal stage delay, anci“r.lot by the total time required for all the ;rithmetic
Qperations together. This pipeline, sometimes called a vector processor, does not
constitute a truly parallel system, it nevertheiess provides a significant
improvement in speed. Pipeline progessor has a single CPU but with a limited
amount of parallelism incorporated. Certain parts of the CPU which are

responsible for seperate functions (fetching operands, executing arithmetic

operations, outputting) can be instructed to operate simultaneously.
y

2.2. SIMD/MIMD Models

In Flynn’s classification ‘of computers, shown in Figure 1-1, the ter;:l
SISD 'essentially designates the classical serial me;;:hine design. FEach of the
others refer to machines with a number of processors operating in parallel, to
which multiple instruction and/or data streams are directed. -F or a discussion of
the MISD design, the reader is refered to [2] and [51]. “Multiple Data stream” is

now considered the most appropriate description for existing parallel machines.

{

-~ §ISC 3 P .
T o—. OO0
CenTa Prccessor Cztum , -

Processors
(connected via
rcuteing network)

- -t

Processors
(connected via
rcuteing network)

MO C) |
! oA
' ===
Processors Fcssibie access ©©

s~cred giobai memcry

(connected via
routeing netwaork)

%\ - 5

%igure 1-1. Flynn’s Classification of Computers.

—~

In the class of SIMD computers, a parallel computer consists of n

identical processors, as shown in Figure 1-2. Each of the N processors possess a

local memory where both programs and data are stored. Some systems may also
provide an access from every processor tq a global memory. All processors are -

under the control of a single instruction stream issued by a central control unit.

The processors operate synchronously: at each step, all processors execute the

{

8.

m e ies e ———_ o A s

-

same instruction, each on a different datum. Both of the instruction and the

s

datum may be simple or complex. The instruction may include information such

as which processors should be active or inactive. It is usually desirable for the

“ow

processors to be able to communicate among themselves during the computation

in order to exchange data or intermediate results. This communication can be

-

done through a shared memory or via an interconnection network.

‘.

SHARED MEMORY
OR
INTERCCNNECTION NETWORK

- DATA DATA | - DATA
STREAM STREAM STREAM
1 . 2 _— N
4 \ 4 R
PROCESSOQ PRCCz=Z3SCR PRCCESSCR
1 y 2 ® o o N
[]i -
INSTRUCTION
STREAM
CONTROL

Figure 1-2. SIMD Computer Model.

| T_he‘ class of sﬁared-mémory SIMD computers is also known as the
Parallel Random-Access Machines '(PRAM) model. In this class, the N
processors share a common memory in the same way a group of people may use
a bulletin board. They use it to read input data, read or write intermediate |
results, and for writing final results. Tfiis class is fai‘rly a powerful podel of
comgutation since it allows all available processors to gain access to the shared
memory simultaneously. The class of interconnection-network SIMD mcomputers
is more powerful than the shared memory class. Here, the memory is distributed
among the N procéssors, and every pair of processors are connected by a two-
way line. At any ste‘p during the computation, processor P; can receive a datum
from processor P; and send another one to processor P, - (or Pj). This model
allows instantaneous communication between any pair of processors, and several

pairs can communicate simultaneously.

It should be clear from the discussion of the SIMD computers that
numerous problems covering a wide variety of applications can be solved by
parallel algorithms on SIMD computers. Such algorithms are easy to design,
| analyze: and implement. The disadvantage of this class of computers is that it
requires that the problems to be solved on them have a certain regulalj structure.
These are the problems that can be subdivided into a set of idéntical
subproblemxs, all of which can then be solved simultaneously by the same set of
instructions. The computers used to solve those proble»ms thaf lack the regular
structure required Qf SIMD model are said ‘to belong tb the class of MIMD

computers. In this case, the problem may be divided into subproblems that are

not necessarily identical, and still may be solved parallely. _Th‘e class of MIMD

10

.....

computers is the most general and most .p‘owerfnl“class among the classes in

Flynn’s classification.

An MIMD computer has N processors, N ‘streams of instruction and &N
streams of data, as shown in Figure 1-3. Each processor possesses its own

control unit, local memory, and arithmetic and logic unit.

SHARED MEMORY

OR

INTERCONNECTICN NETWCRK

DATA DATA DATA
STREAM| STREAM STREAM
1 2 ‘ ' NI
v ¥ . ¥
-\,
PROC%SSOR | PRCCESSCR e o o PROCESSOR
| .2 . N
Y y 3 y
~ INSTRUCTION INSTRUCTION - INSTR
STREAM STREAM — SUTCF;RTE'EAZJ
1 2 | . N
CONTROCL ‘ CONTROL CONTREL
1 2 ® o o N
A

Figure 1-3. MIMD Computer Model.

11

5

The processors operate asynchronously, i.e., each processor has the
potential to execute different programs on different data while solving different
subp‘roblems of a single problem. This is possible be;:ause each processor
operates under the control of an instruction issued by its own control unit. In
the class of MIMD corﬁputers, the communication between the processors is

performed through either a shared memory or an interconnection network, as

with the SIMD computers.

‘The design, evaluation, and implementation of algorithms on MIMD
; |
computers is considerably difficult because the processors operate

asynchronously. In most MIMD computers, each processor has access to a

global memory which may reduce processor communication delay.

2.3. Loosely Coupled and Tightly Coupled Machines

As it was mentioned in the previous subsection, the communication
between the processors of an MIMD computer is performed either through a
shared memory or an interconnection network. MIMD computers with a shared
memory are called tightly coupled machines (or multiprocessors) while those with

an interconnection network are called loosely coupled machines (or

multicomputers).

4.

In the basic model of tightly coupled machines, all processors are allowed

N

to gain access to the shared memory simultaneously if the memory locations they

‘are trying to write into or read from are different. However, two or more

processors executing an asynchronous algorithm may wish to gain access to the

12

same memory location. There are four models of this concurrent memory access:
1. No multiple-reading or writing. EREW (Exclusive-Read, Exclusive-Write).

2. Multiple-read, no muitiple’-writing. CREW (Concurrent-Read, Exclusive-

Write). | b

&

3. Multiple-write, no multiple-read. @ ERCW (Exclusive-Read, ‘.Concurrént-
Write).

4. Multiple-write, multiple-read. CRCW (Concurrent-Read, Concurrent-Write).

14

Multiple-read access poses no problem, but multiple-write accesses do.

Several policies have been proposed to resolve the write conflicts [2].

Loosely coupled machines are sometimes referred to as distributed
systems. The distinction‘ is usually based on the physical distance seperating the
processors. If all processors are in close proximity of one another, then they are
loosely coupled systems; otherwise they are distributed systems. In these
systems, the number of data exchanges among them is significantly more

important than the number of computaftional’ steps performed by any of them.

2.4. Network‘ Configurations

A

In order to exchange data between diffei‘ent processors, some means of
communication is necessajy. This may be effected by a routing nétwork.
~ Alignment of data with elements is carried out in parallel, to the extend that the
algorithm .an.d t"hé nature of the routing network permif. In practicé, many
particular features of program and algorithm design arise out of limi}:atipns

imposed by the network. Fortunately, in most applications a small subset of all

13

pairwise connections is usually sufficient to obtain a good performance. The

most popular of these networks are outlined in what follows. There are several
other networks beside the ones to be described. The decision regarding which of
these to use depends largely on the application, and in particular, on such factors

as the kinds of computations to be performed, the desired speed of execution,

and the number of processors available.

As it can be seen from this section, each network provides a different
trade-off of the hardware complexity (characterized by number of links) and

communication speed (characterized by the maximum distance between two

’processors in the network).

Linear Array and Cyclic Configurations, [2] & [51]:

The N processors P;, i =0, 1, .-, N—1, are connected to form a one-
dimensional array, as shown in Figure 1-4. Any processor Pj can directly access
data from its adjacent néighbours Pj-l’ Pj +1° In practice, and for additional
flexibility, the first and the last processors are also connected to provide a ring

configuration. There are N—1 links in this network and the maximum distance

between diametrically opposite processors is N/2.

Two-dimensional Array and Lattice Mesh, [2] & [51]:

A two-dimensional array network is obtained by arranging the N

processors into an AN xVN array, as shown in Figure 1-5(a). A two-way

communication line links P(i, j) to its neighbours P(i+1, j), P(i—1, j), P(i, j+1),

14

L riv: . . T e e e i
Vo e "é.v ?.{’ - . E . . P TR £ ' o
N

and P(i, j‘—-l).' This network is also known as the mesh. If the processors at the

edges are connected cyclically; one gets a two-dimensional lattice of Figure 1-

5(b). There are N—1 links in this network and the maximum distance between

diametrically opposite processors is N/2.

:

0
0 | r0.9)
1 f’(fm |
2 | P(2.0)
3 | PR.O)

1 2
] P ~(C.2)
P(1.1) >(1.2)
p(z'”' 2(2.2)
P(3.1) 2(3.2)

3
P(0.3)
..
P(1.3)
T /
P(2.3) / f |
4 j
| |
| I
| 1
1 1 Y
P(3.3) | \ |
\ \
\ _

()

(b)

Figure 1-5. Two-dimensional Array and Lattice Mesh.

15

Tree Connection, [2] & [51]:

In this nétwork, the processors form a complete binary treé. It has d
levels, numbered 0 to d-1, and N =29_1 nodes each of which is a Processor.
Figure 1-6 shows a tree of 4 levels. One can see that in this configuration, each
processor at level i is éonnected to its parent at level i+1 and its children at level
i—1 by a bidirectional links. Thert_? are N—1 links in this network. and the

maximum distance between diametrically opposite processors is N /2.
LEVEL 3

LEVEL 2

LEVEL 1

LEVEL O

LEAVES Pg _' F’9_ 'Pio jp1_1~ o Py2 13| 714 | T8

: Figure 1-6. Tree Connection.

Perfect Shuffle, [2] & [51]:

In this topology, the number of processors N = 2™M for some integer m.
Figure 1-7 shows a perfect shuffle interconnection. In this network,

unidirectional shuffle links (solid lines in the figure) go from processor P; to

processor P; if { % f?r 0 <i< N/2-1,
j= ‘

2i +1 - NforN/2<i< N-1.

16

L

Additionally, bidirectional exchange links (dotted lines in the figure) link every

even-numbered processor to its successor. There are N—1 links in this network

and the maximum distance between diametrically opposite processors is N/2.

| po Lo Py l P, Lo-d P, Py b--d Ps Ps --- P7

Figure 1-7. Perfect Shuffle.

Cube (Hypercube) Networks, [2] & [51]:

In this very popular network also, the number of processors is N = 2d
where d is refered to as the degree of the cube. Two processors are connected
here if and only if their binary representations differ in exactly one position. The
3-dimensional cube is shown in Figure 1-8. The processor indices are given in
binary notation for simplicity. Parallel computers with hypercube topology of up
~to d = 10 are currently available commelrcially as integral parts of MIMD
sy.stemﬂs; higher dimensions will no doubt appear soon. There are N—1 links in

this network and the maximum distance between diametrically opposite

processors is N/2.

110

Figure 1-8. A Cube Network of dimension 3.

17

3. CHARACTERIZATION OF PARALLEL ALGORITHMS

Every paraliel algorithm needs to be evaluated to its applicability: how
much time and how many resour;:es does it need, are these requirements minimal
or worst case, and can the algorithm be restructured to use fewer resources and
.still have respectable running time. The following three criteria: are the Sﬁbject

of this section: running time, number of processors, and the cost estimate.

Running time:

+

The running time is defined as the worst case total time taken by the
algorithm to solve a problem on a parallel computer. Runnihg time is the most
important measure in evaluating a .parallel algorithm. After all, higher
computing speed is the main motivation for parallel computing. It is naturall&
estimalted by counting the number of steps executed by the algorithm in the
worst case. Two kinds of steps are usually considered in estimating the running
time: computational and routing steps. The former is an arithmetic or logic
operation performed on a datum within a processor. In the latter, a datum

travels from one processor to another via shared memory or through the

communication network.

Almost all existing problems have well-known lower bounds on the
number of steps required to solve them in the worst case. If an algqrithm
executes a number of steps equal to the lower bound then it is called optimal (it
is the fastest possible algdrithm for thle problerh)‘. The optimal algorithm is said

‘to establish an upper bound on the number of steps required to solve that

18

br()blem in the worst case. To determine the efficiency of a new algorithm, its
running time is compared to the lower bound (to determine if it is the fastest
algorithm for the problem) and to the upper bound (t‘ol éompa,reit with other
existing algorithms for the same problem). “Big O” notation is used for the

upper bound. It is defined as follows: a function g(n) is said to be of order at

most f(n), denoted by O(f(n)) if there are positive constants ¢ and ng such that

g(n) < cf(n) for all n > ng. 1

Another terminology used in evaluating a parallel algorithm is the
speedup it produces. If Ts denotes the running time of the fastest known
sequential algorithm, and Tp denotes the running time of a parallel aigorithm
using P ptocessors, then the speedup, defined as Sp = Ts/Tp, measures the
improvement in solution time using parallelism. Clearly, the larger the speedup,
the better the parallel algorithm. A simple argument shows that Sp < P. The
goal is to construct algorithms exhibiting linear (in P) speedup and hence
utilizing the processors effeciently. However, linear speedup is not always
possible. There are certain computations for which the maximal speedup 1s
Sp < d for a constant d independent of P, and such a computation clearly makes
poor use of parallelism. For many important problems in linear algebra the best

speedup is Sp = ¢ P/(log P) — o(1), which is acceptable though less than linear.

Number of processors:

The second most important criterion in evaluating a parallel algoritlim is

the number of processors it requires to-solve a problem. Due to the high cost of

purchasing, maintaining, and running computers, it is preferred to keep the

number of processors low. Therefore, the larger the number of processors an

algorithm uses, the less desirable it becomes.

Cost:

One can intuitively see that the high speed and the low number of
processors are conﬂictihg requirements. Depending upon the application, one has
to weigh one against the other. However, most commonly, the cost of a parallel
algorithm is defined as the product of the parallel running time and the number
of processors used. It is the number of steps executed’ collectively by all
 processors in solving a problem in the worst case. Another terminology related
to the cost is thé efficiency of a parallel algorithm. It is defined as E, = Sp / P
where P is fhe number of processors used. Efficiency attempts to measure how
well the processing power of the unit is being used. Usually Ep < 1; otherwise a
faster sequential algorithm can be obtained from the parallel ones. In the case

Ep = 1, it becomes unnecessary to choose the number of processors in order to

maximize this function.

4. ORGANIZATION OF THE THESIS

The remainder of this thesis is organized in three chapters. Each chapter
‘is devoted to the study of parallel algorithms for a fundamental computational

problem area. The imortant subject of matrix computations and parallel

algorithms is considered in Chapter 2. The essential algebraic topic of

polynomials is”‘discussed in Chapfer 3. Finally, arithmetic computations are

| considgr‘ed in Chapter 4. : \

. This thesis is intended to provide a more complete and up-to-date survey
of parallel.a,lgorithms for linear and algebraic problems. Original material from .

the papers and books surveyed has been included to create a unified treatment.

21

Chapter 2
PARALLEL ALGORITHMS
FOR MATRlX COMP‘UTATIONS

a

1. INTRODUCTION
Numerical problems in Linear algebra such as calculation of
determinants, matrix inversion, solutions of linear systems of equations, and
eigenvalue expressions are of fundamental importance in scientific computing.
This basic fact coupled with the onset of parallel architectures has implied a
renewed interest in matrix - calculations. In the past two decades, parallel

algorithms for matrix computations have received strong emphasis from

researchers in parallel computing.

This \ghapter surveys the parallel techniques for linear algébraic problems.
Parallel algorithms to compute the determinant of a square ma,trix are discussed
in Section 2. Section—3 describes parallel algorithms for ﬁnding the inverse of a
squa,'ré' "matrix. Parallel solutions to linear systems are related to matrix
inversion and are also discussed in Section 3. These systems include the
triangular, t_ridia,gona,l, and general dense systems. Finally, in Section 4, the

problem of computing the characteristic polynomial of a square matrix S

introduced.

22

2. DETERMINANTS

In this section, three parallel algorithms to compute the determinant of a
square matrix are discussed. The cohcept of the determinant of a matrix is
important in matrix theory. Aside from their effectiveness as a computational
tool, determinants are important as a theoretical tool. For example,
detefmina,nts provide a simple criterion for nonsingularity; a nonzero

A

determinant. Determinants are used to derive conditions for the existence and

r.: L
e -7

uniqueness of solutions for systems of linear equations and are therefore very
important in system theory. As a matter of fact; the notion of determinants has
its origin in solving linear systems and today, most stability criteria in linear

system theory involve use of determinants.

There are several equivalent ways to define the determinant of a matrix.
The determinant is the function that maps square matrices into scalars. Let F
be a field. Let M,(F) denote the set of all square matrices of order n over F.

The determinant is defined by the mapping det : Mp(F) — F such that for each

o

A — (au) E Mn(F), det(A) e § (Sgn U) a»la(l) a20.(2) ".' ano.(n), Whel‘e the
summation extends over all permutations ¢ of {1, 2, ---, n}. The functional

value det(A) is called the determinant of the matrix A = (q;). Thus the

.determinant is a sum of n! terms where every row and every column is

represented exactly once in each term of the sum.

Determinants satisfy several properties. Studying these properties leads

to quicker means of computing the determinants. Following is a summary of

these properties.

23

(

(P, If At is the transpose of a ma,trix.A,' then dét(At) = det(A).

(P,) If A is a matrix with two identical rows (columns), then det(A) = 0.

(P;) If a row (column) of a matrix A consists entirely of .zeros, then
det(A) = 0.

(P,) If the matrix B is obtained from the matrix A by interchanging two
rows (columns), then det(B) = —det(A).

(P;) If the matrix B is-obtained from a matrix A by adding a scalar
multiple of one row (column) to a,nother'row (column), then det(B)
= det(A).

(Pg) If the rows (columns) of a matrix A are linearly independent, then
det(A) = 0.

(P,) If A is a traingular matrix (i.e., every element above or every element
below the main diagonal is 0), then det(A) is the product of the
elements on the main diagonal.

(Pg) For two matrices A and B, det(AB) = det(A) det(B).

(Pg) A matrix A is nonsingular if and only if det(A) # 0.

P If A is a nonsingular matrix, then det(A -1 — (det(A)) L.
10

Computing the determinant has all along been thought of as only a
sequential algorithm and several sequential algorithms to compute the
determinant are availaBle. Amongst these, the most popular technidue is the
Gauss’s method. When the operation described in (P;) is applied several times,
the evaluation of the determinant can be reduced to that of a triangular matrix.
Application of (P;) then gives the.determinant. This is the essence of Gauss’s

method. Another procedure that is effective for the purpose of evaluation of

24

determinants consists of expressing a determinant in terms of those of lower
order.. This is in contrast to the method of Gauss. This method requires that
one be familiar with the notion of a cofactor. Given a matrix A = (a;), the
cofactor of the element g;; is the scalar cof q; = (—l)ijdet(Aij), where A;; is the
matrix obtained from A by deleting its i-th row and j-th column.' The matrix AU
is sometimes called the minor of a; in A. The determinant can be written as

U

n
follows: det(A) =} gjcofa; fori=1,2, - n.
J=1

The adjoint of a matrix A can be defined as: (adj(A)); =
(—1)'+Jdet(Aji). It follows that if det(A) # 0 then (Wa,dj(A)) * A = A x (adj(A))

= I % det(A), and adj(A) is unique.

A matrix A of order nxm is called Toeplitz if each diagonal has a value

to which all the elements on that diagonal are equal.

In 1974, Csanky [24] gave the first parallel algorithm for fast determinant
computation. Let A be a square matrix of order n. Let D; denote an order t
determinant, and let D, be the determinant to be computed. Define z, =
Dn-k/Dn-k+1’ where 1 <k < n—1 and Dn‘-k is a properly chosen minor of
D, k+1- Since ka = D,/Dy, then D, = Dl/ka.' The following algorithm

computes the determinant Dp:

Algorithm 2.1. Determinants over fields of characteristic 0.
Input: A square matrix, A, of order n.

Output: The determinant, Dp, of A.

1. Compute 7, for 1 < k< n—1 1n parallel steps by solving

the corfesponding systems of equations.

25

92. Compute the product ~sz ‘i;r 1<k<n-1 by
multiplying the z';'s. o
3. Divide the product of Step 2 by D,.

Denote by T(n) .the parallel arithmetic complexity of computing det(A)
(The parallel complexity of the computation is the least number of steps
necessary to produce the result). It is easy to show that 2logn < T(n). To
show that T(n) < log’n: Step 1 requires O(log®n) steps. It will be shown later in
the chapfer that the solution to a system of .n equations can be computed in .
O(log®n)). Step 2 can be computed in at most log n + O(1) additional steps.

Thus the determinant of a matrix can be computed in O(log®n) number of steps.

This method seems to require a division by n!, and therefore applies to
fields of characteristic zero, but not to finite fields. Some applications such as
factoring polynomials require an algorithm that works over arbitrary fields, in
particular finite fields. Based on the general parallelization result by Valiant-
Skyum-Berkowitz-Rackoff [67], Borodin-Gathen-Hopcroft [10] presented another |
algorithm for computing the? determinant that works over arbitrary fields. The
Borodin-Gathen-Hopcroft algorithm is asymptotic. It starts with the ordina,ryd
Gaussi‘eth_ elimination .‘method performed on the matrix A of order n, with pivots

chosen on the diagonal. This method computes the determinant of the matrix A

sequentially 1n O(n®) steps of additions, multiplications, subtractions, and

divisions. The algorithm consists of two steps which apply to any sequential

computation to compute a polynomial f € Fla,;, a,, -, am] of degree n in time t.

The algorithm may be stated as follows. A full description of the two steps

26

A

follows the statement of the algorithm.

Algorithm 2.2. Determinants over arbitrary fields.
Input: A square matrix, A, of order n.

Output: The determinant of A.

1. Eliminate all divisions from the process.

2. Apply the general parallelization result by Valiant-Skyum-
Berkowitz- Rackoff [67] to parallelize the division-free

algorithm. .

In the first step, the division can be avoided using Strassen’s technique
[64]. For each division g/h, we find z;, 25, ---, zm € F such that h(z;, z, ---,
m) 7 0. Since every rational function can be written as b/c where b, ¢ € FJa,,
aj,, -+, am] and deg(b), deg(c) < t2'. then the product d of all such
denomiha,tors has degree less than or equal to t2t. For every subset P C F with
IP| > mt2' there exists z =(z,, Zy, -+, zm) € P™ such that d(z;, z5, -+, Tm) #
0. Thél:e is a Monte Carlo algorithm to find such an z. After z,, z,, ---, Tm are

found, we shift the inputs by the negative of the xi"’s, and consider new

s

indeterminates b, = g;—uz;. Replacing every occurence of a; by bz-—zz-, each

division in the algorithm becomes a division by a rational function in b;, by, -+,

)

by which has a nonzero value for b = by = --- = by = 0. These rational
functions are invertible in the ring R = F[b;, by, -+, by], and f =1(b + =z,
.-y bm + zm) € R is a polynomial of degree n. Computing only the

homogeneous part for each operation, one replaces every division by a -

multiplication in R. This yields a-division-free sequential computation in Rfo_r_f' |

¢

27

- with time O(tn?). Back subétituting, one gets an O(tnz)-algorithm in F[al, aq,
..., am] that computes f without division. For the Gaussian elimination method)
we shift the matrix A by the negative of the identity ‘m‘atrix, and work on the
new matrix B = A — I. Applying step 1 to the Gaussian elimination method
yields a division-free straight-line algorithm that computes det(A) in time O(n®).
The second step is to apply the Valiant-Skyum-Berkowitz- Rackoff [67]
parallelization technique to obtain a parallel algorithm with parallel time
O(logz(tfl)) using a polynomial (im t and-n) number of processors. Applying this
step to the Gaussian elimination method gives a parallel algorithm for the
determinant in time O(log’n) using O(n'®) processors. This algorithm worl;s
over finite fields, unlike Csanky’s algorithm, Algorithm 2.1 above, which is useful
only in fields of characteristic zero. The proof to this claim is as follows: Let F
be a finite field, say "of p elements. Take u € F[z], deg(u) = [l such that pl >
omt2t. Consider the extension field G = F[z]/(u) of F. This field G has 2mt2t

elements. Apply a Monte Carlo procedure to find an appropriate r € G™. Each

operation in G needs O(l*) operations in F. Thus the claim can be easily

verified.

The above algorithm has several drawbacks. First it is not explicit.
Secondly, the number of processors required 1s O(nls). The reduction of this
number was discussed by Berkowitz [6] in 1984. His new algorithm was based on
Samuelsén’s ‘method [60] which uses no divisions. This method “relates the
adjo.int and the determinant of a matrix A in a vefy efficient way. La,;cér in
Section 2.4, the theorem and the parallel 'a,l.gorithm to find the characteristic

polynomial of the matrix A will be discussed. The algorithm may be stated as

28

follows:

Algorithm 2.3. Determinants using fewer processors.

Input: A square matrix, A, of order n.

N

Output: The determinant of A.

1. Compute the characterestic polynomial p(A) of A.
2. Compute p(0) to find the required determinant of the

matriz A.

wt

This algorithm computes the determinant in time O(log®n) using O(ha)

processors as it will be shown in Section 2.4.

3. LINEAR SYSTEMS

Solutions to general systems of equations require the study of matrix
inversion and the study of solutions to more specific systems such as the
triangular%and tridiagonal systems. Subsection 3.1 studies the mat;ti?(inversion.
The triangular systems and the tridiagonal systems are discussed in Subsections

3.2.1 and 3.2.2 respectively. In Subsection 3.3, the general dense systems are

examined.

.1 Matrix Inversion

" One method to invert triangular matrices was presented by Heller [34] in

1974. The algorithm requires the factorization of the matrix A, which 1is

e 29

assumed to be of order nxn and a lower triangular matrix (i.e. all entries above
the main diagonal are zeros). If A is not triangular, one may decombose it using

efficient parallel LUD algorithms and then factorize it further as in this section.

Let the matrix A be written as:

A, O

A12 A21 i

where the submatrices A;; and A,; are lower triangular, and A;, is n/2xn/2.

The algorithm given below can be used to compute A™! which is written as

Byo By]

where B;; = (Ay;)Y, Byp = —(Ay)t Ayy (Ag;) Y, and By, = (Ay;)t. Thus
to calculate A™1, first (An)'1 and (Azl)'1 are computed in parallel. Two matrix
multiplications then give B,,. The algorithm may be stated formally as:

-
Algorithm 2.4. Triangular matrix inversion.

- Input: A square lower triangular matrix, A, of order n.

Output: The inverse matrix of A, A™L.

1. Compute B;; = (Ay;)! and By; = (Ayq)! in parallel.
2. Compute Y = (Ay) 1x Ayqp.
3. Compute Bj, = Y x (A,

One can easily see that by using this parallel algorithm, the time to

compute A1 will be less than or equal to the time to compute the inverse of an

30

n/2xn/2 matrix + the time for two matrix mul.tiplications.‘ Denoting by T(n)

the parallel arithmetic complexity of inverting order n matrices, one has T(n) <
T(n/2) + [2 log n], giving T(n) = O(log®n). Note, however, that to get the
n/2xn/2 matrix multiplication time down to [log n], one has to use n®/8
processors. This is easily explained: there are n3/8 multiplications involved in y,
this matrix product. All of them can be performed simultaneously in one time '
unit on n®/8 processors. n/2 of these products are then added to an element of

the product matrix. By using divide-and-conquer, this requires only [log n/2] =

([log n]—1) time. Since calculations corresponding to distinct elements of the

product matrix can be done concurrently, the total time is only [log n].

Csanky [23] also developed an algorithm to invert a triangular matrix
using O(n®) processors.

Let A be a square matrix of order n. The inverse of A exists if only if it
is nonsingualr (i.e. it has a nonzero determinant). Let Ay, Ay, ---, Ay be the roots
of the character*istic polynomial p(A) of A. Let s, be deﬁne.d for l_ékf_n as: 8
= }':1: (/\i)k. I% tr(A) denotes the trace of the matrix A, then s, = tr(AX).

i=1 | "
Further, if S deontes the nxn' lower triangular matrix with elements 1, 2, ---, n
on the n}ain diagonal and s; on the i-th diagonal, C = [cgy - cn]T, 8 = [81, "'y

sn]-r then from the Newton’s identities on gets SC = —s.

Using the above ideas, Csanky [23] developed a parallel algorithm to

‘compute the inverse of a nonsingular matrix in time of O(log°n). It uses

polynomial number of processdrs. The algorithm may be described as follows:

<¢Ei>-\

31

Algorithm<2.5. Matrix inversion.

Input: A square matrix, A, of order n.

Output: The inverse matrix of A, Al

1. Compute s, for 1<k<n, and s, = tr(Ak).
2. Invert the triangular matriz S.

3. Compute c;, for 1<i<n from c = —S1s.

4. If cn # 0, compute Al as follows using the Cayley

Hamilton Theorem:

At =L (A"‘1 + A" 4+ ..+ c,,_ll)

To determine. the running time and the number of processors used in the
given algorithm, one may proceed as follows. Firstly note that [log n] + 1 steps
are necessary and sufficient to multiply two nxn matrices using n° processors.
Using the technique of evaluating x' in [log n] steps using n/2 processors, for 1 <
i < n, one may compute AKX for 1 < k < n, in [log n] (flog n| + 1) steps using
n(n3)/2 processors. Thus, Step 1 takes log’n + O(log n) steps using n*/2
Processors. Iln Step 2, S} can be found in O(log®n) steps using O(n®) processors,
since S is a triangular matrix. (Algorithm 2: can be used for this pﬁrpose).
From the equation ¢ = —S1s, the c;’s in Step 3 can be computed in [log n'|' + 1
" steps using n’? processors. Finally, since Az, -, A1 are already available, Step
4 requires [log n] + 1 steps t?o complete using O(n®) processors. Thus, T(n) < 2

log?n + O(log n) = O(log’n) and the number of the processors used is less than

or equal to n? /2 processors.

The above result by Csanky is of great theoretical value, but is difficult

to implement in practice because of the excessive number of processors used.

- 32

2w .

3.2 Algorithms for Structured Matrices

' 3.2.1 Triangular Systems

Let A be an nxn triangular ma,fri; Without loss of generality, it can be
assumed that A is a lower tria,nguldr matrix. Heller [34] gave tile first parallel
algorithm to solve the system AX = B. His algorithm solved the system in
O(log?n) steps using O(n*) processors. The algorithm used an expansion
theorem for the determinant of a Hessenburg matrix, and was complicated.
Later, the number of processors was improved to O(n®) processors. One may

note that the original Heller’s algorithrﬁ [34] is no better than the generalized

inversion algorithm of the last section.

In 1975, Chen-Kuck [18] developed an interesting algorithm using
_récursion and doubling. This algorithm is a variation of Gauss-Jordan
elimination methc;d. The algorithm™is applied to the augl;lented matrix of A
rather than A itself (the augmented matrix of A, denoted i).y aug(A), is obtained
by adding the column B to A) The algorithm uses the row operations to
eliminate the entries of each diagonal below the main diagonal in one step, so it

can be called elimination by diagonal. The algorithm may be déscribed as

follows:

Algorithm 2.6. Triangular systems solver (I).
Input: A triangular system of equations, AX = B.

Qutput: A solution X for the system.

1. Divide each row of the matriz aug(A) by a;;.

2. Eliminate the entries below the main diagonal by

33

kY i
4,\] ek . I pn,
PERCC

eliminating the entries of each subdiagonal using the

following loop:

FOR ;=1 STEP+ U{?V,TIIL n—1 DO
]—

rowi— rowi— Y, a ; rouw(i—k), for

. . k=)
1+1<1<n.

3. Fﬁnd xz — ai, n+1.

The algorithm takes O(log®n) steps to solve the lineé,r system. Step 1
can be performedQ in one step using n? processors where each processor Will work
on one element of aug(A). The multiplications in Step 2 can be done in parallel
for each j, followed by log sum addition of j4+1 rows, if n2(n-.+-~1)‘/2 Processors

were used. Thus the total time is,

N-1 A 3 | |
1+ > 1+ [log 2*+1)] = N7+ 32N + 2 _ O(log®n) where N=[log n].
k=0 |
n-1 |
Since, the matrix is upper triangular, it contains), (n—m) zero entries.
m=1

This means that unnecessary multiplications are performed in Step 2.
Considering this, and using the theorem proved by Kuck [43] in 1978 (the

statement of the theorem will follow later in the section), only n3/6§+ O(n?)

processors are sufficient.

If the matiix A is Toeplitz, then the number of processors is further reduced to
O(n?/4).

Another parallel algorithm to solve a triangular system uses the idea of

inverting a triangular matrix explained in _SectiOn— 3.1 above and can be described

. &

as follows: - o

34

Algorithm 2.7. Triangular systems solver (II).
Input: A triangular system of equations, AX = B.

Otput: The solution X.

1. Compute Al using Algorithm 2.4.
2. Compute X = Al x B.

\

Since Al can be computed in O(log’n) steps using O(n®) processors, and
since Step 2 contains only one matrix and vector product which can performed in

O(log n) + O(1) steps using O(n?) processors, the total time for the algorithm is

O(log?n) using O(n®) processors.

If A has a unit diagonal (i.e. the entries of the main diagonal are 1’s),
then A can be written as A = I — L where I is the identity matrix, and L is

strictly lower triangular. Moreover,
A=I+L+L¥+ -+ L =10+ L2YHa+12"?)...(I+1L).
A method that uses this idea to solve the system AX = B was presented by

Orcutt [54] and Heller [34] independently and can be described as follows:

Algorithm 2.8. Unit diagonal systems solver.
Input: A system of equations, AX = B, where A has a unit

diagonal.
Otput: The solution X. :

1. Divide each row of the matrizr A by a; to make A a

unit diagonal matriz. |
2. Compute Al by repeatedly ‘squaring the matriz L

as above.

3. Multiply A"1B to get X.

39

Step 1 of this algorithm can be performed in parallel in one step using

(n—1)2/2 processors by letting each nonzero matrix element be modified in a

distinct processor. Step 2 consists of computing L? repeatedly, which can be
done in parallel in [log n] steps. Each square itself takes [log n] + 1 steps using

n3 processors. Thus Step 2 requires [log n] ([log n| + 1) steps. Finally, Step 3

is p\erformed in [log n] + 1 steps using n? processors. Thus the algorithm can be

performed in at most [log n)?> + [log n] steps using n3 + n? processors.

The following two algorithms to solve an nxn triangular system
demonstrate the use of linear recurrence. A linear recurrence system R(n, m) of

order m for n equations is defined as:

0) ifk <0
Xk — { k-1
bk+z ayj X; ifl <k <n,and m < n-—1
J=k-m

Equivelantly, if A = [a,] where a; = 0 for 1 < k or i— k> m, and X = [x,,

It, and B = [by, -, bn]' then the above definition can be written as X =

-

AX + B.

The first of the two algorithms that use the idea of linear recurrence is

called the Column-Sweep algorithm. It can be stated as follows.

Algorithm 2-9. Column-Sweep.
Input: A triangular system of equations, AX = B.

QOutput: The solution X.

1. Evaluate in parallel the erpressions of the form
bi(l) =b+ag,z for 1 =2, -5, 0 where z; = b, 1s
known. (Notice that only n—2 equations are left after

|

36

this step).

2. Evaluate in parallel the ezpressions of the form
bi(z) = bi(l) + a, 7, for i =3, -+, n where z, and z,
are known. (Notice that only n—3 equations are left

after this step).

k. Evaluate in parallel the ezpressions of the form

bi(k) = bi(k'l) + a; 7 for 1 = k+1, -y n where z,, ---,

I, are known.

Clearly n—1 steps are required using n—1 processosrs at the first step,
and fewer than that in the subsequent steps. So O(n) steps and O(n) processors
are necessary and sufficient to solve a traingular system using the column-sweep

algorithm.

The second algorifhm is the recurrent-product algorithm presented by
Sameh -a,nd Brent [58] in 1977, The algorithm proceeds by writing the equation
X = AX + B (as defined above) as X = (I — A)1 B. The idea of Householder
[36] can be used to express (I—’A)'1 as (I-A)! = ﬁ M, ;. where M; is defined

i=1

as.

_ _
1
0
M 1
' A1, i 1
0 L
i a»n' i 0 1 |

37

The problem is reduced to that of matrix multiplication which can be

evaluated in parallel time of O(log’n) steps using O(n3) processors. This is,

however, not practical for large n.

) ,
In 1978, Kuck [43] proved a useful theorem that can be stated as: A

linear recurrence system R(n, m) can be evaluated on p processors in Tp steps

g

/

where
Tp < (2 + log m) log n —%(1 + log m) log m
and
p < %»m(m +1)n + O(m®) for1 <m < n/2
and

3 |
p < %’g + O(n?) for n/2 <m < n-1

3.2.2. Tridiagonal Systems

Stone [63] was the first to discuss the solution to a system AX = B
where A is a tridiagonal matrix. Using recursive doubling algorithms, Stone
related the LUD decomposition of A to a first and second Tecurrences. These
algorithms compute the necessary terms in O(log n) time using n processors,
assuming no pivoting is necessary. Let L = (4, 1, 0), D = (0, dj’ 0), and U =
(0, 1, uj) be an LUD factorizatiqn of A. It is easy to see that d; = by, d; = b,
— & Cj-1/dj-1 where 2<j<n = aj/dj_l where 2 < j <n, uy; = cj/dj, where 1
<j<n NowlL and U are completely determined by D. To compute D, defihe
Po =1, pp = by, p; = by pj-ll — a; ¢y Pj.p, and d; = p;/p; ;. Now AX = B is

solved -by solving LW = B and UX = D !W. The bidiagonal systems represent

38

first order recurrences, and D'!W is computable in one parallel step using n

processors.

The above algorithm fails if pivoting is necessary. Another

decomposition for A that can be used is the QR decomposition discussed in

Section 3.3. Consider the following algorithm:

Algorithm 2.10. Odd-even elimination.
Input: A tridiagonal system of equations, AX = B.
Output: The solution X.

1. Fork=1 step k until n-1 do
row it «— TOw t — e ik (row i_k)/ai-k, ik~

e itk (row i+k)/ai+k, itk where 1<i1<n.

2. £z+—az,n+1/a" ISISD.

If the loop in Step 1 was applied on the tridiagonal matrix A which has
three nonzero diagonals, then these diagonals move further and further apart as
the loop progresses. The result will be a diagonal matrix. If Step 2 is executed,

the result is a solution to the tridiagonal system AX = B.

The above algorithm takes O(n log n) steps using n processors. This

algorithm is known as the odd-even elimination which has a variation called odd-

even reduction. This later algorithm generates a sequence of tridiagonal systems.

A(i)X(i)z B(i) each is half the size of the previous one and formed by

)

eliminating the odd-indexed variables and saving the even-indexed variables.

X(i) is obtained by back substitution to obtain X which is the solution to the

39

-«
-

original problem.

Algorithm 2.11. Odd-even reduction.
Input: A tridiagonal system of equations, AX = B.
Output: The solution X.

1. For k=1 step k do

row s «— rowt — a i;k(row i'k)/ai-k ik~

a; i+k(row i+k)/ai+k, itk (i = 2k, 4k, ---, 2" —2k);
2. Fork = gn-1 step —k/2 until 1 do

z; — (4 i1~ % ik%ik ~ %, ibkTitk)/ %
(i = k, 3k, ---, 2" —k)

Only O(n) operations are performed in this algorithm as against O(n log
n) in odd-even elimination. Another advantage of this algorithm is that it is

equivalent to Gaussian elimination applied to PAP' where P is a particular

permutation matrix.

3.3 General Systems:

~In 1974, Csanky [24] showed that parallel solution of any system AX =
B can be obtained by inversion of A and then multiplying by B has a complexity
T(n) which satisfies 2(log(n)) < T(n) < O(log®n). The number of processors

used in the algorithm is polynomial in n.

One of the most familiar sequential algorithms to solve AX = B, which is
suited to parallel computation, is the Gauss-Jdrdan elimination method. Let

aug(A) be the augmented matrix of A, row(i) will be used to refer to the ith row

40

]

of aug(A). Gauss-Jordan elimination method can be described by the following
algorithm under the assumption that pivoting 's not necessary. The algorithm

eliminates the elements above the diagonal as well as below. So this method

reduces the system quickly to a diagonal form.

Algorithm 2.12. Gauss-Jordan elimination (I).
Input: A system of equations, AX = B.
Output: The solution X.

1. For1l < j < n compule ‘
row(i) «— row(i) — a;/4; rou(j) forl <1< n and 1#£).
2. Compute 1;= a;;/ % forl1 <1< n, and j = 11 + 1.

For each j, there are n+1 multiplications, n divisions, and n+1

subtractions. Each group of operations can be performed in parallel in one step

using at most n+1 processors. So Step 1 needs 3n steps using (n—1)(n+1)

processors (since 1 = j is excluded). Step 2 needs only one step in pararllel and
uses n processors. Thus using (n—1)(n+1) processors, the algorithm can be
done in 3n+1 time units. However, if only n processors are available, the
algorithm requires n? + 2n + 1 steps. This is because the above algorithm is

altered as shown below. This illustrates the tradeoff between the number of

processors used and the time required.

Algorithm 2-13. Gauss-Jordan elimination (II).
Input: A system of equations, AX = B.
Output: The solution X.

41

1. Forl1 <i<nandl <j< ncomputet = a;/a;.
2. For j+1 < k < n+1 compute

The disadvantage of the Gauss-Jordan elimination method is that it may
sometimes prove numerically unstable, and some form of pivoting (such as
column pivoting) should, therefore, be incorporated. If aj; = 0 at some point in

the algorithm, then [log (n—1)] additional steps are needed to find a nonzero

pivot below the diagonal in column j.
>

Another method to solve a system of equations AX = B uses the LU
decomposition. If there is a nonsingular lower triangular matrix L, and an upper

triangular matrix U such that A = LU, then this is known as an LU

decomposition of A.

When such a factorization is known, solving the linear system AX = B is
relatively quick and simple. The system LY = B is solved for Y first. Since L is
nonsingular then there is a unique solution vector Y, which is easily calculated (L
is a lower triangular matrix). Then the equation UX = Y is solved to obtain the

solution of AX = B. The derivation of X from Y is also simple because U is a .
triangular matrix.

An nxn maﬂ:rix_ may be factorized as A = Q R where Q is an nxn
orthogonal ma,trix and R is an nxn uppéi' triangular matrix. Square-root-free
Gi\{ens transformations can be applied to find Q and R. If Q 1s found, then R
can be detefmined easily by calculating Qt A = R since Qt Q=1as Qis an

orthogonal matrix. Q is computed implicitely as a product of simpler matrices.

42

As a matter of fact, Q is the product of a number of plane rotations, each of |
which eliminates an element of A below the diagonal without destroying the
previously introduced zeros. The following loop can be used to achieve this goal.
For notational purposes, Rotate(i, j) applies root-free Givens transformations to

rows i and i—1 in.order to eliminate the element a;; where 1 <j <1 < n.

J L

Fork=1 to n—1 do

begin
Rotate (n—2p, k—p) (0 < p < min(k—1, n—k—1))
Rotate (n—2p—1, k—p) (0 < p < min(k—1, n—k-2))

end.

Thus, in order to eliminate a; the i-th and the (i—1)-th rows are

multiplied by

where ¢ = cos § and s = sin 0, the angles of rotation being determined by using

the formulae

% | 41,

§ = —————— and ¢ = —m———7>>——— .
\’(aij)2 + (a; J-)2 \l(aij)2 + (a2, j)2

Several of these rotations can be applied simultaneously in parallel. Now
to solve the system A X = B where A = Q R, (the Q R decomposition), we
proceed by writing Q R X = B,so R X = Q! B. Computiné Y = Q! B reduces
the linear system to a triangular one, then R X =Y may be solved using any of

the techniques discussed in Section 3.2.

Pease [55] presented an interesting algorithm to solve a general system of

equations. @ Any parallel computer with an interprocessor communication

43

.....

network designed for FFT can implehlent it reasonably well.

Algorithm 2.14. General system solver.
Input: A system of equations, AX = B.
Output: The solution X.

Procedure P(n)

Begin‘ -

A, E
Let A = ! : ,
E2 A2
X = t
= (z; z3)"
B = (b, b2)t where A, A, are 2" 1x2"1,
Solve A,(Fy, 91) = (Ey, b)) and
A, (Fyy 92) = (Ey, by)
in parallel by applying P(n—1).
Solve (I—-F,F,) z; = (9, —F19;) and
(I-FyFy) z, = (92 —Fa91)
in parallel by applying P(n—1).
end.

This algorithm requires O(nzlog n) steps using n processors.

Several authors have discussed solutions of linear systems of equations.
Amc;ng those one finds Boroding-Gathen-Hopcroft [10]. In their paper, they
showed that Csanky’s result works for any finite field. In 1984, Bini [9] used the
concept of approximate algorithm to show that 6 log n + 6 parallel steps and 2n
processors suffice to approximate, with any precision, the solution of a linear

system with nxn triangular Toeplitz matrix A. Moreover, 7 logn +7 'steps are

44

sufficient for an exact computation, .whereas the number of processors is
increased to 5n%/2. The in:'erse of A can be approximated with any precision by
6 log n + 3 steps and 2n processors. The author gave two applications of these
results. First, if B is any matrix belonging to the algebra generated by a given
nxn matrix over the Complex Numbers field, then the system BX = b can be
solved in no more than 9 log n + 4 steps using O(nz) processors. Second, given
a Toeplitz matrix A = (aj;) such that a; =0 if i—j > k or j—i > h, a,; # 0

then the system AX = b can be solved in 13 log n + O(log’k) steps using max {

(5/2) n (k+h), n(n+1)/2 } processors.

4. THE CHARACTERISTIC POLYNOMIAL OF MATRICES

The characteristic polyndmial of a matrix A is the equation det(A — Al),
where I is the identity matrix of the same order of A. Eigenvalues are the roots
of the characteristic polynomial andlsatsify AX = AX for some vector X # 0.
Each X is called an eigenvector of A corresponding to ‘eigenvalue A. AX = XX
holds if and only if A — Al is singular. Thus if the eigenvlaues are precisely the

roots of the characteristic equation det(A — AI) = 0 denoted by A, ---, Ay with

multilpicity m of any eigenvalue A equal to that of the factor A—X of the X-
polynomial det(A — X) L.

Let A be an nxn matrix and let R, S, and M be three of its sub-matrices

of order (n-—l)xl, 1x(n—1), and (fn—l)x'(n—l) respectively, as follows:

45

The characteristic polynomials of A and M, defined above, are:

/\ p(A) = det(A — AxI) =i§;o p i AL

and
n-1 :
q(A) = det(M — AxI) = Y q,,, A

i=0

respectively.

In 1984, Berkowitz [6] proved that the characteristic polynomial of a
matrix can be computed in O(log’n) steps. Before his main result can be
discussed, four claims need to be stated. The proof of Calim 1 follows by
expanding the det(A — AxI) by cofactors along the first row, and then along the
first column. Claim 2 is obvious because the matrix M must satisfy its

characteristic polynomial. The proof of Claim 4 can be found in Aho-Hopcroft-

-

Ullman [1]. Only the proof to Claim 3 is presented here.

Claim 1: p(A) = (a;; — A) x det(M — AxI) + R * adj(M — A«I) * S.

Claim 2: adj(M — M) = _ki'z (Mk'2* Qo + - + I % qk—2) x AK,

Claim 3: Let R, M, and S be as defined above. Let T = {R x« M x S}i=0,---,fn'
Then T can be computed in time O(log%n) and a circuit size O(na+~€)

where a is the exponent of n for the size of a circuit for multiplying twg

matrices using log n depth and € is any positive real number. Currently

a < 2.496.

Proof: Any element of T can be corﬁputed as the dot product of vectors from U

46

since the
=0, ...n0-5

= {R*M} 0.5 and V = {M *S}
i=0,---,n""

exponent of k of the M term in any element from T can be uniquely

expressed in the form k =i +) » n®>. Since each dot product can be

computed in O(log n) time using O(n) processors, then T can be

computed from U and V in time O(log n) using O(n?) processors. It can

be proved by induction on A that Uﬁz{R*Mi} g can be
i=0 -

’ 'n
a+c) processors for § a constant.

computed in time O(log®n) using O(n
Now, U can be computed in time O(log®n) using O(na+f) processors
since U = Uy g. V can be computed similarily.
Claim 4: The product of two Toeplitz lower triangular matrices is also Toeplitz
and lower triangular. Moreover, it can be computed in time O(log n) using

O(n?) processors.

The main result of Berkowitz [6] can be stated as follows:

V ¢ > 0, the coefficients of the characteristic polynomial can be

a+1+e€

computed in time O(log’n) in size O(n) circuit.

To prove the theorem, define lower traingular Toeplitz matrices C; of

order (n—t+1)x(n—t) by:
-1 ifi = 1,
Ct L1 - { ix-tfifo:Mti'?’*St g: i g,
Samuelson’s method relates the characteristic polynomilas of A and M.
Using this method we have a linear relation between the coefficients of the two
characteristic polynomials: (Pos Pis , pn)t = C!' % (qp, q1, ‘' qn_l)t.

Applying this recursively, we get the direct product of C; for 1 <i < n. The

entries of the matrices {Ci} can be copmuted by applying Claim 3 n-times in

47

O(log®n) time in size O(na+1+€). Using Claim 4, the characteristic coefficients

can be computed from {C;} with a balanced binary tree of matrix multiplies in

time O(log?n) in size O(n®).

48 .

Chapter 3
PARALLEL ALGORITHMS
FOR POLYNOMIAL COMPUTATIONS

1. INTRODUCTION

A polynomial over an algebraic system is an expression of the form
f(x) = fox" + £ _x"1 + -+ + fix + fo,
where the coefficients fj, f, 4, ---, f}, fy are e;lements of this algebraic system, and
the variable x may be regarded as a formal symbol with an indeterminant value.
It will be assumed that the algebraic system is a ring. This means that it admits
the operations of addition, subtraction, and multiplication; satisfying the
customary properties: addition and multiplication are associative and
commutative binary operations, with well-defined identities; multiplication
distributes over addition; and subtraction is the inverse of addition. The
additive identity element- is' denoted by 0 giving a + 0 = a, and the
multiplicative identity element is denoted by 1 giving a 1 = a, for all elements a

in the ring. f(x) is called a polynomial of degree n, denoted by deg(f), and

leading coefficient fy, if f, # 0. If the leading coefficient f, is 1, the polynomial is

called monic.

Arithmetic on polynomials consists primarily of addition, subtraction,
and multiplication;} in some cases, further problems such as division and

exponentiation are important. There are a number of other important

49

computational problems pertaining to finite fields such as determining the
greatest common divisor of polynomials, factoring, finding thé roots of a
polynomial, and computing a polynomial. These cémputatiomal problems are the
topic".of this chapter. Given two’polynomials f,(x) and fy(x), algorithms to find
the greatest common divisor of f,(x) and f,(x) are discussed in Section 3.2. Let
F be a field, and let F[x] denote the field of polynomials with coefficients in F.
Given a polynomial f(x) € F[x], one wants to find the factorization f = f; f; -
f,’ of f into its irreducible factors fi(x) € F[x] This factorization problem is
discussed in Section 3.3. Algorithms to find a root a € F of f(x) = 0 (if it
exists) are also discussed in Section 3.3. Finally, given a polynomial f(x) € F[x],
one may want to compute the value of the polynomial for a given value for the

indeterminant x. This is the computing or evaluation porblem, and will be

considered in Section 3.4.

2. GREATEST COMMON DIVISOR AND LEAST COMMON MULTIPLE

A greatest common divisor of two elements is defined as a common
divisor that is divisible by as many primes as possible. Given two polynomials
f(x) and g(x) over a field, with g(x) # 0, one can divide f(x) by g(x) to obtain a
quotient polynomial q(x) and a remainder r(x) satisfying the conditions: f(x) =
q(x) g(x) + r(x), and deg(r(x)) < deg(g(x)). If g(x) =0, then the greatest
" common divisor of f(x) and g(x), denoted by ged(f(x), g(x)), is f(x). If g(x) # 0,
then ged(f(x), g(x)) = ged(g(x), r(x)) where r(x) is as dt;fined above. Thus to

find ged(f(x), g(x)), f(x) is divided by g(x) to get r(x); and as long as ri(x) # 0,

50

the division procedure of g(x) by r(x) continues. When r{(x) = 0, then gcd(f(x),

Pl

g(x)) = ged(g(x), 0) = g(x)-

This is called the .Euclid’s rgcd algorithm for polynomials over a field.
The Euclid’s algorithm and the other sequential algorithms for finding the gcd
have the difficulty which makes them decidedly impractical if the coefficients of

the polynomials are integers or polynomials themselves, Brown [13].

Borodin-Gathen-Hopcroft [10] presented an algorithm that avoids this
difficulty by employing linear equations. Let F be a field, let f(x) and g(x) be
any two polynomials with coefficients in F' with degrees m and n respectively,
and m < n. Write f(x) = f,x™ + fm_.lxm’1 + - +f, and g(x) = gnx" +
gn_lx'"'1 + - + gy where f, gn # 0. If h(x) = ged(f(x), g(x)) with degree d,
then there exist two polynomials u(x) and v(x) in F[x] such that deg(u(x)) < n
— d and deg(v(x)') < m — d such that h(x) = u(x) f(x) + v(x) g(x). So the
gcd problem is reduced to computing the polynomials u(x) = Y u; x' and v(x)
= >V x'. For 0 < k < n and polynomials s(x) = ¥ s; x' and t(x) =)R T x!,
the conditions “sf + t g i1s m.onic of degree k, and deg(s) < n — k” translate
into the systems S, (MN = L), of linear equations in the coefficients of s and t,
where the coefﬁczient matrix M, as defined below, is the (n+m—2k)x(n+m—2k)-
submatrix P, of the Sylvester matrix of (f, g) which consists of the first m—i
column; of fj’s and the first n—i columns of g’s, N is the column matrix N =
| [Sh-k-1 S0 tmok-1 t,]" of order (n+m—2k)x(1), and L is the column matrix

[0---01]T also of order (n+m—2k)x(1).

Solutions to these systems of equations yield the computation of the

o1

polynomials s(x) and t(x).

fm €n
fm-l €n-1
) fm &n
M = . .
fo go
fo...fk go...gk

Thus if f(x) and g(x) are two polynomials as defined above, then a

greatest common divisor of f(x) and g(x) can be computed by the following

algorithm:

Algorithm 3.1. Univariate gcd of two polynomials.
Input: Two univariate polynomials f(x) and g(x).

Output: A Greatest Common Divisor of f(x) and g(x).

1. Compute a4, ---, am, where a, = det(P,) and P, 1s the
coefficient matriz of S .

2. Set d = min {k: a # 0}.

3. Solve the system Sy to find s(z) and {(x).

4. Return gcd(f, g) = sf + tg.

Y , _
The determinants in Step 1 can be computed in parallel using any of the

methods explained in Section 2.2.3. The time used in this step is O(log®n). To
solve the system Sj, which is nonsingular since ay#0, the methods discussed in

Section 2.3 with time O(log®n) can be used. Thus the total time used to find the

| gcd using this parallel al'gorit‘hm is O(log®n).

4

92

s

The above algorithm is limited to two polynomials. Gathen [28]
generalized this algorithm to find the gecd of a finite number of polynomials. Let
F be a field. Let f,(x), fo(x), -, fa(x) be polynomials with coefficients in F.
Assume the degree of f,(x) is at most n. Let g(x) be the greatest common divisor
of f,(x), ---, fn(x). By Euclidean Theorem, it is easy to see that there exist
polynomials 8,(x), -+, 8n(x) with coefficients in F su.ch that g(x) = Y 8,(x) f(x).
In addition, deg(s;(x)) < n. The proof of the latter claim is direct: reorder the
polynomials such that deg(f;(x)) > deg(fi(x)) for all 1 2 2. Divide s, by f; with
remainder s;=q;f;+5; and deg(§;) < deg(f;) < n. Set §, = 8, +) q;f;, where
the sum is taken over i > 2. Then Y 8, f; = g, where the sum 1s taken over 1 <

i <n,and s f, =g — Y § f, where the sum, over all i > 2, has a degree less

than n + deg(f,(x)). Hence, deg(s;) < n for all i. Because of this, the degree of
g(x), d, can be defined as follows:

d = min {deg(f) : 3s,, ---, sn € F[x], deg(s;)<n for all i and fzxsifi;éO}.
If we write f; = Y fij xj, where the sum is taken over 0 < j < n, then as in
Algorithm 3.1: for 0 < k < n add polynomials §; =) Si; xj, 0 <j<n, the
condition “Y s; f; is monic of degree k” now translates into the systems S, of

linear equations in the coefficients of Sjj such that:

1 for I=k

Thus to compute g()é), the indeterminants s;; must be computed. The system Sy

has 2n—k equations with at most n? variables. Clearly, S, has a solution if and

only if k > d. In fact Sy has a solution and from a solution of Sy, g(x) can easily

be computed.

93

If f,(x), -+, fa(x) are polynomials as above, then a greatest common

divisor, g(x), of f;(x), ---, fn(x) can be computed by the following algorithm:

Algorithm 3.2. Univariate gcd of many polynomials.
Input: The univariate polynomials f,(x), ---, fn(x).
Output: A Greatest Common Divisor of f,(x), ---, fa(x).

i

1. For all k, 0 < k< n, determine whether S, has a
solution, and if it has, compute a solution (s;(k)) of Sy.

2. Setd = min {k : Sy has a solution}.

3. Compt‘te ng(fl’ T fn) — 9 = E su(d) z‘J fi'

Step 1 of this algorithm can be computed using Algorithm 3.1 of

Borodin-Gathen-Hopcroft, which takes O(log®n) parallel steps. Steps 2 and 3

need O(log n) steps each. So the algorithm works in parallel time of O(log*n).

It should be remarked here that if Algorithm 3.1 is used to compute the
gcd of pairs of polynomials along a binary tree, the gecd(f;, .-+, f;) can be

computed in parallel time O(log®n).

Given two polynomials flﬂ(x),and fo(x), 3 a polynomial m(x) such that
f,(x) and f,(x) are factors-of m(x), and m(x) has the smallest degree with this
property. The polynomial m(x) is called the least common multiple of f,(x) and
f,(x), and is denoted by hlcm(fl(x), fo(x)). The following relation holds for f;(x)
and fo(x) in F[x]: ged(fi(x), f3(x)) x lem(f;(x), fy(x)) = fi(x)f5(x). The
lem(f;(x), f,(x)) can be computed in parallel time of O(log®n) if F is real, and

O(log®n) if F is an arbitrary field. Once the lcm is known, the gcd may be

o4

determined from it.

. Let u; = 3 u; ¥, 0 < j < k—d be monic polynomials of degree k—d, let

S, be the system of linear equations that expresses u,f;, — u,f, = u,f; — ugfy =

- = up1fp-1— unfn = 0. The system S, consists of (n—1)k linear equations in

the ° (k—d;) = nk—s indeterminant coefficients u;; (1< i<n,0<)<k—d).

The follow‘ing algorithm, due to Gathen (28], computes the lem(f, f,):

Algorithm 3.3. Univariate lcm of many polynomials.
Input: The univariate polynomials f,(x), ---, fn(x)-

Output: The Least Common Multiple of f;(x), ---, fa(x).

1. Set d. = deg(f), m = maz d;, and s = > d,1 <1< n
2. Replace each f, by fi/a; where a; 13 the leading

coefficient of f.
3. Vki m< k<s, determine whether S, has a

solution, and if it does, compute solution uij(k).

4. Set d = min {k : Sy has a solution}.

5. Set u =) uy;(d) 7 + £

6. Set lem (fi(z), -+, fn(x) = m(x) = u {;.

The methods discussed above apply to univariate polynomials, 1.e.,
polynomials in one variable or indeterminant. Gathen-Kaltofen [31] presented an
algorithm for the greatest common divisor of two bivariate polynomials. Given
two polynomials f, g € F[x, y], where f is monic with respect to x and F is an
arbitrary field, they used a modular approach to compute the, monic with

respect to x, gcd h € F[x, y] of f and g. The algorithm can be stated as follows:

99

Algorithm 3.4. Bivariate gcd of two polynomials.

Input: Two bivariate polynomials f(x) and g(x).
Output: A Greatest Common Divisor of f(x) and g(x).

1. Set dy = maz {degy f, degx g}, dy = wmaz {degy f,
degy g}, and d = 2dydy. If d = 0, use a procedure for
univariate gcd’'s. If |F| = q < 3d, then choose an
irreducible monic polynomial w € F{t] of degree [logq
3d], and replace F by the eztension field F{t]/(w).

Choose any pairwise distinct ay, ap, -+, Gyq € F
such that g(z, a,) has the same degree in z as g.

Vi 1<i<2d compute the monic h; = gcd (fz, g),
9z, @) = X by ? € Fz},j > 0.

. Set m = min {deg h; : 1 <i < 2d}, and choose some
M C {1, -, 2d} with [M| =dy + 1 and degh; = m V 1
€ M.

. For 0 < j < m, interpolate the hU’s: Compute bj €
Fly] of degree at most dy with b(a) = h; V 1 € M.

. Return gcd(f,g):hszjz’, 0 <j3<m.

To estimate the timing of the algorithm, w in Step 1 can be found im

O(log*d) operations in F, (Rabin [56]), since each monic polynomial weF[t] of

degree | = [logq 3d] may be tested for irreducibility. There are at most qt <

3dq < qd? such polynomials, and each irreducible test takes O(logzd logzlog d

log log log d log q). Any operation in F[t]/(w) can be simulated by O(log?d)

operations in F. This factor logzd has to be multiplied to the estimates for Steps

3 to 6 only if q < 3d. For each f(x, a;) and g(x, a;) in Step 3, the number of

operations is O(d). For each h,, it is O(dy log?dy) (Aho-Hopcrbft-Ullman [1]).

Therefore, the total ‘time necessary for Step 3 is O(d (d + dy log?dy))

96

operations. Step 5 takes O(dy(dy logzdy)) operations (m < dy). The total time

is O(d?log?d log?2d) = O(d%log*d). If q > 3d, it is O(d?log?d) operations.

3. FACTORING POLYNOMIALS

Polynomials with coefficients from a finite field and their factoring
techniques have been studied for a long time. In 1846, the Unique Factorization
Property was proved for univariate polynomials over Zp. But no efficient
algorithm to compute.these factors was presented until the 1960’s. Suppose F 1s
a finite field of characteristic p (i.e., a prime p is the smallest element such that
pa=0 Vae€F) with q = pd elements, i.e., F = GF(pd). A fundamental

n
computational task is to find the irreducible factors of a polynomial f(x) = }_

i=0
fixi in F[x]. This is called a univariate polynomial and will be the subject of
Subsection 3.1. Polynomials over more indeterminants are called multivariate
polynomials and will be discussed in Subsection 3.2. As it will be shown there,

the problem of factoring multivariate polynomials over algebraic number field or

over finite fields is eventually reduced to that of factoring univariate polynomials

over finite fields, via a modular technique.

3.1. Factoring univariate Polynomials

Note first that the general factoring problem easily reduces tc/ that of
factbring a monic polynomial with no repeated factors (such a polynomial is

called square-free). This is because one can divide each polynomial coefficient by

57

the leading coefficient to make the polynomial monic, and then use the following
well-known method for finding repeated factors. Consider the case of a
polynomial f(x) with repeated factor f,(x), i.e., f(x) = f;(x)(f5(x))".
Differentiating f(x) one gets '

f'(x) = /,(x)(f2(x))" + n fi(x) (£2(x))™* '3(x)

= (50))™ (f1(x) (%) + 0 fi(x) F3(x)) x
(f,(x))™! = ged(f(x), f'(x)),
and one may easily remove this ged(f(x), f'(x)) from f(x) to convert f(x) to a

monic square-free polynomial.

Berlekamp (7] devised the first complete factoring algorithm which
factors univariate polynomials over a finite field F with q elements in O(qn°®)
operations where n is the degree of the polynomial. Let u(x) be the polynomial

to be factored. The algorithm proceeds as follows:

Algorithm 3.5. Univariate factorization over a finite field I.
Input: A univariateé polynomial u(x) € F[x] of degree n.

Output: The complete factorization of u(x).

1. Ensure that wu(z) is square-free (i.e., if gcd(u(z),
u'(2))#1, reduce the problem to factoring u(z)/gcd(u(z),

u'(2)).
2. Form the matriz Q defined by
- -
9o, o do, 1 90, n-1
Q =
dh-1, 0 n-1, 1 In-1, n-1

a8

where %= Q. 1?2+ o+ @ 1T+ & o (modulo
w(z)). Thus, each row of Q consists of coefficients of
powers of 2 mod u(z).

3. Triangularize the matriz Q—1I, where I = (§;) is
the nxn identity matriz, finding its rank n—r and finding
linearly independent row vectors Jll' cee v}'l such that

/ Jﬂ(Q—l) =(0, -, 0) for 1 <j3<r This
triangularization can be done using appropraite column
operations (Null space algorithm for instance).

4. Calculate gcd(u(z), v[2](z)—s) for 0 < s < p, where
11[2](3:) is the polynomial represented by vector A2, The
result is a nontrivial factorization of u(z), because vlzl(z)
_ s is nonzero and has degree less than deg(u), and u(z)

= [] gcd(Az)—s, u(z)), where it 1s understood that the
product is taken over 0 < s < p, whenever u(z) satisfies

uz)°? = u(z) (modulo u(z)), and deg(v) < deg(u).

Moenck [52] gave the following analysis of the time-complexity of the
Berlekamp’s algorithm. Multiplying or dividing a polynomial of degree n by one
of degree m can be done in O(mn) field operations using the standard methods.
As a corollary, one can see that squaring a polynomial of degree n—1 and

computing the residue with respect to another polynomial of degree n can be

done in O(n?) field operations. Since u(x) is monic, x° mod u(x) can be

computed by repeatedly squaring in O(nzlog p) steps. In the remaining n—2
rows of the matrix Q, xP) mod u(x) can be produced in O(n®) steps. Computing
the null space of the matrix Q — I can be done in O(n3+ n log p) steps using a

standard triangularization algorithm. The gcd operation can be performed in

59

O(n?+ n log p) steps. (A parallel algorithm can be used to compute the gcd .in
parallel time O(log’n), see Section 3.2). If there are k factors, in the worst case,
each v(x) will yield only one prime factor. To find this factor, one might have to
try every element in the field. This means that the algorithm is bounded by the
last step which requires O(kp(n? + n log p)) field operations. If k = O(n), the

algorithm may require O(nap) steps. It is the factor p in this expression which

restricts the application of the algorithm to small primes.

Berlekamp’s algorithm for factoring polynomials over a finite field Z is a
major milestone in the study of the factoring problem. One of the handicaps of
his algorithm was the p term in the timing analysis. This restricts the method
to relatively small fields. Later, Barlekamp [8] refined his method so that the
factoring problem is reduced to computing the roots of a polynomial in a finite
field. He showed how the latter problem could be solved in time proportional to
p1/4log p3/2. Moenck [52] gave a more direct reduction to the root finding
problem and gave a method for ﬁnding the roots of a polynomial of degree n in
O(n2log p+ k logzp) steps for special choices of p. These imply that

Berlekamp’s algorithm can be performed in O(n3 + n’log p + n log’p) steps far

most cases. He also showed that a polynomial can be factored in O.(n2(log2n +

log n log p)) steps.

Algorithm 3.5 and the further improvements by Moenck [52] and
Berlekamp [8] apply only when q=p? where d=1, dnd uses the calculations of
resultants (or equivalently the solutions of linear equations) to reduce the

problem to finding the roots of a polynomial which has all of its roots- in F.

60

However, straightforward modifications given by Cantor-Zassenhaus [16) allow d
> 1. They presented a probabilistic method which, when combined with the
above algorithm and similar algorithms (e.g., folk method, Knuth [42]), avoids
the need for both resultants and linear equations. It leads to algorithms which
are conceptually simpler than the previous method. Moreover, it works equally
well for all finite fields F, regardless of the magnitude of q. When used for

factoring a quadratic, x?— a, it reduces to the Berlekamp’s Algorithm 3.5.

Let p be a prime number, and let n be an integer. Let E be the Galois
field E = GF(p"). Given a polynomial f(x) € E[x] of degree m, Rabin [56]
presented a probabilistic algorithm to find the factorization f = f; f, --- fi of f
into its irreducible factors fi(x) € E[x]. Both Rabin’s and Cantor-Zassenhaus’
algorithms are probabilistic ones and, therefore, will not be discussed in details in
this thesis. However, Gathen [28] presented the Cantor-Zassenhaus probabilistic

algorithm with the appropriate modification for parallel execution. We now

discuss this modified algorithm.

Let F be a finite field with q elements, and let f(x) € F[x] be a monic
polynomiaﬂl of degree n > 2. In order to get a better complexity estimate in case
q is not prime, let G C F be another field with a prime number p of elements.
Let g € G[x] be irreducible of degree d such that F = G[t]/(g) and q = pd. Fis
a vector space over G with basts 1, t, .-, td"1 and R = F[x]/(f) is a vector
space over F with basis 1, x, ---, x"1 and a dn-dimensional vector space over G

with basis {t'x: 0 <i < d, 0 <j < n}. The algorithm can then be stated as

follows:

61

Algorithm 3.6. Univariate factorization over a finite field II.
Input: A polynomial {f(x) € F[x] of degree n.
Output: The complete factorization of f.

1. Replace f by its (unique) monic scalar multiple.

Compute the matriz Q of the Frobenius mapping: R—R

with u—u’.

2. Compute the dimension r of the nullspace K of Q
— I, where, I is the nxn identity matriz, and g,, :--, g
€ Flz] of degree less than n such that {g'- mod f| 1<
< n} forms a basis of K. Ifr =1, set S = {f} and go
to Step 5. r denotes the number of monic factors of f.

3. Let m = [log r], choose vi; € Flz] for 1 <i1<m, 1
< j £ r independently at random, and let h;, = Vii 95 €
Flz) for1 <1 <m,1 <3<

4. For 1 <1< m, compute c; = gcd (f,
Flz]. If p is even, say p = 2k, use c; = gcd(f,) h'-zj, 0
< j< k). Compute the common refinement of these

partial factorizations as follows. Let M = {0, 1}x{1, ---,

m}. For I C M compute s = gcd ({Ci : (0, 1) € I} U

{Z‘{' : (1, 1) € I}) Then compute the follwoing set T of

“minimal I's”:

T = {IgM: 5571 and VJCM ICJ— s;=1 or s_,::s,}.

5. If |S| # r, then the algorithm fails. Otherwise,
for each a € S do the following. Set b = a. While o =
db/dz = 0, replace b =}, b z~ for k> 0 by its py-th
root) kaOQ/Po zk, where p, = char F is a prime
number. If b # 0, compute g = b / gcd(b, b'). Now g
1s an irreducible factor of f, and e = deg a/deg g its
multiplicity.

6. .Retum thé set of all (g, e) computed above as the

complete factorization of .

62

|

—

To estimate the parallel time of the algorithm, notice that if Q is an nxn
matrix, then Step 1 requires O(log’n log p) steps. Step 2 takes O(log’n)
operations. This is because the computation of the quotient and the remainder
of two polynomials of degree at most n needs parallel time O(log’n). The proof
of the last assertion is rather simple. Let f, g € F[x]. Let k = deg f — deg g +
1 < n. Their quotient q € F([x] is uniquely determined by the condition deg(f —

qg) < deg g, which can be expressed by a nonsingular system of k linear

equations in the k coefficients of q. This system can be solved in parallel time
O(log’n) as in Section 2.3. Computation of the remainder takes Oflog n)
parallel steps. The fast parallel algorithm from Borodin-Gathen-Hopcroft [10]
can be used to solve Step 2. This algorithm takes O(logzn) parallel steps also.
Step 3 costs O(log r). In Step 4, each ¢; can be computed with O(log’n log p)

operations. For each s, Gathen’s algorithm to find the gcd of many polynomials

from Section 3.2, Algorithm 3.2, can be applied eight times in parallel, with the
same number n and using parallel time O(log®n). Unless all these applications

fail, any of the answers can be taken. To compute the sets T and S, note that
: : - : M
the number of subsets I of set M comes into play. This number of subsets 1s 2I |

< 2,2m < 212 log r

— 12 <« 412, Thus T and S can be computed in parallel time

O(log n). Finally, each g in Step 5 can be computed in time O(logp n log q +
log®n log p). Thus the total time is O(log*n log q).

It should be noted that if the polynomial f(x) is square-free, and if G C F
is a subfield with p elements and q = pd, then the complexity is O(log’n

log?(d+1) log p) operations in G. To show this, simply note that each operation

~in F can be simulated by operations in G in parallel time O(log’(d+1)). (d+1

63

rather than d is used to avoid getting log 1 = 0). Since all elements of R are
represented by coefficients from G, ope can consider Q as a dnxdn matrix over

G. The computation of g in Step 5 is unnecessary since s is assumed to be
squarefree. Thus, the time is O(log’n log?(d+1) log p). In both cases, the

number of processors is polynomial is n log q.

Lenstra-Lenstra-Lovasz [47] have presented a polynomial-time algorithm
to solve the factoring problem over the field of rational numbers. If f(x) € Q(x]

s a univariate polynomial with rational coefficients, Lenstra-Lenstra-Lovasz [47]

found the decomposition of f into irreducible factors in Q[x]. Since this 1s

equivalent to factoring primitive polynomials over Z(x], it can be considered a

breakthrough in the factorization problem for univariate integer polynomials.
(Here, by a primitive polynomial, we mean a polynomial f(x) € Z[x] with

content 1, i.e., the greatest common divisor of its coefficients is 1). An outline of

the algorithm is as follows.

Algorithm 3.7. Univariate factorization over Q.
Input: A polynomial f(x) € Q[x] of degree n.

Output: The complete factorization of f.

1. For a suitable small prime number p, find a p-adic

irreducible factor h of f. Algorithm 3.5 can be used to

find h. |
9. Find an irreducible factor hy of f in Z[z] that is divisible

by h.

3. Repeat the above two steps until all irreducible factors of

f are found.

64

D T .
L~ = w 5% - .
PO . e S —
i A " ~ RN
. *‘ & T e = Ty - Eel -
- ~ R e T

-!‘Z_.:_.,A}%: .‘::‘,)) ~ Y
e ey, wTe T T -
e R .

The condition that h, is divisible by h means that hy belongs to a certain
lattice, and the condition that h, divides { implies that the coeflicients of h, are
relatively small. Thus basically, the “sma.lleat element in that lattice needs to be
found. The authors give a new reduction algorithﬁ to do this. Therefore, this is

a basic subroutine to compute short vectors in integer lattices. The running time

of this algorithm, measured in bit operations, is O(n12 + n°(log |f])®), where n

= deg(f).

It has been seen that a univariate polynomial of degree n over a finite

(1)

field with q elements can be factored deterministically in (nq) bit operations,

1
and probabilistically in (n log q)O() bit operations (Berlekamp [7], Cantor-

Zassenhaus [16], and Rabin [56]). For practical purposes, the probabilistic

algorithms are quite satisfactory. However, the existance of a deterministic

method to solve this problem in polynomial time, l.e., (n log q)O(l) bit
operations is still an open question. Gathen [30] dealt with this question and
proved that, for primes of a very special form (for those prime numbers p, for

which all prime factors of p—1 are small), the factoring problem is deterministic

polynomial-time equivawl.ent to the more classical problem of finding primitive

elements.
Given a prime number p, denote by w an irreducible monic polynomial w
€ Zp[y) of degree d, and by f(x) a monic polynomial f(x) € F[x] of degree n,

where F = Zp[y]/(w) = GF(pY). The expected output of the factoring process is

a factorization f;, fy, -+, fs € F[x], where f’s are disitinct irreducible monic

polynomials, and d,, dg, -, ds > 1 such that f = fldl---fsds.

65

Consider R = F[x]/(f) as an ld-dimensional vector space over Zp, with

°

basis {x‘y' mod (w,):0<i<d,0<j< [} C R, and residue class mapping g

— g from F[x] to R.
The main result of Gathen [30] can be stated as follows: “On input f €

GF(pl)[x] of degree d and a primitive element modulo p, the algorithm described

below can be executed with
[{ |
O(((d) "¢ ((d1)>4+ log2p)+S(p—1) (logZp+1 " log p-+(dD). 1og *p)
bit operations for any ¢ > 0, or O(na) bit operations, where S(p—1) is the

greatest prime factor of p—1, and n = max {d, I, logp, S(p—1)}. If { is

reducible, the algorithm returns a nontrivial factor of {.”

The algorithm presents a deterministic polynomial-time reduction of
factoring to the problem of finding primitive elements of special type of prime

numbers as discussed above. It first computes polynomials g; = 1, €9, "~y Bs €

F[x] of degrees less than d such that the vectors formed by their coefficients, g,,
..., g, form a basis of the Zp-vector space B={u€eR: uf = u} C R, the

Berlekamp subalgebra of R. Once this basis is obtained, one proceeds as follows:

Algorithm 3.8. Univariate factorization over a finite field III.
Input: A polynomial f(x) € GF(pl)[z] of degree d.
Output: A nontrivial factor of f.

1. If s = 1, return “f s irreductble” and stop, else set g =

gs- If gcd(f, g) # 1, return this nontrivial factor of f

and stop.

2. For 1 <3< Compute w; € Flz] of degree less than d
q

. e:
as w; = ¢ Imod f, with g = (p—l)/pj 1. Let i be the first

66

value of j such that Y g€ Zp, and set hy = w,.

3. For t=0, ---, ¢—1, compute y, € Flz] of degrees less
e —1
than d such that y, = hlp' mod f. Set m = maz (t:

wn € Zp}.

4. Compute c in the multiplicative group Zp such that cp‘ =
Ym-

5. Compute h, € Flz] of degree less than d such that

ei'm'l

hzzhlpi c'lmodf.

1
6. For0 < v < p,, compute 2z, = aV(D-)/p'hz - 1 € Mi1j.

Return gcd(f, z,) if it is nontrivial, and stop.

The dominating computing times in this algorithm are as follows:
Computing g,, ---, gs requires O((dl)>* + dl log p) operations in R, using fast
matrix arithmetic (see Coopersmith-Winograd [22]). Each of Steps 2, 3, and 5
requires O(log?p) operations in R. Step 4 uses O(log?p S(p—1)) operations in
Z,, and Step 6 ‘requires O(S(p—1)(log p + d'+€}) operations in F for any ¢ > 0.

With fast integer and polynomial arithmetic, the time estimate mentioned earlier

may be derived.

Thus, the factoring problem can be reduced to the problem of finding
primitive elements. Conversely, the reduction of primitive elements to the
factoring problem. (Interested reader is refered to Gathen [30]). Hence, the

claim of Gathen [30] about the equivalence of the two problems is correct.

The problem of factoring polynomials over finite fields of characteristic p
is important. The case of characteristic 2 is particularly important, e.g., in

-algebraic coding theory. Camion [15] has proved the existence of a polynomial-

67

time factoring procedure in GF(2™). He showed that polynomials of degree d

over a finite field GF(2™) can be factored deterministically with O((dm)™)

operations in Zp, with w < 2.4. He has, however, not given the algorithm to do

this factoring.

In this subsection, algorithms for the factorization of multivariate

polynomials with coefficients from a finite field will be discussed. Let f be a

polynomial in F[x,, x5, -+, x| of degree n; in x;, where F = GF(p™).

As it was shown in the previous subsection, Berlekamp’s algorithm (7]
factors univariate polynomials over a finite field with q elements In O(qn3) field
operations, where n is the degree of the polynomial. This execution time 1is
polynomial in both n and q. Soon after this, Berlekamp modified the running
time to be polynomial in the input size, i.e., using log q rather than q, at the
expense of introducing a probabilistic rather than a deterministic method. It

seems natural to ask whether this can be accomplished for multivariate

polynomials over F. Given a bivariate polynomial of total degree n with

coefficients in F, can one find (probabilistically) its factors)in‘ sequential running
time polynomial in n and log q7.

Gathen-Kaltofen [31] have given a polynomial-time factorization
algorithm for bivariate polynomials over a finite field. This algorithm, based on

methods from Kaltofen [39] and [40], has three variants: a probabilistic one with

running time (n log q)o(l), a deterministic one with running time (nq)o(l), and

68

a parallel one with running time O(log’n log q) where n is the degree of the

input polynomials and q is the cardinality of the coefficient field. In the
deterministic case, q can be replaced by log q if one could factor univariate

polynomials over finite fields in deterministic time polynomial in log q. The

parallel variant is a genecralization of the results of univariate factorization in
Gathen [28].

Let F be a field with q elements and characteristic p, and f € F[x, y] be a
bivariate polynomial. f is called “nice” if f(x, 0) € F[x] is square-free, and f is

monic with respect to x. The following algorithm computes an irreducible factor

o

g € F[x, y] of a nice polynomial f:

Algorithm 3.9. Quick factoring.
Input: A nice polynomial f € F[x, y].
Output: An irreducible factor g € F[x, y] of f.

1. Compute an irreducible monic factor h € Flz] of f(z, 0).
If h = fz, 0), then retumn f.

2. Set dy = degy f, dy = degy f, and d = 2dpdy. Set E =
F{t]/(h(t)), and a; = (t mod h(t)) € E. Use the Newton
titerations to compute b € E[y] such that b, y) = 0 mod
vt in By

3. Set s =1/fz(ay, 0) € E, where f;r 1s the partial
dertvative of f with respect to z. This dertvative is not
zero because otherwise a, would be a double zero for f(z,

0), contradicting its squarefreeness.

4. For k=1, a---, d compute ap = aj 1— sj(dk_l, y) €
ETy).

5. Find the minimal 1, deg h < i < dg, for which there exist

69

"oo“‘a“.'.leﬂﬂf"‘hwdcﬂy‘;iSJ'IWGSj(‘,
and b'+zujlr"'=‘0modyd+ for 0<j)<

Compute the corresponding uqg, -+, Y, 1.
6. Retumg:z‘ + Zujz) € Flr, y for0 <y < &

L)

The factoring of the univariate polynomial in Step 1 can be done as in

‘Gathen (28] using d(e) = O(log’e log q) steps, where e is the degree of Ir. Step 3

may be performed in O(dy) operations in E. In Step 4, each a; takes O(dy)

operations in E[y] (to compute mod yk+1). Thus the total time for Step 4 is

d
O(dyx d log'd) operations. In Step 5, compute b2, ..., b Y in O(dyx) operations in

E[y] or O(dx d log'd) operations in E. A system of at most (d+1) dx linear
equations in dy (dy+1) unknowns over F is to be solved. If the Gaussian

elimination method is used, it takes O((dx(dy+1))2(d+1)dx) or O(d%dy)

operations in F. Thus the total time for Step 5 is O(ddy +d%dy log*d log'dy)

or O(n3dyx*) operations in F. Thus the algorithm can be used to factor a

polynomial f of total degree n in O(ndy*) + 0(dx) or O(n”) + 6(n) operations
in F.
The above algorithm only dealt with square-free monic polynomials. But

it can be easily generalized as follows to factor any polynomial f € F[x, y]:

Algorithm 3.10. Bivariate factoring over finite fields I.

Input: A polynomial f € F[x, y].
Output: A nonconstant factor g € F[x, y] of {.

1. Check primitivity: Set dy = degzf, and write f =) ftzt
for 0 < t < dy with f; € Flz]. Compute the content, c

70

= contg(f) = gedfo,]“) € Fly]. If c is constant,
then return c.

2. Check sgquarcfreencss; Compute partial derivatives fg
and fy. If fz = fy = O, then write f = Tf;=" PP, i, j
>0. Setg=)]'-jQ/pz‘;/ and retum g. If fy = 0 and
fy # 0, then interchange the role of z and y and go to
Step 1. Compute the monic g = gcd(f, fr).

3. Monic version of £ Let fy € Fly) be the leading
coefficient of f with respect to z. Set v = fodzﬂz/fo, V)
€ Flz, y). Then v is monic of degree d; with respect to

z.

4. Eztend F: Set dy = degyv, m = maz{dg, dy}, and d =.
2d; dy. If ¢ = |F] > d, set F* = F. Otherunse, choose
a prime number | with m <1< 2m. Choose monic
polynomials w,, ---, wy € F{t) of degree | at random,
and test them for srreducibility. If none 1s srreducsble,
return “failure”. Otherwise choose an irreducible w,,
and set F* = F{1]/(w;).

5. Good evaluation point: Set r = resz(v, vg) € Hy).
Choose c € F* such that r(c) # 0, and set f* = vz,
y—c) € F¥[z, y]. f* is nice.

6. Apply Algoritthm 3.9 to factor f* € F*[z, y] and get g* €
F*[z, y].

7. Set e = degzg®, 9 = fo'3+1 g*(zfy, y+c¢) € F¥[z, 9], 9o
— contz(g,) € F*[yl, 9 = a1/90 € Flz, y], and return g.

To estimate the time complexity, first note that dx < n, dy < n’ d =
2dxdy < 2n°, 1 < 2m < 2n?, and the total degree n* of f* is not more than n?.
Step 1 then requires O(n®) operations and Step 3, O(n*). In Step 2, the gcd can

be computed in O(d’log*d) operations in F sequentially (for parallel time, see

71

Section 3.3.2.), and the p-th root in O(d log q/p) operations in F. The prime
number [can be found deterministically in O(m3/ 1'log’m) bit operations, and w
in O(nlog®n log q) operations in F (Rabin [56]). Steps 5 and 7 both take
O(dyd?) operations. The cost of the algorithm is dominated by the complexity
of Step 6, which is O(n10 + n®log n log q) operations in F*. Each operation in
F* can be simulated by O(llog*l) operations in F, or O(llog*llog’q) bit

operations. Thus the total cost is O(n’log*n log’q (n® + log n log q)) bit

operations.

Once one nontrivial factor is found, the algorithm can be repeatedly

applied to yield a complete factorization of the input polynomial.

The above algorithm can be implemented using parallel computing. Note
that the basic subroutines for the algorithm are univariate factoring procedure
over finite fields, computing univariate gcd’s, and solving systems of linear
equations over a finite field. All these tasks have been shown to be solvable in
parallel with O(log?n) operations in F (respectively O(log’n log q log p) for
factoring), where n is the total degree of the input polynomial, p is characterisitic
of F, and q = pk = |F|. For a complete, factorization, one would lift all
i-rrt,aducible factors of f(x, 0) from Step 1 of Algorithm 3.9 in parallel, using a
quadratic Newton procedure, and then discard duplicate roots. Also, a prime
number [as in Step 4 of Algorithm 3.10 can be found in parallel with O(log®n)
bit operations. The resulting algorithm returns the complete factorization of the
input polynomial in parallel time O(log’n log®(kn) log p + log n log q). The

first summand from Step 1 of Algorithm 3.9, where a univariate polynomial of

72

]

3
degree at most n over a field with not more than pkn elements has to be
factored. In Step 4, each step of the quadratic Newton iteration has to compute

s € E[y] such that s f, (a,, y) = 1 mod y2k. This congruence can be considered

as a system of linear equations over the base field, and solved in parallel time

O(log’n). The second summand comes from the computation of the p-th roots
in Step 2 of Algorithm 3.10.

Other algorithms for the problem of factoring multivariate polynomials

over finite fields are due to Chistov-Grigoryev [19] and Lenstra [46]. Lenstra [46]

has described multivariate polynomial factorization algorithm over finite fields

that is polynomial-time in the degree of the polynomial to be factored. The

algorithm makes use of a new basis reduction algorithm for lattices over the field

F[Y] containing q elements.

If the number of variables equals two, then the algorithm is similar to

Algorithm 3.7 by Lenstra-Lenstra-Lavesz [47]. An outline of the algorithm for

the factorization of f € Fqlx, y] is as follows:

Algorithm 3.11. Bivariate factoring over finite fields II.
Input: A polynomial f € Flx, y]-
Output: The factorization factoring of f.

1. Calculate the resultant R(f, fz) € Fqlyl-

9. Determine a positive nleger u, and an ir"reducible
polynomial F € Fqly] of degree u such that R(f, fr) s

nonzero mod F. The reader is referred to Lensira [46]

for a method to find such u and F.
3. Apply Berlekamp’s algorithm, Algbrithm 3.5, to compute

L -3

73

;Iw irreducible factorisation (A mod F) of (f mod F) in
F ol

4. Since (h mod F)? does not divide (f mod F) sn Fqu[z],
due to the choice of F and u, the complete factorization
of f can be obtained by repeating application of a
proposition given in Lenstra [46], (Proposition 2.15).

Let k be a positive integer, let d,f* denote the degree of f* with respect

to x. Step 1 requires O(dxﬁdyfz) computations. Step 2 requires less than or

equal to dyf (2d,f—1) arithmetic operations in Fq. Step 3 takes O(dfo'cdyfl'H)
arithmetic operations in Fq. Finally, Step 4 requires O(dxfﬂdyfz) operations in

Fq- Hence, the factorization of f can be determined in O(dy f° dy f* + dx 2 p m
+ dy 2 p m), where q = p™M.

For factoring multivariate polynomials with more than two variables, (f

€ Fqlxy, -+ Xx¢] with t > 2), high powers of x, for x5 up to x, are computed

first. This reduces the problem to factoring the polynomial in Fq[x;, X). Let d;f

= n; denote the degree of f in x;. Let f'j € Fq[xl, Xgy Xjgp1r Xjg20 0 xt] be the

K

. K - .
polynomial f modulo ((x3 — X 2), ~ (X; = X X2 '), for 2 <j <t be., T is

K.
with x, ' substituted for x;, for 3 < i < j. By choosing integers ki, -, k¢ such

Il . -
that k; = [1 (2on; — 1) for 3 <j < t, one can ensure that f is square-free. One
i=2

may now compute the irreducible factor h of f of positive degree in x; using the

ad

earlier algorithm. The complete algorithm for factoring f is discussed in details

in Lenstra [46].
There are a number of computational problems in which one wants the

degrees of the factors of a polynomial over a finite field without needing the

74

factors themselves. Factorization of polynomials over the set of rational
numbers Q provides one example. Gunji-Arnon (33) have presented an algorithm

for determining the degrees of the factors of a polynomial over a finite field.
A strongly related problem to the factoring problem is the problem of

&

determining the roots of a polynomial. This is a classical problem with

applications in many branches of engineering. Although many sequential
algorithms have been designed to obtain roots, not many fast parallel algorithms

are known. BenOr-Feig-Kozen-Tiwari [4] have shown that this problem is in NC

¢ all the roots of the polynomial are real. The basic strategy of root finding is to

factor the given polynomial into its approximate linear factors, and hence

approximately determine all its roots. This factorization 18 achieved by

recursively factoring the given polynomial into two approximate factors of

almost equal degree. These factors may be obtained by numerically evaluating a

contour integral and then using the Newton identities.

We now present an outline of the algorithm for simultaneously

determining all roots of a polynomial f(x). One may assume the polynomial to

be square-free and monic. If the polynomial has multiple roots, well-known

methods can be used to reduce the problem to that of determining the roots of a

square free polynomial. If f(x) is not monic, it may be divided by the leading

coefficient and then the algorithm 1is applied.

75

Algorithm 3.12. Roots.

Input: A polynomial { of degree n.

Output: Approximations to the roots of f.

Factor f(z) recursively in the following manner untd all

monic linear factors are found. '

1. Find a point w that seperates the roots of Az) into two
sets L and R, those to the left and to the right of w,
respectively, each containing between 1/4 and 3/4 of all

roots of fz). w should not be too close to any root of

A z).

2. Using a numernically evaluated contour integral and the

Newton identities, determsne approrimatiom; to the two
monic factors fi(z) and fy(z) of f{z) with roots L and R,

respeclively.

The authors [4] have shown that the above algorithm can be
implemented in logo(l)(m + n + v) steps using (m + n + v)O(l) processors on
a PRAM, where m is the length of the integer coefficients in bits, n is the degree

of the polynomial, and v 1s an error tolerance, and each processor in the PRAM

machine is considered capable of perforing a real arithmetic operation in one

step.

4. EVALUATION OF POLYNOMIALS

The evaluation of a polynomial is one of the most widely encountered

operations in computing. The problem of efficient and accurate numerical

evaluation of a polynomial had already received considerable attention in the

76

19050s when first realisation of the computer power came about. This section

explores the major results of these studies.

One of the most important results in this area is due to Valiant-Skyum-

Berkowitz- Rackoff (67) and shows that any polynomial of degree d which can be
computed sequentially in C steps can be computed in parallel in O((log d)(log C

+ log d)) steps. This was an improvement of the earlier result by Hyafil [37]

and Valiant [66].

Let F be a field, and let F[x,, ---, xn] be the ring of polynomials over
indeterminates x,, ---, xn with coefficients from F. A program P over F is a
sequence of instructions v, «— Vi' o vi", i =1, ---, C, where for each value of i,
vi', Vi” are in F U {x;, -~y Xn} U {vy, -*, v;.1}, and o is one of the two ring

operators + or x. P is called a homogeneous program of degree d if

1. If v, — »vi' + Vi” then Vi, and Vi” are homogeneous polynomials of the same

degree.

2. P has no division.

3. fv, « vi' + Vi” then Vi’ and Vi” are homogeneous and the degree of v, is less
than or equal to d.

If a homogeneous program, P, is used to compute the polynomials f;, -,

f,, € F[x,, -+, xn] with Cy4(f;, -+, fm) denotes the minimum number of nonscalar

‘multiplications necessary for this computing, then there exist two sets of
homogeneous polynomials: {Ui |1 <1< I}, where I is n + Cy(f;, - fm); and

{Vi j |11 <i<],1<)< /\}, where) is the number of operations of P. These

two sets satisfy the following:

(.

1. d/3 < deg(U,) <2d/3 for1 <i <L
2. deg(V“)52d/3 forl1 <i<l,1<j<A

<j<l
5. Cd(vi'j) < Cy4((fyy =+ fm) for 1 < i <L1<)<A

The proof of these properties is constructed by induction on L =(f, -~y fm)-

Interested reader is refered to Hyafil [37).

-

{
Let f be a homogeneous polynomial of degree < d in n indeterminants.

By the above result, f =) UjVj, where 1 < j <1 with I < n + Cy(f) and Uj
and V; satisfy properties (1), (2), (4), and (5). The following algorithm

computes f in O(f(l/log 3 —1) log d]) parallel multiplications and in

(1 + lolgog d_l) ([log [C4(f)+n]] + 1)

parallel steps, and it is due to Hyafil [37].

Algorithm 3.13. Multivariate polynomials computation I.
Input: A multivariate homogeneous polynomial f.

QOutput: The computation of f.

Write fas f =) U;Vj, where 1 < j < I as above.
Compute Uj and Vj forl1 <3< I
Multiply U f by Vj'

EE I SR

Sum up.

Applying the induction hypothesis shows that Step 2 can be computed in

78

less than (1/(log 3 — 1)) log (2d/3) parallel multiplicative steps, and log(2d/3)
(log 3 — 1) ([log (C4(D+n)] + 1) parallel steps. All the multiplications in Step
3 can be performed in parallel in one step. Step 4 requires [log 1] < [log (n +

C4(f))] steps. Adding the total number of steps gives the stated complexity of
computing {.
The main result of Hyafil (37] c;n be stated as follows:
A polynomial f of degree < d in n indeterminates which can be computed with
C*(f) multiplications/divisions can be computed with no more than
[(1/[log 3 1]) log d]

parallel multiplicative steps, and

1+ 1oy ol nog((€@V c*n) + n) + 1] + [log d]

total parallel steps.

The proof is direct from the observation that if f;, fa, -+, fq are the d
homogeneous components of f, then Cq4(fy, -y fg) < (d(d—1)/2)’C*(f). To

compute f in parallel, one may proceed as follows:

Algorithm 3.14. Multivariate polynomials computation II.
Input: A multivariate homogeneous polynomial f.

QOutput: The computation of f.

1. Compute each of the d homogeneous components of [fi,

f2’ Tt fd

2. Add these components in parallel.

Step 2 requires [log d]‘ additive steps. Clearly the total complexity 1s

79

given by the expressions stated earlier.

Valiant [66), later proved that an n-variables, degree d polynomial, f,
that can be computed by some homogeneous program x(C, d, n), having C
nonscalar multiplications can bc computed in [1033/2d | parallel nonscalar
multiplications and in [longdj ([log:,,/2 C]l + 1) + [logan] + 1 total parallel

. 09329
steps, and that f has formula size less than 2n(2C) .

If fe »(C,d, n) and d > 2 then { =i§:1 gh; for some g;, h; € »(C, [2/3
d|, n). Valiant’s result [66] is then proved_ by using this fact to carry out
induction on d. Clearly there are log3/2d inductive steps, and each can be
implemented in one parallel nonscalar multiplication and [log,C] parallel
additions. 7(C, 1, n) consists of linear forms and can be computed in [log,n] +

1 nonscalar operations. Similar induction can be used to prove the second result.

Unfortunately, the above two results by Hyafil [37] and Valiant [66]

require C'og d processors. Thus even if C and d are both bounded polynomially
in n, the number of processors required would not be. Valiant-Skyum-Berkowitz-
Rackoff [67] have given an improved construction that achieves the same time

bound but with only (Cd)ﬂ processors, for some constant 3.

Let f be a homogeneous program. Let C and f(vc) denote the size (the
number of instructions) and the polynomial under computation. Assurﬁe that f
is the smallest possible program for computing f(vc). Let v, w be in {v;} U {x;}
U F. Define f(v; w) € F[x,, -+, Xp] by induction on the depth of w as:

f(viw) =1 | if w = v"; ‘

#(_) | if w € F U {x};

80

=f(v; w') + f{v; w'’) ifw - w + w;

=f(w'') f(v; w') itw— w x w'.

The main result of Valiant-Skyum-Berkowitz-Rackoff [67] can be stated
as follows:
Let f be a homogeneous program of size C which computes a polynomial p of

degree d. Then there is a program f' of size O(C®) which computes p such that

the largest depth of any node is O(log C log d).

To prove this result one may proceed in [log d] stages to construct f.

Each stage will add at most log C to the depth of any node.

Algorithm 3.15. Multivariate polynomials computation III.
Input: A multivariate homogeneous polynomial f.

Output: The computation of {.

1. At stage 0, compute all {w) and f{v; w) that have degree

at most 2°=1.

2. At stage i+1, compute all fw) and flv; w) that have

degree in the range (2, 2i+1].

In Step 1, a depth of 2 + [log d] is sufficient since the polynomials are
linear in n indeterminates and C 2 n—1 if f is minimal. In Step 2, f(w) can be
written as f(w) = Y f(t) f(t; w) = 3 f(t") f(t'") f(t; w), where t is such that t €
Va = {t € {vﬂ\l)d(t) > a, t — t' x t", d(t') < a, for some a > O}. Take a =
2!. By definition of V,, each f(t"), f(t'"), and f(t; w) has already been computed.
So f(w) can be computed adding O(iog C) depth. Similarily, if a = d(v) + 2!,

then f(v; w) = T f(v; t) f(t; w) = ¥ £(¢"") f(v; t') (t; w). Each f(v; t') and f(t;

81

w) has already been computed. So f{v; w) can be oompuﬁed adding only O(log
C) depth. The size of the new program is dominated by the time to compute the

f(v; w). There are C? choices of pairs (v, w) and the computation of each f{v;

w) takes O(C) steps. The overall size is, therefore, O(C?).

Even though nonhomogeneous programs can also be used for polynomial

computing, Strassen has shown that forcing f to be homogeneous is not a serious

restriction [64]). His result states that if a polynomial p of degree d is computed
by a nonhomogeneous program f of size c, then there is a homogeneous program
of size O(cd?) which computes d+1 polynomials whose sum is the polynomial p.
If this fact is combined with the main result of Valiant-Skyum-Berkowitz- Rackoff
[67], one gets the following: Let f be a nonhomogeneous program of size C which
computes a polynomial p of degree d, then there is a homogeneous program of
size O((Cd?)°) and depth O(log C + log d) log d) which computes p.

Finally, the following result was given by Valiant-Skyum-Berkowitz-
Rackoff [67] without proof. Let f be a nonhomogeneous program of size C and

degree d!. Then there is a program f' of size O(C?) and depth O(log C log d)

which computes the same polynomial.

1The degree of a program is defined as the maximum degree of any node.

- The degree of a multiplication node is the sum of the degrees of its inputs; the

degree of an addition node is the maximum degree of its inputs. The degree of a

field member is 0; the degree of an indeterminate is 1.

89

Chapter 4
PARALLEL ALGORITHMS
FOR INTEGER ARITHMETICS

In this chapter, we review some of the important results on integer

The GCD algorithm is discussed in

arithmetic operations performed in parallel.
Section 4.1. The parallel evaluation of straight-line code is considered in Section

4.2. Computing powers in parallel is discussed in Section 4.3. Because of the

need for breivity, we are unable to include several other interesting results here.

These include integer addition of two n bit numbers performed in O(log n) time

using n processors as given by Ladner-Fischer [44]; integer multiplication given

by Schonhage-Strassen [62] requiring O(log n) time with (n log log n) processors;
integer division requires O(log n) parallel time with a polynomial number of

processors, Beame-Cook-Hoover [3], and the earlier algorithm by Cook [21]

requiring O((log n)?) time and n processors.

1. THE GREATEST COMMON DIVISOR

If A and B are integers, not both zero, then their greatest common

divisor, GCD(A, B), is the largest integer that evenly divides both A and B.

One of the oldest and best known algorithms to calculate the greatest common

83

divisor of two integers without factoring them was discovered 2250 years ago;

this is “Euclid’s Algorithm”. The algorithm can be stated as follows:

1. Interchange A and B if A < B.

2. If B=20, then the GCD(A, B) = A, and the

algorithm terminates.
\

3. Set B—A mod Band A—B and go to Step 1.

Since one can easily verify that the GCD(A,, A, -, Ap) = GCD(A,,
GCD(A,, -+, Ap)), the Euclidean algorithm can be generalized to calculate the

greatest common divisor of n integers. One may proceed as follows:

Algorithm 4-1. Euclid’s algorithm for integer GCD.
Input: The integers A,, ---, Ap.

Output: The greatest common divisor of A,, :--, Ap.

1. Set d = Ay, 3 = n—1.
2. Ifd# 1 and j > 0, set d = GCD(A]-, d) and j = j—1,
and repeat this step. Otherwise, d = GCD(A,, ---, Ap).

Euclid’s algorithm is an effective sequential algorithm for the GCD
problem. Schonhage [61] has obtainéd‘the best known serial running time of O(n
log®n log log n) for a sequential algorithm. Brent-Kung [12] have.parallelized his
algorithm and achieved a running time of O(n) using n processors arranged in a
systolic array. The parallelism reduces the bit operations, but it still requires n

iterations. The parallel algorithm discussed here is by Kannan-Miller-Rudolph

84 f

[41). It is sublinear and has a running time of O(n log log n/log n). Recently,

Chor-Goldreich [20) have improved this running time by getting rid of the log log
n term.

In the classical Euclidean algorithm, A is replaced with A mod B, or with

A — q B, where q is the quotient when A is divided by B. Kannan-Miller-

Rudolph’s [41] algorithm computes p A — qp B in parallel for p = 0 to n, where
qp is the quotient when pA is divided by B. Since all of these integers are
between 0 and B, then there are at least two that agree on leading log n bits by
Thus their difference is a nonnegative integer with at

the pigeon-hole principle.

most (n—log n) bits. Replacing A by their difference would reduce the problem

size by log n bits during each two iterations, thus requiring only O(n/log n)

iterations.

The following lemmas handle the two problems that may arise in this

situation. The first lemma characterizes the changes in the GCD(A, B) when A

is replaced p A — q B. The second shows the application of the pigeon-hole

principle to reduce the number of bits during an iteration.

Lemma l: If g = GCD(A, B); h = GCD(p A — q B, B) then g divides h and

(h/g) divides p.

Since p is at most n, the only extra factors that are introduced into the
GCD when A is replaced by p A — q B are made up of powers of primes
between 0 and n. At the outset of the algorithm, all prime factors of magnitude

at mosten between A and B can be removed (in O(log n) time), and the entire
algorithm may be run. At the completion of the algorithm, the extra factors
:

85

introduced in the GCD by the replacement can be removed quickly.

lemma 2: If a, b, and n are positive integers and a < b n then there exist

integers p and q not both zero such that |[p| < nb/a, |q <2nand 0 <pa -
qb < a/n.

We want to find p and qp with p between —n and n such that (p A — qp
B) is an integer with at most (n — log n) bits. We thus need p A — qp B to
satisfy 0 < p A — qp B < min (B, 2‘""09 n)). It should be noted that only
((log n) most significant bits of A and B are considered in order to find p and

qp that satisfy these conditions.

The algorithm makes use of the ordinary sequential Euclidean algorithm

once the numbers get small. It also uses the long division which can be

performed in parallel time of O(log2k) where k is the difference between the

number of bits of A and that of B, since only O(k) bit integers are to be dealt

with. The long division is used only when k exceeds (log n)® + 1. The

algorithm can be stated as follows:

Algorithm 4.2. Integer GCD.
Input: Two integers A and B.

Output: The greatest common divisor of A and B.

MAIN PROGRAM

1. If A < B then swap them.
2. Let n and m be the number of bits of A and B

respectively, (i.e., n = #A, m = #B)2.
3. If m < 2 (log n)? then

86

7.
8.
9.

Find C = A (mod B) by long division.
Find the GCIXC, B) using the usual serial Euclidean
algorithm, and return with result.

Remove small common factors from A and B, and call

the product SF.
Repeat Procedure DoAPhase(A, B) until m < 2(log n)2.

Remove small factors from A and from B.
Find C = A (mod B) by usual long division.

10. Run the serial Euclidean algorithm on C, B to get dJ
11. Returm GCD ~ SF» ¢.

PROCEDURE DoAPhase (A, B)

1.
2.
3.

k — n; 8 — 2 (log n)2.

If n—m > (log n)2 + 1 then call LongDivide(A, B), else
a— Alk: k— s+ 1], b — Blk: k— s + 1], T
identily matriz, endsize — #a + #b — (log n)2.

Repeat Procedure DoAnlteration (a, b, T) until (#a +
#b) < endssze.

(A B)'! — T(A B). |

Replace A and B by their absolute values.

If A < B then swap their values.

PROCEDURE LongDivision

¥

~ 2We use #L to denote number of bits in L and L[u : v] to denote the

A

| — #B.

k — #A — #B.

a — most significant min(2k, k+1) bits of A.
b — most significant min(k,) bits of B.

q «— La/b}.

C— A— ¢qB.

IfC <0 then C— C+ 4 B.

integer formed by bits (u, u+1, ---, v) of L.

87

7. A — B.
8. B~ C.

PROCEDURE DoAnlteration (g, b, T)

1. If a/b > n then find a q such that ¢ = la/b), p — 1.

2. else, find a pair (p, g), where |p| < n b/a, and |gl €< 2 n,
such that0 < pa — q b < a/nm.

0 |1
3. T T.
P -9
Fo 1]
4. (a b)' — (a b)t.
P —49

The time complexity of this algorithm may be determined as follows.
The repeat loop of the main program is executed at most n/(log n)? times, since
each iteration removes at least (log n)? bits from the sum of the bits of A and B.
However, each call of PROCEDURE DoAPhase (A, B) in the loop, involves a
call of PROCEDURES LongDivide or DoAnlteration. Thus, it 18 important to
détermine the running time of each of these inner procedures.

lel

PROCEDURE DoAnlteration can be executed in O(log log n) para
time using n’(log n)? processors. This can be shown as follows: Step 1 requires
no more than O(log log n) time because it is a multiplication of two - 2(log n)?-
bits numbers. Finding the q in Step 1 can also be performed in this time bound

by assigning (log n)2 processors to each of the n equations “a — b q”. Step 2

also takes O(log log n) time by using (log n)? processors for each of the n?

equations “p & — q b”.

B @ s

| Steps 3 and 4 can be computed in O(log log n) time

since the entries in the matrices are no graeter than O{((log n)?) bits.

PROCEDURE LongDivide can be executed in O(log n) time using no
more than O(n) processors. To show this, note that Step 1 of this procedure can
easily be computed using a binary fan-in tree and n processors in O(log n) time.
Steps 2 and 3 take constant time to identify the appropriate bits. In S\tep 4, the
division of a 2k-bit number by a k-bit number can be done in O((log k)?) time
with k processors. Step 5 is simply a multiplication of a k-bit number by an n-
bit number and this takes no more than O(log n) parallel time with n processors.

The subtraction is also done within this time bound.

Since PROCEDURE DoAPhase may invoke PROCEDURE
DoAnlteration (no more than (log n) times) or PROCEDURE LongDivide, from
the previous discussion, it follows that it requires O(log n log log n) parallel time
and uses n’(log n)? processors. Each of Steps 2 and 4 of the procedure requires

O(log n) time using n processors. Therefore, each execution of the repeat loop in

the main program takes no more than O(log n log log n) parallel time.

Hence, it can be seen that the GCD of two integers, each represented in
at most n bits, requires paralle}, time O(n log log n/log n) using n?*(log n)?
Processors. This follows immediately from the previous discussion of
DoAnlteration, LongDivide, and DoAPhase provided we can remove the small

common factors in O(n/log n) parallel time. Since the small prime factors of an

n-bit number can be identified in O((log n)?) time, the complexity result follows.

89

2. THE EVALUATION OF A STRAIGHT-LINE CODE

For arithmetic algorithms, the most basic models of computation are
arithmetic circuits, using inputs, constants from the ground fields F or semi-ring

R, and operations +, —, *, /. Straight-line programs are special cases of

arithmetic circuits. An arithmetic circuit is an edge-weighted directed acyclic

graph satisfying the following conditions:

1. Each node is labeled as one of three types: a leaf, a multiplication node, or an

addition node.

2. Leaves are assigned a value in F or R, denoted value(v) for a leaf v.

3. The indegree of a leaf node is zero, a multiplication node is two, and an

addition node is nonzero.

4. All edges are directed away from leaves.

5. There are no edges from multiplication nodes to multiplication nodes.

!

A straight-line program over a commutative semi-ring R=(R, +, x,0,1)
is a sequence of assignment statements of the form a «— b + c or a « b x c,

where b and c are either elements of R or previously assigned variables.

Given a straight-line program, one may obtain its arithmetic circuit by
constructing a node for each statement and for each input variable, and an edge
from node i to node j if j is a statement that uses the variable evaluated at

statement i. All edge weights are set to 1, and nodes corresponding to input

variables are given values assigned to the corresponding variables.

Aritﬁmetic' networks use these arithmetic operations and also Boolean

inputs, constants, and opérations. The interface is given by “sign” gates, which

90

take an arithmetic input a in F or R and produce a Boolean value according to

whether a is zero or not, and by “selection™ gates, which produce the first or
second of their two arithmetic inputs according to the value of the one Boolean
input.

Strassen [65) and Ben-Or (5] have discussed sequential algorithms on the

related model of “algebraic decision trees”. Miller-Ramachandran-Kaltofen [49]

have given a new and efficient parallel algorithm to evaluate a straight line
program. The algorithm evaluates a program over a commutative semi-ring R of
degree d and size n in time O((log n)(log nd)) using M(n) processors, where
M(n) is the number of processors required for multiplying nxn matrices over R

in O(log n) time. This result is a generalization of the result of Valiant-Skyum-

Berkowitz-Rackoff [67] discussed in Chapter 3. That paper considers the

problem of transforming a straight-line program into a program of “shallow”
depth3. Their transformation is performed by a sequential polynomial time
algorithm. As against the off-line algorithms presented in the previous papers,
they show the construction of this “shallow” on-line program with the same size
'/’and time bounds and no preprocessing. Further, the algorithm does not need to
know the degree of the circuit in advance. Let U be an upper triangular matrix
with zero diagonal, representing an arithmetic circuit. An entry Uij of this
matrix U is thg weight on the edge from node v; to node v; if the edge exists; 1t is

zero otherwise. The following three submatrices may be derived from U:

3The depth (or height) of a coputational tree is the length of the longest

path in it and in arithmetic circuits, it represents the time required for parallel

execution of the computation.

91

U(+, +)y = Uy if v, and v, are addition nodes; it is zero otherwise,

U(X, +); = Uy if v is an addition node, it is zero otherwise, and

U(X, X)y = Uy if v, or v, is not an addition node, it is zero otherwise.

algorithm is described below.

Algorithm 4.3. Evaluation of straight-line programs.
Input: An arithmetic circuit.

Output: The evaluation of the arithmetic circuit.

Procedure Phase (U)
Begin

Ue— MM(U)

U — Eval+(U)

U — FEvaly(U)
End.

Procedure MM(U)
U~ UX +)* U+, +) + UX, X)

Procedure Eval | ()

For all addition nodes v; whose children v and vy, both of
which are leaves, do

value (vj) «—) value (v;) * Uij for 1<i<n.

Set v; to a leaf Uij — 0 forie{l, ---, n}.

Procedure Evaly (U)

For all multiplication nodes v; with children v and vy, both

of which are leaves, do
value (vj) « value (v;) * vlaue (v;)

Set v; to a leaf Ulcj — 0 and Ulj « 0.

92

..............

The

For all Uj'» where v; ts a mulliplication node with children

Y4 and v and v s a leaf and v, 15 not do

Fisi

For all pairs (1,) do

— value (v) o U’-‘

Procedure Phase takes as input an arithmetic circuit and returns a new

circuit with the same nodes such that each node has the same value as before.

Repeated application of procedure Phase eventually returns with the value of the
circuit. Procedure MM, Matrix Multiplication, uses one matrix multiplication

and one matrix addition over R. Thus it can be performed in O(log n) time
,‘

using O(n?%%) processors. Figure 4-1 below shows the effect of applying

Procedure MM to an arithmetic circuit. Procedures Eval_+_, plus evaluate, and

Eval,, multiplication evaluate, simply evaluate an addition node or a
multiplication node if all its children have been evaluated. They can be
performed in O(log n) time using only O(n?) processors. To see that Evaly can
be performed with O(nz) processors, note that the number of terms FUi in line
(%) is at most equal to the number of edges. Thus, we simply sort these terms
on their key (I, i) using a randomized parallel bucket sort or a deterministic

comparison-based sorting algorithm, and then sum the terms using parallel list-

ranking. Figure 4-2 shows the effect of applying Evaly to a circuit.

93

0 a ay~b aa+bf~c 0 a b ¢ /000 0 /Oa
00 O By 00 y allo o al [0 0
00 O 0 “lo oo g]loo o 8f|oo
00 0 0 000 o/ \o oo of \oo

Figure 4-1. An arithmetic circuit before and after an

application of procedure MM, [49].

©O © O o

Figure 4-2. An arithmetic circuit before and after an

application of prcoedure Evaly, [49].

94

O O© O© =~

Before we state the main result of Miller-Ramachandran-Kaltofen (48,

the definition of the height of an arithmetic circuit should be given. The height

of a circuit U is the maximum height of any node in U. The height of a node is

defined inductively by:

1. A leaf has height 1.

2. A multiplication node has height equal to the sum of the heights of its
children.

3. If v is an addition node then the height of v equals max(a+1/2, m), where a
equals the maximum height of any child v which is an addition node, and m

equals the maximum of the heights of the children which are either a leaf or a
multiplication node.

If a circuit has height h, then after [log h] applications of procedure
Phase the résulting circuit will contain only leaves and output nodes. Thus, in
one more application of Phase (only Eva,l+ and Evaly are needed) all nodes will
be leaves, i.e., the circuit has been evaluated. With a slightly more careful
analysis the number of applications can be bounded by |log h]+1. Now the

main result of Miller-Ramachandran-Kaltofen can be stated as follows [49]:

If U is an arithmetic circuit of degree d and size n then the value of V
can be computed in time O((log n)(log nd)) using at most M(n) processors. To
prove this, note that procedure Phase need only be applied |log h]+1 times,
where h 1s Fhe height of the circuit U. Now it can be easily shown that h=O(e.
d), where e is the number of plus-plus edges. As a matter of fact ﬁ51/2ed+d,

(see [49] for the proof). Thus, procedure Phase is applied O(log nd) times. Now,

95

each application of Phase requires only (log n) parallel time. The processor-

expensive step is the matrix multiplication in procedure MM, which can be

performed using O(M(n)) processors.

In Figure 4-3, the effect of applying the different procedures to a circuit is
shown. Starting with the circuit (a) and applying procedure MM, one obtains
circuit (b), to which procedure Eval+ may be applied obtaining circuit (c), to

which procedure Eval, may then be applied obtaining circuit (d).

-~ -+)o
pJ 7
113 "‘.L'a —)6
3 (+ T 2 4 4
1 3
X)8
X) R
2 2 2 2
9 (+ +) 10 9 (+ +)10
(a) : (b)
6|5

. Figure 4-3. An arithmetic circuit after successive

application of the procedures: MM, Eval +-’ and Evaly, [49].

" 06

’

Several new related results have appeared since this work. Matrix
multiplication can now be performed using’O(nz'“") processors as shown in
Coppersmith-Winograd [22]. .The ideas in [49] have been extended to more
complex domains by Miller-Teng [50]). Finally, an analysis of the main theorem

has been found that does not use the height metric, Mayr [48].

3. COMPUTING POWERS IN PARALLEL

In this section, the problem of computing a® mod m is parallel, where a,

b, and m are n-bit integers, is considered. This problem arises as a subroutine in

many computational problems, e.g., factoring integers, primality tests, and

'fa,ctoring polynomials over finite fields. The common method of “repeated

squares” does not yield fast parallel computations and, therefore, there has been

a great deal of activity in this area to find better parallel algorithms.

Gathen [29] has presented fast parallel computations for large powers
modulo an element that has only small prime factors. These parallel
computations work for integers and polynomials over small finite fields.
Subsequent to that paper, Fich-Tompa [26] obtained a fast parajdlel
exponentiation algorithm in large finite fields of small characteristic. This lead
to the surprising observation that for certain polynomial computations, Boolean

circuits are exponentially more powerful than arithmetic circuits, Gathen-

Seroussi [32]

Assume that n is an input size parameter, and that a, b, p, e € N such

- 97

— rmimamng,

that p,e <n; a,b< 2" and p>3 is a prime. The following algorithm

computes ¢ € N such that a® = ¢ mod p*, and is due to Gathen [29).

Algorithm 4.4. Integer power modulo a prime power.
Input: Integers a, b, p, ¢ € N such that p,e < n; a, b < 2",

and p > 3 is a prime

Output: ¢ € N such that a® = ¢ mod pe.

1. If a =0, then return ¢ = 0 and stop.
l

Compute |l € N

such that p° and pl+1 do not divide a. Ifl b > e, retum

¢ = 0 and stop. Otherwise replace a by a/pl. Assume
now that a 1s not congruent to 0 moﬂ/;.-.
2. Compute r suchthat a = rmodp, 1< r <p.
e-1
3. Compute s such that s = a(r) = v mod p, 1 <8<

pe.

4. Compute h and u such that = bmodp—-1, 0 < h <

p—1, and u = s" mod p%, 1 < u < pt.
5. Compute the inverse t of s such that st =1 mod p®, 1
<t<ps.

b
6. Compute v and w such that v=atmod p®, w= Y C
'

(v—l)i = wmodp® and 1 < v, w < p®, where 0 < i <
b

e, and C' 1s the combination of b over 1.

t
b

7. Return c=p " uw.

In Step 3, a is an arithmetic curcuit computing ub, aP mod m, aP mod

x", aP mod x" if a has constant term 1, where u € F,b e Nwith 2™l < b < 2"

a and m are in F[x] of degree n are input. | |

98

Let div(n) denote some function such that there exist Boolean circuits of
depth div(n) and size of nC) that compute the division with remainder for n-bit
integers. “Long division” yields the trivial bound div(n) = O(log’n). For P-
uniform circuits, Beam-Cook-Hoover [3] gave the value O(log n) to div(n). By
Reif [57), div(n) = O(log n log log n) for log-space uniform circuits. The

“iterated” product of n n-bit integers can be computed in depth O(div(n)),
Beam-Cook-Hoover (3].

Using the above notation of div(n), Gathen [29] showed that the above

algorithm can be implemented on a Boolean circuit of depth O(log n div(n)) and

size no(l). Moreover, the algorithm works correctly as described. To prove

these two claims, note that one can assume that a is not congruent to 0 mod p,

i.e., | = 0. Also, note that s =r = amod p and v = 1 mod p. For the details

of the proof for the second claim, an interested reader is refered to Gathen [29)].

To prove the depth, a quadratic Newton iteration to compute t in Step 5 is used.
to=1, t =t , — (—t_, +t5,s)mod p?, 1 <t <p?
Each iteration step can be performed in depth O(div(n)). This depth is also

sufficient for the iterated products required for the binomial coefficients and

powers of v—1 in Step 6. The depth required by Step 3 is also O(div(n)).
Therefore, the depth required by Steps 1, 2, 4, 6, and 7 is O(div(n)). The

depths required by Steps 3 and 5 is O(log n div(n)). This proves the first claim.

By exploiting the power of*P-uniformity, one can actually get Boolean

circuits of optimal (up to constant factor) depth, O(log n), Gathen [29].

99

Chapter 5
SUMMARY AND CONCLUSIONS

Algorithms can be generally classified in various ways, such as algebraic
vs. analytic, finite vs. infinite, and exact vs. approximate. Within recent years a
new classification has become important: sequential vs. parallel, brought about
by the development of parallel and pipeline computers. These devices allow
concurrent arithmetic processing, can easily handle large volumes of information,
and often provide hardware facilities for many inherently parallel operations

Ay

found in numerical linear and polynomial algebras.

Recent surveys have given attention to research in areas such as

numerical linear algebra and parallel arithmetic computations. None of these

surveys, however, gave a complete and comprehensive survey on polynomial

computations. It was our intention to provide a thorough and up-to-date

discussion of parallel methods for matrix computations, polynomial operations,

and integer arithmetics all in one survey, along with background information

concerning the computer methods and fundamental techniques.

In the important subject of matrices and linear systems of equations,
several parallel algorithms were presented. Three parallel algorithms to compute

the determinant of a given matrix were discussed, along with two algorithms to

compute the inverse matrix of a given one. In addition, several parallel

algorithms to solve a linear system of equations were introduced. The cases

100

where the coefficient matrix in the system of equation under consideration has a

special structure were took into consideration.

Polynomial computation have several important applications. This topic
was discussed in Chapter 3. Parallel algorithms to compute the polynomial ged
and finding the roots of a polynomial were discussed. Seven parallel algorithms

for polynomial factorization were discussed thoroughly because of the importance

of the subject. In addition, three algorithms for polynomial computation were

presented.

In Chapter 4, the topic of integer arithmetics and parallel algorithms was

discussed briefly. The need for breivity made us unable to include several

interesting results here. However, three important integer problems were

discussed. The integer GCD was discussed and algorithms to compute it were

presented. The evaluation of straight line code was also discussed.

101

[1]

(2]

(3]

[4]

[5]

[6]

[7]

REFERENCES

A. V. Aho, J. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice
Hall, Englewood Cliffs, NJ, 1989.

P. W. Beame, S. A. Cook, and H. J. Hoover, “Log Depth for Division
and Related Problem$”, 25th Annual Symposium on the Foundations of
Computer Science, pp. 1-6, October 1984. SIAM Journal on Computing,

vol. 15, pp. 994-1003, 1986.

M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, “A Fast Parallel
Algorithm for Determining all Roots of a Polynomial with Real Roots”,
SIAM Journal on Computing, vol. 17, No. 6, pp. 1081-1092, December

1988.

M. Ben-Or, “Lower Bounds for Algebraic Computation Trees”,

Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
Boston, MA, pp. 80-86, 1983.

S. Berkowitz, “On Computing the Determinant in Small Parallel

Time Using a Small Number of Processors”, Information Processing

Letters, vol. 18, pp. 147-150, 1984.

E. R. Berlekamp, “Factoring Polynomials Over Finite Fields”, The
Bell System Technical Journal, vol. 46, pp. 1853-1859, October 1967.

102

..........

[8]

[9]

10}

(11)

(12)

[13]

[14]

[15}

[16]

E. R. Berlekamp, “Factoring Polynomials Over Large Finite Fields”,
Mathematics of Computation, vol. 24, No. 111, pp. 713-735, July 1970.

D. Bini, “Parallel Solution of Certain Toeplitz Linear Systems”,
SIAM Journal on Computing, vol. 13, No. 2, pp. 268-276, May 1984.

A. Borodin, J. von zur Gathen, and J. Hopcroft, “Fast Parallel
Matrix and GCD Computations”, Information and Control, vol. 52, pp.

241-256, 1982.

A. Borodin and 1. Munro, The Computational Complexity of
Algebraic and Numeric Problems, Americal Elsevier, New York, NY, 1975.‘

R. P. Brent and H. T. Kung, “Systolic VLSI Arrays for Linear Time
GCD Computation”, VLSI 83, International Federation of Information

Processing, 1983.

W. S. Brown, “On Euclid’s Algorithm and the Computation of Polynomials

Greatest Common Divisor”, Journal of the Association of Computer
p

Machinery, vol. 18, pp. 478-504, 1971.

D. M. Burton, Abstract and Linear Algebra, Addison-Wesley Publications

Company, Inc., Phillipines, 1972.

w

P. Camion, “A Deterministic Algorithm for Factorizing Polynomial

of Fq[x]”, Annals of Discrete Mathematics, vol. 17, pp. 149-157, 1983.

D. G. Cantor and H. Zassenhaus, “A New Algorithm for Factoring
Polynomials Over Finite Fields”, Mathematics of Computation, vol. 36, No.

154, pp. 587-592, April 1981.

103

[17]

[18]

[19]

[20]

[21]

22]

(23]

[24]

S. C. Chen, “Speedup of Iterative Programs in Multiprocessing

Systems”, Dissertation, Department of Computer Science, University of

Illinois, Urbana, IL, 1975.

S. C. Chen and D. J. Kuck, “Time and Parallel Processor Bounds for
Linear Recurence Systems”, IEEE Transactions Computers, pp. 701-717,

1975.

A. L. Chistov and D. Yu Grigoryev, “Polynomial-time Factoring of
Multivariable Polynomials Over a Global Field”, Loms: Preprints E-5-82,

Leningrad, 1982.

B. Chor and O. Goldreich, “An Improved Parallel Algorithm for
Integer GCD”, MIT Laboratory for Computer Science, Cambridge, MA,

April 1985, to appear.

S{A. Cook, “The Classification of Problems Which Have Fast
Parallel Algorithms”, Lecture Notes in Computer Science, vol. 158,

Springer-Verlag, New York, Berlin, Heidelberg, 1987.

D. Coopersmith and S. Winograd, “Matrix Multiplication via
Arithmetic Progressions (Behrend’s Theorem)”, Proceedings of the 19th
Annual ACM Symposium on Theory of Computer Science, ACM, New

York, pp. 1-6, May 1987.

L. Csanky, “Fast Parallel Matrix Inversion Algorithms”, SIAM
Journal on Computing, vol. 5, No. 4, pp. 618-623, December 1976.

L. Csanky, “On Parallel Complexity of Some Computational Problems”,

Ph.D. Dissertation, Computer Science Division, University of California,

Berkley, CA, 1974.

104

28]

[26]

[27]

[28)

29]

[30]

[31]

[32]

[33]

J. H. Davenport and B. M. Trager, “Factorization Over Finitely Generated
Fields", Proceedings of the 1981 ACM Symposium on Symbolic and
Algebraic Computation (P. Wang ed.), pp. 200-205, 1981.

F.-Fich and M. Tompa, “The Parallel Complexity of Exponentiating
Polynomials Over Finite Fields”, Proceedings of the 17th Annual ACM
Symposium on The Theory of Computing, Providence, RI, pp. 38-47, 1985;
Journal of the Association of Computer Machinery, to appear.

M. J. Flynn, “Very High-Speed Computing Systems”, Proceedings IEEE,
vol. 54, pp. 1901-1909, 1966.

J. von zur Gathen, “Parallel Algorithms for Algebraic Problems”, SIAM
Journal on Computing, vol. 13, No. , pp. 802-824, November 1984.

J. von zur Gathen, “Computing Powers in Parallel”, SIAM Journal on

Computing, vol. 16, No. 5, pp. 930-945, October 1987.

J. von zur Gathen, “Factoring Polynomials and Primitive Elements for

Special Primes”, Theoretical Computer Science, vol. 52, pp. 77-89, 1987.

J. von zur Gathen and E. Kaltofen, “Factorization of Multivariate

POlynomials Over Finite Fields”, Mathematics of Computation, vol. 45, No.

171, pp. 251-261, July 1985.

J. von zur Gathen and G. Seroussi, “Boolean Circuits Versus Arithmetic

Circuits”, Proceedings 6th International Conference on Computer Science,

Santiago, Chile, pp. 171-184, 1986.

H. Gunji and D. Arnon, “On Polynomial Factorization Over Finite Fields”,

Mathematics of Computation, vol. 36, No. 153, pp. 281-287, January 1981.

105

[34]

[35]

[36]

[37]

[38]

[39)

[40]

[41]

[42]

D. Heller, “A Determinant Theorem With Applications to Parallel
Algorithms”, SIAM Journal on Numerical Analysis, vol. 11, No. 3, pp. 5589-

568, June 1974.

D. Heller, “A Survey of Parallel Algorithms in Numerical Linear Algebra™,
SIAM Review, vol. 20, No. 4, pp. 740-777, October 1978.

A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell,
New York, 1974.

L. Hyafil, “On the Parallel Evaluation of Multivariate Polynomials”, SIAM
Journal on Computing, vol. 8, No. 2, pp. 120-123, May 1979.

L. Jamieson, D. Gannon, R. Douglass, editors.The Characteristics of

Parallel Algorithms, The MIT Press, Cambridge, MA, 1987.

E. Kaltofen, “A Polynomial-Time Reduction From Bivariate to Univariate

Integral Polynomial Factorization”, Proceedings of the 23rd Symposium on

Foundations of Computer Science, IEEE, pp. 57-64, 1982.

E. Kaltofen, “Polynomial-Time Reduction from Multivariate to Bivariate

and Univariate Integer Polynomial Factorization”, SIAM Journal on

Computing, vol. 15, No. 2, 1985, vol. 14, pp. 469-489, 1984.

R. Kannan, G. Miller, and L. Rudolph, “Sublinear Parallel Algorithm
gers”, SIAM

for Computing the Greatest Common Divisor of Two Inte

Journal on Computing, vol. 16, No. 1, pp. 7-16, February 1987.

D. E. Knuth, The Art of Computer Programming, Seminumerical

Algorithms, vol. 2, second edition, Addison-Wesley, Reading, MA, 1982.

106

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

D. J. Kuck, Structure of Computers and Computations, Wiley, New York,
1978.

R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation”,
Journal of the Association of Computer Machinery, vol. 27, pp. 831-838,

1980.

P. Lancaster and M. Tismenetskt, The Theory of Matrices with

Applications, second edition, Academic Press, Inc., 1985.

A. K. Lenstra, “Factoring Multivariate Polynomials Over Finite Fields”,

Journal of Compuyter and System Sciences, vol. 30, pp. 235-248, 1985.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring Polynomials with
Rational Coefficients”, Mathematische Annalen, vol. 261, pp. 515-534, 1982.

E. W. Mayr, “The Dynamic Tree Expression Problem”, Tech. Report
STAN-CS-87-1156, Stanford University, Department of Computer Science,

May 1987.

G. L. Miller, V. Ramachandran, and E. Kaltofen, ¢“Efficient Parallel

Evaluation of Straight-Line Code and Arithmetic Circuits”, SIAM Journal
on Computing, vol. 17, No. 4, pp. 687-699, 1988.

G. L. Miller and S. H. Teng, “Dynamic Parallel Complexity of
Computational Circuits”, Proceedings of the 19th Annual ACM Symposium

on Theory of Computing, ACM, New York, pp. 254-264, May 1987.

J. Médi, Parallel Algorithms and Matrix Computation, Clarendon Press,

and Oxford University Press, 1988.

107

(52] R. T. Moenck, “On the Efficiency of Algorithms for Polynomial Factoring”,
Mathematics of Computation, vol. 31, No. 137, pp. 235-250, January 1977.

(53] D. R. Musser, “Algorithms for Polynomial Factorization”, Ph.D.Thesis and
TR 134, University of Wisconsin, 1971.

(54) S. E. Orcutt, Jr., “Computer Organization and Algorithms for High-Speed

Computations™, Dissertation, Department of Electrical Engineering,

Stanford University, Stanford, CA, 1974.

(55] M. C. Pease, “Inversion of Matrices by Partitioning”, Ibid., vol. 16, pp. 302-

314, 1969.

(56) M. O. Rabin, “Probabilistic Algorithms in Finite Fields”, SIAM Journal on
Computing, vol. 9, No. 2, pp. 273-280, May 1980.

[57] J. Reif, “Logarithmic Depth Circuits for Algebraic Functions”, SIAM

15, pp. 231-242, 1986.Extended Abstract in

Journal on Computing, vol.

Proceedings 24th Annual IEEE Symposium on the Foundations of

Computer Science, Tucson, AZ, pp. 138-145, 1983.

(58] A. H. Sameh and R. P. Brent, “Solving Triangular Systems on a Parallel
Computer, SIAM Journal on Numerical Analysis, vol. 14, No. 6, 1977.

[59] A. H. Sameh and D.J. Kuck, “Linear System Solvers for Parallel

Computers”, Department of Computer Science, University of Illinois,

Urbana, IL, 1975.

“A Method for Determining Explicitely the Coefficients
Ann. Math. Statist., vol. 13, pp. 424-429,

!

[60] P. A. Samuelson,

of the Characterestic "Equation”,

1942.

108

[61)

[62]

[63]

[64]

[65]

[66)

[67]

A. Schonhage, “Schnelle Berechnung von Kettenbruchententwickiungen®,
Acta Inform., vol. 1, pp. 139-144, 1971.

A. Schonhage and V. Strassen, “Schnelle Multiplikation Grosser Zahlen™,
Computing, vol. 7, pp. 281-292, 1971.

H.S. Stone, “An Efficient Parallel Algorithm for the Solution of a

Tridiagonal Linear System of Equations”, Journal of the Association of

Computer Machinery, vol. 20, pp. 27-38, 1973.

V. Strassén, “Vermeiding von Division”, J. Reine Angew. Math., vol. 264,

pp. 184-202, 1973.

V. Strassen, “The Computational Complexity of Continued Fractions”,

SIAM Journal on Computing, vol. 12, pp. 1-27, 1983.

L. Valiant, “Computing Multivariate Polynomials in Parallel”, Information

Processing Letters, vol. 11, No. 1, pp. 44-45, August 1980.

L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, “Fast Parallel
Computation of Polynomials Using Few Processors”, SIAM Journal on

Computing, vol. 12, No. 4, pp. 641-644, November 1983.

109

VITA

Iyad A. Ajwa was born in Balata Camp, Jordan on April 3, 1959, to Mr.
and Mrs. Abdel-Rahim and Misa'deh Ajwa. He attended public schools in
Jordan and the United Arab Emirates (UAE), graduating from Dubai Secondary
School, Dubai, UAE in 1977. He graduated from the University of Jordan,
Amman, Jordan in June 1981, receiving a B.Sc. degree in Mathematics. Soon
after graduation he began his teaching career as a high school teacher. He
taught Mathematics from 1981 to 1983 in Jordan and the UAE. In 1983, Mr.
Ajwa joined Lehigh University, Bethlehem, Pennsylvania to do an M.S. In
Mathematics which he finished in 1985. Between 1983 and 1987 he worked as a
Teaching Assistant in the Department of Mathematics, Lehigh University,
Bethlehem, Pennsylvania. His teaching was well received and he was awarded
two prizes by Lehigh University in 1986: the “Arthur E. Humphrey Teaching
Assistant Award”, and the “Teaching Assistant of the Year Prize”. .In 1987 he

joined Northampton County Area Community College, Bethlehem, Pennsylvania

as an Adjunct Professor. From January 1988 through June 1990, he was a

recepient of a scholarship from the Arab Student Aid International. He is single

but planning to get married in July 1990. He has three brothers: Yousef, Emad,

and Ziad; and two sisters: Raghdah and Rana.

110

	Lehigh University
	Lehigh Preserve
	1991

	Parallel algorithms for algebraic and numerical problems :
	Iyad A. Ajwa
	Recommended Citation

	tmp.1551882614.pdf.SaJ45

