
Lehigh University
Lehigh Preserve

Theses and Dissertations

1991

Parallel algorithms for algebraic and numerical
problems :
Iyad A. Ajwa
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Ajwa, Iyad A., "Parallel algorithms for algebraic and numerical problems :" (1991). Theses and Dissertations. 5367.
https://preserve.lehigh.edu/etd/5367

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5367?utm_source=preserve.lehigh.edu%2Fetd%2F5367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

,,

, " ...
PARALLEL ALGORITHMS FOR

0

ALGEBRAIC AND NUMERICAL PROBLEMS: A SURVEY

by

IYAD A. AJWA

Thesis

Presented to the Graduate Committee

of Lehigh University

in candidacy for the degree of

Master of Science

in Computer Science

Lehigh U niversi_t.y

1990

r

•

..

~-

.. .,,.. ..

r

. ~

This thesis is accepted in partial fulfillment of the requirements for

"

the degree of Master of Science in Computer Science.

MAY I 4: / fC/'/0
date

~ ..

••
11

\ l

Professor

Professor Donald J ~ Hillman
Computer Science Division Head

•

Professor Law. ence J. Varnerin
CSEE Department Chairperson

r

•
.•

'I

\·

; .

-

\

• ..,JI dJ I

In The Name of Allah, The kost Gracious, The Most Merciful

1 ~ ""··~ . .,'

I

T~is thesis is dedicated with affection and respect to my parents:

Abdel-Rahim

and

Misa'deh

i,· ,,,· •,...,.

-··· 111

/
~ ., ,•

..

r •..

•

....

.... ACKNOWLEDG~ENTS

·•.t''''••'••'•

I would like to· express mf greatest appreciatibn to my thesis advisor

Professor Meghanad Wagh for sharing his experience, consistent support and
.,

encouragement. It is an honor for me to have him as my advisor.

High on my list of acknowledgements for financial support must be the

.

Arab Student Aid International. In addition, I would · like to express my
.\

gratitude to the staff of the Lehigh University Libraries. In particular Mrs.

St~ngel, Gail, Terry the boss, Sherilyn, Jan, Evelyn the chief, Marge, and Carol

the farmer for their continued support.

I am greatly indebted to my friends especially Omar Mohamed,

Mohammad Al-Tuwaim, and Khaldoun Tahboub for their col)tinued support;

Moustafa Yousef (Uncle Abu-Ramie), Ali- Jaber, and Adel Ali for their support

and for guiding me towards such a satisfying career. I owe special thanks _to all

of my brothers in the Muslim Student Association at Lehigh University.

Last, but by no means least, and most importantly, my parents Abdel­

Rahim and Misa'deh to whom I dedicate this work, for their continual love,

support, motivation,· encouragement, understa_nding, patience which knew no
,

. · .~.·

bounds, and their willingness to endure _so much for what seemed so little. I owe

this to the inspiration of my brothers Yousef, Emad, and Ziad, and to my· sisters

Raghdah and Rana. < ,

• lV

• •

"
~.---~- __ , ____ - -· -···- - - --- ~- - -~~- ~- - -- - -~

-/-.--~

..

,,

\

••

lb

\ . ..

•

. ,

Table of Contents

ACKNOWLEDGEMENTS

ABSTRACT

..

1. INTRODU·CTION

1.1. What is a Parallel Algorithm?

1.2. Parallel Architecture Models

1.2.1. Pipeline and Array Processors

1.2.2. SIMD/MIMD Models

1.2.3. Loosely Coupled and Tightly Coupled

1.2.4. Network Configuration

1.3. Characterization of Parallel Algorithms

1.4. Organization of the Thesis

•

.'

2. PARALLEL ALGORITHMS FOR MATRIX COMPUTATION

2.1. Introduction

2.2. Determinants

2.3. Linear Systems

2.3.1. Matrix Inversion

2.3.2. Algorithms for Structured Matrices
•

2.3.2.1. Triangular Systems

2.3.2.2. Tridiagonal Systems

V

' .

•

... ,

\

• lV'

'--'
1

3

3

5

6 . }

7

, ., 12

13

18

20

22

22

23

29, ..

29

33

33

38

,,

~-

. ..
. . ~ "'

r ,.

, . •

.•

.. I

•

2.3.3. General Systems
...

2.4. The Characteristic Polynomial of Matrices

'

40

. 45

3. PARALLEL ALGORITHMS FOR POLYNOMIAL COMPUTATIONS49

3.1. Introduction

3.2. GCD and LCM .
I

3.3. Factoring Polynomials
'

50

57

3.3.1. Factoring Univariate P<:>lynomials 57
~

3.3.2. Factoring Multivariate Polynomials 68

3.4. Evaluation of Polynomials 77

4. PARALLEL ALGORITHMS FOR INTEGER ARITHMETICS 83

4.1. The Greatest Common Divisor

4.2. The Evaluation of a Straight-Line Code

4.3. Computing Powers in Par~llel

5. SUMMARY AND CON_CLUSIONS

References

· Vita

•
VI

·1
' '

\ " ' '

•

. .

\ l

83

90

97

100

102

110

J

.

'

)

. ' -

I

~-

/

ct::<

•

List of Figures
-,;

.

Figure 1-1 Flynn's Classification of Computers

Figure 1-2 SIMD Computer Model

Figure 1-3

Figure 1-4

-Figure 1-5

MIMD Computer Model

Linear Array and Cyclic Configurations

Two-Dirriensional Array and Lattice Mesh

. -

0.

_ A,, Figure·· 1-6 Tree Connection

\

Figure 1-7 Perfect Shuffle

Figure 1-8 A Cube Network of Dimension 3

Figure 4-1 An Arithmetic Circuit Before and After an

Application of procedure MM

Figure 4-2 An Arithmetic Circuit Before and After an ..

Application of procedure Evalx

Figure 4-3 An Arithmetic Circuit After Successive Application

of Procedures: MM, Eval+, and Evalx

•

.. -

Vil

I ... _.,..-~

•. 'l

'- __,_

•

,

,.

8

9

.11 '

15

15

16

17

17

94

94

96

f

\
A

)

. -

I

· Algorithm 2.1

Algorithm 2.2

Algorithm 2.3

Algorithm 2.4

Algorithm 2.5

Algorithm 2.6

Algorithm 2. 7

Algorithm 2.8

Algorithm 2.9

Algorithm 2.10

Algorithm 2.11

Algorithm 2.12

Algorithm 2.13

Algorithm 2.14

Algorithm 3.1

Algorithm 3.2

Algorithm 3.3

Algorithm 3.4

Algorithm 3.5

Algorithm 3.6

Algorithm 3. 7

. ~- .,.,, •,; ···~ •, ·~ .. ~:t

...

l . _,,.

. ,"":"'•'i.

"'· '

'

List of Algorithms

Determinants over·finite· fields of characteristic 0

Determinants over arbitrary· fields

Determinants using fewer processors ·

Triangular matrix inversion

Matrix inversion

Triangular systems solver I
·1

· Triangular systems solver II

Unit diagonal systems solver

Column sweep

Odd-even elimination

Odd-even reduction

Gauss-Jordan elimination I

Gauss-Jordan elimination II

General systems solver

Univariate gcd of two polynomials

Univariate gcd of many polynomials
,, . ,,
"'

Univariate 1cm of many polynomials

Bivariate gcd of two polynomials

Univariate factorization over finite fileds I

Univariate factorization over finite fields II

Univariate factorization over Q

,4.-: ,,··.'co;,,),;, •
•• , 'r ',/ •. -

'' ~,.~,

•••
Vlll

\
J.

--·)-~

.. - .

:;'!;;'•

•

25- ·

27

29

30

32

33

35

35

36

39

40

41

41

44

52

54

55

56

58

62

64

,,

.t /, : ...

/

Algorithm ~.8

Algorithm 3.9

Algorithm 3.10

Algorithm 3.11

Algorithm 3.12

Algorithm 3.13

Algorithm 3.14

Algorithm 3.15

Algorithm 4.1

Algorithm 4.2

Algorithm 4.3

Algorithm 4.4

_;!!':;· ...

..

. .

Univariate factorization over finite fields III

Quick factoring ·-
Bivariate factorization over finite fields I

Bivariate factorization over firi'ite fields II

Roots

Multivariate polynomial computation I

Multivariate polynomial computation II

Multivariate polynomial computation III

Euclid's algorithm for integer GCD

Integer GCD

Evaluation of straight-line programs

Integer power modulo a prime power

_,,

•
IX

' .

,' .

..
"'

... .

66

69

70

·73

76

78

79

81

84

86

92

98

~-

..

I .

·""

\

. '

.,ABSTRACT

The need for high computational throughput has always driven research
~

in algorithm design. The recent advances in tec?-~ology have ma~e parallel

machines a reality within reach of a large portion of scientific and engineering
'

community.·· The parallel algorithms h·ave, therefore, assumed increasing

'
importance in numerical, algebraic, and number theoretic techniques.

This thesis presents a survey of· parallel algorithms suitable for

engineering and other applications requiring high computational throughput. In

particular, we have presented algorithms for integer problems, polynomial

computations, and matrix operations. Polynom-ial computation is important
'\).

because polynomials are often used to represent transcendental functions and

many diverse problems may be modeled through polynomials. We have

··presented algorithms for polynomial evaluation, f.9.r univariate and multivariate
,, '

•
factoring, and for computing greatest common divisor polynomial. . Matrix

representation is used in almost all the engineering systems. Analysis of these

systems then requires capability to manipulate matrices rather quickly. We have

presented algorithms for matrix inversion, solving of linear systems, compu~ing

the characteristic p·olynomials, and determinants. We have also presented

... J

algorithms to deal ,vith structured matrices such as triangular and tridiagonal.

,_ The- integer algorithms deal mainly with· the determination of the greatest

-
common divisor.~ We have also presented general algorithms that convert

1

1

,_ ------)

'. •

·-.
I .

,,.,

...

sequential in-line code to parallel code .

•• •

.,

,

•

\
I/

(!,

. ,· •

. ..

2

,.

,.

' '

..

,.

-·

•

Chapter 1
INTRODUCTION

..

"

The ever increasing need· for improved computational power has forced

.. researchers to search for better computing environment. The recent strides in

integrated circuit technology have made parallel computers a reality. Parallel

computers allow concurrent processing of several parts of the problem thus

' ••

speeding th~ overall solution. Many different parallel machines are now

commercially available. However, the performance and usage .of parallel

computers is constrained by the availability of parallel algorithms. This thesis

surveys the status research in parallel algorithms.

l. WHAT IS A PARALLEL ALGORITHM? "' '

..
An algorithm can be defined in several ways. , For the purposes of this

thesis, it will be defined as a .. solution method. It is the primary ingredient in

solving a computational problem on any computer. A parallel algorithm is a

solution method for a given problem destined to be performed on a parallel

computer.

Despite the admirable development in the computer industry, the

majority of the existing computers have the same basic design principle~

0 .
' .

3 _;,

'

•

.,,.

..
•

-"'--
'

..

d '

..

formulated more than forty years ago: a memory unit, a control unit, and a

processing unit. The control unit -fetches an instruction from the memory unit to

the processing unit. It sends back the · result from the processing unit to the

memory unit. These computers are usually refered to as uniprocessor computers .

They contain only one unit of each kind, and hence only one instruction can be

executed at a time. However, the past twenty five years have wittnessed the

creation of new kinds of computers, namely the parallel computers. A parallel

computer is one that consists of a collection of processing units, or processors,

that cooperate to solve a problem by working simultaneously on different parts

of that problem. The presence of many processors (the number of processors

may reach several millions) significantly reduces the time required to solve the

problem by a uniprocessor computer.

•

A person who is familiar with the computational problems notices that

many of the solutions to these problems are of parallel nature, i.e., they have

independent computations (a set of ·computations is called independent if each

result variable appears in only one computation). This is one of the reasons

which made parallel computing attractive. A second reason is the feasibility of

the cost of parallel computers with latge nµmber of processors. -Finally, parallel

processing or computing makes· it possible to choose a 'parallel computer

architecture that is b(',est suited to solve the problem under consideration.

Algorithms designed to work on uniprocessor computers are called

sequential or serial algorithms, and algorithms designed to use parallel computing

are called parallel algorithms. These are designed to exploit both the parallelism

'

4

!

' \. \.

r

a.

•·' 14,

')

/ _.

. 'lot

·, .

' \

I

• L •· .

'

inherent in the problem and· that available on the computer. Parallel algorithms

depend on a simple yet crucial observation: independent computations may be

executed simultaneously. For example, two n-vectors may be added in ·a single
..

step using n parallel processors. The i-th processor performs the· addition of the.

i-th components of the two vectors. This result is independent of the other

computations. Therefore, it is said that vector addition exhibits inherent
'

parallelism.

There are two basic approaches to the design of fast parallel algorithms. -

One is to start by recognizing the inherent parallelism of a good sequential

algorithm, and to try to parallelize it.

\ ,. ,,
'',i

The second approach is to attempt to

make the parallel time as small as possible, allowing an arbitrary number of

processors. This approach is known as the asymptotic approach.

For a proper understanding of parallel algorithms, one needs to study the
.,,

model of computation underlying the architecture of the parallel computers.

Except for Section 4, the rest of this chapter is dedicated to this purpose.

Section 4 briefly describes the o~ganization of this survey.

\ "

(

'

2. PARALLEL ARCHITECTURE MODELS

In this section, a number of architecture models used in parallel

-computing are discussed. In Subsection 2.2.1., a description of characteristic
, , .

features of parallel and pipeline computers .is given. In 1966, Flynn [27] classified

computers into four types: Single Instruction stream, Single Data stream (SISD);

"

5
,.

'- ' .. , . '. ' -"'
., ..

' '

CJ

r

-

. .

. 'l .- l" . , .

;,

Single Instruction stream, Multiple Data stream (SIMD); Multiple Instruction
(

-· .

stream, Single Data stream (MISD); and Multiple Instruction stream, Multiple

Data stream (MIMD). Only SIMD and MIMD models are of significant

I

importance for this research. They will be discussed in Subsection 2.2.2. Loosely

coupled and tightly coupled methods are explained in Subsection 2.2.3. In order

to exchange data between different processing elements, some means of
J

communication are necessary. Various network· configurations are discussed "1n

Subsection 2.2.4.

2.1. Pipeline and Array Processors

Pipeline and Array processors are dedicated parallel processors that are

very good to solve certain kinds of problems. The idea behind pipeline

computers is essentially that of an assembly line: if the same arithmetic

operation is going to be repeated many times, throughput can be greatly

increased by dividing the operation into a sequence of subtasks and maintaining

a flow of operands in various stages of completion.

Array processors generally incorporate a large number of identical

processing elements connected in a particular topology. These act synchronously

under the control of a.single unit issuing a set of identical instructions. Each of

the processing elements may operate on a word (word-organized s-ystem), or on
,.

single-bit operands · (bit-organized array processors). The speed of any given
. . ·- . ,.

__ algorithm on an, array processor is influenced by the routing network, wl.iicl,. is_
..

discussed in Section 1.2.4.

I

6

,-
•'

..
t

l•

..

.,

I

!

..

. . y •.

\

\

Pipel~ning is used in. many advanced microprocesors in the form of
,

instruction lookahead or for specialized numerical operations .• For ·example, by
.,

partitionning floating point operations into more basic suboperations, an

assembly line structure or pipeline can be set up for repetitive calculations such

as componentwise vector operations and inner products. Successive completed

results leave the pipeline at a rate determined by the memory transfer rate and
ll

the internal stage delay, and not by the total tiine required for all the arithmetic

operations together. This pipeline, sometimes called a vector processor, does not
'
,-

constitute a truly parallel system, · it nevertheless provides a significant

improvement in speed. Pipeline pro~essor ha~ a single CPU but with a limited

amount of parallelism incorporated. Certain parts of the CPU which are

responsible for. seperate functions (fetching operan~s, executing arithmetic

operations, outputting) can be instructed to operate simultaneously.

'

2.2. SIMD /MIMD Models •

In Flynn's classification of computers, shown in Figure 1-1, the term

SISD essentially designates the classical serial machine design. Each of the

others refer to machines with a number of pr<?cessors operating in parallel, to
.

which multiple instruction and/or data streams are directed. · For a discussipn of

the MISD design, the reader is··refered to [2] and [51]. "Multiple Data stream" is

now considered the most appropriate description· for existing parallel machines.

,., .,,. .

7
' I ~·.., . ' • ' •

t .

f "

'

' I

. -

•

/

. ,,
•• -..... I

l . ''

··· SIS: p
. o~---••(_SI_f~~-~o~-•~(S_D_J••~--Q
Ccn::-d Processor C=tum
ur.1:

vr--• I :::._..

c~~:--::
I ·- •• • ·: I •

r;,,-,,;..-it.•--~
"-" '-" I • • t ._, •

u:-' 1:

t - ~ l . :::, .

I Mi"
\ ! ... ,~

{""!)

Processors
(connected via

routeing network)

Processors
(conn~cted via

routeing ne~1ork)

: SO;

I • I C)

; I .
~-=-----7'-~-~-~I--~' r'\ J

Processors
(connected via

routeing network)
'

L--~~
F~ss;bie access re

s.~crec grobol merr.cr1

1igure 1-1. F~ynn's Classification of Computers.

•

-

In the class of SIMD computers, a parallel computer consists of n

identical processors, as shown in Figure 1-2. Each _of the N processors possess a

local memory where both programs and data are stored. -Some systems may also

provide an access from every processor tQ a global memory. All processors are ·

under the control of a single instruction stream issued by a central control unit.

The processors operate synchronously: at each step, all processors execute the

s'

. '
' '

··""· .
'

'1• ,· ...

.. , --··

""' ' .

. .

• /

same inst.ruction, each on a different datum. Both of the instruction and the .
I

datum may be simple or complex. The instruction may includ~ information such

as· which processors should be active or inactive. It is usually desirable for the
~· ' ,.,..

processors to be able to communicate among themselves during the co~putation
0

in order to exchange data or intermediate results. This communication can be

done through a shared memory or via an interconnection network .
. .

--

DATA
STREAM

1

• I,

PROCESSOR
1 r'

I

SHAr1ED MEMORY

OR

INTEHCONNECTION NETVVORK

DA.TA
STREAM

,. 2

' .

DATA
STREAM , N

' .

PRCCESSOR
2 • • •

PnOCESSCR
N

. ..

INSTRUCTION
STREAM

''

CONTROL

• •

Figure 1-2. SIMD Computer Model.

. . .i:·:· : .. ,,,' .

•t . fr
I•

\

.b

.,

.r •

...

•

,.

,,o ' po· ' . ".

• I"

, \ ..

•.

. '
)
I

l

'

The class of shared-memory SIMD computers is also known as the

Parallel Random-Access Machines (PRAM) model. In this class, the N

processors share a common memory in the same way a group of people m~y use

a bulletin board. They use it to read input data, read or write intermediate

.

results, and for writing final results. This class is fairly a powerful model of
IP

computation since it allows all available processors to gain access to the shared
/)

memory simultaneously. The class of interconnection-network SIMD computers

is more powerful than the shared memory class. Here, the memory is distributed
iJ

..
among th~ N processors, and every pair of processors are connected by a two­

way line. At any step during the computation, processor Pi can receive a datum

from processor P j and send another one to processor Pk· (or Pj). This model

allows instantaneous communication between any pair of processors, and several

pairs can communicate simultaneously.

It should be clear from the discussion of the SIMD computers that

numerous problems covering a wide variety of applications can be solved by

parallel algorithms on SIMD computers. Such algorithms are easy to design,

analyze, and implement. The disadvantage of this class of computers is that it

.,

requires that the problems to be solved on them have a certain regular structure.

These are the problems that can be subdivided into a· set of identical

.,

subproblems, all of which can then be solved simultaneously by the same set of

instructions. The computers used to solve those problems that lack the regular

structure required of SIMD model are said ·to belong to the class of MIMD

computers. In this case, the problem may be divided into subproblems that are
I ' . .

not necessarily identical, and still may be solved parallely. The class of MIMD

10

. ,

. '-

. •(.
,

·'

•

O'

-

•

' ,,

I

I

! ,.
I

computers is the most general a.nd most . powerful class among the classes in
I

Flynn's classification.

An MIMD computer has N processors, N ·,treams of instr-uction and ~

streams of data, as shown in Figure 1-3. Each processor possesses its own

control unit, local memory, and arithmetic and logic unit.

DATA
STREArv1

1

PROCESSOR
1

,.

SHARED MEMORY

OR

INTERCONNECTIC1.N NET'-... /CRK

DATA
STREAf\i1

' ..

PRCCESSOR
" 2

• • •

DATA
STREAM

N

. '~

PROCESSOR
N

••

INSTRU.CTION
STREAM

1

INSTRUCTION
STREA~"1

2

INSTRUCTION
STREAM

N

CONTROL
1

.._ __ __, k,

•· ..

Figure 1-3. MIMD Computer Model .

\
~ , l°}. I •

CONTROL
N

......

. I

\

I
I

The· processors operate asynchronously, i.e., each processor has the

poteRtial to execute different programs on different data while solving different

subproblems of a single problem. This is possible because each processor

operates under the control of an instruction issued by its own control unit. In
'

the class of MIMD computers, the communication between the processors is

performed through either a shared memory or an interconnection network, . as

with the SIMD computers. ••

The design, evaluation, and implementation of algorithms on MIMD
t

computers considerably •
18 difficult

'
because the processors operate

asynchronously. In most MIMD computers, each processor has access to a

global memory which may reduce processor communication delay.

2.3. Loosely Coupled and Tightly Coupled Machines

As it was .. mentioned in the previous subsection, the communication

between the processors of an MIMD computer is performed either through a

shared memory or an interconnection network. MIMD computers with a shared

memory are called tightly coupled machines (or multiprocessors) while those with

an interconnection ('-:
network are called loosely cou pied machines (or

multicomputers).

In the basic model of tightly coupled_ machines, all processors are allowed

to gain access to the shared memory simultaneously if the memory locations they
. ·, ,.-- -·

· are trying to write into· or read from are different. However, two or more

processors executing an asynchronous algorithm may wish to gain access to the

12

._. -:;
••

I

'

.I•.>'-,·',• . . ,! ''

•

f

' \

, ' .

...

I

I

same memory location. There are four models of this concurrent memory access:
~ I

1. No multiple-reading or writing. EREW (Exclusive-Read, Exclusive-Wri~e).

2 M l . l d ,t ~ • l · · . u tip e-rea , no mult1p e-wr1t1ng.

Write).

3. Multiple-write,

Write) .

•

no multiple-read.

CREW (Concurrent-Read, Exclusive-

.
ERCW (Exclusive-Read, Concurrent-

4. Multiple.:.write, multiple-read. CRCW (Concurrent-Read, Concurrent-Write).

Multiple-read access poses no problem, but multiple-write accesses do.

Several policies have been proposed to resolve ·the write conflicts [2].

Loosely coupled machines are sometimes referred to as distributed

systems. The distinction is usually based on the physical distance seperating the

processors. If all processors are in close proximity of one another, then they are

loosely coupled systems; otherwise they are distributed systems. In these

systems, the number of data exchanges among them is significantly more

important than the number pf computational steps performed by any of them.

2.4. Network Configurations

In order to exchange data between different processors, some means. of

communication is necess)Y· This may be effected by a r~mting network.

Alignment of data with elements is carried out in parallel, to the extend that the

algorithm and the nature of the routing network permit. In practice, many

particular features of program and algorithm design arise out of limitations

imposed by the network. Fortunately, in most applications a small subset of all

•

13

..

~. ,,

•. ,•. ;, .'·,.' ' . ,·',-1'"'1 <,..;'f ,r' ,·

"

....

' . •

pairwise connections is usually sufficient to.· obtain a good performance. . The ..
~-

most popular· of these networks are outlined in what follows, There are several

other networks beside the ones to be described. The decision regarding which of
·,

these to use _depends largely on the application, find in particular, on such factors

as the kinds of computations to be performed, the desired speed of execution,

and the number of processors available.

As it can be seen from this section, each network provides a different

trade-off of the hardware complexity (characterized by number of links) and

communication speed (characterized by the maximum distance between two

processors in the network).

Linear Array and Cyclic Configurations, [2] & [51]:

The N processors Pi, i = 0, 1, · · ·, N -1, are connected to form a one­

dimensional array, as shown in Figure 1-4. Any processor Pj can directly access

data from its adjacent neighbours PJ-l' Pj+i · In practice, and for additional

flexibility, the first and the last processors are also connected to provide a ring

configuration. There are N -1 links in this network and the maximum distance

between diametrically opposite processors is N /2.

Two-dimensional Array and Lattice Mesh, [2] & [51]:

'

A two-dimensional a~ray network is obtained by arr'anging the N
' .

processors into an ~Nx~N array, as shown in Figure 1-5(a). A two-way
'

communication line links P(i, j): to its neighbours P(i+l, j), P(i-1, j), P(i, j+l),

14
1.'' ~-/.:.· ·.~"'>·:·f ····~ •·. : '·,., •• ,,,, i ·,: I' / ' ,· • ·' ' ' ~ • ~ ·, ' .'1 •

. .

. ,t

-< ' ,,

..

,

• . .

and P{i,j.:....1). This network is als.~ known'as the mesh. If the processors at the

edges are conne~ted cyclically; one gets a two-dimensional lattice of Figure 1-
..

5(b). There are N -1 li,nks in this network and the maximum distance between

diametrically opposite processors is N /2.

I p1 I I

0

0 P(0.0)

1 P(1,0)

2 ?(2.0)

3 ?(3,0)

?2 P3 PS

I
I

I
P ·.·c· '.:-- '.

P,
'

'\

h.
' I I I I ?. I I P5 I I I _,0--_...,.

Figure 1-4. Linear Array and Cyclic Configurations .

1 2

P(0.1) ?(0.2)

P(1, 1) =>(, .2)

:

?(2. 1) ::,(2.2)

•

P{3.1) ::icJ.2)

(a)

3

P(0.3)

........

P(1.3)

P(2.3)

?(3,3)

I
I
I
I
I ' .

' ~ . \
\

..

(b)

Figure 1-5. Two-dimensional Array and Lattice Mesh.

.. 15 ' .,
.L

~. :··

\

,·

P.,

I

I

~ -,,,
/ .,

..

•

..

~ .. I

)

I
!

n

I ..

I~ t ,,

·a

Tree Connection, [2] & [51]:

''

In this network, the processors form a complete binary tree. It has d

levels, numbered O to d-1, and N=2d-1 nodes each of which is a processor .

•
Figure 1-6 shows a tree of 4 levels. One can see that in this configuration, eac4

processor at level i is connected to its parent at level i + 1 and its children at level

• i-1 by a· bidirectional links. There are N -1 links in this network and the .

maximum distance between ·diametrically opposite processors is N /2.

ROOT LEVEL 3

LEVEL 2

LEVEL 1

LEAVES P8 P,2 P,3 ~ . , 4 LEVEL 0

I Figure 1-6. Tree Connection.

Perfect Shuffle, [2] & [51]:

In this topology, the number of processors N = 2m for some integer m.
' ..

Figure 1-7 shows a perfect shuffle interconnection.
I

In this network,

unidirectional shuffle links {solid
.

processor Pj if
•
J=

,, '~ ,..•,.. , .. .,·-

lines •
Ill

2i

the ,,,. figure) go from processor Pi to

f<;>r O $ i $ N/2-1,

2i + .1 ~ N for N/2 ~ i ~ N-1.

16

•

•

. ,

....
' '

•

•

Additionally, bidirectional exchange links (dotted lines in the figure) link every

even-numbered processor to its successor. There are N -1 links in this network

and the maxim um distance between diametrically opposite processors is N /2.

. l I ' .
• P1 p2 P3 P4 P5 p6 -

..,_ ___ ~--- ---
•• I T

• Figure 1-7. Perfect Shuffle .

Cube (Hypercube) Networks, [2] & [51]:

In this very popular network also, the number of processors is N = 2d

where d is refered to as the degree of the cube. Two processors are connected

here if and only if their binary representations differ in exactly one position. The

3-dimensional cube is shown in Figure 1-8. The processor indices are given in

binary notation for simplicity. Parallel computers with hypercube topology of up

. to d = 10 are currently available commercially as integral parts of MIMD

systems; higher dimensions will no doubt appear soon. There are N -1 links in

this network and the maximum distance between diametrically opposite

processors is N /2.
011 111

001
110

000 100

..

Figure 1-8. A Cube Network of dimension 3.

17

!

I .,

r
I

~-

tr ..

'· '

3. CHARACTERIZATION OF PARALLEL ALGORITH~

Every parallel algorithm needs to be evaluated to its applicability: how . .J

niuch time and how many resources does it need, are thes~ requirements minimal

or worst case, and can the algorithm be restructured to use fewer resources and

still have respectable running time. The following three criteria are the subject
..

of this section: running time, number of processors, and the cost estimate.

Running time:
..

The running time is defined as the worst case total time taken by the

algorithm to solve a problem on a parallel computer. Running time is _the most

important measure in evaluating a parallel algorithm. After all, higher

computing speed is the main motivation for parallel computing. It is naturally

estimated by counting the number of steps executed by the algorithm in the

worst case. Two kinds of steps are usually considered in estimating the running

time: computational and routing steps. The former is an arithmetic or logic ·

operation performed on a datum within a processor. In the latter, a datum

·travels from one processor to another via shared memory or through the

communication netwo'rk.

:._...,.._,

Almost all existing problems have well-known lower bounds on the

number of steps required to solve them in the worst case. If an algorithm

executes a number of steps equal to the lower bound then it is called optimal (it

is the fastest possible algorithm for the problem). The optimal algori~hm is said

to establish an upper bound on the number of steps required to solve that"

'· 18

.
,',
I .

,/

7

J

-

\

•

\>roblem in the worst case. To determine the efficiency of a new algorithm, its

running time is compared to the lower bound (to determine if it is the fastest

. .

algorithm for the problem) and to the upper bound (to compare it with other

existing algorithms for the same problem). "Big 0" notation is used for the

upper bou°'d. It is defined as follows: a function g(n) is said to be of order at

most f(n), denoted by O(f(n)) if there are positive constants c and n0 such that

g(n) ~ cf(n) for all n > n0 • :1 ..

Another terminology used in evaluating a parallel algorithm is the

speedup it produces. If T 5 denotes the runnirig time of the fastest known

sequential algorithm, and T p denotes the running time of a parallel algorithm

using P ptocessors, then the speedup, defined as Sp = T 5 /Tp, measures the

improvement in solution time using parallelism. Clearly, the larger the speedup,

the better the parallel algorithm. A simple argument shows that Sp < P. The

goal· is to construct algorithms exhibiting linear (in P) speedup and hence

utilizing t_he processors effeciently. However, linear speedup is not always " ...

possible. There are certain computations for which the maximal speedup is

Sp < d for a constant d independent of P, and such a computation clearly makes

poor use of parallelism. For many important problems in linear algebra the best

speedup is Sp = c P /(log P) - o(l), which is acceptable though less than linear.

Number of processors:

The second most important criterion in evaluating a parallel algorithm is

the number of processors it requires to· solve a problem. Due to the high cost of

J'

. ·r

. ' '

, I

,,

'.

..

• •

purchasing, maintaining, and running computers, it is preferred ·to keep the

number of processors low. Therefore, the larger the number of processors an

algorithm uses, the less desirable it becomes.
t

Cost:
\,

One can intuitively see that the high speed and the low number of

processors are conflicting requirements. Depending upon the application, one has.

to weigh one against the other. However, most commonly, the cost of a parallel

algorithm is defined as the product of the parallel running time and the number

of processors used. It is the number of steps executed· collectively by all

processors in solving a problem in the worst case. Another terminology related

to the cost is the efficiency of a parallel algorithm. It is defined as Ep = Sp / P

where P is the number of processors used. Efficiency attempts to measure how

well the processing power of the unit is being used. Usually Ep < 1; otherwise a

faster sequential algorithm can be obtained from the parallel ones. In the case

Ep = 1, it becomes unnecessary to choose the number of processors in order to

maximize this function.

4. ORGANIZATION OF THE THESIS

The remainder of this thesis is organized ill three chapters. Each chapter

is devoted to the study of parallel algorithms for a fundamental computational

problem area. The imortant subject of matrix computation~ and parallel

20

"

" -~ .~.

, ..

,. - --~ . .,,

•

...
I

I

I
I

0

algorithm·s is considered in Chap_ter 2. The essential algebraic topic of

polynomials is discussed in Ohapter 3. Finally, arithmetic computations are

,'

consider·ed in Chapter 4.

II . This thesis is intended to provide a more complete and up-to-date survey

of parallel algorithms for linear and algebraic problems. Original material from ,

the papers and books surveyed has been included. to create a unified treatment .

...

•.

'• ~ • 0 I .> '• •

...
1 ,,

.-

...

;

' .

-
(

I •.

Chapter 2

PARALLEL ALGORITHMS
FOR MATRIX COMPUTATIONS
..

0

1. INTRODUCTION

Numerical problems •
1n

'
'

•

Linear algebra such

..

as calculation of

determinants, matrix inversion, solutions of linear systems of equations, and

eigenvalue expressions are of fundamental importance in scientific computing.

This basic fact coupled with the onset of parallel architectures has implied a

'
renewed interest in matrix · calculations. In the past two decades, parallel

algorithms for matrix computations have received ~trong emphasis from

researchers in parallel computing.

. .
This chapter surveys the parallel techniques for linear algebraic problems.

"-~

Parallel algorithms to compute the determinant of a square matrix are discussed

in Section 2. Section 3 describes parallel algorithms for finding the inverse of a

•'

square matrix. Parallel solutions to linear systems are related to matrix

inversion and are also discussed in Section 3. These systems include the

triangular, tridiagonal, and general dense systems. Finally, in Section 4, the

problem of computing the characteristic polynomial of a square matrix· is

introduced.

22

' ' ' ~ 'I... " '· ,. ·:: • ' •, :! .• , .••

' :, .

., ''','": ~~.1 '".,{·.

-~

•

..

'·

..

2. DETERMINANTS
. .

In this section, three parallel algorithms to ·compute the determinant of a
'-·

square matrix are discussed. The concept of the determinant of a matrix is
0

important in matrix theory.' Aside from their effectiveness as a computational

tool, determinants are important as a theoretical tool. For example,

determinants provide a simple criterion for nonsingularity; a nonzero

determinant. Determinants are used to derive conditions for the existence and

---~-L.,
uniqueness of solutions for systems of linear equations and are therefore very

important in system theory. As a matter of fact; the notion of determinants has
. ~

its origin in solving linear systems and today, most stability criteria in linear

system theory involve use of determinants.

There are several equivalent ways to define the determinant of a matrix.

The determinant is the function that maps square matrices into scalars. Let F

be a field. Let Mn(F) denote the set of all square matrices of order n over F.

The determinant is defined by the mapping det : M0 (F) -+ F such that for each
......

A= (aij) E M0 (F), det(A) = t (sgn u) alu(l) a2u(2) · · · anu(n)' where the

summation extends over all permutations u of { 1, 2, · · ·, n}. The functional

value det(A) is called the determinant of the matrix A = (au)· Thus the .

· determinant is a sum of n! terms where every row and eve,ry column is

represented exactly once in each term of the sum.

Determinants satisfy several properties. Studying these properties leads

to quicker means of computing ·.the determinants.

these properties.

23

\

Following is a su~mary of -

;

..

..

0

•

•

\

\.

\

' I

t . .· .
(P

1
) If At is the transpose of a matrix A, then det(A t) = det(A).

(P
2

) If A is a matrix with two identical rows (columns), then det(A) = 0.

(P
3

) If a row (column) of a matrix A consists entirely of .zeros, then
..

det(J\) = 0.

(P
4

) If the matrix B is obtained from the matrix A by interchanging two

rows (columns), then det(B) = -det(A).

(P
5

) If the matrix B is obtained from a matrix A by adding a scalar

multiple of one row (column) t_o another row (column), then det(B)

= det(A).

(P
6

) If the rows (columns) of a matrix A are linearly independent, then

det(A) = 0.

(P
7

) If A is a traingular matrix (i.e., every element above or every element

below the main diagonal is 0), then det(A) is the product of the

elements on the main diagonal.

(P
8

) For two matrices A and B, det(AB) :::::; det(A) det(B).

(P
9

) A matrix A is nonsingular if and only if det(A) -# 0.

(P
10

) If A is a nonsingular matrix, then det(Ar1 = (det(A)r1
.

Computing the determinant has all along been thought .of as only a

sequential algorithm and several sequential algorithms to compute the

determinant are available. Amongst these, the most popular technique is the

Gauss's method. When the operation described in (P 5) is applied several times,

the evaluation of the determinant can be reduced to that of a triangular matrix.

Application of (P
7

) then gives the determillant. This is the essence of Gauss's

method. Another procedure that is effective for the purpose of evaluation of

24

---""

'·
',

,,

•

I '

determinants consists of expressing a determ.inant in terms of those of lower

order .. This is. in contrast to the method of Gauss. This meth_od requires that

.
r one be familiar with the notion of a cofactor. Given a matrix A = (au), the

.cofactor of the element au is the scalar cof aij = (-l)Udet(Au), where Au is the

matrix obtained from A by deleting its i-th row and j-th column. The matrix Au

is sometimes called the minor of aij in A. The determinant can be written as

n
follows: det(A) = .E aij cof aij for i = 1, 2, · ··, n.

J=l

The adjoint of a matrix A can be defined as: (adj(A))ij =

(-l)i+jdet(Aji). It follows that if det(A) -=f. 0 then \,adj(A)) * A = A* (adj(A))

" = I * det(A), and adj(A) is unique.

A matrix A of order nxm is called Toeplitz if each diagonal has a value

to which all the elements on that diagonal are equal.

In 1974, Csanky [24] gave the first parallel algorithm for fast determinant

computation. Let A be a square matrix of order n. Let Dt denote an order t

determinant, and let Dn be the determinant to be computed. Define :i:k =

Dn-k/Dn-k+l' where 1 ~ k ::; n-1 and Dn-k is a properly chosen minor ·of

Dn-k+i · Since IT xk = D1/Dn then Dn . D1/Il xk. The following algorithm

computes the determinant Dn:

Algorithm 2.1. Determinants over fields of characteristic 0.

Input: A .square matrix, A, of order n.

Output: The determinant, D0 , of A.

1. Compute xk for 1 ~ k ~ n-l in parallel steps by solving

the corresponding systems of equations.

25

·1\ 1 ' .

I,.

•,f< ,_ .. - - • --, • ..,- --·

''. '1
r~,:t ~ ,,~:~f"""·-a-l .. ~

- -- - - .. ' s: ·>t

..

I

r
•

. .

. ,j_

2. Compute the product • IT~ ' ;;,,. 1 < k < n-1 - -
,.

multiplying the xk 's.

3. Divide the product of Step 2 by D1•

.
•

Denote by T(n) the parallel arithmetic complexity of computing det{A)

(The parallel complexity of the computation is the least number of steps

necessary to produce the result). It is easy to show that 2 log n :5 T(n). To

show that T{n) :5 log2n: Step 1 req~ires O{log2n) steps. It will be shown later in

the chapter that the solution to a system of n equations can be computed in

O(log2n)). Step 2 can be computed in at most log n + 0(1) additional steps.

Thus the determinant of a matrix can be computed ,in O(log2n) number of steps.

This method seems to require a division by n!, and therefore applies to

fields of characteristic zero, but not to finite fields. Some applications such as

factoring polynomials require an algorithm that works over arbitrary fields, in

particular finite fields. Based on the general parallelization result by Valiant­

Skyum-Berkowitz-Rackoff [67], Borodin-Gathen-Hopcroft [10] presented another

algorithm for computing theb determinant that works over arbitrary fields. The

Borodin-Gathen-Hopcroft algorithm is asymptotic. It starts with the ordinary

Gaussian elimination method performed on the matrix A of order n, with pivots
,. - -

..-r-;'· '

chosen on the diagonal. This method computes the determinant of the matrix A

sequentially in O(n3) steps of additions, multiplications, subtractions, and

divisions. The algorithm consists of two steps which apply to any sequential

computation to compute a polynomial f E F[a1, a 2 , ···,am] of degree n in time t.

The algorithm may be stated as follows. A full description of the two steps

/

26

\

\

<·

'·, .

r
. I

\·

·'

..
'

. . .,

follows the statement of the algorithm.

Algorithm 2.2. Determinants over arbitrary fields.

Input: A square matrix, A, of order n.

Output: The determinant of A.

1. Eliminate all divisions from the process.

2. Apply the general parallelization result by Valiant-Skyum-
e,

Berkowitz-Rackoff [67] to parallelize the division-free

algorithm.

In the first step, the division can be avoided using Strassen 's technique

[64]. For each division g/h, we find x1, x2 , · · ·, Xm E F such that h{x1 , ~' · · ·,

xm) -=/= 0. Since every rational function can be written as b/c where b, c E F[a1,

a 2 , · · ·, am] and deg(b), deg(c) ·~ t2t, then the product d of all such

denominators has degree less than or equal to t2t. For every subset P C F with

0. There is a Monte Carlo algorithm to find such an x. After x1 , x2 , · · ·, Xm are

found, we shift the inputs by the negative of the ·· xj"s, and consider new

indeterm·inates b. = a- - X·. Replacing every occurence of £i. by b. - x., each
I I I I I Z

division in the ~lgorithm becomes a division by a rational function in b1 , b2 , · · ·,

)
bm which has .a nonzero value for b1 = b2 = · · · = bm = 0. These rational

functions are invertible in the ring R = F[b1, b2 , · · ·, hm], and f = f(b1 + x1,

.. ·, bm + Xm) E R is a p·olynomial of degree n. Computing only the

homogeneous part for each operation, one replaces every division by a ·

-
multiplication in R. This yields a-division-free sequential computation in R for f

27
, ...

\

.·•

.. \ . •
'./'·, ,, ..

t}

with time O(tn 2). Back substituting, one gets an O(tn2)-algorithm in F(a1, a 2 ,

· · ·, am] that computes f without division. For the Gaussian elimination metJiod

we shift the matrix A by the negative of the identity matrix, and work_ on the

new matrix B = A - I. Applying step 1 to the Gaussian elimination method

yields a division-free straight-line algorithm that computes det(A) in time O(n
5
).

The second step is to apply the Valiant-Skyum-Ber~owitz-Rackoff [67]

parallelization technique to obtain a parallel algorithm with parallel time

~

O(log2(tn)) using a polynomial (in- t and·n) number of processors. Applying this
.

step to the ·Gaussian elimination method gives a parallel algorithm for the
1r

determinant in time O(log2n) using O(n15) processors. This algorithm works

over finite fields, unlike Csanky's algorithm, Algorithm 2.1 above, which is useful

only in fields of characteristic zero.. The proof to this claim is as follows: Let F

be a finite field, say -of p elements. Take u E F[z], deg(u) = l such that pl ~

2mt2t. Consider the extension field G = F[z]/(u) of F. This field G has 2mt2t

elements. Apply a Monte Carlo procedure to find an appropriate x E Gm. Each

operation in G needs 0(12) operations in F. Th us the claim can be easily

verified.

The above algorithm has several drawbacks. First it is not explicit.

Secondly, the number of processors required is O(n15). The reduction of this

number was discussed by Berkowitz [6] in 1984. His new algorithm was based on

Samuelson's ·method [60] which uses no divisio.ns. This method 'relates the
,,

adjoint and the determinant of a matrix A in a vefy efficient way. Later in

Section 2.4, the theorem and the parallel algorithm to find the characteristic

polynomial of the matrix A will be discussed. The algorithm may be stated as

28
'· ' ' · •• ··_;, • • I> '

•

, ..

"~

. ',(

..

. '

,'

follows:

. '

\ •' •1 .

•

Algorithm 2.3. Determinants using fewer processors.

, Input: A square matrix, A, of order n.

Output: The determinant of A.

1. Compute the characterestic polynomial p(,\) of A.

2. Compute .. p(O) to find the required detenninant of the

matrix A.
•

This algorithm computes the determinant in time O(log2n) using O(n3)

processors as it will be shown in Section 2.4.

3. LINEAR SYSTEMS

Solutions to general systems of equations require the study of matrix

• • 1nvers1on and the study of solutions to more specific systems such as the

triangular and tridiagonal systems. Subsection 3.1 studies the matrix inversion.
\'~,

The triangular systems and the tridiagonal systems are discussed in Subsections

3.2.1 and 3.2.2 respectively. In Subsection 3.3, the general dense systems are

examined. ,.

3.1 Matrix Inversion

~

One method to invert triangular matrices was presented by Heller [34] in

1974. The algorithm requires the factorization of the matrix A, which is

29

·)
',f', ', '-< .' " . . ~

J.

• i»

'

....... ~, ,, '

. 4

. ,,
I

assumed to be of order nxn and a lower triangular matrix (i.e. all entries above

the main diago~al are zeros). If A is not triangular, one may decompose it using

efficient parallel L UD algorithms and then factorize it further as in this section.

Let the matrix A be written as:

• 0
A=

where the submatrices A11 and A21 are lower triangular, and A12 is n/2xn/2.

The algorithm given below can be used to compute A-1 which is written as

to calculate A- 1, first (A11)-1 and (A21)-1 are computed in parallel. Two matrix

multiplicat_ions then give B12 . The algorithm may be stated formally as:

....
Algorithm 2.4. Triangular matrix inversion.

Input: A square lower triangular matrix, A, of order n.

Output: The inverse matrix of A, A-1 .

1. Compute -!311 = (A11)-1 and B21 = (A21)-1 in parallel.
:..1 2. Compute Y = (A21) x A12·

3. Compute B12 = Y x (A11)-1 •

• One can easily see that by using this parallel algorithm, the time to ·

compute A-1 will be less than or equal to the time to compute the inverse of an

30

!,. .

d

•

\I '

n/2xn/2 matrix + the time for two matrix multiplications. Denoting by T(n)

the parallel arithmetic complexity of inverting order n ·matrices, one has T{n) ~

T{n/2) + f2 log n 1, giving T(n) = O(log2n). Note, however, that to get the

n/2xn/2 matrix multiplication time down to flog n l, one has to use n3 /8

processors. This is easily explained: there are n3 /8 multiplications involved in

this matrix product. All of them can be performed simultaneously in one time

unit on n 3 /8 processors. n/2 of these products are then added to an element of

the product matrix. By using divide-and-conquer, this requires only r1og n/21 =

(rlog n l-1) time. Since calculations corresponding to distinct elements of the

product matrix can be done concurrently, the total time is only flog n 1-

Csanky (23] also developed an .algorithm to invert a triangular matrix: .

using O(n 3) processors.

Let A be a square matrix of order n. The inverse of A exists if only if it

is nonsingualr (i.e. it has a nonzero determinant). Let A1, .-\ 2 , · · ·, An be the roots

of th.e characteristic polynomial p(A) of A. Let sk be defined for l~k~n as: sk

n k k
= E (.,\i) . If tr(A) denotes the trace of the matrix A, then sk = tr(A).

i=l

Further, if S deontes the n x n· lower triangular matrix with elements 1, 2, · · ·, n ·

on the main diagonal and si on the i-th diagonal, C = [c1 , · · ·, cn)T, s = [s1, · · ·,

sn]T then from the Newton's identities on gets SC = -s.

Using the above ideas, Csanky (23] developed a parallel algorithm to

compute the inverse of a nonsingular matri~ in time of O(log2n). · It uses
'•

polynomial number of processors. The algorithm may be described as follows:

31
• ' ' .· ., ,, ' .•. ,! :9:'~ :: f, ·:. .

---·----------,..:___ --- ,.

'?. r-·

-

Algorithm"2.5. Matrix inversion.

Input: A square matrix, A, of order n.
\

Output: The inverse matrix of A, A-1.

1. Compute sk for l~k~n, and sk = tr(Ak).

2. Invert the triangular matrix S.

3. Compute Ci for l~i<n from c = -s-1s.

4. If c0 -=f. 0, compute A-1 as follows using

Ha milt on Theorem:

•

the Cayley-

To determine. the running time and the number of processors used in the

given algorithm, one may proceed as follows. Fjrstly note that flog n l + 1 steps

are necessary and sufficient to multiply two nxn matrices using n 3 processors .

•

Using the technique of evaluating ~I in r1og n l steps using n/2 processors, for 1 ~

i < n, one may compute A k, for l < k < n, in pog n l (rtog n l + 1) steps using

n(n 3)/2 processors. Thus, Step 1 tt1kes log2n + O(log n) steps using n4 /2

processors. In Step 2, s- 1 can be found in O(log2n) steps using O(n3) processors,

' since S is a triangular matrix. (Algorithm 2.4 can be used for this purpose).

From the equation C = -S~1s, the ci's in Step 3 can be computed in r1og n 1· + 1

-. steps using n2 processors. Finally, since A 2 , · • ·, A n-l are already available, Step

4 requires flog n l t 1 steps to complete using O(n3) processors. Thus, T(n) < 2

log2 n + O(log n) = O(log2n) ~nd the number of the processors used is less than

or equal to n 4 /2 processors.,

The above result. by Csanky is of great theoretical value, but is difficult

to implement in practice because of the excessive number of processors used .

. 32

-

~, }

>">I •

a:2 Algorithms for Structured Matrices

3.2.1 Triangular Systems

•. -,·A •

•

Let A be an nxn triangular matri~ Without loss of generality, it can be

assumed that A is a lower triangular matrix. Heller (34] gave the first parallel

algorithm to solve the system AX = B. His algorithm solved the system in

O(log2n) steps using O(n4) processors. The algorithm used an expansion

theorem for the determinant of a Hessenburg matrix, and was complicated. _

Later, the number of processors was i~proved to O(n3) processors. One may

note that the original Heller's algorithm (34] is no better than the generalized

inversion algorithm of the last section.
,, - .

In 1975, Chen-Kuck [18] developed an interesting algorithm using

recursion and doubling. This algorithm is a variation of Gauss-Jordan
.

elimination method. The algorithm-' is applied to the augmented matrix of A

rather than A itself (the augmented matrix of A, denoted by aug(A), is obtained

• by adding the column B to A). The algorithm uses the row operations to

eliminate the entries of each diagonal below the main diagonal in one step, so it

can be called elimination by diagonal. The algorithm may be described as

follows:

" ·.

Algorithm 2.6. Triangular systems solver (I).

Input: A triangular system of equations, AX = B.

Output: A solution X for the system.

1. Divide each row of the matrix aug(A) by aii·

2. Eliminate the entries below the main diagonal by

33

\· _

\•' ., ...

,·'' , .. ,{·· ..
,: , ...

'

•

eliminating the entnes of each subdiagonal using the

following loop:

FOR j=l STEP~j UN'J'..IL n-1 DO ~
2,-1

row i ..- row i - E ai i-krow(i-k), for
k=. '

. 1<"< -J J+ _1_n.

3. Find xi = ai, n+l·

The algorithm takes O(log2n) steps to solve the linear system. Step 1

~

can be performed in one step using n 2 processors where each processor will work

on one element of aug(A). The multiplications in Step 2 can be done in parallel
'

for each j, followed by log sum addition of j+l rows, if n 2(n+l)/2 processors

were used. Thus the total time is,
'

1 + E 1 + flog (2k+l)l = N
3

+ f + 2 = O(log2n) where N=flog nl,
k=O

n-1
Since, the matrix is upper triangular, it contains E (n-m) zero entries.

m=l

This means that unnecessary multiplications are performed in Step 2.

Considering this, and using the theorem proved by Kuck [43] in 1978 (the

statement of the theorem will follow later in the section), only n3 /68+ O(n 2
)

--"!-- -

processors are sufficient.

If the matrlix A is Toeplitz, _then the number of processors is further reduced to

Another parallel algorithm to solve a triangular system uses the idea of

inverting a triangular matrix explained in _Section 3.1 above and can be described

as follows:

.,

34

"

_:.~~' '-: ~}

:\:-· ..
f

,!
~k,~

,;.,

..

,,

•

\ -. .
\.

Algorithm 2. 7. Triangular systems solver (II).

Input: A triangular system of equations, AX = B.

Otput: The solution X.

1. Compute A-1 using Algorithm 2.4.
' -

2. Compute X = A-1 x B.
•

'

Since A-1 can be computed in O(log2n) steps using O(n3
) processors, and

since Step 2 contains only one matrix and vector product which can performed in

-
O(log n) + 0(1) steps using O(n 2) processors, the total time for the algorithm is

O(log2n) using O(n3) processors. r

If A has a unit diagonal (i.e. the entries of the main diagonal are 1 's),

then A can be written as A = I - L where I is the identity matrix, and L is

strictly lower triangular. Moreover,

A = I + L + L2 + · · · + Ln-l = (I + L2"-1) (I + L2 "-2) .. · {I + L).

A method that uses this idea to solve the system AX = B was presented by

Orcutt [54] and Heller [34] independently and can be described as follows:

Algorithm 2.8. Unit diagonal systems solver.

Input: A system of equations, AX = B, where A has a unit

diagonal.

Otput: The solution X .

1. Divide each row of the matrix A by aii to make A a

unit diagonal matrix.

2. Compute A-1 by repeatedly -squaring the matrix L

as above.

3. Multiply A-1 B to get X.

35

\

d .

t - 'i

,. 'i.

(

I

'.
. '

. ,. .,

. '

I •

Step 1 of this algorithm can be performed in parallel in one step using

(n-1)2/2 processors by letting each nonzero matrix element be modified in a

distinct processor. Step 2 consists of computing L2 repeatedly, which can be

done in parallel in r1og n l steps. Each square itself takes r1og n l + 1 steps using
~

n 3 processors. Th us Step 2 requires flog n l (flog n l + 1) steps. F'inally, Step 3

is p\rformed in r1og n l + 1 steps using n2 processors. Thus the algorithm can be

performed in at most r1og n 12 + r1og n l steps using n 3 + n·2 processors.

The following two algorithms to solve an nxn triangular system

demonstrate the use of linear recurrence. A linear recurrence system R{n, m) of

order m for n equations is defined as:

0
k-1

bk + E akj xj
j=k-m

if k < 0

if 1 < k < n, and m < n-1

Equivelantly, if A = [aik] where aik = 0 for i < k or i - k > m, and X = (x1,

... , x~t, and B = [b1, · · ·, bn]t then the above definition can be written as X =

AX+ B.

The first of the two algorithms that use the idea of linear recurrence is

called the Column-Sweep algorithm. It can be stated as follows.

Algorithm 2-9. Column-Sweep.

Input: A triangular system of equations, AX = B.

Output: The solution X.

1. Evaluate in parallel the expressions of the form

bi(l) = bi + ail x1 for i = 2, · · ·, n where x1 = b1 is

known. (Notice that only n-2 equations are left after

,,

36

- ...

'

'

~

.,

..

\

this '"step). _

2. Evaluate in parallel the expressions of the form
(2) (1) .

bi = bi + .ai2 x2 for 1 = 3, · · ·, n where z1 and ~
•

are known. (Notice that only ·n-3 equations are left

after this step).
•
•
•

...

k. Evaluate in parallel the expressions of the form

b/k) = b/k-l) + aik ,Xie /or i = k+l, · · ·, n where Xi, · · ·,

zk are known.
•

Clearly n-1 steps are required using n-1 processosrs at the first step,

and fewer than that in the subsequent steps. So O(n) steps and O(n) processors

are necessary and sufficient to solve a traingular system using the colu_mn-sweep

algorithm.

The second algorithm is the recurrent-product algorithm presented by

Sameh and Brent [58] in 1977_. The algorithm procee1s by writing the equation

X = AX + B (as defined above) as X = (I - A)- 1 B. The idea of Householder
n-1

[36] can be used to express (I-A)-1 as (I-A)-1 = IT Mn-i' where Mi is defined
i=l

as:

1
• 0 •

•

1
M. --I. 1 a·+1 . I , I

0 • •
• •
• •

an, i 0 1

37
.~ .

•

.,,

. '

The problem is reduced to that of matrix multiplication which can be

evaluated in parallel time of O(log2n) steps using O(n3) processors. This is,

however, not practical for large n.

)

In 1978, Kuck (43] proved a useful theorem that can be stated as: A

linear recurrence system R(n, m) can be evaluated on p processors in Tp steps

where I

Tp < (2 + log m) log n - ; (1 + log m) log m

and

p < ; m (m + 1) n + O(m3) for 1 ~ m ~ n/2

and

p < ~ + O(n2
) for n/2 .~ m < n-1

3.2.2. Tridiagonal Systems

•

Stone (63] was the first to discuss . the solution to a system AX = B

where A is a tridiagonal matrix. Using recursive doubling algorithms, Stone

related the L UD decomposition of A to a first and second ~ecurrences. These

algorithms compute the necessary terms in O(log n) time using n processors,

assuming no pivoting is necessary. Let L = (li, 1, 0), D = (0, dj, 0), and U =

(0, 1, uj) be an LUD factorizatio_n of A. It is easy to see that d1 = b1, dj = bj

- aj cj_1/dj-l where 2 ~ j ~ n, ~ = aj/dj-l where 2 ~ j ~ n, uj = cj/dj, where 1

~ j ~ n. Now L and U are completely determined by D. To compute D, define

Po = 1, p1 = b1, Pj = bj Pj-l - aj cj-l Pj_2 ., and dj = Pj/Pj-i · Now AX = B is

solved by solving LW = B and UX = o-1w. The bidiagonal systems represent

38

-­"

.. .

first order recurrences, and o-1w is computable in one parallel step using n

processors.

The above algorithm fails if pivoting •
18 necessary. Another

decomposition for A that can be used is the QR decomposition discussed in

Section 3.3. Consider the following algorithm:

Algorithm 2.10. Odd-even elimination.

Input: A tridiagonal system of equations, AX = B.

Output: The solution X.

1. Fork = 1 step k until n-1 do

row i ~ row i - a . . k (row i-k)/a. k · k z, I- I- , 1-

ai, i+k (row i+k)/ai+k, i+k where l<i~n.

2. x. ~ a. +l/ a.. 1 < i < n.
I z, n II

If the loop in Step 1 was applied on the tridiagonal matrix A which has

three nonzero diagonals, then these diagonals move further and further apart as

the loop progresses. The result will be a diagonal matrix. If Step 2 is executed,

the result is a solution to the tridiagonal system AX == B.

The above algorithm takes O(n log n) steps using n processors. This

algorithm is known as the odd-even elimination which has a variation called odd­

even reduction. This later algorithm generates a sequence of tridiagonal systems.

A (i)X(i) = B(i), each is half the size of the previous one and formed by

eliminating the odd-indexed variables and saving the even-indexed variables.

X(i) is obtained by back substitution to obtain x<o) which is the solution to the

39

..

'

original problem.

•

Algorithm 2.11. Odd-even reduction.

Input: A tridiagonal system of equations, AX = B.

Output: The solution X .

1. Fork= 1 step k do

row i +- row i - a . . k(row i-k)/a. k · k -1, I- I- , 1-

ai, i+k(row i+k)/ ai+k, i+k (i = 2k, 4k, . · ., 2" -2k);

2. Fork = 2n-l step -k/2 until 1 do

x- +- (a- +l - a. · kx. k -I I n I I- 1-, '
a· ·+kX·+k)/ a·· t, I I II

(i = k, 3k, ···, 2n-k)

Only O(n) operations are performed in this algorithm as against O(n log

n) in odd-even elimination. Another advantage of this algorithm is that it is

equivalent to Gaussian elimination applied to PAP T where P is a particular

permutation matrix.

3.3 General Systems:

In 1974, Csanky [24] showed that parallel solution .of any system AX = ..

B can be obtained by inversion of A and then multiplying by B has a complexity

T(n) which satisfies 2(log(n)) < T(n) ~ O(log2n). ~number of processors

used in the algorithm is polynomial in n.

One of the most familiar sequential algorithms to solve AX = B, which is

suited to parallel computation, is the Gauss-Jordan elimination method. Let

aug(A) be the augmented matrix of A, row(i) will be used to refer to the ith row

40

'

Jc ,,
\) .

of aug(A). Gauss-Jordan elimination method can be described by the following

algorithm under the assumption that pivoting is not necessary. The algorithm

eliminates the elements above the diagonal as well as below. So this method

reduces the system quickly to a diagonal form.

Algorithm 2.12. Gauss-Jordan elimination (I).

Input: A system of equations, AX = B.

Output: The solution X.

1. For 1 ~ j ~ n compute

row(i) +- row(i) - au/ a.ii row{J) for 1 < i ~ n and i/ j.

2. Compute xu = au/ aii / or 1 ~ i ~ n, and j = t1 + 1.

For each j, there are n+l multiplications, n divisions, and n+l

subtractions. Each group of operations can be performed in parallel in one step

using at most n+l processors. So Step 1 needs 3n steps using (n-l)(n+l)
I

processors (since i = j is excluded). Step 2 needs only one step in pararllel and

uses n processors. Thus using (n - l)(n + 1) processors, the algorithm can be

done in 3n+l time units. However, if only n processors are available, the

algorithm requires n2 + 2n + 1 steps. This is because the above algorithm is

altered as shown below. This illustrates the tradeoff between the number of

processors used and the time required.
•

Algorithm 2-13. Gauss-Jordan elimination (II).

Input: A system of equations, AX = B.

Output: The solution X.

41

. '

. ... -

•

1. For 1 ~ i ~ n and 1 ~ j ~ n compute t1 = au/ajj.

2. For j+ 1 ~ k ~ n+ 1 compute

aik = aik - ti ajk, 1 ~ i ~ n, i ¢ j.

The disadvantage of the Gauss-Jordan elimination method is that it may

sometimes prove numerically unstable, and some form of pivoting (such as

column pivoting) should, therefore, be incorporated .. If ajj = 0 at some point in
l

the algorithm, then r1og (n -1) l additional steps are needed to find a nonzero

pivot below the diagonal in column j.

" ,'

Another method to solve a system of equations .A.X = B uses the LU

decomposition. If there is a nonsingular lower triangular matrix L, and an upper

triangular matrix U such that A = LU, then this is known as an LU

decomposition of A.

When such a factorization is known, solving the linear system AX = B is

relatively quick and simple. The system LY = B is solved for Y first. Since L is

nonsingular then there is a unique solution vector Y, which is easily calculated (L

is a lower triangular matrix). Then the equation UX = Y is solved to obtain the

solution of AX = B. The derivation of X from Y is also simple because U is a

tria:Q,iular matrix.

An nxn matrix may be factorized as A = Q R where Q is an nxn

orthogonal matrix and R is an nxn upper triangular matrix. Square-root-free

Givens transformations can be applied to find Q. and R. If Q is found, then R

can be determined easily by calculating Qt A = R since Qt Q = I as Q is an

orthogonal matrix. Q is computed implicitely as a product of simpler matrices.

42

'\.

·, (',

..
I.·
' -

... , '
i· F·

o"\•J.

.. ;. '
~ .. .,,

.. ·~~,.. \

.,

...

. .

As a matter of fact, Q is the product of a number of plane rotations, each of

which eliminates an element of A below the diagonal without destroying the

previously introduced zeros. The following loop can be used to achieve this goal .

For notational purposes, Rotate(i, j) applies root-free Givens transformations to

rows i and i-1 in 1order to eliminate the element aij where 1 ~ j < i ~ n.
"'

Fork= l to n-l do
begin

Rotate (n-2p, k-p)
Rotate (n-2p-l, k-p)

end.

(0 ~ p ~ min(k-l, n-k-l))
(0 ~ p < min(k-l, n-k-2))

Thus, in order to eliminate aij the i:th and the· (i-1)-th rows are

multiplied by

C S

-S C

where c = cos f) and s = sin (}, the angles of rotation being determined by using

the formulae

aij
s = -;::::::==============

a. 1 .
I- ' J and c = -;::::::===============

(a ..)2 + (a. 1 .)2
1J I- ' J

) 2 ()2 (a.. + a. 1 .
IJ I- ' J

Several of these rotations can be applied simultaneously in parallel. Now

to solve the system A X = B where A = Q R, (the Q R decomposition), we

proceed by writing Q R X = B, so R X = Qt B. Computing Y = Qt B reduces

the linear system to a triangular one, then R X = Y may be solved using any of

the techniques discussed in Section 3.2.

, .

Pease (55) presented an interesting algorithm to solve a general system of

equations. Any parallel computer with an interprocessor communication

' '
p

·,

. ...

•

'

network designed for FFT can implement it reasonably well .
..

Algorithm 2.14. General system solver.

Input: A system of equations, AX = B.

Output: The solution X.

Procedure P(n)
•

Begin

end.

Let A= ,

X = (xi x2)t,

B = (b1 b2)t where A1, A 2 are 2°-1x2°-1.

Solve A1(F1, g1) = {E1, b1) and

A2 (F2, 92) = (E2, b2)

in parallel by applying P(n-1).

Solve (I-F1F2) x1 = (g1 -F1g2) and

(I-F2F1) X2 .· (g2 -F2Y1)

in parallel by applying P(n-l).

This algorithm requires O(n 2log n) steps using n processors.

Several authors have discussed solutions of linear systems of equations .

...

Among those one finds Boroding-Gathen-Hopcroft (10]. In their paper, they

showed that Csanky's result works for any finite field. In 1984, Bini [9] used the

concept of approximate algorithm to show th~t 6 log n + 6 parallel steps and 2n

processors suffice to approximate, with any precision, the solution of a linear

system with n x n triangular Toeplitz matrix A. Moreover, 7 log n +, 7 steps are
!'

,~ .. ··

44

. '

(
I

,.

I

sufficient for an exact computation, whereas the number of processors is
.,-•

increased to 5n 2 /2. The inverse of A can be approximated with any precision by

6 log n + 3 steps and 2n processors. The author gave two applications of these

results. First, if B is any matrix belonging to the algebra generated by a given

nxn matrix over the Complex Numbers field, then the system BX = b can be

solved in no more than 9 log n + 4 steps using O(n 2) processors. Second, given

a Toeplitz matrix A = (aij) such that aij = 0 if i-j > k or j-i > h, akl # 0

then the system AX = b can be solved in 13 log n + O(log2k) steps using max {

(5/2) n (k+h), n(n+l)/2} processors.

4. THE CHARACTERISTIC POLYNOMIAL OF MATRICES

The characteristic polynomial of a ~atrix A is the equation det(A - ,,\I),

where I is the identity matrix of the same order of A. Eigenvalue~ are the roots

of the characteristic polynomial and~ satsify AX = ,,\X for some vector X 'f:. 0.

Each X is called an eigenvector of A corresponding to eigenvalue ,,\. AX = ,,\X

holds if and only if A - ,,\I is singular. Thus if the eigenvlaues are precisely the

roots of the characteristic equation det(A - ,,\1) = 0 denoted by ,,\ 1 , · · ·, -"n with

multilpicity m ,,\ of any eigenvalue ,,\ equal to that of the factor ,,\-X of the X­

polynomial det(A - X) I.

Let A be an nxn matrix and let R, S, and M be three of its sub-matrices

of order (n-l)xl, lx(n-1), and (~-l)x(n-1) respectively, as follows: ·

45

. \

.f,

and

A=
a11 R

S M

The characteristic polynomials of A and M, defined above, are:

n
p(,\) = det(A - A•I) = E Pn-i ,\1,

i=O

n-1 .
q(A) = det(M - ,\•I) = E qn-i-l A1

,
i=O

respectively.

In 1984, Berkowitz [6] proved that the characteristic polynomial of a

matrix can be computed in O(log2n) steps.

discussed, four claims need to be stated.

Before his main result can be
•'

The proof of Calim 1 follows by

expanding the det(A - A*I) by cofactors along the first row, and then along the

first column. Claim 2 is obvious because the matrix M must satisfy its

characteristic polynomial. The proof of Claim 4 can be found in Aho-Hopcroft-

Ullman [1]. Only the proof to Claim 3 is presented here.

Claim 1: p(A) - (a11 - ,\) * det(M - ,*I) + R * adj(M - ,*I) * S.

Claim 2: adj(M - ,hi) = - f: (Mk-2* q0 + · · · + I * qk_2) * ..\n-k_
, k=2

Claim 3: Let R, M, and S be as defined above. Let T = { R * Mi * S }i=O, ... ,111·

Then T can be computed in time O(log2 n) and a circuit size O(n°+!)
"

where a is the exponent of n for the size of a circuit for multiplying two

matrices using log n depth and £ is any positive real number. Currently

a < 2.496.

Proof: Any element of T can be computed as the dot product of vectors from U

46

' --~ .. , -~

•

..

, I_\-, ,., , •

----·

•

= {R•Mi} o s
i=O, · · ·, n ·

and V = {Ml•no.s •S} o.s
i=O, · · · ,n

since the

exponent of k of the M term in any element from T can be uniquely

expressed in the form k = i + j • n°· 5• Since each dot product ca.n be

•

, ('

'

.... ·¥'

computed in O(log n) time using O(n) processors, then T can be

computed from U and V in time O(log n) using O(n 2) processors. It can

be proved by induction on /3 that U /3={ R*Mi}. /3 can be
1=0, · · · ,n

computed in time O(log2n) using O(no+t:) processors for (3 a constant.

Now, U can be computed in time O(log2n) using O(no+t:) processors

since U = U0 _5 . V can be computed similarily.

Claim 4: The product of two Toeplitz lower triangular matrices is also Toeplitz

and lower triangular. Moreover, it can be computed in time O(log n) using

O(n 2) processors.

The main result of Berkowitz (6] can be stated as follows:

\;/ t > 0, the coefficients of the characteristic polynomial can be

computed in time O(log2n) in size O(no+l+t:) circuit.

To prove the theorem, define lower traingular Toeplitz matrices Ci of

order (n-t+l)x(n-t) by:

-1 ' if i = 1,
if i = 2,
if i > 2.

Samuelson's method relates the characteristic polynomilas of A and M.

Using this method we have a linear relation between the coeffi_cients of the two

characteristic polynomials:
. t 1 t

(PO, P 1 , , · · · , P n) = C * (q o , q 1 , · · · , qn-1) ·

Applying this recursively, we get the direct product of Ci for 1 ~ i ~ n. The

entries of the matrices {Ci} can be copmuted by applying Claim 3 n-times in

47

•.

,.rl

\

t

•

\

O(log2n) time in size O(no+i+t). Using Claim 4, the characteristic coefficients

can be computed from { C1} with a balanced binary tree of matrix multiplies in

time O(log2n) in size O(n3).

•

48

/

•

.
'

Chapter 3

PARALLEL ALGORITHMS

FOR POLYNOMIAL COMPUTATIONS

1. INTRODUCTION

A polynomial over an algebraic system is an expression of the form

where the coefficients fn, fn_ 1, · · ·, f1, f0 are elements of this algebraic system, and

the variable x may be regarded as a formal symbol with an indeterminant value.

It will be assumed that the algebraic system is a ring. This means that it admits

the operatio·ns of addition, subtraction, and multiplication; satisfying the

customary properties: addition and multiplication are associative and

commutative binary operations, with well-defined identities; multiplication

distributes over addition; and subtraction is the inverse of addition. The

additive identity element · is.. denoted by O giving a + 0 = a, and the

multiplicative identity element is denoted by 1 giving a 1 = a, for all elements a

in the ring. f{x) is called a polynomial of degree n, denoted by deg{f), and

leading coefficient fn if fn "# 0. If the leading coefficient fn is 1, the polynomial is

called monic.

Arithmetic on polynomials consists primarily of addition, subtraction,

and multiplication; in some cases, further problems such as division and

exponentiation are important. There are a number of other important

49

,,_··

\ ' -. •

•

computational problems pertaining to finite fields such as determining the

greatest common divisor of polynomials, factoring, finding the roots of a
••

polynomial, and computing a polynomial. These computatia.oal problems are the

topic'of this chapter. Given two polynomials f1(x) and f2(x), algorithms to find

the greatest common divisor of f1(x) and f2(x) are discussed in Section 3.2. Let

F be a field, and let F[x] denote the field of polynomials with coefficients in F.

Given a polynomial f{x) E F[x], one wants to find the factorization f = f1 f2 · · ·

fn · of f into its irreducible factors fi(x) E F[x]. This factorization problem is

discussed in Section 3.3. Algorithms to find a root o E F of f(x) = 0 (if it •

exists) are also discussed in Section 3 .3. Finally, given a polynomial f (x) E F[x],

•

. one may want to compute the value of the polynomial for a given value for the

indetermina.nt x. This is the computing or evaluation porblem, and will be

considered in Section 3.4.

2. GREATEST COMMON DIVISOR AND LEAST COMMON MULTIPLE

A greatest common divisor of two elements is defined as a common

divisor that is divisible .by as many primes as possible. Given two polynomials

f(x) and g(x) over a field, with g(x) -=/; 0, one can divide f(x) by g(x) to obtain a

quotient polynomial q(x) and a remainder r(x) satisfying the conditions: f(x) =

q(x) g(x) + r(x),' and deg(r(x)) < deg(g(x)). If g(x) = 0, then the greatest

' common divisor of f{x) and g(x), denoted by gcd{f(x), g(x)), is f(x). If g(x) # 0,
..

then gcd(f(x), g(x)) = gcd(g(x), r(x)) where r(x) is as defined above. Thus to

find gcd(f(x), g(x)), f(x) is divided by g(x) to get r(x); and as long as ri(x) -=/; 0, . .

50
f

~ _,, ",. ,. ' ...

:.1·•

...
'!'

the division procedure of g(x) by r(x) continues. When r1(x) = 0, then gcd(f(x),

g(x)) = gcd(g(x), 0) = g(x).

r

This is called the Euclid's gcd algorithm for polynomials over a field.

The Euclid's algorithm and the other sequential algorithms for finding the gcd

have the difficulty which makes them decidedly impractical if the coefficients of

the polynomials are integers or polynomials themselves, Brown [13].

Borodin-Gathen-Hopcroft (10] presented an algorithm that avoids this

difficulty by employing linear equations. Let F be a field, let f(x) and g(x) be

any two polynomials with coefficients in F with 'degrees m and n respectively,

and m < n. Write f(x) = fmxm + fm_ 1xm-l + · · · + f0 and g(x) = gnx" +
'

g 0 _1xn-l + · · · + g0 where fm gn # 0. If h(x) = gcd(f(x), g(x)) with degree d,

then there exist two polynomials u(x) and v(x) in F(x] such that deg(u(x)) < n

- d and deg(v(x)) < m - d such that h(x) = u(x) f(x) + v(x) g(x). So the

gcd problem is reduced to computing t·he polynomials u(x) = E ui xi and v(x)

= E vi xi. For O ~ k < n and polynomials s(x) = Es; xi and t(x) = E ti xi,

the conditions "s f + t g is monic of degree k, and deg(s) < n - k" translate

into the systems Sk, (MN = L), of linear equations in the coefficients of s and t,
0

where the coefficient matrix M, as defined below, is the (n+m-2k)x(n+m-2k)­

submatrix Pi of the Sylvester matrix of (f, g) which consists of the first m-i
· ,r

columns of ~ 's and the first n -i columns of g/s, N is the column matrix N =

[sn-k-l · · · s0 tm-k-l · · · t 0]T of order (n+m-2k)x(l), and L is the column matrix

[O ... 0 l]T also of order (n+m-2k)x(l). ·

Solutions to these systems of equations yield the computation of the

51

-~ -· .

.r . ~

\

,/

polynomials s(x) and t(x).

fm

fm-1
.
• .

M'=
fo

•

•
•

•

fm
•
•
•

•
•
•

gn

gn-1
•
•
•

go
•

•

•
•

•

8n
•
•
•

•
•
•

Thus if f(x) and g(x) are two polynomials as defined above, then a

greatest common divisor of f{x) and g(x) can be computed by the following

algorithm:

Algorithm 3.1. Univariate gcd of two polynomials.

Input: Two univariate polynomials f(x) and g(x).
-.

Output: A Greatest Common Divisor of f(x) and g(x).

1. Compute a0 , · • ·, am, where ak = det(Pk) and Pk is the

coefficient matrix of sk.
2. Set d = min { k : ak =f=. 0}.

3. Solve the system Sd to find s(x) and t(x).

4. Return gcd(f, g) = sf+ tg.

I

The determinants in Step 1 _can be computed in parallel using any of the

methods explained in Section 2.2.3. The time used in this step is O(log2n). To

solve the system Sd, which is nonsingular since ad =f=.O, the methods discussed in

Section 2.3 with time O(log2n) can be used. Thus the total tiine used to find the

gcd using this parallel algorit,hm is O(log2n).

52

...

I

The above algorithm is limited to two polynomials. Gathen (28]

generalized this algorithm to find the gcd of a finite number of polynomials. Let

F be a field. Let f1(x), f2{x), ···, fn(x) be polynomials with coefficients in F.

Assume the degree of fi(x) is at most n. Let g(x) be the greatest common divisor

of f1(x), · · ·, f0 (x). By Euclidean Theorem, it is easy to see that there exist

polynomials s1(x), · · ·, sn(x) with coefficients in F such that g(x) = E si(x) fi(x).

In addition, deg(si(x)) < n. The proof of the latter claim is direct: reorder the

polynomials such that deg(f1(x)) ~ deg(fi(x)) for all i ~ 2. Divide si by f1 with

the sum is taken over i > 2. Then E si fi = g, where the sum is taken over 1 ~

i < n, and s1 f1 = g - E si fi, where the sum, over all i ~ 2, has a degree less

than n + deg(fi(x)). Hence, deg(si) < n for all i. Because of this, the degree of

g(x), d, can be defined as follows:

d = min { deg(f) : 3 s1, · · ·, sn E F[x], deg(s;) <n for aHi and f = Es;f;:f=O }·

.
If we write fi = E fu x1, where the sum is taken over O < j ~ n, then as in

. .
Algorithm 3.1: for O ~ k < n add polynomials S; = E sij xi, 0 < j ~ n, the

condition "E si fi is monic of degree k" now translates into the systems Sk of

linear equations in the coefficients of sij such that:

" S·· f. I · = L..J 1J I, -J
0 for k < l < 2n

1 for l = k
4

Thus to compute g(x), the indeterminants su must be computed. The system Sk

has 2n-k equations with at most n 2 variables. Clearly, Sk has a solution if and

only if k ~ d. In fact Sd has a solution and frorri a solution of Sd, g(x) can easily

be computed.

53

' '.

'

...

..

If f1(x), · · ·, fn(x) are polynomials aa above, then a great.eat common

divisor, g(x), of f1(x), · · ·, fn(x) can be computed by the following algorithm:

•

Algorithm 3.2. Univariate gcd of many polynomials.

Input: The univariate polynomials f1(x), · · ·, f0 (x).

Output: A Greatest Common Divisor of f1(x), · · ·, fn(x).
f

1. For all k, 0 < k $ n, determine whether Sk has a

solution, and if it has, compute a solution (su(k)) of Sk.

2. Set d = min { k : Sk has a solution}·
•

3. Compute gcd(/1, • • ·, f n) = g = E su{ d) ~ f;.

Step 1 of this algorithm can be computed using Algorithm 3.1 of

Borodin-Gathen-Hopcroft, which takes O(log2n) parallel steps. Steps 2 and 3

need O(log n) steps each. So the algorithm works in parallel time o\ O(log2n).

It should be remarked here that if Algorithm 3.1 is used to compute the

gcd of pairs of polynomials along a binary tree, the gcd(f1, · · ·, fn) can be

computed in parallel time O(log3 n).

Given two polynomials f1(x) and f2(x), 3 a polynomial m{x) such that

f1{x) and f2 (x) are factorsrof m(x), and m(x) has the smallest degree with this

property. The polynomial m(x) is called the least common multiple of f1(x) and

f2(x), and is denoted by lcm{f1{x), f2{x)). The following relation holds for f1(x)

lcm(f1(x), f2 (x)) can be computed in parallel time of O(log2n) if F is real, and

O(log3n) if F is an arbitrary field. Once the 1cm is known, the gcd may be

54
'I,

l

'l
I

•

determined from it.

Let u1 = E uu x', 0 ~ j ~ k-d be monic polynomials of degree k-d, let

Sk be the system of linear equations that expresses u1f1 - u2f 2 = u2f2 - u3f3 =

··· = un_ 1f0 _1 - unfn = 0. the system Sk consists of (n-l)k linear equations in

the E (k-di) = nk-s indeterminant coefficients uij (1$ i $ n, 0 $ j $ k-d1).

The following algorithm, due to Gathen [28], computes the lcm(f1, f2):

Algorithm 3.3. Univariate 1cm of many polynomials.

Input: The univariate polynomials f1{x), ·· ·, f0 (x).

Output: The Least Common Multiple of f1(x), · · ·, f0 (x).

1. Set di = deg(~), m = max di, and s = E di, 1 < i < n.

2. Replace each ~ by ~/ ai where ai is the leading

coefficient of~-

3. V k, m ~ k ~ s, determine whether Sk has a

solution, and if it does, compute solution uu(k).

4. Set d = min { k : Sk has a solution}·
. d d

5. Set u = E u1j(d) ; + x - 1.

6. Set lcm (f1(x), · ··, fn(x) = m(x) = u f1•

The methods discussed above apply to univariate polynomials, • 1.e.,

polynomials in one variable or indeterminant. Gathen-Kaltofen [31] presented an

algorithm for the greatest common divisor of two bivariate polynomials. Given

two polynomials f, g E F[x, y], where f is monic ~ith respect to x and F is an

arbitrary field, they used a modular approach to compute the, manic with

respect to x, gcd h E F[x, y] of f and g. The algorithm can be stated as follows:

55
·. ~

..

Algorithm 3.4. Bivariate gcd of two polynomials.

/np,ut: Two bivariate polynomials f(x) and g(x).

Output: A Greatest Common Divisor of f(x) and g(x).

1. Set dx = max { de9x f, de9x g}, dy = inaz { degy f,
de9y g}, and d = 2dxdy. If d = 0, use a procedure for

univariate gccfs. If IFJ = q < 3d, then choose an

i1Teducible monic polynomial w E Ff t] of degree f logq

3dl, and replace F by the extension field Ff t]/(w).

2. Choose any pain.vise distinct a1 , "2, · · ·, 42d E F

such that g(x, ai) has the same degree in x as g.

3. V i, 1 < i ~ 2d compute the monic h; = gcd (J(x, a;),
.

g(x, ai)) = E hu ~ E Jilx], j > 0.

4. Set m = min {deg hi: 1 < i < 2d}, and choose some

M C {1, · · ·, 2d} with IMI = dy + 1 and deg hi = m \/ i

EM.

5. For O < j < m, interpolate the hu 's: Compute bj E

F{y] of degree at most dy with bj(aj) = hu V i E M.
. .

6. Return gcd(f, g) = h == E bj J, 0 ~ j < m.

To estimate the timing of the algorithm, w in Step 1 can be found in·,,

O(log4 d) operations in F, (Rabin (56]), since each monic polynomial wEF(t] of

degree l == flogq 3dl may be tested for irreducibility. There are at most qt ~

3dq < qd2 such polynomials, and each irreducible test takes O(log2d log2log d

log log log d log q). Any operation in F[t]/(w) can be simulated by O(log2d)
.

operations in F. This factor log2d has to be multiplied to the estimates for Steps

"

3 to 6 only if q < 3d. For each f(x, ai) and g(x, ai) in. Step 3, the number of

_operations is 0(d). · For each hi, it is 0(dx log2dx) (Aho-Hopcr~ft- Ullman [1]).

Therefore, the total time
.

necessary for Step 3 is O(d (d + dx log2dx))

56

' \: .. - ,. ',

! ~ '

,·

. \·\iL'
• • . ~,-- '.',i

,;•,'

'·!·· -

' ' . ·'

''

•

operations. tStep 5 t&kea O(dx(dy log2dy)) operations (m < dy). The total time

is O(d21og2d log2d) = O(d 2log4 d). If q ~ 3d, it is O(d 21og2d) operations.

3. FACTORING POLYNOMIALS

Polynomials with coefficients from a finite field and their factoring

techniques have been studied for a long time. In 1846, the Unique Factorization

Property was proved for univariate polynomials over Zp. But no efficient

algorithm to compute these factors was presented until the 1960's. Suppose F is

a finite field of characteristic p (i.e., a prime p is the smallest element such that

pa = 0 't/ a E F) with q = pd elements, i.e., F = GF(pd). A fundamental

n
computational task is to find the irreducible factors of ~ polynomial f(x) = E

i=O
.

f;x' in F(x]. This is called a univariate polynomial and will be the subject of

Subsection 3.1. Polynomials over more indete.Fminants are called multivariate

polynomials and will be discusse~ in Subsection 3.2. As it will be shown there,

the problem of factoring multivariate polynomials over algebraic number field or

over finite fields is eventually reduced to that of factoring univariate polynomials

over finite fields, via a modular technique.

, -
3.1. Factoring univariate Polynomials

Note first that the general factoring problem easily reduces tj that of

factoring a monic polynomial with no repeated factors (such a polynomial is

called square-free). This is because one can divide each' polynomial coefficient by

57
•

, I.

' \
,,I' r

\
\

I
\

. ..

the leading coefficient to make the polynomial monic, and then use the following

well-known method for finding repeated factors. Consider the case of a

polynomial f(x) with repeated factor f2(x), i.e., f(x) = f1{x){f2{x))" .

Differentiating f(x) one gets

f'(x) = f' 1(x)(f2(x)) 0 + n f1(x) (f2(x))n-l r'2(x)

= (f 2 (X)) n- l (f' I (X) f 2 (X) + D f 1 (X) f' 2 (X)) X

(f2(x))n-l = gcd(f(x), f'(x)),

•

and one may easily remove this gcd(f(x), f'(x)) from f{x) to convert f(x) to a

monic square-free polynomial.

Berlekamp (7) devised the first complete factoring algorithm which

f~ctors univariate polynomials over a finite field F with q elements in O(qn 3)

operations where n is the degree of the polynomial. Let u(x) be the polynomial

to be factored. The algorithm proceeds as follows:
I

Algorithm 3.5. Univariate factorization over a finite field I.

Input: A univariate polynomial u(x) E F[x] of degree n.

Output: The complete factorization of u(x).
~

1. Ensure that u(x) .. . is square-free (i.e., if gcd(u(x),

u1 (x))-=/= 1, reduce the problem to factoring u(x) / gcd(u(x),

u1 (x)).

2. Form the matrix Q defined by

Q = •
•
•

•
•
•

58

. . .

•
•
•

• • •

•

•
•
•

qn-1 n-1 •

(

.,

\

\
•

....

)

•

v,laere J>k = qk. n- l ~ 1 + · · · + 'lac. 1 s + , 0 (modulo•

u(i:)). Thua, each row of Q conn6ta of coef/icienu of

powers of I' mod u(z).

3. Tnangularize the maCru Q-1, where I = (6u) • u

the nx n identiC11 motru, finding ita rank n- r and finding

linearls, independent row vectora Jl), · · · , Jr) auch that

JJl(Q-1) = (0, ···, 0) /or 1 ~ j ~ r. Thia

triangularization can be done using appropraite column

operations (Null space algorithm for instance).

4. Calculate gcd(u(x), J21(x)-s) for O ~ s ~ p, where

J21(x) is the polynomial represented by vector J21. The

result is a nontrivial factorization of u(x), because J21(x)

- s is nonzero and has degree less than deg(u), and u(x)

= n gcd(v(X)- B, u(X)), where it is understood that the
'

product is taken over O < s ~ p, whenever v(x) satisfies

v(x)P = v(x) (modulo u(x)), and deg(v) < deg(u).

M·oenck (52] gave the following analysis of the time-complexity of the

Berlekamp's algorithm. Multiplying or dividing a polynomial of degree n by one

of degree m can be done in 0(mn) field operations using the standard methods.

As a corollary, one can see that squaring a polynomial of degree n -1 and

computing the residue with respect to another polynomial. of degree n can be

done in O(n 2) field operations. Since u(x) is monic, xp mod u(x) can be

computed by repeatedly squaring in O(n 2log p) steps. In the remaining n-2

.
rows of the matrix Q, xPJ mod u(x) can be produced in O(n3

) steps. Computing

the null space of the matrix Q - I can be done in O(n3 + n _log p) steps using a
.

standard triangularization algorithm. The gcd, operation can be performed in

59

'

f

\

~ .

•

0(n 2 + n log p) 1tep1. (A parallel algorithm can be uaed to compute the gcd .in

parallel time O(log2n), see Section 3.2). If there are k factor,, in the wont caae,

each v(x) will yield only one prime factor. To find this factor, one might have to

try every element in the field. This means that the algorithm is bounded by the

laat step which requires O(kp(n 2 + n log p)) field operations. If k = O(n), the

algorithm may require O(n3 p) steps. It is the factor p in this expression which

restricts the application of the algorithm to small primes.

Berlekamp's algorithm for factoring polynomials over a finite field Zp is a
"'

major milestone in the study of the factoring problem. One of the handicaps of

his algorithm was the p term in the timing analysis. This restricts the method

to relatively small fields. Later, Barlekamp (8] refined his method so that the

factoring problem is reduced to computing the roots of a polynomial in a finite

field. He showed how the latter problem could be solved in time proportional to

1/41 3/2
p og p . Moenck (52] gave a more direct reduction to the root finding

problem and gave a method for finding the roots of a polynomial of degree n in

0(n 2 log p + k log2 p) steps for special choices of p. These imply that

Berlekamp's algorithm can be performed in O(n3 + n2log p + n log2p) steps far

most cases. He also showed that a polynomial can be factored in O(n2 (log2n +

log n log p)) steps.

Algorithm 3.5 and the further improvements by Moenck [52] and

Berlekamp [8] apply only when q=pd where d=l, lnd uses the calculations of

resultants (or equivalently the solutions of linear equations) to reduce the

problem to finding the roots of a polynomial which has all of its roots- in F.

60

..

:..

•

I

I

•

However, atraightforward moditicationa given by Cantor-Za11enbau1 (16) allow d
•

> 1. They presented a probabilistic method which, when combined with tbe
•

above algorithm and similar algorithms (e.g., folk method, Knuth (42)), avoid,

the need for both resultants and linear equations. It leads to algorithms which

are conceptually simpler than the previous method. Moreover, it work, equally

well for all finite fields F, regardless of the magnitude of q. When used for

factoring a quadratic, x2 - a, it reduces to the Berlekamp's Algorithm 3.5.

Let p be a prime number, and let n be an integer. Let E be the Galois

field E = GF(p"). Given a polynomial f(x) E E(x] of degree m, Rabin (56]

presented a probabilistic algorithm to find the factorization f = f 1 f2 · · · fk of f

into its irreducible factors fi(x) E E(x]. Both Rabin's and Cantor-Zassenhaus'

algorithms are probabilistic ones and, therefore, will not be discussed in details in

this thesis. However, Gathen [28] presented the Cantor-Zassenhaus probabilistic

algorithm with the appropriate modification for parallel execution. We now

discuss this m.odified algorithm.

Let F be a finite field with q elements, and let f(x) E F[x] be a monic

polynomial of degree n ~ 2. In order to get a better complexity estimate in case

q is not prime, let G ~ F be another field with a prime number p of elements.

Let g E G[x] be irreducible of degreed such that F = G[t]/(g) and q = pd. Fis

a vector space over G with basis 1, t, · · ·, td-l, and R = F[x]/(f) is a vector

space over F with basis 1, x, · · ·, x"-1 , and a do-dimensional vector space over. G

with basis {tixi: 0 < i < d, 0 :5 j < n}. The algorithm can then be stated as

follows:
,. '

61

.\

•·

•

•

<.

Algorithm 3.6. Univariate factorization over a finite field D.

Input: A polynomial f(x) E F(x] of degree n.

Output: The complete factorization off.

1. Replace f by its (unique) manic scalar muliiple.

Compute the matriz Q of the Frobeniua mapping: R-+ R

with u--+ up.

2. Compute the dimension r of the nullspace K of Q

- I, where, I is the nx n identity matrix, and g1, · · ·, g,

E F,:x] of degree less than n such that {gi mod f I 1 ~ i

< n} forms a basis of K. If r = 1, set S = {fl and go

to Step 5. r denotes the number of monic factors of/.

3. Let m = rlog rl, choose vij E F,:x] for 1 ~ i ~ m, 1

< 1· < r independently at random, and let h · = V· · g. E
- - I IJ J

Fl x] for 1 ~ i < m, 1 < j < r.

4. For 1 < i < m, compute ci = gcd (f, h; (p-l)/2 - 1) E
. k ~ F,:x]. If p is even, say p = 2 , use ci = gcd(f, E h; , 0

< j < k). Compute the common refinement of these

partial factorizations as follows. Let M = { 0, 1} x { 1, · · ·,

m}. For ICM compute s1 = gcd ({ci: (0, i) E J} U

{~ : (1, i) E 1}). Then compute .the follwoing set T of

"minimal I's":

T = l~M: S(~l and V JCM l~J--+ sJ=l or sJ=s1 •

5. If I SI # r, then the algorithm fails. Othen1Jise,

for each a E S do the following. Set b = a. While b1 =

db/ dx = 0, replace b = E bk xk for k ~ 0 by its p0-th

root E bk q/ Po xk, where p0 = char F is a prime
Po

number. If b1 # 0, compute g = b / gcd(b, b1
). Now g

is an irreducible factor of f, and e = deg a/ deg g its

multiplicity.

6. Return the set of all (g, e) computed above as the

complete factorization of/.

62

I'
'---- -l..,

\

•

\
i

• •

To ea\ima&e \be parallel time of the algorithm, notice that if Q ia &D nxn

matrix, then Step 1 requirea O(log2n log p) steps. Step 2 takes O(log2n)

operation,. Thia ia because the computation of the quotient and the remainder

of two polynomials of degree at most n needs parallel time O(log2n). The proof

of the last assertion is rather simple. Let f, g E F[x). Let k = deg f - deg g +

1 :5 n. Their quotient q E F(x) is uniquely determined by the condition deg(f -

qg) < deg g, which can be expressed by a nonsingular system of k linear

equations in the k coefficients of q. This system can be solved in parallel time

O(log2n) as in Section 2.3. Computation of the remainder takes O(log n)

parallel steps. The fa.st parallel algorithm from Borodin-Gathen-Hopcroft [10]

can be used to solve Step 2. This algorithm takes O(log2 n) parallel steps also.

Step 3 costs O(log r). In Step 4, each ci can be computed with O(log2n log p)

operations. For each s1, Gathen 's algorithm to find the gcd of many polynomials

from Section 3.2, Algorithm 3.2, can be applied eight times in parallel, with the

same number n and using parallel time O(log2n). Unless all these applications

fail, any of the answers can be taken. To compute the sets T and S, note that

the number of subsets I of set M comes into play. This number of subsets is 21MI

< 22m < 212 log r = r12 ~ n 12 . Thus T and S can be computed in parallel time

O(log n). Finally, each g in Step 5 can be computed in time O(logp0n log q +

log2n log p). Thus the total time is O(log2n log q).

It should be noted that if the polynomial f(x) is square-free, and if G C F

is a subfield with p elements and q = pd, then the complexity is O(log
2
n

log2(d+l) log p) operations in G. To show this, simply note that each operation

in F can be simulated by operations in G in parallel time O(log2(d+l)). (d+l

63

,.

rather tba.n d la uled \o avoid getting log I = 0). Since all element• of R are

repreeented by coefficient• from G, ope can consider Q u a dn xdn matrix over

G.
...

The computation of g in Step 5 ia unneceaaary aince I ia uaumed to be
...

aquarefree. Thus, the time is O(log2n log2(d + 1) log p). In both caaea, the

number of proceasora is polynomial is n log q.

Lenstra-Lenatra-Lovasz [47] have presented a polynomial-time algorithm

to solve the factoring problem over the field of rational numbers. If f(x) E Q[x]

is a univariate polynomial with rational coefficients, Lenstra-Lenstra-Lovasz [4 7]

found the decomposition of f into irreducible factors in Q[x). Since this is

equivalent to factoring primitive polynomials over Z[x], it can be considered a

breakthrough in the factorization problem for univariate integer polynomials.

(Here, by a primitive polynomial, we mean a polynomial f(x) E Z[x] with

content 1, i.e., the greatest common divisor of its coefficients is 1). An outline of

the algorithm is as follows.

Algorithm 3. 7. Univariate factorization over Q.

Input: A polynomial f{x) E Q[x] of degree n.

Output: The complete factorization off.

1. For a suitable small prime number p, find a p-adic

irreducible factor h of f. Algorithm 3.5 can be used to

find h.

· 2. Find an irreducible factor h0 off in l[x] that is divisible

by h.

If· ;

~f \' :
' ... (i .

'I,,'" . ., . ., . .,

3. Repeat the above two steps until all irreducible factors of

fare found.

64

.t

..

•

•

The condition that h0 i1 divi1ible by b mean• that b0 belong• to a certain

lattice, and the condition that h0 dividea f impliea that the coefficienta of b0 are
..

relatively small. Thus buically, the smallest element in that lattice needs to be

found. The authors give a new reduction algorithm to do this. Therefore, this is

a basic subroutine to compute short vectors in integer lattices. The running time

of this algorithm, measured in bit operations, is 0(n 12 + n 9(1og lf1)
3
), where n

= deg(f).

It has been seen that a univariate polynomial of degree n over a finite

field with q elements can be factored deterministically in (nq) 0(
1

) bit operations,

and probabilistically in (n log q) 0(1) bit operations (Berlekamp [7], Cantor­

Zassenhaus [16], and Rabin [561). For practical purposes, the probabilistic .

algorithms are quite satisfactory. However, the existance of a deterministic

method to. solve this problem in polynomial time,
• 1.e., (n log q) O(l) bit

operations is still an open question. Gathen [30] dealt with this question and

proved that, for primes of a very special form (for those prime numbers p, for

which all prime factors of p-1 are small), the factoring problem is deterministic

polynomial-time equivalent to the more classical problem of finding primitive • •

elements.

Given a prime number p, denote by w an irreducible monic polynomial w

E Zp[Y] of degree d, and by f(x) a monic polynomial f(x) E F[x] of degree n,

where F = Zp[y]/(w) = GF(pd). The expected output of the factoring process is

a factorization f
1

, f 2, · · · , fs E F[x], where fi 's are disitinct irred uci hie monic

polynomials, and d1, d2 , · · ·, d5 ~ 1 such that f. = f1 di·· ·fs ds.

65

, ... ,
I ' •

• \ I I ,'·\ '\' 'i
I 'i (f i' I

... I : .:. :/:,,,
, (,.,,,. . ,.

,

Consider R = F[x)/(f) u an l"-dlmenalonaJ vector apace over Zp, wltb
•

buia {x1y1 mod (w, f) : 0 S i < d, 0 S j < I} ~ R, and residue claet mapping I

_. g from F(x] to R.

The main result of Gatben (30] can be atat.ed u follow,: "On input f E

GF(p1)[x] of degree d and a primitive element modulo p, the algorithm deacribed

below can be executed with

bit operations for any t > 0, or O(n8) bit operations, where S(p-1) is the

greatest prime factor of p- 1, and n = max { d, l, log p, S(p -1)}. If f is

reducible, the algorithm returns a nontrivial fa.ctor off."

The algorithm presents a deterministic polynomial-time reduction of

factoring to the problem of finding primitive elements of special type of prime

numbers as discussed above. It first computes polynomials g 1 = 1, g2 , ···,gs E

F(x] of degrees less than d such that the vectors formed by their coefficients, g1 ,

···, g
5

, form a .basis of the Zp-vector space B = {u E R: up = u} ~ R, the

Berlekamp subalgebra of R. Once this basis is obtained, one proceeds as follows:

Algorithm 3.8. Univariate factorization over a finite field III.

Input: A polynomial f(x) E GF(p1)(x] of degree d.

Output: A nontrivial factor of f.

1. If s = 1, return "f is irreducible" and stop, else set g =

g
2

• If gcd(f, g) f- ,, return this nontrivial factor off

and stop.

2. For 1 :5 j :5 r, compute wj E Jif x] of degree less than d
Q· e·

as wj = g 'Jmod f, with qj = (p-1)/Pj 1• Let i be the fir.st

66
. •· . ~

•

value of j auch Uaat "'J f Zp, and aeC A1 = w1•

3. For t = 0, ···, e1-l, compute ,i E ,Yz) of tle,reu le,,
ei-1

than d such that llt = h1 Pi mod /. Sei m = mu { C :

flt E Zp}.

4. Compute c in the multiplicative group Zp aucJa ihat cp1 =

Jim·

5. Compute "2 E flzj of degree leu than d auch that
e.-m-1

P· I
"2=h1

1 c- 1mod f.

av(p-l)/P1,._ - 1 E lif'-1 . . 6. For O < v < Pi, compute Zv = w-:z ... l .. J

Return gcd(f, 7-v) i/ it is nontrivial, and stop.

The dominating computing times in this algorithm are as follows:

Computing g1 , · · ·, g5 requires 0((dl) 2 ·4 + dl log p) operations in R, using fa.st

matrix arithmetic (see Coopersmith-Winograd [22]). Each of Steps 2, 3, and 5

requires O(log2 p) operations in R. Step 4 uses O(log2 p S(p-1)) operations in
'I

Zp, and Step 6 requires O(S(p-l)(log p + dl+l)) operations in F for any t: > 0 .
.

With fast integer and polynomial arithmetic, the time estimate mentioned earlier

may be derived.

Thus, the factoring problem can be reduce.cl to the problem of finding

. primitive elements.. Conversely, the reduction of primitive elements to the

factoring problem. (Interested reader is refered to Gathen [30]). Hence, the

claim of Gathen [30] about the equivalence of the two problems is correct.

The problem of factoring polynomials over finite fields of characteristic p

is important. The case of characteristic 2 is particularly important, e.g., in

alg~braic coding theory. Camion [15] has proved the existence of a polynomial-

-
67

•

'

,.

I)

time factoring prc>«dure in GF(2m). He ,bowed that polynomial1 of degree d

over a finite field GF(2m) can be factored deterministically with O((dm)w)

operation, in Zp, with w < 2.4. He bu, however, not given the algorithm to do

tbia fru:toring.

ll Factorin1 Multivariate PolynomieJa

In this subsection, algorithms for the factorization of multivariate

polynomials with coefficients from a finite field will be discussed. Let f be a

As it was shown in the previous subsection, Berlekamp's algorithm [7]

factors univariate polynomials over a finite field with q elements in 0(qn3) field

operations, where n is the degree of the polynomial. This execution time is

polynomial in both n and q. Soon after this, Berlekamp modified the running

time to be polynomial in the input size, i.e., using log q rather than q, at the

expense of introducing a probabilistic rather than a deterministic method. It

seems natural to ask whether this can be accomplished for multivariate

polynomials over F. Given a bivariate polynomial of total degree n with

coefficients in F, can one find (probabilistically) its factors in sequential running
~

time polynomial in· n and log q?.

Gathen-Kaltofen (31] a polynomial-time factorization have • given

algorithm for bivariate polynomial&, over a finite field. This algorithm, based on

'

methods from Kaltofen [39] and [40], has three variants: a probabilistic one with

. . (l)O(l) d h . t· ()O(l) d
running time n og q , a eterministic one wit running ime nq , an

,_. .

68

•

•

•

a parallel one with running time O(tog2n log q) where n ii the degree of the

input polynomiaJ1 and q i, the cardinality or the coefficient field. In tbe

q ca.ii be replaced by log q if one could factor univariate

polynomial, over finite fields in determiniatic time polynomial in log q. The

parallel variant ia a generalization of the reaulta of univariate factorization in

Gathen [28).

Let F be a field with q element, and characteristic p, and f E F[x, y) be a

bivariate polynomial. f is called "nice" if f(x, 0) E F[x] is square-free, and f is

monic with respect to x. The following algorithm computes an irreducible factor

g E F[x, y] of a nice polynomial f:

Algorithm 3.9. Quick factoring.

Input: A nice polynomial f E F[x, y].

Output: An irreducible factor g E F[x, y] off.

1. Compute an iTTeducible monic factor h E Jilx] of J(x, 0).

If h = J{ x, 0), then return f.

2. Set dx = degx /, dy == degy /, and d = 2dxdy. Set E =
l{t]/(h(t)), and a0 = (t mod h(t)) E E. Use the Newton

iterations to compute b E .E{y] such that J(b, y) = 0 mod

yd+l in E{y].

3. Set s = 1/ fx(a0 , 0) E E, where Ix is the partial

derivative of f with respect to x. This derivative is not

zero because otherwise a0 would be a double zero for J(x,

0), contradicting its squarefreeness.
"'

4. For k = 1, ···, d compute ak = ak_1- s J(ak-l' y) E

E{y].

5. Find the minimal i, deg h ~ i ~ dx, for which there exist

69

..

•

"

.i

•• •

I •

fie, · ··, Ut,-1 E ,Y,J ~ dud cle1,~ S ", for O S j < i.,

and 1,i + E u;,/ 5 0 motl ,"+ for O S j < i.

Compule flae con-uponding Uo, · · ·, u., 1 .
•

6. Return g = %i + E u;; e ,Yz, ,J /or O S j < i.

' •

The factoring of the univariate polynomial in Step 1 can be done u In

. Gathen (28) using 8(e) = O(log2e log q) steps, where e is the degree of h. Step 3

may be performed in O(dx) operations in E. In Step 4, each ak takes O(dx)

operations in E(y] {to compute mod yk+l). Thus the total time for Step 4 is

d

O(dx d log 4 d) operations. In Step 5, compute b2 , · · ·, b Y in O(dx) operations in

E(y] or 0(dx d log 4 d) operations in E. A system of at most (d + 1) dx linear

equations in dx (dy + 1) unknowns over F is to be solved. . If the Gaussian

elimination method is used, it takes O((dx(dy+l)) 2(d+l)dx) or O(d 3dx)

operations in F. Thus the total time for Step 5 is O(d 3dx+d 2dx 2log4d log4dx)

or O(n 3 dx 4) operations in F. Thus the algorithm can be used to factor a

polynomial f of total degree n in O(n 3dx 4) + O(dx) or O(n 7) + O(n) operations

in F.

The above algorithm only dealt with square-free manic polynomials. But

it can be easily generalized as follows to factor any polynomial f E F[x, yJ:

Algorithm 3.10. Bivariate factoring over finite fields I.

Input: A polynomial f E F[x, y].

Output: A nonconstant factor g E F[x, y] off.

1. Check primitivity: Set dx = degx/, and write/= E ftxt

for O ~ t ~ dx with ft E F[x]. Compute the content, c

70

\

•

/

•

= corals(/) = ,ct(J0 • .. •• /~) E ,t,I. I/ c U c~

U.m refum c.

2. Check 1av1rclrcmc•li Compu.Ce panial llfflva.fivu /s
• •

and f,r If/% = /11 = 0, ~en turiJe / = E/ij%•P ,/', i, i
~ 0. Set g = E /ij q/p %i,/ and return g. If/% = 0 an4'

J, 'I- 0, Uaen interchange the role of % anti p and go Co

Step 1. Compute the monic g = gcd(f, f z).

3. Monie yersion !ii t Let lo E fl 11) be the leading

coefficient of / with reaped to %. Set u = /0 d% /(%/lo, 11)

E flz, 11). Then v u monic of degree dz with re.apect to

%.

4. Extend£. Set dy = degyv, m = maz{dz, dy}, and d =
2d% dy. If q = I Fl > d, set ~ = F. Othen.uise, choose

a prime number l with m < l ~ 2m. Choose monic

polynomials w1, · · ·, w l E Flt) o/ degree l at random,
qn

and test them for iJTeducibility. If none is iJTeducible,

return "failure". Othen.uise choose an iJTeducible wi,

and set F* = Ff t]/(wi).

5. Good evaluation point: Set r = resx(v, tlz) E fly).

Choose c E ~ such that r(c) I- 0, and set f = v(x,

y- c) E F*[x, y]. f is nice.

6. Apply Algoritthm 3.9 to factor f E .F*[x, y] and get g* E

F*[x, y].

7. Set e = degxg*, g1 = /0 e+l g*(xfo, y+c) E F"'[x, y], g0

= contx(g1) E F*[y), g = g1/ g0 E .Ff x, y], and return g.

To estimate the time complexity, first note that dx < n, dy ~ n 2 , d =

2dxdy $ 2n 3 , l $ 2m $ 2n 2 , and the total degree n * of r* is not more than n 2•

Step 1 then requires O(n3) operations and Step 3, O(n4
). In Step 2, the gcd can

be computed in O(d 2log4d) operations in F sequentially (for parallel time, see

'\,,

71

....... ' ..

. . ~

'
, I

j

. '

'

'

j
.~

Section 3.3.2.), and the p-tb root in O(d log q/p) operation• la F. Tbe prime

number I can be found deterministically in O(m3121og2m) bit operatioaa, a.ad w

in O(n 71og3 n log q) operations in F (Rabin (56)). Step, 5 and 7 both take

0(dxd 2) operations. The coat of the algorithm is dominat.ed by the complexity

of Step 6, which is O(n 10 + n5log n log q) operations in r•. Each operation in

F* can be simulated by 0(l log4 l) operations in F, or O(, l log 4 l log2q) bit

operations.

operations.

Thus the total cost is O(n 7 log 4 n log2q (n 5 + log n log q)) bit

Once one nontrivial factor is found, the algorithm can be repeatedly

applied to yield a complete factorization of the input polynomial.

The above algorithm can be implemented using parallel computing. Note

that the basic subroutines for the algorithm are univariate factoring procedure

over finite fields, computing univariate gcd 's, and solving systems of linear

equations over a finite field. All these tasks have been shown to be solvable in

parallel with O(log2n) operations· in F (respectively O(log2n log q log p) for

factoring), where n is the total degree of the input polynomial, p is characterisitic

k of F, and q = p = IFI. For a complete .. factorization, one would lift all

irreducible factors of f(x, 0) from Step 1 of Algorithm 3.9 in parallel, using a
)

quadratic Newton pr'ocedure, and then discard duplicate roots. Also, a prime

number l as in Step 4 of Algorithm 3.10 can be found in parallel with O(log2n)

bit operations. The resulting algorithm returns the complete factorization of the

input polynomial in parallel time O(log2n log2(kn) log p + log n log q). The

first summand from Step 1 of Algorithm 3.9, where a univariate polynomial of

72

.. • I

•

L

•

•

degree at moet n over a field with not more than pkn
2

element• bu to be

factored. In Step 4, each 1tep of the quadratic Newton iteration bu to compute

1 e E(y} 1uch that • f k (ak, y) = 1 mod y2k. Thie congruence can be considered

u a 1y1tem of linear equations over the base field, and solved in parallel time

O(log2n). The second surnmand comes from the computation of the p-th roots

in Step 2 of Algorithm 3.10.

Other algorithms for the problem of factoring multivariate polynomia.la

over finite fields are due to Chistov-Grigoryev [19] and Lenatra [46]. Lenstra [46]

has described multivariate polynomial factorization algorithm over finite fields

that is polynomial-time in the degree of the polynomial to be factored. The

algorithm makes use of a new basis reduction algorithm for lattices over the field

F[Y] containing q elements.

If the number of variables equals two, then the algorithm is similar to

Algorithm 3.7 by Lenstra-Lenstra-Lavesz [47]. An outline of the algorithm for

the factori~ation off E F q[x, y] is as follows:

Algorithm 3.11. Bivariate factoring over finite fields JI.

Input: A polynomial f E F[x, y].

Output: The factorization factoring of f.

1. Calculate the resultant R(f, fx) E F q[y].

2. Determine a ppsitive integer u, and an irreducible

polynomial F E F q[Y] of degree u such that R(f, f x) is
..

nonzero mod F. The reader is referred to Lenstra [46]

for a method to find such u and F.

3. Apply Berlekamp's algorithm, Algorithm 3.5, to compute

..
73

,.

•

"
'1ae i,,etluci61e /adorualion (A rno,I F) of U motl F) in

..

f u(.rf.
q

4. Since (la mod F)2 tlou nol divide U motl F) in F u(z),
q

due lo IJae choice of F anti u, Uae complete factorization
•

of J can 6e ohlainetl hi repeating application of a

proponlion given in Lenalra (46), (Propoaition 2.15).

•

Let k be a positive integer, let dxr< denote the degree of r< with respect

to x. Step 1 requires 0(dxr6dyf2) computations. Step 2 requires less than or

equal to dyf (2dxf-1) arithmetic operations in F Q· Step 3 takes 0(dxf4+t dyfl+t)

arithmetic operations in F q· Finally, Step 4 requires 0(dxr6dyf2) operations in

F q· Hence, the factorization off can be determined in 0(dx t dy f2 + dx r3 p m

+ dy r3 p m), where q = pm.

For factoring multivariate polynomials with more than two variables, (f

E f q[x1, · · ·, xtJ with t > 2), high powers of x2 for x 3 up to xt are computed

first. This reduces the problem to factoring the polynomial in F q(x1, x 2]. Let dif

= ni denote the degree off in xi. Let fj E Fq[x 1, x2 , xj+l' xj+2, ···, xt] be the

~ k3 kj -

polynomial f modulo ((x 3 - x 2), · · ·, (xj - x x2)), for 2 ~ j < t; i.e., f is f

k,
with x 2

1 substituted for xi, for 3 ~ i ~ j. By choosing integers k3 , · · ·, kt such

j-1

that kj = .IT (2nni - 1) for 3 < j ~ t, one can ensure that f is square-free. One

1=2 ,

may now compute the irreducible factor ii of f of positive degree in x1 using the

earlier· algorithm. The complete algorithm for factoring f is discussed in details

in Lenstra (46].

There are a number of ~omputation.al problems in which one wants the

degrees of the factors of a polynomial over a finite field without needing the

74

--.

f acton t.bemeelvea. Factorisation of polynomial• over the aet of rational

numbere Q providea one example. Gunji-Arnon (33) have pre1ented an algorithm

for determining the degree.a of the futon of a polynomial over a finite field.

A 1trongly related problem to the factoring problem ia the problem of

•
determining the roots of a polynomial. This ia a claaaica.l problem with

applications in many branches of engineering. Although many sequential

algorithms have been designed to obtain roots, not many faat parallel algorithms

are known. BenOr-Feig-Kozen-Tiwari [4J have shown that this problem is in NC

if all the roots of the polynomial are real. The basic strategy of root finding is to

factor the given polynomial into its approximate linear factors, and hence

approximately determine all its roots. This factorization is achieved by

recursively factoring the given polynomial into two approximate factors of

almost equal degree. These factors may be obtained by numerically evaluating a

contour integral and then using the Newton identities.

We now present an outline of the algorithm for simultaneously

determining all roots of a polynomial f(x). One may assume the polynomial to

be square-free and monic. If the polynomial has multiple roots, well-known

methods can be used to reduce the problem to that of determining the roots of a

square free polynomial. If f(x) is not monic, it may be divided by the leading

coefficient and then the algorithm is applied.

75

,.

•

Input: A polynomial r of degree a.

Output: Approximation• to the root.a of r.

Fador /(%) recuraivel11 in the /oUotlling manner •nlil .U

monic linear factor, are /ound. •

1. Find a point w that aeperatea the root. of /{ z) inio ''°°
ael.a L and R, thoae to the left and to Uae right of w,

rupectivel11, each containing between 1/4 and 3/4 of all

root.a of J(z). w ahould not be too cloae to ans, root of

/(z).

2. Using a numericall11 evaluated contour integral and the
.

Newton identities, determine approrimations to the two

monic factors / 1 (:r) and / 2(:r) of/{ :r) with roots L and R,

respectively.

..

The authors [4] have shown that the above a.lgorithm can be

implemented in log0(1)(m + n + v) steps using (m + n + v)O(l) processors on

a PRAM, where m is the length of the integer coefficients in bits, n is the degree

of the polynomial, and v is an error tolerance, and each processor in the PRAM

machine is considered capable of perforing a real arithmetic operation in one

step.

4. EVALUATION OF POLYNOMIALS

The evaluation of a polynomial is one of the most widely encountered

operations in computing. The problem of efficient and accurate numerical

evaluation of a polynomial had already received considerable .. attention in the

76

•

•

1960a when flnt reeli•atlon of the computer power came about. Thia 1ection

explore. the m~or reault1 of tbe1e 1tudle..

One of the moat important reault1 in thi1 area ia due to Valiant-Skyum­

Berkowitz-Rackoff (67) and ahowa that any polynomial of degree d which can be

computed sequentially in C step, can be computed in parallel in O((log d)(log C

+ log d)) steps. This waa an improvement of the earlier reault by Hyafil (37)

and Valiant [66).

Let F be a field, and let F[x 1, · · ·, xn] be the ring of polynomials over

indeterminate& x 1, · · ·, Xn with coefficients from F. A program P over F is a

sequence of instructions vi +- vi' o vi'', i = 1, ···, C, where for each value of i,

I II . F { } { } d . f h .
vi , vi are 10 U x1, · · ·, Xn U v1, · · ·, v;_ 1 , an o 1s one o t e two ring

operators + or x. P is called a homogeneous program of degreed if

1. If v,. +- v.1 + v. 11 then v.' and v.'' are homogeneous polynomials of the same
I I I I

degree.

2. P has no division.

3. If vi +- v;' + v;'' then v;' and vi'' are homogeneous and the degree of vi is less

than or equal to d.

If a homogeneous program, P, is used to compute the polynomials f1, · · ·,

fm E F[x1 , · · ·, xn] with Cd(f1, · • ·, fm) denotes the minimum number of nonscalar

. multiplications necessary for this computing, then there exist two sets of

homogeneous polynomials: {ui 11 5 i < 1}, where I is n + Cif1, ···, fm)i and

{vi, j I 1 ~ i 5 I, 1 5 j ~) }, where) is the number of operations of P. These

two sets satisfy the following:

77

•

"

•

1. d/3 S deg(U1) S 2d/3 for 1 ~ i S I.

2. deg(V1• J) S 2d/3 for 1 S i S I, 1 S j S A.

3. If P computes f1 (1 S i S ,\) and d/3 S deg(f1) S d then f1 = E ujvJ. 1 for 1

S j S I.

4. Cd(U1) S Cd((f1, · · ·, fm) for 1 S i S I.

5. Cd(V1, J) :5 Cd((f1, · · ·, fm) for 1 :5 i ~ I, 1 :5 j :5 A.

The proof of these properties is constructed by induction oo L = (f1, · · ·, fm)·

Interested reader is refered to Hyafil [37].
;

{

Let f be a homogeneous polynomial of degree S d in n indeterminanta.

By the above result, f = L uj vj, where 1 :5 j :5 I with I :5 n + Cd(f) and uj

and Vj satisfy properties (1), (2), (4), and (5). The following algorithm

computes fin o(rc1/log 3 -1) log dl) parallel multiplications and in

1 + log d (r1og [Cd(f)+n]l + 1)
log 3 -1

parallel steps, and it is due to Hyafil [37].

Algorithm 3.13. Multivariate polynomials computation I.

Input: A multivariate homogeneous polynomial f.

Output: The computation off.

1. Write/ as f = L ~Vj, where 1 ~ j ~ I as above.

2. Compute U. and v. ~or 1 < 1· < I.
°' J J J• - -

3. Multiply Uj by Vj.

4. Sum up.

Applying the induction hypothesis shows that Step 2 can be computed in

78

If ...
d

\

•

lea than (1/(log 3 - 1)) log (2d/3) parallel multiplicative 1tep1, and log(2d/3)

(log 3 - 1) (rtog (Cd(()+ n)1 + 1) pa.rallel 1tepe. All tbe multiplication• in Step

3 C&D be performed in parallel in one 1tep. Step 4 requirea r1og 11 ~ r1og (n +

Cd(f))l steps. Adding the total number or step• give.a the 1tated complexity or

computing f.

'

The main result of Hyafil (37) can be stated aa follows:

A polynomial f of degree ~ d in n indeterminate& which can be computed with

c•(f) multiplications/divisions can be computed with no more than

r(1/(log 3 1]) log dl

parallel multiplicative steps, and

P + (lo~o~ ~lJ l r1og (d(dil))2 C*(f) + n + 11 + flog dl

total parallel steps.

The proof is direct from the observation that if f1, f2 , · · ·, fd are the d

homogeneous components of f, then Cif1, · · ·, fd) ~ (d(d-1)/2)2C*(f). To

compute f in parallel, one may proceed as follows:

Algorithm 3.14. Multivariate polynomials computation II.

Input: A multivariate homogeneous polynomial f.

Output: The computation off.

1. Compute each of the d homogeneous components off. / 1,

/2, ... , f d •

2. Add these components in parallel .

.
Step 2 requires r1og dl additive steps. Clearly the total compJexity is

79

I ..

\,

•
•

given by tbe e.xpra1ioo1 alat.ed earlier.

Valiant (66), later proved that an n-variablea, degree d polynomial, f,

that can be computed by aome bomogeneoua program •(C, d, n), having C

' I

oooacalar multiplication• can be computed in llog312dj parallel nonacalar

multiplication, and in llog312dJ (flog312 Cl+ 1) + flog 2nl + 1 total parallel

log3/2d
atepa, and that f bu formula size less than 2n(2C) .

C
If f E ~cc, d, n) and d 2: 2 then f =}: gihi for some gi, hi E ~cc, L2/3

i=l

dJ, n). Valiant's result (66) is then proved by using this fact to carry out
.

induction on d. Clearly there are log312d inductive steps, and each can be

implemented in one parallel oonscalar multiplication and r1og2Cl parallel

additions. ,r(C, 1, n) consists of linear forms and can be computed in flog 2 nl +

1 oonsca.lar operations. Similar induction can be used to prove the second result.

Unfortunately, the above two results by Hyafil [37] and Valiant [66]

require C109 d processors. Thus even if C and d are both bounded polynomially

in n, the number of processors required would not be. Valiant-Skyum-Berkowitz­

Rackoff [67] have given an improved construction that achieves the same time

bound but with only (Cd).B processors, for some constant ,8.

Let f be a homogeneous program. Let C and f(vc) denote the size (the

number of instructions) and the polynomial under computation. Assume that f

is the smallest possible pI."ogram f<?r computing f(vc)· Let v, w be in {vi} U {xi}

U F. Define f(v; w) E F[x1, · · ·, x 0] by induction on the depth of w as:

•

\
'

f(v; w) = 1

=0

80

if w ·= v;

·. /

..

t.

'. _:"·· ...

= f{v; w1) + f{v; w11) if w ... w1 + w11
;

= f(w 11) f(v; w1) if w w1 x w11•

The main reault of Valia.ot-Skyum-Berkowitz-R1ckoff (67) can

u follow1:

•

Let f be a homogeneous program of aize C which computes a polynomial p of

degree d. Then there is a program f' of size O(C3
) which compute.a p auch that

the la.rgeat depth of any node is O(log C log d).

To prove this result one may proceed in flog dl stages to construct f'.

Each stage will add at most log C to the depth of any node.

Algorithm 3.15. Multivariate polynomials computation III.

Input: A multivariate homogeneous polynomial f.

Output: The computation off.

1. At stage 0, compute all J(. w) and J(v; w) that have degree

at most 2°=1.

2. At stage i+ 1, compute all J(. w) and J(v; w) that have
. i+l

degree in the range (21
, 2].

In Step 1, a depth of 2 + r1og dl is sufficient since the polynomials are

linear in n indeterminates and C ~ n -1 if f is minimal. In Step 2, f(w) can be

written as f(w) = E f(t) f(t; w) = E f(t 1) f(t 11) f(t; w}, where t is such that t E

Va = {t E {vJ\l)l(t) > a, t +- t 1 x t 11 , d(t1) < a, for some a> o}. Take a=

2i. By definition of Va, each f(t 1), f(t'11), and f(t; w) has already been computed.

So f(w) can be computed adding O(log C) depth. Similarily, if a= d(v) + 2i,

then f(v; w) = E f(v; t) f(t; w) = E f(t 11) f(v; t1
) f(t; w). Each f(v; t 1

) and f(t;

81·

'·'
' I

•

' J
l

'

•

• u

., . ..

)

? (,

;f
r I

,

•
•

So f(v; w) can be compu&ed adding only O(log

C) depth. The aize of the new program ia dominated by tbe time to compute the

f(v; w). There are C 2 choices of pairs (v, w) and the computation of each f(v;

w) take. O(C) 1tep1. The overall size ia, therefore, O(C3).

Even though nonbomogeneoua program, can also be used for polynomial

computing, Straasen has shown that forcing f to be homogeneous ia not a aerioua

restriction [64]. His result states that if a polynomial p of degree d ia computed

by a nonhomogeneous program f of size c, then there is a homogeneous program

of size 0(cd 2) which computes d + 1 polynomials whose sum is the polynomial p.

If this fact is combined with the main result of Valiant-Skyum-Berkowitz-Rackoff

[67], one gets the following: Let f be a nonhomogeneous program of size C which

computes a polynomial p of degree d, then there is a homogeneous program of

size O((Cd 2) 3) and depth O(log C + log d) log d) which computes p.

Finally, the following result was given by Valiant-Skyum-Berkowitz­

Rackoff (67] without proof. Let f be a nonhomogeneous program of size C and

degree d 1 . Then there is a program f of size 0(C3) and depth O(log C log d)

which computes the same polynomial.

. 1The degree of a program is defined as the maximum degree of any node .

The degree of a m.ultiplication node is the sum of the degrees of its input.s; the

degree of an addition node is the maximum degree of its inputs. The degree of a

field member is 0; the degree of an indeterininate is 1.

82

!

•

I.

•
..,

Chapter 4

PARALLEL ALGORITHMS

FOR INTEGER ARITHMETICS

In this chapter, we review some of the important results on integer

arithmetic operations performed in parallel. The GCD algorithm is discussed in

Section 4.1. The parallel evaluation of straight-line code is considered in Section

4.2. Computing powers in parallel is discussed in Section 4.3. Because of the

need for breivity, we are unable to include several other interesting results here.

These include integer addition of two n bit numbers performed in O(log n) time

using n processors as given by Ladner-Fischer (44]; integer multiplication given

by Schonhage-Strassen [62) requiring O(log n) time with (n log log n) processors;

integer division requires O(log n) parallel time with a polynomial number of

processors, Beame-Cook-Hoover [3], and the earlier algorithm by Cook [21]

requiring O((log n) 2) time and n2 processors.

1. THE GREATEST .COMMON DIVISOR

If A and B are integers, not both zero, then their greatest common

divisor, GCD(A, B), is the largest integer that evenly divides both A and B.

One of the oldest and best known algorithms to calculate the greatest common
..

83

·•·

... "

. ,

•

diviaor of two integers without factoring them wu diacovered 22ao yean -COi

tbi1 ia "Euclid 'a Algorithm". The algorithm can be atated u followa:

1. Interchange A and B if A < B.

2. If B = 0, then the GCJXA, B) = A, and the

algorithm tenninates.

'
3. Set B..-A mod Band A+-B and go to Step 1.

Since one can easily verify that the GCD{A 1, A2 , · · ·, An) = GCD(A 1,

GCD{A 2 , · · ·, An)), the Euclidean algorithm can be generalized to calculate the

greatest common divisor of n integers. One may proceed as follows:

Algorithm 4-1. Euclid's algorith_m for integer GCD.

Input: The integers A1, · · ·, An.

Output: The greatest common divisor of A1, · .. ·, An.

1. Set d = An, j = n-1.

2. If d =I l and j > 0, set d = GCD(Aj, d) and j = j-1,

• and repeat this step. Othenoise, d = GCD(A1, · · ·, An)·

Euclid's algorithm is an effective sequential algorithm for the GCD

.•

problem. Schonhage [61] has obtained the best known serial running time of O(n

log2n log log n) for a sequential algorithm. Brent-Kung [12J have. parallelized his

algorithm and achieved a running time of O(n) using n processors arranged in a

systolic array. T~e parallelism reduces the bit operations, but it still requires n

iterations. The parallel algorithm discussed here is by Kannan-Miller-Rudolph

84
,._

•

(41). It la 1ubllnear and bu a running time of O(n log log n/log n). Recently,

Cbor-Goldreicb (20] have improved thia running time by getting rid of the log log

•

n term.

In the cluaical Euclidean algorithm, A ia replaced with A mod B, or with

A - q 8, where q ia the quotient when A is divided by B. Kannan-Miller­

Rudolpb '1 (41] algorithm computes p A - qp B in parallel for p = 0 to n, where

qp is the quotient when pA is divided by B. Since all of these integers are

between O and B, then there are at least two that agree on leading log n bits by

the pigeon-hole principle. Thus their difference is a nonnegative integer with at

most (n-log n) bits. Replacing A by their difference would reduce the problem

size by log n bits during each two iterations, thus requiring only O(n/log n)

iterations.

The following lemmas handle the two problems that may arise in this

situation. The first lemma characterizes the changes in the GCD{A, B) when A

is replaced p A - q B. The second shows the application of the pigeon-hole

principle to reduce the number of bits during an iteration.

Lemma~ If g = GCD(A, B); h = GCD(p A - q B, B) then g divides h and

{h/g) divides p ..

Sirice p is at most n, the only extra factors that are introduced into the

GCD when A is replaced by p A - q B are made up of powers of primes

between O and n. At the outset of the algorithm, all prime factors of magnitude

at mos~n between A and B can be removed (in O(log n) time), and the entire

algorithm may be run. At the completion of the algorithm, the extra factors

J-
I

I •

85

\

'

introduced In tbe GCD by tbe replacement can be removed quickJy.

Lemma 2a If a, b, and n a.re poeitive lntegen and a :S b a then there exiat

integen p and q not both zero aucb that f pf ~ a b/a, fql ~ 2 a and O ~ p a -

qb ~ a/n.

We want to find p and Qp with p between -n and n such that (p A - Qp

B) ia an integer with at most (n - log n) bits. We thus need p A - qp B to

satisfy O ~ p A - Qp B ~ min (B, 2<n-log n>). It should be noted that only

"'
O(log n) most significant bits of A and B are considered in order to find p and

qp that satisfy these conditions.

The algorithm makes use of the ordinary sequential Euclidean algorithm

once the numbers get small. It also uses the long division which can be

performed in parallel time of O(log2k) where k is the difference between the

number of bits of A and that of B, since only O(k) bit integers are to be dealt ,,

with. The long division is used only when k exceeds (log n) 2 + 1. The

algorithm can be stated as follow§:

,,.

Algorithm 4.2. Integer GCD.

Input: Two integers A and B.

Output: The greatest common divisor of A and B.

MAIN PROGRAM

1. // A < B then swap them.

2. Let n and m be the number of bits of A and B

respectively, (i.e., n = #A, m = #B)2•

3. If m ~ 2 (log n)2 then

86 I
.•. . JT

' _,

•
:

I>

4. Find C = A (motl B) lr long tliviaion.

6. Find the GCJJ(_ C, IJ) wing the w,ual amal Eudulean

algonllam, and N!fum wiUa ruull.

6. Remoue amaU common /aclora from A and B, and caU

the product SF.

7. Repeat Procedure DoAPlaue(.A, B) until m < 2(log n)2.

8. Remove amaU /actora from A and from B.

9. Find C = A (mod B) 611 uaual long diviaion.

10. Run the serial Euclidean algorithm on C, B to get g1

11. Return GCD t- SF• g.

PROCEDURE DoAPhase (4a JD
1. k n; s 2 (log n)2 •

2. If n-m > (log n)2 + 1 then call LongDivide(A, B), else

3. a A [k : k - s + 1), b +- B[k : k - s + 1), T+­

identity matrix, endsize +- # a + # b - (log n)2
.

4. Repeat Procedure DoA n/teration (a, b, T) until (#a +
b) < endsize.

5. (A B)1 +- T(A B).

6. Replace A and B by their absolute values.

7. If A < B then swap their values.

PROCEDURE LonqDivision

0. l +- #B.

1. k +- #A _: #B.

2. a +- most significant min(2k, k+ l) bits of A.

3. b +- most significant min{ k, l) bits of B.

4. q +- La/ b J.
5. C +- A - q B.

~ 6. /f·C < 0 then C +- C + 4 B . .

2We use #L to denote number of bits in L and L[u : v] to denote the

integer formed by bits (u, u + 1, · · ·, v) of L.

87

,:·-·

•

' ' . ~

...

...

1. A .,_ B.

8. B .,_ C.

PROCEDURE D0AnlCct1Cion Ua ~ .D
1. If a/6 ~ n IJaen fintl a q wcJa ilaal q = La/6J, p I.

2. elae, find a pair (p, 9), v,laere IPI S n 6/ a, anti I qf ~ 2 n,

auch that O ~ p a - q b S a/ nm.

0 1
3. T ...,_ T.

p -q

.
I

4. (a b)t +-
0 1

(a b)t.
p -q

The time complexity of this algorithm may be determined as follows.

The repeat loop of the ma.in program is executed at most n/(log n) 2 times, since

each iteration removes at least (log n) 2 bits from the sum of the bits of A and B.

However, each call of PROCEDURE DoAPhase (A, B) in the loop, involves a

call of PROCEDURES LongDivide or DoAnlteration. Thus, it is important to

determine the running time of each of these inner procedures.

PROCEDURE DoAnlteration can be executed in O(log log n) parallel

time using n 2(log n)2 processors. This can be shown as follows: Step 1 requires

no more than O(log log n) time because it is a multiplication of two 2(log n)
2

-

bits numbers. Finding the. q in Step 1 can also be performed in this time bound

by assigning (log n) 2 processors to each of the n equations "a - b q". Step 2

also takes O(log log n) time by using (log n) 2 processors for each of the n
2

equations "p a - q b". Steps 3 and 4 can be comput~d · in O(log log n) time

' 88
l
'

' ..
. . ~ ..

. ~- ...

•

•

aince the entriea in the matricea a.re no grae\er than O((log n)2) bile.

PROCEDURE LongDivide ca.a be executed in O(log n) time u1ing no

more than O(n) processors. To show thia, note that Step 1 of tbia procedure can

easily be computed using a binary fan-in tree and n proce:uon in O(log n) time.

Steps 2 and 3 take constant time to identify the appropriate bite. In Step 4, the

division of a 2k-bit number by a k-bit number can be done in O((log k) 2) time

with k processors. Step 5 is simply a multiplication of a k-bit number by an o­

bit number and this takes no more than O(log n) parallel time with n processors.

The subtraction is also done within this time bound.

Since PROCEDURE DoAPhase may invoke PROCEDURE

DoAnlteration (no more than (log n) times) or PROCEDURE LongDivide, from

the previous discussion, it follows that it requires O(log n log log n) parallel time

and uses n2(log n) 2 processors. Each of Steps 2 and 4 of the procedure requires

O(log n) time using n processors. Therefore, each execution of the repeat loop in

the main program takes no more than O(log n log log n) parallel time.

Hence, it can be seen that the GCD of two integers, each represented in

at most n bits, requires paralle~ time 0(n log log n/log n) using n 2(log n)2

processors. This follows immediately from the previous discussion of

DoAnlteration, LongDivide, and DoAPhase provided we can remove the small

common factors in O(n/log n) parallel time. Since the small prime factors of an

n-bit number can be identified in O((log n) 2) time, the complexity result follows.

. .

89

-
•

•

2. THE EVALUATION OF A STRAIGHT-LINE CODE

For arithmetic algorithms, the moat basic models of computation are

arithmetic circuit,, using input,, con1tant1 from the ground field, F or aemi-ring­

R, and operations +, -, •, /. Straight-line programs are apecial cues of

arithmetic circuits. An arithmetic circuit is an edge-weighted directed acyclic

graph satisfying the following conditions:

1. Each node is labeled as one of three types: a leaf, a multiplication node, or an

addition node.

2. Leaves are assigned a value in For R, denoted value(v) for a leaf v.

3. The indegree of a leaf node is zero, a multiplication node is two, and an

addition node is nonzero.

4. All edges are directed away from leaves.

5. There are no edges from multiplication nodes to multiplication nodes.

A straight-line program over a commutative semi-ring R=(R, +, x, 0, 1)

is a sequence of assignment statements of the form a +- b + c or a +- b x c,

where b and c are either elements of R or previously assigned variables.

Given a straight-line program, one may obtain its arithmetic circuit by

constructing a node for each statement and for each input variable, and an edge

from node i to node j if j is a statement that uses the variable evaluated at

statement i. All edge weights are set to 1, and nodes corresponding to input

variables are given values assigned to the corresponding variables .
..

Arithmetic networks use these arithmetic operations and also Boolean

inputs, constants, and operations. The interface is given· by "sign" gates, which

' ;

90

'

.,,: ..

•

'
//

lake an ari&bmetic Input a in F or R aad produce a Boolean value according to

whether a ia zero or not, and by •aeJection" gatea, which produce the firat or

1ecood of their two arithmetic input, according to the value of the one Boolean

• aaput.

Struaen (65) and Ben-Or (5) have discussed sequential algorithms on the

related model of "algebriuc decision trees". Miller-Ramachandran-K<ofen (49]

have given a new and efficient parallel algorithm to evaluate a straight line

program. The algorithm evaluates a program over a commutative semi-ring R of

degree d and size n in time O((log n)(log nd)) using M(n) processors, where

M(n) is the number of processors required for multiplying nxn matrices over R

in O(log n) time. This result is a generalization of the result of Valiant-Skyum-

Berkowitz-Rackoff [67] discussed in Chapter 3. That paper considers the

problem of transforming a straight-line program into a program of "shallow"

depth3• Their transformation is performed by a sequential polynomial time

algorithm. As against the off-line algorithms presented in the previous papers,

they show the construction of this "shallow" on-line program with the same size

and time bounds and no preprocessing. Further, the algorithm does not need to

know the degree of the circuit in advance. Let U be an upper triangular matrix

with zero diagonal, representing an arithmetic circuit. An entry Uij of this

matrix U is the weight on the edge from node vi to node vj if the edge exists; it is

zero otherwise. The following three submatrices may be derived from U:
...

3The depth (or height) of a coputational tree is the length of the longest

•
path in it and in arithmetic circui.ts, it represents the time required for parallel

execution of the computation.

91

•

U(+, + >u = Uu if vi and VJ are addition node.; it ii zero otberwiee,

U(X, + >u = Uu if vJ ia an addition node, it i, zero otherwiae, and

U(X, X)u = Uu if v1 or vJ ia not an addition node, it i, zero otberwiae. The

algorithm ia described below.

Algorithm 4.3. Evaluation of straight-line programe.

Input: An arithmetic circuit.

Output: The evaluation of the arithmetic circuit.

Procedure Phase LJll
Begin

U +- MM(U)

U +- Eval+(U)

U +- Evalx(U)

End.

Procedure MM(U)

U +- U(X, +) • U(+, +) + U(X, X)

Procedure Eval
1
LJll

For all addition nodes vi whose children vk and v1, both of

which are leaves, do

value (vj) +- E value (vi)• Uii for l~i~n.

Set vi to a leaf Uij +- 0 /or iE{l, · · ·, n}.

Procedure EvalxLJll

For all multiplication nodes vi with children vk and v1, both

of which are leaves, do

value (vj) +- value (vk) * vlaue (v1)

Set vj to a leaf U kj +- 0 and Ulj +- 0.

92

' ' •"-··

I

..

•

For all U ji v,laere "; u • mulliplicalion no~•

"i ontl "I and "t i., a leaf antl "I i., not tlo

F lji value ("t) • U ji

For aU pain (l, i) do

w, . ._ E F, ..
I , [11

uli -- clli + w,i
U .. ._ 0. ,.

..

Procedure Phase takes as input an arithmetic circuit and returns a new

circuit with the same nodes such that each node has the same value as before.

Repeated application of procedure Phase eventually returns with the value of the

circuit. Procedure MM, Matrix Multiplication, uses one matrix multiplication

and one matrix addition over R. Thus it can be performed in O(log n) time
•

using O(n 2 ·49) processors. Figure 4-1 below shows the effect of applying

Procedure MM to an arithmetic circuit. Procedures Eval+, plus evaluate, and

Evalx, multiplication evaluate, simply evaluate an addition node or a

multiplication node if all its children have been evaluated. They can be

performed in O(log n) time using only O(n 2) processors. To see that Evalx can

be performed with 0(n 2) processors, note that the number of terms F Ui in line

(*) is at most equal to the number of edges. Thus, we simply sort these terms

on their key (l, i) using a randomized parallel bucket sort or a deterministic

comparison-based sorting algorithm, and then sum the terms using parallel list-

.ranking. Figure 4.;2 shows the effect of applying Evalx to a circuit.

93

~-·- f

\

•

f
,;,1 .J

I

' ·. j

J···
' ..

~ ,
/

\',

./

2

•

•

(
'

i' .

•

•

•

0 a a,-~ b aa + b/3 "'"c 0 a b C 0 0 0 0 0 a

0 0 0 p-, 0 0 y a 0 0 'V a 0 0 - -
0 0 0 0 0 0 0 fJ 0 0 0 tJ 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0

Figure 4-1. An arithmetic circuit before and after an

application of procedure MM, [49] .

53

(±)
'

"\

Figure 4-2. An arithmetic circuit before and after a·n

application of prcoedur~ Evalx, [49].

94 .,

I

•

b C

0 0

0 0

0 0

I

Before we 1t.aie the main reault of Miller-Ramacbandran-Kaltofen (49),

t.be definition of tbe height of an arithmetic circuit a~ould be given. The height

of a circuit U ia tbe maximum height of any node in U. The height of a node ia
•

defined inductively by:

1. A leaf baa height 1.

2. A multiplication node has height equal to the sum of the heights of ita

children.

3. If v is an addition node then the height of v equals max{ a+ 1/2, m), where a

equals the maximum height of any child v which is an addition node, and m

equals the maximum of the heights of the children which are either a leaf or a

multiplication node.

.

If a circuit has height h, then after r1og h l applications of procedure

Phase the resulting circuit will contain only leaves and output nodes. Thus, in

one more application of Phase (only Eval+ and Evalx are needed) all nodes will

be leaves, i.e., the· circuit has been evaluated. With a slightly more careful

analysis the number of applications can be bounded by llog hJ+l. Now the

main result of Miller-Ramachandran-Kaltofen can be stated as follows [49]:

If U is· an arithmetic circuit of degree d and size n then the value of V

can be computed in time O((log n)(log nd)) using at most M(n) processors. To

prove this, note that procedure Phase need only be applied llog hJ+ 1 times,

where h is the height of the circuit U. Now it can be easily shown that h= 0(e.

"

d), where e is the number of plus-plus edges. As a matter of fact h~l/2ed+d,

(see (49] for the proof). Thus, procedure Phase is applied O(log nd) times. Now,

95

J··
• . . . J'"

/

/

I

•

•

..

eacb application of Pha1e requirea only (log n) parallel time. The proce1aor­

expenaive 1tep ia the matrix multiplication in procedure MM, which can be

performed u1ing O(M(n)) processor,.

lo Figure 4-3, the effect of applying the different procedures to a circuit ia

1bowo. Starting with the circuit (a) and applying procedure MM, one obtains

circuit (b), to which procedure Eval+ may be applied obtaining circuit (c), to

which procedure Eval x may then be applied obtaining circuit (d) .

'

L.__ .

(a)

(c)

• ..

' ..

(b)

(t!)

. Figure 4-3. An arithmetic circuit after successive
. ~

• f

·' ..

-
application of the procedures: MM, Eval+, and Evalx, [49].

· .. 96 .

t

'

..

,

Several new related reeulta have appeared 1ince thia work. Matrix
· ..

multiplication can now be performed uaing O(n 2·367) proceuora u abown in

Copper·amith- Winograd (22). The ideaa in (49) have been extended to more

complex domains by Miller-Teng (50]. Finally, an analysis of the ma.in theorem

ha.a been found that does not use the height metric, Mayr (48].

3. COMPUTING POWERS IN PARALLEL

lo this section, the problem of computing ab mod m is parallel, where a,

b, and m are n-bit integers, is considered. This problem arises as a subroutine in

many computational problems, e.g., factoring integers, primality tests, and

factoring polynomials over finite fields. The common method of "repeated

squares" does not yield fast parallel computations and, therefore, there has been

a great deal of activity in this area to find better parallel algorithms.

Gathen [29] has presented fast parallel computations for large powers

modulo an element that has only small prime factors. These parallel

computations work for integers and polynomials over small finite fields.

Subsequent to that paper, Fich-Tompa (26] obtained a fast parallel

exponentiation algorithm in large finite fields of small characteristic. This lead

to the surprising observation that for certain polynomial computations, Boolean

circuits are exponentially more powerful than arithmetic circuits, Gathen-

Seroussi [32]

Assume that n is an input size parameter, and that a, b, p, e E N such

,.

97

. -,
--.~~

,.

•

..

•

tbat p, e S Di a, b < 2", and p ~ 3 i, a prime. Tbe following algorithm

compute. c E N aucb that ab = c mod p•, and i1 due to Gatben (29).

Algorithm 4.4. Integer power modulo a prime power.

Input: Integers a, b, p, e e N 1uch that p, e S n; a, b < 2",

and p ~ 3 ia a prime

Output: c E N such that ab = c mod p•.

1. If a = 0, then return c = 0 and •top. Compute l e N

such that i and /+ 1 do not divide a. If I b ~ e, return

c = 0 and stop. Othenuise replace a by a/p1. Auume

2.

3.

4.

-·· /--

now that a is not congruent to O ,nod p.

Compute r such that a = r mod p, 1 < r < p.
e-1

Compute s such that s = o(r) = ,J' mod p, 1 <s< -
pe.

Compute h and u such that h = b mod p-1, O<h< . -
p-l, and u = sh modpe, 1 < u < pe.

5. Compute the inverse t of s such that s t = I mod pe, 1

< t < pe.

b
6. Compute v and w such that v = a t mod pe, w = E Q

I .
(v-1)1 = w mod pe, and 1 ~ v, w < pe, where O < i <

b
e, and q is the combination of b over i.

I

1. Return c=p16uw .

In Step 3, a is an arithmetic cu:r_cuit computing ub, ab mod m, ab mod

x", ab mod x" if a has constant term 1, where u E F, b E N with .2n-l < b ~- 2",

a and m are in F[x] of degree n are input.

98
.. ~-

"

. I

•

Let div(n) deno&e eome function auch that there exiat Boolean circuit.a of

depth div(n) and aize of nO(l) that compute the diviaion with remainder for n-bit

integen. "Long division" yields the trivial bound div(n) = O(log2n). For P­

uniform circuits, Beam-Cook-lloover (3] gave the value O(log n) to div(n). By

Reif (57), div(n) = O(log n log log n) for log-apace uniform circuit,. The

"iterated" product of n n-bit integers can be computed in depth O(div(n)),

Beam-Cook- Hoover (3).

Using the above notation of div(n), Gathen (29) showed that the above

algorithm can be implemented on a Boolean circuit of depth O(log n div(n)) and

size n O(l). Moreover, the algorithm works correctly as described. To prove

these two claims, note that one can assume that a is not congruent to O mod p,

i.e., l = 0. Also, note that s = r = a mod p and v = 1 mod p. For the details

of the proof for the second claim, an interested reader is refered to Gathen [29].

To prove the depth, a quadratic Newton iteration to compute t in Step 5 is used.

. to = r' ti = ti-1 - (- ti-1 + t 2 i-1 s) mod p2i' 1 < ti < p2i.

Each iteration step can be performed in depth 0(div(n)). This depth is also

sufficient for the iterated products required for the binomial coefficients and

powers of v-1 in Step 6. The depth required by Step 3 is also O(div(n)).

Therefore, the depth required by Steps 1, 2, 4, 6, and 7 is O(div(n)). The

depths required by Steps 3 and 5 is O{log n div(n)). This proves the first claim.

By exploiting the power of" P-uniformity, one can actually get Boolean

circuits of optimal (up to constant factor) depth, O(log n), Gath,.!n (29].

99

' .

•

\
l

,,

Chapter 5 ..

SUMMARY AND CONCLUSIONS

Algorithms can be generally cla11ified in various waya, such u algebralc

vs. analytic, finite vs. infinite, and exau:t va. approximate. Within recent years a

new classification has become important: sequential vs. parallel, brought about

by the development of parallel and pipeline computers. These devices allow

concurrent arithmetic processing, can easily handle large volumes of information,

and often provide hardware facilities for many inherently parallel operations

found in numerical linear and polynomial algebras. {' \
'

Recent surveys have given attention to research in areas · such as

numerical linear algebra and parallel arithmetic computations. None of these

surveys, however, gave a complete and comprehensive survey on polynomial

computations. It was our intention to provide a thorough and up-to-date

discussion of parallel methods for matrix computations, polynomial operations,

and integer arithmetics all in one survey, along with background information
...

concerning the computer methods and fundamental techniques.

In the important subject of matrices and linear systems of equations,

several parallel algorithms were presented. Three parallel algorithms to compute

the determinant of a given matrix were discussed, along with two algorithms to

compute the inverse matrix of a given one. In addition, several parallel

algorithms to solve a linear system of equations were introduced. The cases

100

-,•

\

. ,R

where the coefficient matrix in the 1y1tem of equation under con1lderatioa bu a

special structure were took into consideration.

Polynomial computation have aeveral important applicationa. Thia topic

wu diacuued in Chapter 3. Parallel algorithms to compute the polynomial gcd

and finding the roots of a polynomial were discussed. Seven parallel algorithm,

for polynomial factorization were discussed thoroughly because of the importance

of the subject. In addition, three algorithms for polynomial computation were

presented.

In Chapter 4, the topic of integer arithmetics and parallel algorithms was

discussed briefly. The need for breivity made us unable to include several

interesting results here. However, three important integer problems were

discussed. The integer GCD was discussed and algorithms to compute it were

presented. The evaluation of straight line code was also discussed.

101
. ..,..,_.._ __ .~ - •

e'

\

REFERENCES

(l] A. V. Aho, J. Hopcroft, and J. D. Ullman, The Design and Analy1i1

of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

(2] S. G. Aki, The Design and Analysis of Parallel Algorithms, Prentice

Hall, Englewood Cliffs, NJ, 1989.

(3] P. W. Beame, S. A. Cook, and H. J. Hoover, "Log Depth for Division

and Related Problemt;", 25th Annual Symposium on the Foundations of

Computer Science, pp. 1-6, October 1984. SIAM Journal on Computing,
..

vol. 15, pp. 994-1003, 1986.

[4] M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, "A Fa.st Parallel

Algorithm for Determining all Roots of a Polynomial with Real Roots",

SIAM Journal on Computing, vol. 17, No. 6, pp. 1081-1092, December

1988.

(5] M. Ben-Or, "Lower Bounds for Algebraic Computation Trees",

[6]

Proceedings of the 15th Annual ACM Symposium on Theory of Computing,

Boston, MA, pp. 80-86, 1983.

Small Parallel S. Berkowitz, "On Computing the Determinant • Ill

Time Using a Small Number of Processors", Information Processing

Letters, vol. 18, pp. 147-150, 1984.

[7] E. R. Berlekamp, "Factoring Polynomials Over Finite Fields", The

Bell System Technical Journal, vol. 46, pp. 1853-1859, October 1967.

102

..

' ~

-......

...

(8) E. ll. Berlekamp, .. Factoring PolynomiaJa Over Large Finite Fie1c11•,

MaU.emaliu o/Computaiaon, vol. 24, No. 111, pp. 713-736, July 1970.

(9) D. Bini, .. Parallel Solution of Certain Toeplit1 Linear Sy1tem1",

SIAM Journal on Computing, vol. 13, No. 2, pp. 268-276, May 1984.

(10) A. Borodin, J. von zur Gatben, and J. Hopcroft, "Fut Parallel

Matrix and GCD Computations", lnformataon and Control, vol. 52, pp.

241-256, 1982.

[11] A. Borodin and I. Munro, The Computational Complexity of

Algebraic and Numeric Problems, America) Elsevier, New York, NY, 1975.
'

(12] R. P. Brent and H. T. Kung, "Systolic VLSI Arrays for Linear Time

GCD Computation", VLSI 83, International Federation of Information

Processing, 1983.

[13] W. S. Brown, "On Euclid's Algorithm and the Computation of Polynomials

Greatest Common Divisor", Journal of the Association of Computer

Machinery, vol. 18, pp. 478-504, 1971.

[14] D. M. Burton, Abstract and Linear Algebra, Addison-Wesley Publications

Company, Inc., Phillipines, 1972.

[15] P. Camion, "A Deterministic Algorithm for Factorizing Polynomials

of F q[x]", Annals of Discrete Mathematics, vol. 11·, pp. 149-157, 1983.

[16] D. G. Cantor and H. Zassenhaus, "A New Algorithm for Factoring

Polynomials Over Finite Fields", Mathematics of Computation, vol. 36, No.

154, pp. 587-592, April 1981 .

' . -~,,

103 . .,

..

(17) S. C. Chen, "Speedup of Iterative Program, in Multiproce11ing

Syatema", Dissertation, Department of Computer Science, Univer1ity of

lllinoi1, Urbana, IL, 1975.

(18) S. C. Chen and D. J. Kuck, "Time and Parallel Proceuor Bound, for

Linear Recurence Systems", IEEE Tranaaction.a Compuiera, pp. 701-717,

1975.

[19] A. L. Chistov and D. Yu Grigoryev, "Polynomial-time Factoring of

Multivariable Polynomials Over a Global Field", Lomi Preprints E-5-82,

Leningrad, 1982.

[20] B. Chor and 0. Goldreich, "An Improved Parallel Algorithm for

Integer GCD", MIT Laboratory for Computer Science, Cambridge, MA,

April 1985, to appear.

[21] s: A. Cook, "The Classification of Problems Which Have Fast

Parallel Algorithms", Lecture Notes in Computer Science, vol. 158,

Springer-Verlag, New York, Berlin, Heidelberg, 1987.

[22] D. Coopersmith and S. Winograd, "Matrix Multiplication via

Arithmetic. Progressions (Behrend 's Theorem)", Proceedings of the 19th

Annual ACM Symposium on Theory of Computer Science, ACM, New

York, pp. 1-6, May 1987.

[23] L. Csanky, "Fast Parallel Matrix Inversion Algorithms",

Journal on Comp·uting, vol. 5, No. 4, pp. 618-623, December 1976.

SIAM

[24] L. Csanky, "On Parallel Complexity of Some Computational Problems",

Ph.D. Dissertation, Computer Science Division, University of California,

Berkley, CA, 1974. ~

,

' 104

l

\
'

,. ' •

•

..

(26) J. H. Davenport and 8. M. Trager, •ractoriution Over Flnit.ely Generated
--

Field•", Proceeding• of the 1981 ACM Sympoeium on Symbolic and

Algebraic Computation (P. Wang ed.), pp. 200-205, 1981.

(26) f ... fich and M. Tompa, 14Tbe Parallel Complexity of Exponentiating

Polynomials Over Finite Fields", Proceedings of the 17th Annual ACM

Symposium on 1"he Theory of Computing, Providence, RI, pp. 38-47, 1985;

Journal of the A&Sociataon of Computer Machinery, to appear.

(27) M. J. Flynn, "Very High-Speed Computing Systems", Proceedinga IEEE,

vol. 54, pp. 1901-1909, 1966 .
.,

[281' J. von zur Gathen, "Parallel Algorithms for Algebraic Problems", SIAM
/

Journal on Computing, vol. 13, No. , pp. 802-824, November 1984.

[29] J. von zur Gathen, "Computing Powers in Parallel", SIAM Journal on

Computing, vol. 16, No. 5, pp. 930-945, October 1987.

[30] J. von zur Gathen, "Factoring Polynomials and Primitive Elements for

Special Primes", Theoretical Computer Science, vol. 52, pp. 77-89, 1987.

[31] J. von zur Gath en and E. Kaltofen, "Factorization of Multivariate
.

Polynomials Over Finite Fields", Mathematics of Computation, vol. 45, No.

171, pp. 251-261, July 1985.

(32] J. von zur Gathen and G. Seroussi, "Boolean Circuits Versus Arithmetic

Circuits", Proceedings 6th International Conference on Computer Science,

Santiago, Chile, pp. 171-184, 1986.
\

(33] H. Gunji and D. Arnon, "On Polynomial Factorization Over Finite· Fields",

Mathematics of Computation, vol. 36, No. 153, pp. 281-287, January 1981 .

..

105

,.,

•

/

, '

[34) D. Beller, "'A Determinant Theorem With Application, to PanlleJ

Algorithm•", SIAM Journal on Numerical Anali,N, vol. 11, No. 3, pp. 669-

568, June 1974.

[35) D. Heller, "A Survey of Parallel Algorithm• in Numerical Linea.r Algebra",

SIAM Review, vol. 20, No. 4, pp. 740- 777, October 1978.

(36] A. S. Householder, The Theory of Matricea in Numerical Analysis, Blaisdell,

New York, 1974.

(37] L. Hyafil, "On the Parallel Evaluation of Multivariate Polynomials", SI AM

Journal on Computing, vol. 8, No. 2, pp. 120-123, May 1979.

[38] L. Jamieson, D. Gannon, R. Douglass, editors.The Characteristics of

Parallel Algorithms, The MIT Press, Cambridge, MA, 1987.

[39] E. Kaltofen, "A Polynomial-Time Reduction From Bivariate to Univariate

Integral Polynomial Factorization", Proceedings of the 23rd Symposium on

Foundations of Computer Science, IEEE, pp. 57-64, 1982.

[40] E. Kaltofen, "Polynomial-Time Reduction from Multivariate to Bivariate

and Univariate Integer Polynomial Factorization", SIAM Journal on

Computing, vol. 15, No. 2, 1985, vol. 14, pp. 469-489, 1984.

[41] R. Kannan, G. Miller, and L. Rudolph, "Sublinear Parallel Algorithm

for Computing the Greatest Common Divisor of Two Integers", SIAM

Journal on Computing, vol. 16, No. 1, pp. 7-16, February 1987.

[42] D. E. Knuth, The Art of Computer Programming, Seminumerical

Algorithms, vol. 2, second edition, Addison-Wesley, Reading, MA, 1982.

l.

I

, ,...

106

\ .
!
I

·,

,._

•

)

I

(43) D. J. Kuck, Structure of Computen and Computatiofle, Wiley, New York,

1978.
•

(«] R. E. Ladner and M. J. Fischer, "Parallel Prefix Computation",

Journal of the Aaaociation of Computer Machineri,, vol. 27, pp. 831-838,

1980.

(45) P. Lanca.ster and M. Tiamenetakt, The Theory of Matrices with

Applications, second edition, Academic Press, Inc., 1985.

(46) A. K. Lenstra, "Factoring Multivariate Polynomials Over Finite Fields",

Journal of Comp~er and System Sciences, vol. 30, pp. 235-248, 1985.
' ,

[4 7) A. K. Lenstra, H. W. Lenstra, and L. Lovasz, "Factoring Polynomials with

Rational Coefficients", Mathematische Annalen, vol. 261, pp. 515-534, 1982.

[48] E. W. Mayr, "The Dynamic Tree Expression Problem", Tech. Report

ST AN-CS-87-1156, Stanford University, Department of Computer Science,

May 1987.

[49] G. L. Miller, V. Ramachandran, and E. Kaltofen, "Efficient Parallel

Evaluation of Straight-Line Code and Arithmetic Circuits", SIAM Journal

on Computing, vol. 17, No. 4, pp. 687-695, 1988.

[50] G. L. Miller and S. H. Teng, "Dynamic Parallel Complexity of

Computational Circuits", Proceedings of the 19th Annual ACM Symposium

on Theory of Computing, ACM, New York, pp. 254-264, May 1987.

(51] J. Modi, Parallel Algorithms and Matrix Computation, Clarendon Press,

and Oxford University Press, 1988.

107

'l',y_

(62) R. T. Moenck, '"On the Efficiency ol Algorithm• lor Polynomial Factoring",

Mallaemofac• of Computation, vol. 31, No. 137, pp. 235-250, January 1977.

(63) D. R. Mu1aer, "Algorithm• for Polynomial Factorization", Ph.D.Theail and

TR 134, Univenity of Wisconsin, 1971 .

•

(54) S. E. Orcutt., Jr., "Computer Organization and Algoritlima for High-Speed

Computations", Dissertation, Department of Electrical Engineering,

Stanford University, Stanford, CA, 1974.

(55] M. C. Pease, "Inversion of Matrices by Partitioning", Ibid., vol. 16, pp. 302-

314, 1969.

(56] M. O. Rabin, "Probabilistic Algorithms in Finite Fields", SIAM Journal on

Computing, vol. 9, No. 2, pp. 273-280, May 1980.

[57) J. Reif, "Logarithmic Depth Circuits for Algebraic Functions", SIAM

Journal on Computing, vol. 15, pp. 231-242, 1986.Extended Abstract in

Proceedings 24th Annual IEEE Symposium on the Foundations of
.

Computer Science, Tucson, AZ, pp. 138-145, 1983.

[58) A. H. Sameh and R. P. Brent, "Solving Triangular Systems on a Parallel

Computer, SIAM Journal on Numerical Analysis, vol. 14, No. 6, 1977.

'
[59) A. H. Sameh and D. J. Kuck, "Linear System Solvers for Parallel

Computers", Department of Computer Science, University of Illinois,

Urbana, IL, 1975.

[60] P. A. Sa.JI1uelson, ."A Method for Determining Explicitely the Coefficients
. t ..

of the Characterestic "Equation", Ann. Math. Statist., vol. 13, pp. 424-429,

1942.
·i.~ .• :i:,~r,

....

108
. ' .

\

•

~
·1

• •

(81) A. ScbOnbage, "Schnelle Berecbnung von KeUenbrucbent.entwicldungen•,

Acfa Inform., vol. 1, pp. 139-144, 1971.

(62) A. ScbOnhage and V. Strueen, "Schnelle Multiplikatlon Groa1er Zahlen•,

Computing, vol. 7, pp. 281-292, 1971.

(63] H. S. Stone, "An Efficient Parallel Algorithm for the Solution or a

Tridiagonal Linear System of Equations", Journal of the Aaaociation of

Computer Machinery, vol. 20, pp. 27-38, 1973.

(64) V. Strassen, "Vermeiding von Division", J. Reine A ngew. Math., vol. 264,

pp. 184-202, 1973.

(65) V. Strassen, "The Computational Complexity of Continued Fractions",

SIAM Journal on Computing, vol. 12, pp. 1-27, 1983.

(66) L. Valiant, "Computing Multivariate Polynomials in Parallel", Infonnation

Processing Letters, vol. 11, No. 1, pp. 44-45, August 1980.

(67] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, "Fast Parallel

Computation of Polynomials Using Few Processors", SIAM Journal on

Computing, vol. 12, No. 4, pp. 641-644, November 1983.

'

109

,!'
. .•· _----·-··",jf

•

VITA

lyad A. Ajwa wu born in Balata Camp, Jordan on Apri.l 3, 1959, to Mr.

a.nd Mra. Abdel-Ra.him and Miaa'deb Ajwa. He attended public 1cbool1 in

Jordan and the United Arab Emirates (UAE), graduating from Dubai Secondary

School, Dubai, UAE in 1977. He graduated from the University of Jordan,

Amman, Jordan in June 1981, receiving a B.Sc. degree in Mathematics. Soon

after graduation he began his teaching career a.s a high school teacher. He

taught Mathematics from 1981 to 1983 in Jordan and the UAE. In 1983, Mr.

Ajwa joined Lehigh University, Bethlehem, Pennsylvania to do an M.S. in

Mathematics which he finished in 1985. Between 1983 and 1987 he worked as a

Teaching Assistant in the Department of Mathematics, Lehigh University,

Bethlehem, Pennsylvania. His teaching was well received and he was awarded

two prizes by Lehigh University in 1986: the "Arthur E. Humphrey Teaching

Assistant Award", and the "Teaching Assistant of the Year Prize". uln 1987 he

joined Northampton County Area Community College, Bethlehem, Pennsylvania

as an Adjunct Professor. From January 1988 through June 1990, he was a

recepient of a scholarship from the Arab Student Aid International. He is single

but planning to get married in July 1990. He has three brothers: Yousef, Emad,

and Ziad; and two sisters: Raghdah and Rana.

110

. ~·

\

,. . ~ .

	Lehigh University
	Lehigh Preserve
	1991

	Parallel algorithms for algebraic and numerical problems :
	Iyad A. Ajwa
	Recommended Citation

	tmp.1551882614.pdf.SaJ45

